
A Quantum Abacus for
Teaching Quantum Algorithms

Dan-Adrian German
Luddy School of Informatics
Computing and Engineering

Indiana University
Bloomington, Indiana, USA

Email: dgerman@indiana.edu

Marcelo Pias
Federal University of Rio Grande
Computer Science Centre (C3)

Rio Grande do Sul, Brazil

Qiao Xiang
Xiamen University

School of Informatics
Xiamen, Fujian, China

Sreesha Srinivasan Kuruvadi
Luddy School of Informatics
Computing and Engineering

Indiana University
Bloomington, Indiana, USA

Abstract—At the time of this writing more than 60 (sixty)
companies in the world are building quantum computers. These
computers, based on quantum physics principles, are radically
different from those that operate according to the more familiar
principles of classical physics. A quantum algorithm takes a num-
ber of classical bits as its input, manipulates them so as to create
a superposition of all their possible states, further manipulates
this exponentially large superposition to obtain the final quantum
result, and then measures the result to get (with the appropriate
probability distribution) the same number of output bits as in
its input. For the middle phase, there are elementary operations
which count as one step and yet manipulate all the exponentially
many amplitudes of the superposition. The natural language
of these quantum gates is that of linear algebra in a complex
(Hilbert) vector space. Since 2017 it is known that it is possible
to replace the linear algebra with some string-rewriting rules
which are no more complicated than the basic rules of arithmetic.
The original system was introduced by Terry Rudolph and has
been promoted and disseminated in large-scale outreach projects
(among others) by Diana Franklin (University of Chicago) and
Sofia Economou and Ed Barnes (Virginia Tech) as well as several
other educators at the high-school level. In this paper we show
how a slightly modified (though still very elementary) system
can be used to communicate a visual and entirely operational
understanding of key quantum computation concepts such as:
superposition, probability, entanglement, phase, interference and
unitary state evolution, as they occur in well-known quantum
algorithms. We give concrete examples of proving properties
for quantum gates and quantum circuits without resorting at
all to complex numbers or matrix multiplication. Only simple,
abacus-like operations are used—hence the title of the paper.
The system we present allows a novice learner to actually trace
a quantum algorithm as if it were a classical computation, which
is a rare (and, frankly, borderline incredible) luxury in the area of
quantum computation, where traditional debugging is impossible.
Examples include the phase kickback phenomenon and the
famous Deutsch-Josza algorithm. We end with a discussion (and
more examples) of how this approach can create a genuine bridge
to the mathematics of quantum computation, that is, of vector
and tensor algebras in complex spaces for students who may
have little or no proper mathematical background.

I. INTRODUCTION

A qubit is of the form α|0⟩+ β|1⟩ with α, β ∈ C and such
that α2+β2 = 1. For a certain subset of qubits we are going to
introduce a graphical representation: start by defining |0⟩ =
and |1⟩ = . Then we represent 1√

2
|0⟩+ 1√

2
|1⟩ as { , }

and we think of it as a set with two observable outcomes,

each one having the probability 1
2 . Similarly 1√

3
|0⟩+

√
2
3 |1⟩

will be represented as { , , }. It should be obvious that
only qubits with α2, β2 ∈ Q+ admit this representation.
Furthermore we could write |0⟩ = { } but in such a case
we choose to drop the pedantry and the braces. So we have:

|0⟩ =
(
1
0

)
= and |1⟩ =

(
0
1

)
=

A. One Qubit Gates, Phase and Superposition

Next we introduce the X gate defined by: X() = and
X() = . The reader can easily verify that this definition
is a special case of the more traditional:

X(α|0⟩+ β|1⟩) =
(
0 1
1 0

)(
α
β

)
=

(
β
α

)
The X gate is also known as the quantum NOT gate. It is a
one-qubit gate. It is easy to check that X(X()) = and
X(X()) = in other words X2 = I2 (the unit matrix of
size 2). Here’s another one-qubit gate, the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
The Hadamard gate acts as follows:

