


































Dirac taught us there is a minimum disturbance that  accompanies 
a measurement (inherent in the nature of things, and that cannot be 

overcome by improved experimental technique). If minimum disturbance 
accompanying a measurement is non-negligible, the object is absolutely 
small, and its properties fall in the realm of quantum mechanics. The 
quantum properties of absolutely small particles are not strange; they are 
just unfamiliar and not subject to our classical intuition. The double-slit 
experiment performed w/ electrons introduces both the phenomenon of 
interference and the wave-particle duality principle. According to this 
principle: A quantum object (a) is produced as a particle, (b) propagates 
like a wave, and (c) is detected as a particle with a probability distribution 
that corresponds to a wave. The double-slit experiment also introduces the 
Heisenberg uncertainty principle at the level of paths (trajectories). A qubit
is a superposition of bit states and is represented as a vector via complex 
numbers w/ brief review of trigonometry. Two-dimensional vector spaces 
with complex (or real) amplitudes are introduced. We define measurement 
as the probability of a state projecting itself on any of the two vectors of an
orthogonal basis. Define the standard (computational) basis, and the sign 
basis. Heisenberg’s uncertainty principle imposes a fundamental limit on 
the accuracy w/ which the values of two incompatible observables can be 
measured simultaneously. It is not possible to know with perfect accuracy 
both the bit value and the sign value of a qubit, yet another manifestation 

of the uncertainty principle. Photons as qubits. Polarization.  



Systems of two qubits exhibit a remarkable property called
entanglement, that plays a critical role in quantum computation. Start 

with k-level systems, introduce bra-ket notation, use the measurement
axiom in an orthonormal basis, inner products, complex conjugates and
the superposition principle. Describe partial measurement in a system of
two qubits with renormalization and then define entanglement. Three 
quantum phenomena are used in quantum algorithms: superposition, 
interference and entanglement. State of a composite system. Taking the
tensor product. Factoring a product into individual components. Bell 
states. Measuring the Bell state. Spin of two electrons in a covalent bond.
The paradoxical features of Bell states. The EPR paradox. Local realism.
A test for quantum mechanics: Bell inequalities. Classer, Horne, Shimony,
and Holt (1969). Alain Aspect (1982). No Signaling Theorem. Entanglement
can be used to create non-classical correlations. Rotational invariance of a 
Bell state. State of the spin of electrons in a covalent bond: singlet state. 
Designing a test for quantum-ness: creating instant remote non-classical 
correlations. CHSH and local realism. John Stewart Bell was 7 years old in 
1935 the year of the EPR paradox paper. Nature is consistent with QM and
inconsistent with any local hidden variable theory. It took a brilliant insight
by John Bell and further simplification by CHSH plus the language of qubits 
to explain in a lecture what Einstein spent decades of his life without any 
luck or success. This shows there can be remarkable power in very simple   

concepts. Quantum Mechanics has three axioms we discuss next.



So far we’ve talked about what the allowable states of a 
quantum system are and what happens when we measure the state

of a quantum system. These are encapsulated in the first two axioms of
Quantum Mechanics: the superposition principle and the measurement
axiom.  Quantum gates address the issue of how the state of a quantum
system evolves in time (unitary evolution, the third axiom of QM). Simple
axioms with very complex consequences. Third axiom says that the state
evolution of a quantum system in time is via a rotation in a Hilbert space.
Example: evolution of a qubit (rotate the space). Rotation of the space is a
linear transformation. Represent by a matrix. Unitary transform(ation)s 
and their properties. Single qubit gates: X (bit flip), Z (phase flip), H (the
Hadamard gate). Two qubit gates and tensor products. The CNOT gate.
Tensor products and the dimension of two qubit gates. If we try construct
a quantum circuit that copies an unknown quantum state we find there is
no unitary transformation that achieves this, i.e., the No-Cloning Theorem.
The Bell state circuit: building a maximally entangle state. Bell basis states.
It’s impossible to clone quantum information but it is possible to teleport 
a quantum state to another location. We build the complete teleportation
protocol: Alice has this unknown quantum state, she wants to transport it 
to Bob. In the course of teleportation she destroys her qubit. She then has
to  call up Bob and tell him two classical bits of information. In the process,
she allows Bob to reconstruct her qubit (by creating an entangled state 

without quantum communication between the two of them). We end
with an interpretation of what measurement of a qubit really is.     



We are ready to go to the next topic, which is quantum algorithms.
We focus on how to specify a quantum algorithm in terms of a quantum

circuit. Such a quantum circuit act on a system of n qubits. The state of an 
n qubit system is an exponential superposition. But we cannot reach in and 
update all the exponentially many amplitudes one at a time, so instead we
want to perform some kind of quantum gate on some of the qubits and we
show that behind the scenes nature updates all those complex amplitudes.
At the end we measure the answer and then the exponential superposition
disappears. And so, quantum algorithms is the art of making use of these 
resources that quantum mechanics gives us: (a) extravagant resources,  w/
(b) some degree of control, but (c)very limited access, and to use those to 
solve a difficult computational problem. We then talk about the universal
gate set. In classical circuits, e.g. NAND is universal, a certain set of gates 
enables universal computation. The quantum analogue is { CNOT, H,  X, Z, 
and something like a !

