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welcome

Thank you for purchasing the MEAP for Quantum Computing for Developers: A Java-
based introduction.

With this book, I want to introduce the potential and relevance of Quantum Computing to
Java Developers. This book is targeting both beginning developer as well as very
experienced Java developer -- and anything in between.

Most developers already heard something about Quantum Computing, but to many it
seems very abstract, futuristic or mysterious. In this book, I try to explain why Quantum
Computing will be very relevant to most Java developers, and why you better start learning
about it today, and not wait for the first powerful quantum computers to arrive.

Quantum Computing is expected to have a big impact in many IT areas, including
encryption, communication, security, scientific research, optimization, databases,... .

In the book, we show how Java developers can use their existing skills (Java
development) and still leverage the benefits of Quantum Computing. You don't need a
degree in physics in order to use Quantum Computing.

We explain the core concepts of Quantum Computing through the eyes of a developer,
and we show a number of Java samples that leverage the benefits of Quantum Computers.
These Java samples run on an open-source Quantum Computer Simulator we refer to, and
with minor modifications they can run on real Quantum hardware.

I realize that the subject of Quantum Computers is very new to Java developers. When
talking about Quantum Computing on conferences, I highly appreciate the feedback from
the audience. The more I hear from developers, the better we can make this book. Therefore,
I recommend you to use the book's forum to ask question or provide comments.

If you have any questions, comments, or suggestions, please share them in Manning’s
liveBook's Discussion Forum for my book.

—Johan Vos
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Evolution/Revol ution/Hype?

This chapter covers:

® Setting the expectations for Quantum Computing
® Explaining what kinds of problems are suited for Quantum Computers
® Different options for Java Developers to work with Quantum Computing

The amount of books, articles and blog posts about Quantum Computing is increasing. Even if
you read only very basic information about Quantum Computing, it is clear that this is not just an
incremental enhancement of classical computing. The core concepts of Quantum Computing are
fundamentally different, but also its application area is very different. In some areas, Quantum
computers are expected to be able to address problems that classical computers are unable to.

Furthermore, since Quantum Computing is based on quantum physics, there is often some
mystery associated with it. Quantum physics is not the simplest part of physics, and some aspects
of quantum physics are extremely difficult to understand.

All combined, Quantum Computing is often pictured as some mysterious new way of working
with data, that will change the world drastically. The latter is true, at least based on what we
know at this moment. Many analysts believe it will take between 5 and 10 years before real
useful Quantum Computing is possible, and most believe the impact will be huge.

In this book, we try to stay close to reality. We want to explain to existing and new Java
developers how they can leverage Quantum Computing in their existing and new applications.
As we will show, Quantum Computing has indeed a huge impact on a number of important
issues in the IT industry. We will also explain why it is important to prepare for the arrival of
real quantum computers, and how you can do that, using Java and your favourite toolset (i.e.
your IDE and build tools). While it is true that real quantum hardware is not yet available on a

©Manning Publications Co. To comment go to liveBook

https:/lilel@ek s@antey RanHAsuri@a o esnpan@iordieur peeiidscussion



wide scale, developers should realise that building software leveraging quantum computing takes
time as well. Thanks to quantum simulators and early prototypes, there is nothing that prevents
developers to start working on exploring quantum computing in their projects today. This
increases the chances that their software is ready by the day the hardware is available.

1.1 Expectation Management

NOTE take-aways:

® Don’t assume Quantum Computing (QC) will fix everything

® QC is fundamentally different from classical computing

® QC is mainly suitable for complex problems

® QC and classical computers will have to work together

® the hardware is very complex, and not in our scope

® although the hardware is not yet crystalized, we can already work on
software

The potential impact of Quantum Computing is huge. Researchers are still trying to estimate the
impact, but at least in theory, there might be very large consequences for the IT industry,
security, healthcare and scientific research and thus for mankind in general. Because of this large
impact, a Quantum Computer is often incorrectly pictured as "a huge classical computer". This is
not true, and in order to be able to see the relevance of quantum computing, one must understand
why Quantum Computing is so fundamentally different from classical computing.

It has to be stressed that there are still many roadblocks that need to be addressed before the big
ambitions can be realised.

The potential success of Quantum Computing depends on a number of factors that can be put in
two categories:

¢ Hardware: new and complex hardware is needed

® Software: in order to leverage the capabilities offered by quantum hardware, dedicated
software needs to be developed

1.1.1 Hardware

There are a number of uncertainties that prevent wide-scale usage of Quantum Computing at this
moment. Adding to those uncertainties, it should be stressed that Quantum Computers will not
fix every single problem.