H|0⟩ = |0⟩+ |1⟩√
2

= |+⟩

We write this as follows in our notation:

H() =
{

,
}

For the other input the behavior is:

H|1⟩ = |0⟩ − |1⟩√
2

= |−⟩

In our notation this becomes:

H() =
{

,
}

The negative sign placed on top of the qubit is called phase;
we refer to a pair of curly braces as the superposition operator.
If no intermediate measurements are involved the Hadamard
gate shares this idempotence property with the NOT gate:

H(H()) = and H(H()) =

In fact H2 = I2 (these are unitary matrices) a property that can
be easily checked via matrix multiplication. Now we establish
rules of engagement for the phase and superposition operators.

Both operators are linear. For superposition we have:

H(H()) =H(
{

,
}
) =

=
{
H(),H()

}
=

=
{{

,
}
,
{

,
}}

The operator represents sets of outcomes so:{{
,

}
,
{

,
}}

=
{

, , ,
}

Now
{

,
}

=
{ }

= follows from definition and
is known as constructive interference. In this context the phase
operator is responsible for a destructive type of interference:{

,
}
= ∅ so

{
, , ,

}
=

The phase operator acts in the same way the unary minus
operator acts for multiplication1. Thus we have:

H(H()) =H(
{

,
}
) =

=
{
H(),H()

}
=

=
{{

,
}
,H()

}
=

=
{{

,
}
,
{

,
}}

=

The last step follows from
{

,
}
=

{
,

}
=

{
,

}
.

B. Two Qubit Gates and Entanglement

Now to study entanglement we need two-qubit gates. With
two qubits the order matters:

|01⟩ = |0⟩ ⊗ |1⟩ =

0
1
0
0

 = ̸=

It’s customary to introduce the SWAP gate next:

SWAP(|10⟩) =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0
0
1
0

 =

0
1
0
0

 = |01⟩

In our notation we have: SWAP() =
We now introduce the C-NOT gate, through an example:

C-NOT(|10⟩) =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

0
0
1
0

 =

0
0
0
1

 = |11⟩

In our notation that becomes: C-NOT() =

1The product of two negatives is a positive because the inverse of the inverse
of a positive number is that positive number back again. When applied to a
set, though, the phase operator changes the sign (phase) for each outcome.

C-NOT distinguishes between its two arguments as follows: it
first requires the control qubit, and then the target qubit. Let’s
look at a simple circuit now:

This is the circuit that creates the Bell states, as a function of
its two inputs:

C-NOT(H()) = |Φ+⟩ =
{

,
}

Let’s work this out:

C-NOT(H()) = C-NOT(
{

,
}

) =

= C-NOT(
{

,
}
) =

=
{
C-NOT(),C-NOT()

}
=

=
{

,
}

The reader should notice that the superposition operator is
distributive (like in elementary algebra) with respect to (or
within) the product of quantum states. Furthermore, as we
said before, the product is not commutative.

Now, as an exercise, let’s try to answer each of the following
two questions: (a) Is this quantum state an entangled2 state?

Ψ =

√
1

4

1
1
1
1

Answer: no, because{

, , ,
}
=

{
,

}{
,

}
(b) Is this quantum state an entangled state?

Ψ =
|00⟩+ |01⟩√

2

Answer: no, because{
,

}
=

{ }{
,

}
=

{
,

}
In both cases we invoke distributivity.

C. String Rewriting vs. Graph Rewriting

It should be clear that the system described in this paper
is in fact a string-rewriting system [6]. Rewriting systems
are at the foundation of Computer Science, they are, in
fact, the very fabric of it (e.g., Turing machines and lambda
calculus) so this is a very fortunate development. In recent
years another rewriting system, the ZX-calculus ([1], [4]) has

2As a reminder, an entangled state of a composite system is a state that
cannot be written as a product state of the component systems.

gained in popularity and is routinely being used in industry for
simplification of quantum circuits. Let’s briefly compare and
relate the two systems to each other before going any further.