"
rotation}. Other sets exist important aspect here is

that you can restrict yourself to two qubit gates. Equipped with a model 
of a quantum computer we start exploring what we can do with it. Since
evolution in quantum mechanics is unitary it’s actually reversible. We can
simulate any classical circuit reversibly using NOT, CSWAP and CNOT. One 
of the basic questions in quantum algorithms is how to create interesting
superpositions to exploit the exponential power of quantum systems. And

the key is quantum Fourier sampling. Bernstein-Vazirani and through 
Simon’s algorithm QC violates extended Church-Turing thesis. 



We now get right to the heart of our discussion about quantum 
algorithms and we talk about the quantum factoring algorithm and the

Quantum Fourier Transform (QFT, the 
workhorse of quantum algorithms). 



Searching for a needle in a haystack. Reverse phone book problem.
Why is it an important problem? There’s a whole class of problems called 

NP-complete problems, which are extremely important problems from a 
computational viewpoint not only in computer science but also in every 
discipline of science, physics, chemistry, etc. A quintessential such problem 
is satisfiability. There are thousands, tens of thousands of problems which 
are computationally equivalent to satisfiability. If you solve one of these 
problems quickly, you can solve all of them quickly. These are problems 
that are classically believed to be hard; at least as hard as factoring, or 
much harder. Grover’s algorithm can solve                        this problem with 
a quadratic speedup over the classical 
algorithm. Phase inversion and  
inversion around the mean. 
Implementation of Grover’s 
algorithm. On the right we 
see geometric visualization 
of a single Grover iteration. 
An observable for a k-level
system is a k by k Hermitian
matrix (a fancy way of specifying
an orthonormal basis). Quantum 

equation of motion has energy
observable H called the Hamiltonian                                  of the system.

.



Now we are ready to understand how qubits are implemented. So 
far, our model for a qubit is that it’s implemented using the ground and 

excited states of an electron in a hydrogen atom. So what we did was we 
assumed that the states of an electron in a hydrogen atom are quantized.
So what we’re going to do is we’ll actually show how this quantization 
emerges naturally. And we’ll use a very simple toy model for a hydrogen 
atom. We abstract this problem as a one-dimensional problem, we have 
an electron free to move around on the line, except that it’s confined to 
the segment of length 1. And now we want to study (a) how to describe 
the state of the electron. But this electron is allowed to be anywhere on 
this line (continuous quantum states). So how do we describe that state? 
The second question we’ll ask is, what is that the Hamiltonian? We said 
it’s a free particle. Once we have the Hamiltonian, we want to understand 
what are the energy eigenstates, i.e., the eigenstates of the Hamiltonian? 
And this is where we’ll see  the quantization emerge naturally. Finally, we’ll
see how to implement qubits. We use some of the mechanisms developed 
in the previous section, Schrödinger's equation for 1D free particle. Next 
we discuss spin. Elementary particles, like electrons and protons, carry an 
intrinsic angular momentum, which is called spin. And when the particle 
charged, like an electron, there’s also an associated intrinsic magnetic 
moment. So an electron acts like a little magnet. This magnetic moment, 

angular momentum, these are quantized. So the spin can point either 
up or down. Stern-Gerlach. Bloch sphere. Pauli spin matrices.  



Larmor precession. In the first lecture we we’ll talk about how to 
manipulate spin, that is, how to actually implement quantum gates on 

a spin qubit. First we understand what a quantum gate looks like on the
Bloch sphere because in order to understand how the spin qubit interacts 
with the external world, we have to locate the spin qubit on a Bloch sphere. 
So the answer says that a quantum gate, or a unitary transformation, on a 
qubit state is performed by a rotation of a Bloch sphere about some axis. 
So, we pick some axis and we just rotate this Bloch sphere through some 
angle about this axis. We first see how we can use Larmor precession to 
implement an arbitrary single cubit gate on a spin. It turns out this is not 
a really practical way of implementing a quantum gate, because the B-field 
required for this is very large. And it’s difficult in the lab to actually move 
this field, to change its direction, rapidly as we want for quantum gates. So
as it turns out there’s a different way of implementing single cubit quantum
gates due to an effect called spin resonance, which gives much finer control.
Now, what we basically have as a model for a quantum computer is a set of 
qubits which are being controlled through an external classical computer. 
We are trying to control our qubits externally, by some external means, so 
we are interacting with the qubits from that side. And this gives us a lot of 
flexibility, this classical computer then represents the programming of the 
quantum computer. This is what makes it all really feasible. But then, this 
seems to contradict goal number two, which is to isolate our qubits. This

kind of inadvertent measurement of our quantum system is called 
decoherence (major challenge). Error mitigation and control. 