The hardware needed for Quantum Computing is by no means ready for mass production.
Creating Quantum hardware, in the form of a Quantum Computer or a Quantum co-processor, is
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extremely challenging.

The core principles of Quantum Computing, which we will explain in this book, are based on the
core principles of quantum mechanics. In quantum mechanics, the fundamental particles of
nature are studied. It is generally considered to be one of the most difficult aspects of physics,
and it is still in an evolving phase. Some of the brightest physicists, including Albert Einstein,
Max Planck and Ludwig Boltzmann have been worked on the theory of quantum mechanics.
One of the major problems in the research of quantum mechanics is that it is often extremely
hard to check whether the theory matches with the reality. It is no less than amazing that theories
were created predicting the existence of some particles that were not yet observed. Observing the
smallest elements of nature, and their behavior requires very special hardware.

It is already difficult to investigate and manipulate quantum effects in closed lab environments.
Leveraging those quantum effects in a controllable way in real-world situations is an even bigger
challenge.

Most of the experimental quantum computers that exist today are based on the principles of
superconducting, and operate at a very low temperature (e.g. 10 milli Kelvin, or close to -273
degrees Celcius). This has some practical restrictions that are not encountered with classical
computers, operating at room temperature.

In this book, we make abstraction of the hardware. Clearly, the hardware problem isn’t solved,
and it is generally expected to take "a number of years" before hardware is available that can be
leveraged to solve problems that are currently impossible to solve with classical computing. At
the time of this writing, a number of early quantum computer prototypes already exist. IBM has a
5 qubit quantum computer that is available for public usage through a cloud interface, and
quantum computer with more qubits in the research labs and for clients. Google has a quantum
processor containing 72 qubits, named Bristlecone. Specialised companies like D-Wave and
Rigetti have quantum computing prototypes as well. It has to be mentioned that it is not trivial to
compare different quantum computers. At first sight, the number of qubits may sound the most
important criterium, but it can be misleading. One of the major difficulties when building
quantum computers, is to keep the quantum states as long as possible. The slightest disturbance
can destroy the quantum states, and therefore quantum computers are subject to errors that need
to be corrected.

As we will discuss later, there is no reason for software developers to wait until the hardware is
ready before they can start thinking about software algorithms that should eventually run on
Quantum hardware. The principles of Quantum computing are understood, and can be simulated
via Quantum Computer simulators. It is expected that quantum software written for quantum
computer simulators will also work on real quantum computers, provided that the core quantum
concepts are similar.

©Manning Publications Co. To comment go to liveBook

https:/lilel@ek s@antey RanHAsuri@a o esnpan@iordieur peeiidscussion



1.1.2 Software

While there are a number of areas where Quantum Computing could, in theory, lead to a huge
break-through, it is generally agreed that Quantum Computers will not replace classical
computers.

There is a growing consensus where Quantum computers, or Quantum processors, can take over
some tasks from classical computers, but they won’t replace classical computers.

The problems that can be solved using Quantum Computing do not differ from problems that
today are tackled using classical computers. However, since Quantum Computing uses a
completely different underlying approach, the problems can be handled in a completely different
way, and for a set of problems a dramatic increase in performance can be achieved using
Quantum Computing. As a consequence, Quantum computers should be able to solve problems
that today are not practically solvable because there are not enough computing resources to solve
them now.

SIDEBAR A few words on time complexity

The complexity of algorithms is often expressed as the time complexity. In
general, algorithms will take longer to complete when the amount of input
data becomes bigger.

Let us assume that there are n items of input data. If each item requires
a fixed amount of steps, the total time for the algorithm to complete is linear
with n, the number of input items. In this case, the algoritm is said to take
linear time.

Many algorithm are more complex than this. When the number of input
itemsgrows, the total amount of required steps may grow with e.g. the
square of n,n2 , or even with the third power of n, nk for a fixed value of k.In
this case, the algorithm is said to take polynomial time. In this case, the
algorithm is said to take polynomial time.

Some algorithms are even harder to solve when the number of input
items grows.If no known algorithm is known that can solve a problem in
polynomial time, we say the algorithm takes non-polynomial time.
Algorithms are said to be exponential time if they require exponentially
more steps when n increases. For example, if the amount of required steps

2
is . , the problem is said to be of exponential complexity.

It turns out that quantum computers will be most helpful for tackling problems that can not be
solved by classical computers in polynomial time, but that can be solved by a quantum computer
in polynomial time.