The system we’re using here does not have an established
name3 (we refer to it as the “Quantum Abacus”) and uses
string rewriting rules to show what happens with the quantum
state as it travels through a circuit. By contrast the ZX-calculus
is a diagrammatic language that rewrites entire portions of the
circuit (so it’s a graph-rewriting technique) while preserving
the equivalence of the circuit. One is a global technique; the
other helps trace a quantum state through a circuit in “slow-
motion”. As an example consider the following circuit:

It can be written as a ZX-diagram (see [4]):

Which can then be simplified as follows:

This proves (diagrammatically) that the circuit implements a
GHZ state4. By comparison the same proof with the “Quantum
Abacus” proceeds as follows:

Here superpositions are represented as “misty states” which
is just a graphically somewhat richer representation of our
superposition (set) operator .

3Other than by reference to its inventor: Terry Rudolph’s system.
4The Greenberger–Horne–Zeilinger (GHZ) state is an entangled quantum

state for 3 qubits with this expression: |000⟩+|111⟩√
2

(so, { , }).

II. PHASE KICKBACK

Phase kickback is not an algorithm, but a technique (a useful
concept, or trick) in quantum algorithm design. It provides a
framework to understand many famous quantum algorithms,
such as Shor’s algorithm, the phase estimation algorithm, the
Deutsch algorithm, Simon’s algorithm, etc. The essence of it
can be captured in this diagram:

The behavior of the C-NOT gate in this diagram is (at first) a
bit counterintuitive: the control qubit changes while the target
stays the same. By simple matrix multiplication one can verify
the truth of this diagram. Let’s prove it (with the abacus):

C-NOT(|+−⟩) = |−−⟩

We start by reminding ourselves that

|+⟩ =
{

,
}

and |−⟩ =
{

,
}

We also decided to use ↱ instead of C-NOT to save space (the
arrow reminds us that the control qubit is the first in the pair).

So now we calculate:

↱ (|+−⟩) = ↱ (
{

,
}{

,
}
)

= ↱ (
{

, , ,
}
)

=
{
↱ (), ↱ (), ↱ (), ↱ ()

}
=
{

, , ,
}

=
{

, , ,
}

=
{

, , ,
}

=
{ {

,
}
,

{
,

}}
=
{

,
}{

,
}

=|−−⟩

This concludes the proof.

III. TELEPORTATION

Initially introduced in Bennett et al. (1993), quantum tele-
portation describes a protocol allowing to reconstruct an
unknown quantum state |Ψ⟩ = α|0⟩+β|1⟩ at a new location by
using a classical information channel and a pair of entangled
states. So the first challenge is going to be to find a way to
represent an arbitrary |Ψ⟩ state in our “abacus” system. As
we shall see this is not going to be very hard. Furthermore
it will allow us to morph gradually into the traditional,
mathematical representation. Let’s start by assuming some
simple, manageable form for the given quantum state, for

example let’s assume |Ψ⟩ = 1√
3
|0⟩ +

√
2
3 |1⟩. Then we said

we represent |Ψ⟩ in our system via probabilities of measured
outcomes; so, in this case |Ψ⟩ = { , , }. It should be
clear that |Ψ⟩ = { , 2 } conveys the same information via
the new coefficient (i.e., 2) and the representation is a bit more
compact, as well. In that case ∀α, β ∈ C we have:

α|0⟩+ β|1⟩ = {α , β }
Quantum teleportation ([7], [9]) requires three qubits, where

the first one holds the state to be teleported and the remaining
ones are initialised to |0⟩. The protocol consists of performing
the following quantum circuit:

The word teleportation does fit well here as this phe-
nomenon occurs instantaneously and is not affected by dis-
tance or separating barriers. The instantaneously teleported
state cannot be used to achieve faster than light commu-
nication, as in order to be properly reconstructed requires
classical information about measurement performed at the
sender location, making it sensitive to limitations imposed by
the speed of light. Let’s prove the protocol by calculating the
intermediary stages |Ψ0⟩, . . . , |Ψ4⟩. We start with:

|Ψ0⟩ =
{
α , β

}
Traditional calculation confirms this:

|Ψ0⟩ = (α|0⟩+ β|1⟩)⊗ |00⟩ = α|000⟩+ β|100⟩
In the classroom this would be a good moment to talk about

tensor products and relate the following:

≡ |1⟩ ⊗ |0⟩ ⊗ |1⟩ =

0
0
0
0
1
0
0
0

Please don’t forget that |0⟩ and |1⟩ are in fact vectors. We will
revisit this topic briefly at the end of this section. Furthermore
we can continue to calculate and relate the results obtained
via the “abacus” to those obtained via standard mathematical
operations. As an example we can calculate:

H({α , β }) =α { , }+ β { , } =

={(α+ β) , (α− β) }

This is clearly confirmed by the standard calculation:

H(α|0⟩+ β|1⟩) = 1√
2

(
1 1
1 −1

)(
α
β

)
=

1√
2

(
α+ β
α− β

)
So now we can calculate:

|Ψ1⟩ =
{
α , α , β , β

}
Traditional calculation, again, confirms our result:

|Ψ1⟩ =
1√
2

(
α|000⟩+ α|010⟩+ β|100⟩+ β|110⟩

)
After the first C-NOT gate:

|Ψ2⟩ =
{
α , α , β , β

}
Traditional calculation yields:

|Ψ2⟩ =
1√
2

(
α|000⟩+ α|011⟩+ β|100⟩+ β|111⟩

)
The second C-NOT acts on the first two qubits:

|Ψ3⟩ =
{
α , α , β , β

}
Using standard calculation techniques:

|Ψ3⟩ =
1√
2

(
α|000⟩+ α|011⟩+ β|110⟩+ β|101⟩

)
We now have only one stage left but it should be relatively
clear that developments are now in lockstep. So, after the
second Hadamard gate (acting on just the first qubit):

|Ψ4⟩ =
{
α{ , } , α{ , } ,

β{ , } , β{ , }
}
=

=
{
α , α , α , α ,

β , β , β , β
}

Traditional calculation meanwhile yields (same thing):

|Ψ4⟩ =
1

2
|00⟩

(
α|0⟩+ β|1⟩

)
+ ; nothing

+
1

2
|01⟩

(
β|0⟩+ α|1⟩

)
+ ; apply X

+
1

2
|10⟩

(
α|0⟩ − β|1⟩

)
+ ; apply Z

+
1

2
|11⟩

(
− β|0⟩+ α|1⟩

)
; X, then Z

In this form it is visible what gates have to be applied to the
last qubit to make it the input teleported state α|0⟩+β|1⟩. The
gates to be applied depend on the measurement of the first two
qubits, as teleported state is still entangled with them. That is
the motivation behind the idea of classical correction, which
is the last stage in this protocol (and indicated via annotations
in this last equation). Let’s now revisit, as we promised, the
topic of tensorial product in the context of our derivation:

(
x0

x1

)
⊗
(
y0
y1

)
⊗
(
z0
z1

)
=

(
x0

x1

)
⊗

y0

(
z0
z1

)
y1

(
z0
z1

)
 =

(
x0

x1

)
⊗

y0z0
y0z1
y1z0
y1z1

This is exactly what is happening in our “abacus” calcula-
tions, for example in the first stage, as we determine |Ψ1⟩:

Two final comments in this section. First, that a(nother)
diagrammatical proof of teleportation would look like this:

This is Penrose notation [5] and the approach is similar to what
we saw when we mentioned the ZX-calculus. Note also that
there is no transfer of matter or energy involved. No particle
has been physically moved (from Alice to Bob); only its
state has been transferred. The term “teleportation”, coined by
Bennett, Brassard, Crépeau, Jozsa, Peres and Wootters, reflects
the indistinguishability of quantum mechanical particles.