A very common example is integer factorization, which is a very common operation in
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encryption. The basic idea in integer factorization is to decompose a number into prime numbers
that, when multiplied together, yield the original number. For example, 15 = 3 x 5. While this
is easy to do without a computer, you can imagine a computer is helpful when the numbers
become bigger, e.g. 146963 = 281 x 523.

The larger the number we want to factor, the longer it will take to find the solution. This is the
basis of many security algorithms. They leverage the idea that it is close to impossible to factor a
number consisting of e.g. 1024 bits. It can be shown that the time required to solve this problem
is in the order of

EQUATION 1.1

e\/ (64/9)b(log b)2

where b is the number of bits in the original number. The e at the beginning of this equation is
the important part. In short, it means that by making b larger, the time required to factor the
number becomes exponentially larger. The diagram in Figure 1.1 shows the time it takes to factor
a number with b bits.
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Figure 1.1 Time grows exponential with number of bits

Note that the absolute time is not relevant. Even if the fastest existing computers are used, adding
a single bit makes a huge difference.

This problem is said to be non-polynomial, as there is no known classical algorithm that can
solve the problem in polynomial time. Hence, by increasing the number of bits, it will be almost
impossible for classical computers to find a solution to this problem.

However, this same problem can be handled by a quantum algorithm in polynomial time. As we
will show in Chapter 4, using Shor’s algorithm, the time to solve this problem using a Quantum
Computer is in the order of |b"3.

To show what that means, we overlay the required time using a quantum algorithm on a quantum
computer over the required time using a classical algorithm on a classical computer. This is
illustrated in Figure 1.2.
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Figure 1.2 Polynomial time versus exponential time

Starting from a number of bits, the quantum computer will be much faster than the classical
computer. Moreover, the larger the amount of bits, the larger the difference. This is because the
required time for solving the problem on a classical computer increases exponentially when the
amount of bits is growing, where the same increase of bits will "only" cause a polynomial
increase for the quantum algorithm.

These kinds of problems, that are said to be polynomial in Quantum, are the ones that makes
mose sense for Quantum Computers to deal with.

1.1.3 Algorithms

Shor’s algorithms is a great example of a computational problem that is hard to solve on a
classical computer (non-polynomial in time) and relative easy on a quantum computer
(polynomial in time). Where does the difference come from? As we will discuss in Chapter 4,
Shor’s algorithm transforms the problem of integer factorisation into the problem of finding the
periodicity of a function, i.e. find the value p for which the function evaluation f (x+p) = f(x)
for all possible values of x. This problem is still very hard to solve on a classical computer, but it
is relative easy to fix on a Quantum Computer.
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Most algorithms that are known today to be very suitable for quantum computers are based on
the same principle: transform the original problem into a problem space that is easy to solve
using Quantum Computers.

The classic approach is shown in Figure 1.3. The best known algorithm is applied to the
problem, and the result is obtained.

Original problem

¥

Original algorithm

¥

solution

Figure 1.3 Typical approach solving a problem on a classical computer

If we can somehow transform the original problem to a different problem that can easier be
handled by a quantum computer, we can expect a performance improvement. This is shown in
Figure 1.4.

Original problem ‘ related problem

¥

slow original fast quantum
algorithm algorithm

¥

solution — related solution

Figure 1.4 Transforming a problem to an area where quantum computers can make a big
difference
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Note that we have to take into account the cost of transforming the original problem to a
different problem, and vice versa for the final result. However, when talking about real
compution-intensive algorithms, this cost should be neglectible.

NOTE When you see a Quantum algorithm being explained, you may wonder why
it seems to take a detour from the original problem. Quantum computers
are capable of solving particular problems very fast, so moving an original
problem to one of those particular problems allows for a much faster
algorithm, using quantum computing.

Coming up with those algorithms often involves a very deep mathematical background.
Typically, developers will not create new quantum algorithms for applications that will benefit
from quantum computers, but they will use existing algorithms. However, developers who know
the basics about quantum algorithms, why they are faster, and how to use them, will have an
advantage.

1.1.4 Why start with quantum computing today?

Programmers sometimes wonder why they should start learning about quantum computing, when
real, usable quantum computers are still years away. Developers have to realise though that
writing software that involves quantum computing is different from writing classical software.
While it is expected that there will be libraries that make it convenient for developers to leverage
quantum computers, those libraries have to be written, and even then it will require skills and
knowledge to be able to use the best tools for a particular project.