IV. THE DEUTSCH ALGORITHM

The Deutsch-Jozsa algorithm5 was the first to show a
separation between the quantum and classical difficulty of a
problem. This algorithm demonstrates the significance of al-
lowing quantum amplitudes to take both positive and negative

5The Deutsch–Jozsa algorithm is a deterministic quantum algorithm pro-
posed by David Deutsch and Richard Jozsa in 1992 with improvements by
Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca in 1998.
Although of little current practical use, it is one of the first examples of a
quantum algorithm that is exponentially faster than any possible deterministic
classical algorithm. The Deutsch–Jozsa problem is specifically designed to
be easy for a quantum algorithm and hard for any deterministic classical
algorithm. It is a black box problem that can be solved efficiently by a quantum
computer with no error, whereas a deterministic classical computer would
need an exponential number of queries to the black box to solve the problem.
More formally, it yields an oracle relative to which EQP, the class of problems
that can be solved exactly in polynomial time on a quantum computer, and P
are different. Since the problem is easy to solve on a probabilistic classical
computer, it does not yield an oracle separation with BPP, the class of
problems that can be solved with bounded error in polynomial time on a
probabilistic classical computer. Simon’s problem is an example of a problem
that yields an oracle separation between BQP and BPP.

values, as opposed to classical probabilities that are always
non-negative.

We examine a variant of this algorithm designed as a game
called ([3], [2]) “Money or Tiger”. As the authors explain ”[the
game] does not require more than one student and relies on
only pen and paper and the [“Quantum Abacus”] formalism[;
i]t can [thus] be viewed as a preparatory step toward a
proper linear-algebra treatment. [... I]t introduces the concept
of a quantum algorithm and the advantages that [Quantum
Mechanics] can bring to information processing. [...] It shows
that a simple algorithm (combination of boxes) employing
quantum gates can be used to solve a problem [faster than]
what can be done using only classical information processing.”
We emphasize that the quantum algorithm is twice as fast than
the fastest possible classical solution.

The setup of the game is as follows: there are two doors,
one labeled with a white circle, the other one with a black
circle. There is a button on the wall that opens both doors
simultaneously. It is not possible to open only one door. There
is money behind at least one door. There may or may not be
a tiger behind one of the doors. If there is no tiger, then you
want to push the button and collect the money. However, if
there is a tiger, then you do not want to push the button, and
instead you leave without the money, happy enough that you
are still alive. Also on the wall is a box labeled “Tiger?”.

You are allowed to query this box once (and only once)
to check whether there is a tiger. The way the box works is
as follows: the box has two input ports and two output ports.
You always input a black marble in the left input, and in the
right you insert a marble whose color matches the door you
want to check. If you want to know whether there is a tiger
behind the white door, then you insert a white marble, while
to check if there’s a tiger behind the black door, you insert a
black marble in the right input port. The door marble comes
out the same color regardless of whether or not there is a tiger.
However, the test marble changes color if a tiger is present.

These rules are summarized below:

The “Tiger?” box is also called an oracle. If we only have
access to classical information processing, then it is clear that
the “Tiger?” box needs to be queried twice in order to be sure
there is no tiger present. You would have to use it once for
each one of the two doors. The point of this game is to show
that Quantum Mechanics allows us to determine whether or
not there is a tiger behind either one of the doors with absolute
certainty while only using the oracle box once.

There are three cases to consider: (a) no tiger, (b) tiger
behind white door and (c) tiger behind black door. We will
design an oracle (and a quantum circuit) for each one and

prove our claim using the “Quantum Abacus”. Here are the
three oracles and how they function:

By adding additional gates above and below the oracle, it
is possible to determine whether or not a tiger is present in
one shot. This is shown below: if two black marbles are input
into the circuit, then a white output signifies the presence of
a tiger, regardless of which door the tiger is behind.