Any developer working on a project that requires encryption or secure communication benefits
from learning about quantum computing. Some existing classical encryption algorithms will
become insecure when quantum computers are available. It would be a bad idea to wait for the
first time a quantum computer breaks encryption before hardening the encryption software. At
the contrary, you want to be prepared before the hardware is available. Since quantum computing
is really disruptive, it can be expected that most developers need more time learning quantum
computing than they typically need when using a new library.

While we do not want to scare people with doom scenario’s, it is important to understand that
there is no need for a wide installed base of quantum computers before existing encryption
techniques can be compromised. Cyber attacks do not require a large amount of computers, and
can be carried out from any place.
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SIDEBAR There is a reasonable chance that a number of existing communication
protocols and encryption techniques will become vulnerable once quantum
computers become more powerful. It is important for developers to
understand what kind of software might be vulnerable, and how to address
this. This is not something that can be done overnight, hence it is
recommended to start looking into this sooner rather than later.

The software examples we will discuss in this book are very basic applications. They illustrate
the core principles of quantum computing, and they make it clear what kind of problems can
really benefit from quantum computing. But the gap between basic algorithms and fully
functional software is large. Hence, while it will take years before the hardware is ready,
developers have to understand that it will probably also take a long time before they have
optimised their software projects so that they leverage quantum computing as much as possible,
where applicable.

In the mid of the previous century, when the first digital computers were built, software
languages needed to be created as well. The difference with today is that we can now use
classical computers to simulate quantum computers. We can work on software for quantum
computers, without having access to a quantum computer.

This is a very important benefit, and it stresses the importance of quantum simulators.
Developers starting today looking into quantum computing using simulators will have a huge
advantage on other developers when the quantum hardware becomes more widely available.

1.2 The disruptive parts of Quantum Computing, getting closer
to nature

One of the main application areas of quantum computing is everything related to physics. For a
long time, scientists have been trying to understand the core concepts of modern physics by
simulating the concepts on classical computers. However, since the most granluar particles of
nature do not follow classic laws, it is complex to simulate them on classical computers. Using
exactly those quantum particles and their laws as the cornerstones of quantum computers makes
it much easier to tackle those problems.

1.2.1 Evolutions in classical computers

Over the past decades, computers have become more powerful. Improvements in performance
are often realized because of

® anincrease in the memory of the computer
® anincrease in the performance of the processor
® anincrease in the number of processorsin a computer
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These improvements typically lead into incremental, linear benefits.

The potential performance gains that are expected to be realised using Quantum computers have
nothing to do with these improvements.

A Quantum computer is not a classical computer with smaller chips, more memory, or faster
communication.

Instead, Quantum Computing starts with a completely different fundamental concept, which is a
qubit. We will discuss the qubit in detail in Chapter XX but since it is a crucial concept, we
introduce it here.

1.2.2 Revolution in quantum computers

In a classical computer, a bit is smallest piece of information, and it can be either 0 or 1.
Different operations are possible on those bits, and bits can be altered or combined. At any
moment though, all bits in a computer are in a clear state: 0 or 1. The physical analogy of a
classical bit is related to current. A "0" state corresponds with no current, and a "1" state
corresponds with current.

All existing classical software development is based on the manipulations of those bits. Using
combinations of bits, and applying gate operations of bits is the essence of classical software
development. We will discuss this in more detail in Chapter 3.

In Quantum Computing, the fundamental concept is a qubit. Similar to a classical bit, a qubit can
hold the values 0 and 1. But the disruptive difference is that the value of a qubit can be a
combination of the values 0 and 1. When people first hear about this, they are often confused. It
sounds artificial to have the qubit, the elementary component of Quantum Computing to be more
complex than the elementary component of classical computing, the bit. It turns out, however,
that a qubit is closer to the fundamental concepts of nature than the classical bit.

1.2.3 Quantum Physics

As its name implies, the foundation for Quantum Computing comes from quantum physics. In
quantum physics, the smallest particles, their behavior and their interactions are investigated. It
turns out that some of those particles have properties with interesting characteristics. For
example, an electron has a property called spin, which can take two values: up and down. The
interesting thing is that the spin of an electron can, at a given moment, be in a so called
superposition of these two values. This is a hard-to-understand physical phenomenon, and it
comes down to the easier-to-understand mathematical formula where the spin can be a linear
combination of the up value and the down value — with some restrictions that we talk about in
chapter XX.

The spin of an electron is just one sample of a physical phenomenon that allows for a property to
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be in more than one state at the same moment.