Unlike the classical case, where the oracle needs to be
used twice, in the quantum case a single use of the tiger box
suffices to identify the presence of a tiger. Note that if the
box is used twice in the classical setting, we also find out
which door the tiger is behind. In the quantum case, where
the tiger box is only used once, we only find whether there is
a tiger, but not which door it is behind. This is analogous to
the Deutsch algorithm, where we find out using the quantum
circuit whether a function is balanced or constant, but not
which particular function it is. Barnes and Economou also
note that “[as] the quantum case [...] only require[s] a single
use of a box when the classical case requires a large number
of uses [...] helps a student appreciate that the distinction
between quantum and classical computing is about the number
of algorithmic steps, and not about smaller and faster hardware
or other similar misconceptions.”

A. How the Deutsch Algorithm Works

For the non-classical case, involving quantum gates, we
need to add Hadamard gates (as shown) before and after the

oracle, in each of the three cases. Then, by changing the
question we ask (we no longer have a test qubit and a door
qubit, we now just drop two |1⟩ qubits) we will be able to get
the desired piece of information (is there a tiger behind the
doors or not) in one shot. We now describe how that works.

The circuit on the left is immediate: H(H()) = as we
showed from the first section (page) or because H is unitary, so
if there is no tiger the input (|1⟩|1⟩) is obtained unchanged in
the output. If the tiger is behind a closed door we’ll calculate
shortly what happens via |Ψ0⟩, |Ψ1⟩, |Ψ2⟩, |Ψ3⟩ and |Ψ4⟩.

For when the tiger is behind the white door, as an additional
means of checking that what we do here makes sense and is
accurate we can even simulate with Qiskit6 (in Colab):

If this is not visible yet (above) here are the outputs (below):

6Qiskit also can calculate and produce (plot nicely in LATEX) matrices for
whole quantum circuits or parts thereof (so we can check the math).

Let’s calculate the wave functions:

|Ψ0⟩ =
{

, , ,
}

and

|Ψ2⟩ = C-NOT(|Ψ0⟩) =

=
{

, , ,
}
=

=
{ {

,
}
,

{
,

}}
=

=
{ {

,
}
,

{
,

}}
=

=
{ {

,
}
,

{
,

}}
=

=
{

,
}{

,
}

We are now left with the circuit in the middle (for which
we also presented a Qiskit simulation). We have:

Ψ1 =
{

, , ,
}

This follows from |Ψ0⟩ if we apply an X gate (as the circuit
does) on the first qubit. Next, we have

|Ψ3⟩ = C-NOT(|Ψ1⟩) ==
{

, , ,
}

Note that traditional calculation matches this expression:

|Ψ3⟩ =
1

2

(
|11⟩ − |00⟩ − |10⟩+ |01⟩

)
However, if we implement this circuit in Qiskit the state vector
at this point (i.e., for |Ψ3⟩) comes out as:

|Ψ3⟩ =
1

2

(
|11⟩ − |00⟩ − |01⟩+ |10⟩

)
We need to be mindful, always, when we check such calcula-
tions in Qiskit, because of the (widely known) change in how
qubits are being ordered. With this we can calculate:

|Ψ4⟩ =
{

, , ,
}
=

=
{ {

,
}
, ,

}
=

=
{ {

,
}
,

{
,

}}
=

=
{

,
}{

,
}
=

=
{

,
}{

,
}

And that finishes the proof because on the second wire the
Hadamard gate reconstructs |1⟩ (up to a phase which, however,
does not affect the measurements) whereas a |0⟩ emerges from
the Hadamard gate on the first wire (right side in picture).

V. BERNSTEIN-VAZIRANI

Despite the extraordinary power of today’s computers, there
are applications that are difficult for them to compute but seem
to be easily “computed” by the quantum world: estimating the
properties and behavior of quantum systems. While today’s
classical computers can simulate simple quantum systems, and
often find useful approximate solutions for more complicated
ones, for many such problems the amount of memory needed

for the simulation grows exponentially with the size of the
system simulated. In 1982, physicist Richard Feynman sug-
gested that quantum mechanical phenomena could themselves
be used to simulate a quantum system more efficiently than a
naı̈ve simulation on a classical computer.

In 1993, Bernstein and Vazirani showed that quantum com-
puters could violate the extended Church-Turing thesis7. Quan-
tum computation is the only model of computation to date to
violate the extended Church-Turing thesis, and therefore only
quantum computers are capable of exponential speedups over
classical computers.

A. How the Bernstein-Vazirani Algorithm Works
We owe this description of the Bernstein-Vazirani algorithm

to Diana Franklin. She refers to the kind of example that
follows as “simultaneous computation with oracles.” More
people should take her two ([10], [11]) excellent EdX courses
on Quantum Computation. Let’s imagine a quantum circuit
with n+1 inputs and such that any of the first n wires could
control a C-NOT gate located on the remaining (bottom) wire.

Here’s an example with n = 10.

The theme from “Close Encounters of the Third Kind” is
there to reinforce the pattern but also to allow me to say
that the sequence (order) of the C-NOT gates is not relevant.
The circuit itself is called an oracle and it hides a “secret”
string of controls to the gates on the bottom wire. The task
is to determine this string. The question is how fast can we
determine the string (in this case 1110010001 that we could
also write as {0, 1, 2, 5, 9} to emphasize it’s actually a set).

How fast can we determine this “characteristic” of the
oracle? In the classical sense we need n tries, in each case
feeding a |1⟩ on a single line 0 ≤ i ≤ (n− 1) and |0⟩ on all
other inputs, including the one at the bottom. A change in the
output of the bottom wire will tell us that i is in the set. Can
we do better? Yes, in the quantum case we need just one try.

7The extended Church-Turing thesis is a foundational principle of computer
science that said that the performance of all computers was only polynomially
faster than a probabilistic Turing machine. Bernstein and Vazirani’s quantum
algorithm offered an exponential speedup over any classical algorithm for a
certain computational task called recursive Fourier sampling. Another example
of a quantum algorithm demonstrating exponential speedup for a different
computational problem was provided in 1994 by Dan Simon.

We will be using the knowledge we built when we studied
the circuit from Phase Kickback. If we feed |+⟩’s on the first
n inputs and |−⟩ on the bottom wire the changes in the outputs
will only occur on the wires acting as control qubits for the
gates at the bottom. The other inputs remain unchanged.

So the pattern has emerged, in one step, as the output. If
we prefer to work in the computational basis we do this:

So one step is enough.

VI. CONCLUSION

We hope the paper makes a strong case for how much can
be introduced in an eight weeks (half-semester) class using a
formalism that as simple as elementary (i.e., middle school)
pre-algebra. The topics chosen address the foundations (see
also [8]). The “abacus” calculations are complete, accurate
and lead naturally (we believe) into the more traditional
mathematical approaches. A second eight weeks class could
introduce that formalism (starting with a review of elementary
probability, trigonometry and complex numbers) and using it
to review and reinforce the topics presented here, then add
chapters on Quantum Search (Grover) and Quantum Factoring
(Shor’s algorithm). We have been using this approach in the
classroom for the last two years and the data we collected thus
far, on how effective this approach is, looks very promising.

This is probably a good place to review the basic rules of
the “abacus” as presented in this paper:

• the superposition operator describes a qubit as a set of
possible outcomes, with their associated probabilities

• the phase operator acts like the unary minus sign in a
multiplication (or product)

• when applied to a set of possible outcomes the phase
operator changes the sign (phase) on each of the elements
in that set (of possible outcomes)

• the tensor product between two qubits is the cartesian
product between the superposition sets representing those
qubits (and the order matters)

• if we allow (as we did when we explained teleportation)
complex coefficients in the superposition operator’s repre-
sentation introduced in the first few lines of the paper then
the full generality of representation for qubits is achieved.