In Quantum Computing, the qubit is realised by this physical phenomenon. As a consequence,
the qubit is extremely close to the reality of quantum physics. The physical realisation of a qubit
is a real-world concept. Therefore, Quantum Computing is often said to be very close to how
nature works.

One of the goals in Quantum Computing is to take advantage of physical phenomenons that
happen at the scale of the smallest particles. Hence, Quantum Computing is more "natural" and
although it seems much more complex than classical computing at first sight, it can be argued
that it is at the contrary much simpler, as it requires less artificial constructs.

Understanding quantum phenomenons is one thing, being able to manipulate them is another. It
took lots of time and resources to be able to prove that quantum phenomenons really exist. In
order to allow computational representations on qubits, one must be able to manipulate the
elementary parts. While this is what is typically done in large scientific research centers, it is still
very hard to do this in a typical computer environment.

1.3 Hybrid Computing

We already mentioned that Quantum Computers can be excellent when dealing with specific
problems, but not for all kinds of problems. Therefore, the best results can probably be achieved
using a new form of hybrid computing, where a quantum system solves part of the problem,
where a classical computer is solving the other parts of the problem.

Actually, this approach is not entirely new. A very similar pattern is already being used in most
modern computer systems, where the Central Processing Unit (CPU) is accompanied by a
Graphics Processing Unit (GPU). GPU’s are good in some particular tasks (e.g. doing vector
operations that are needed in graphical applications, or in deep learning applications), but not in
all tasks.

Many modern Ul frameworks, including JavaFX, leverage the availability of both CPU’s and
GPU’s, and optimize the tasks they have to perform by delegating parts of the work to the CPU
and other parts to the GPU, as shown in Figure 1.5.
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Software
application

Figure 1.5 CPU and GPU sharing work

The idea of using different co-processors for different tasks can be extended to Quantum
Computing. In the ideal scenario, a software application delegates some tasks to a CPU, other
tasks to a GPU and other tasks to a Quantum Processing Unit (QPU), as shown in Figure 1.6.

Software
application

Figure 1.6 CPU, GPU and QPU sharing work

The best results can be achieved when the best tools are used for a specific job. In this case, it
means that the software application should use the GPU for e.g. vector computations, the QPU
for algorithms that are slow on classical systems but fast on quantum systems, and the CPU for
everything that doesn’t benefit from either the GPU or the QPU.

If every end-application has to judge what parts should be delegated to which processor, the job
of a software developer would be extremely difficult. We expect though that frameworks and
libraries will provide help here, and abstract this problem away from the end-developer.

If you are using the JavaFX API’s to create user interfaces in Java, you don’t have to worry
about what parts are executed on the GPU, and what parts are executed on the CPU. The internal
implementations of the JavaFX API already do that for you. The JavaFX framework detects the
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information about the GPU, and will delegate work to it. While it is still possible for developers
to directly access either the CPU or the GPU, this is typically something high-level languages as
Java shield away.

In the picture above, we oversimplified the QPU. Where a GPU easily fits in modern servers,
desktop systems, but also in mobile and embedded devices, providing a Quantum Processor
might be more tricky, due to the specific requirements for quantum effects to be manipulated in a
controlled, noise-free environment.

It is very well possible that, at least initially, most of the real quantum computing resources will
be available via specific cloud servers, instead of via co-processors on embedded chips.

The principles stay the same though, since the end-software application can benefit from libraries
splitting the complex tasks, and delegate some tasks to a quantum system that is accessible via a
cloud service as shown in Figure 1.7.

Software
application

Quantum
Cloud

Figure 1.7 Quantum calculations relayed to cloud

1.4 Abstracting software for Quantum Computers

Although real Quantum Computers already exist as we mentioned before, they are by no means
ready for mass production. While the achievements in the past years for creating hardware for
Quantum Computing are huge, there is still lots of uncertainty about the implementation of a
real, useful Quantum Computer or Quantum processor.

However, this should not be a reason to not start working on the software. We learned a lot from
classical hardware, and from the software that is built on top of it. The high-level programming
languages that have been created in the past decades allow software developers to create
applications in a convenient way, such that they do not have to worry about, or even understand,
the underlying hardware. Java, being a high-level programming language, is particularly good in
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making abstraction of the underlying low-level software and hardware. Ultimately, when a Java
application is executed, some very low-level, hardware-specific instructions are executed.
Depending on the hardware being used, specific machine instructions, for different processors
with different architectures are used.