Compared to the ZX-calculs the system presented in our
paper resembles the “slow-motion” replays in televised sports.
A slow-motion replay is an exponential process and no-
body would ever argue that it would be useful, advisable
or otherwise meaningful to watch an entire game in slow
motion. Graph-rewriting (mentioned in passing twice, with
examples) has significant advantages over the string rewriting
techniques that we presented. However graph rewriting is in
effect an orthogonal process to what we advocated here; it
can’t provide any of the insight this slow-motion “abacus”
technique provides. Furthermore, a lot of the teaching (and
learning) that happens when a student is first introduced to a
complicated topic is, of necessity, of the slow-motion type.

ACKNOWLEDGMENT

The authors would like to thank their colleagues in the
QED-C (especially the Workforce Development TAC) for nu-
merous talks around how best these topics could be introduced
to a noob (neophyte) audience. QED-C is a broad international
group of stakeholders from industry, academia, national labs
and professional organizations that aims to enable and grow
the quantum industry and its associated supply chain. QED-C
was established with support from NIST as part of the federal
strategy for advancing QIST as per the National Quantum
Initiative Act in 2018.

REFERENCES

[1] Bob Coecke and Aleks Kissinger, Picturing Quantum Processes—A First
Course in Quantum Theory and Diagrammatic Reasoning, Cambridge
University Press, 2017.

[2] Sophia Economou, Terry Rudolph and Edwin Barnes, Teaching quantum
information science to high-school and early undergraduate students,
available at https://arxiv.org/abs/2005.07874, 2020

[3] Edwin Barnes, Teaching QIS at the QISE Summer School organized by
Virginia Tech presentation at Spring 2022 CSAAPT Semi-Virtual Meeting
available at https://indico.phys.vt.edu/event/48/contributions/996/

[4] John van de Wetering, ZX-calculus for the working quantum computer
scientist, https://arxiv.org/abs/2012.13966v1, 2020

[5] Bob Coecke, “Quantum picturalism”, Contemporary Physics, 2010.
[6] Terry Rudolph, Q is for Quantum, Terrence Rudolph 2017.
[7] Marek Narozniak, Simulating Quantum Teleportation, March 2020 avail-

able at https://mareknarozniak.com/
[8] Adrian German, Marcelo Pias, Qiao Xiang On the Design and Implemen-

tation of a Quantum Architectures Knowledge Unit for a CS Curriculum
ACM, SIGCSE 2023, https://doi.org/10.1145/3545945.3569845

[9] Wikipedia article, https://en.wikipedia.org/wiki/Quantum teleportation
[10] Diana Franklin, Quantum Computing for Everyone (Part 1), EdX course

at https://www.edx.org/course/quantum-computing, 2021.
[11] Diana Franklin, Quantum Computing for Everyone (Part 2), 2021.

www.edx.org/course/introduction-to-quantum-computing-for-everyone-2

https://arxiv.org/abs/2005.07874
https://indico.phys.vt.edu/event/48/contributions/996/
https://arxiv.org/abs/2012.13966v1
https://mareknarozniak.com/
https://doi.org/10.1145/3545945.3569845
https://en.wikipedia.org/wiki/Quantum_teleportation
https://www.edx.org/course/quantum-computing
https://www.edx.org/course/introduction-to-quantum-computing-for-everyone-2

	Introduction
	One Qubit Gates, Phase and Superposition
	Two Qubit Gates and Entanglement
	String Rewriting vs. Graph Rewriting

	Phase KickBack
	Teleportation
	The Deutsch Algorithm
	How the Deutsch Algorithm Works

	Bernstein-Vazirani
	How the Bernstein-Vazirani Algorithm Works

	Conclusion
	References