Hardware for classical computers is still evolving. Software is evolving as well. Most of the
changes in the Java language, however, are not related to hardware changes. The decoupling of
hardware and software evolutions allows for much faster innovation. There are a number of
areas, though, where improvements in hardware ultimately lead to more specific evolutions in
software but for most developers, hardware and software can be decoupled from each other.
Figure 1.8 shows how a Java application ultimately results in operations on hardware, but
different abstraction layers shield the real hardware (and the evolutions in the hardwar) from the

end application

Java application

Tools/libraries

Java Virtual Machine

hardware

Figure 1.8 Classic software stack

For a large part, software for Quantum Computing can be decoupled from the hardware
evolutions. While the hardware implementation "details" are far from clear, the general
principles are becoming very clear. We discuss those principles in Chapters 2 - 5. Software
development can be based on those general principles. Similar to how a classical software
developer doesn’t have to worry about how transistors (a low-level building block for classical
computers) are combined on a single chip, a developer of quantum software does not have to
think about the physical representation of a qubit (one of the low level building blocks in
quantum computing). As long as the quantum software conforms with and exploits the general
principles, it will be usable on real quantum computers or quantum processors when they
become available.

A major benefit while developing software for Quantum Computers, is the availability of
classical computers. The behavior of quantum hardware can be simulated via classical software.
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This is a huge advantage, since it implies that quantum software can be tested today, using a
quantum simulator written in classical software, on a classical computer. Obviously there are
major differences between a quantum computer simulator and a real hardware quantum
computer. Almost by definition, a typical quantum algorithm will execute much faster on a
quantum computer than on a quantum simulator. But from a functional point, the results should
be the same.

Apart from real quantum computers and quantum computer simulators, cloud services should be
taken into account. By delegating the work to a cloud service, an application doesn’t even know
if it is running on a simulator, or on a real quantum computer. The cloud provider can update its
service from a simulator to a real quantum computer. The results should be obtained much faster
when a real quantum computer is used, but they should not be different from when a simulator is
used.

These options can be combined in Figure 1.9

Java application

Quantum API

simulator Quantum hardware Cloud

Figure 1.9 Stack for Java applications using Quantum API’'s

In this picture, we show that Java applications can leverage libraries that provide Quantum
API’s. The implementation of these library can do the work on a real quantum computer, use a
quantum computer simulator, or delegate the work to the cloud. For the end application, the
results should be similar.

As we already discussed, Quantum algorithms are particular useful when dealing with problems
that require exponential scaling when dealt by with classical computers. One of the typical
examples for this is integer factorization. A Quantum Computer will be capable of decomposing
large integers into their prime factors (at least, it will provide a part of the algorithm), something
that is not possible today even with all computing power in the world combined. As a
consequence, a quantum computer simulator written in classical software is also not able to
factor those large numbers.

The same Quantum Algorithm is of course also capable of factoring small integers. Quantum
simulators can thus be used to factor small integers. The Quantum Algorithm can be created,
tested and optimized using small numbers on a quantum simulator. Whenever the hardware
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becomes ready for it, that same algorithm can then be used to factor numbers on real hardware (a
5 qubit system has already factored 21).

When the quantum hardware improves (more qubits are added, or less errors occur), the
algorithm will allow larger numbers to be factorised.

In summary, the principles of Quantum Computers can be mimicked in software simulators
running on classical computers. Developers can take advantage of this, and run their quantum
experiments on those simulators. Throughout this book, we use an open-source Quantum
Simulator written in Java that works both locally on your laptop/desktop, as well as in cloud
environments. The developer doesn’t have to worry about where the code is being executed.
Also, when the hardware topology changes in the future (e.g. a quantum co-processor is added),
the end-application doesn’t have to be modified. The library will be updated, but the top-level
API’s should not be affected to this.

We explain some of the Quantum Computing principles by looking at the source code of the
algorithms in the library. While this is not stricly needed to write applications leveraging
Quantum Computing, it will give the reader more insight in how and when quantum algorithms
might lead to a real advantage.

In this chapter, you learned:

® Quantum computing is not just an upgrade of classical computing

® Quantum computing leverages the real core concepts of physics, and is therefore more
"real" than classical computing

® |t may take many years before hardware is powerfull enough to gain the real benefits of
quantum computing

® Quantum computers are expected to generate a huge speedup in the execution of some
algorithms that are practically impossible to solve in the classic way, but they won't
replace classical computers since they are only good at particular (but important) tasks

® Software development at a high level should not worry about the low level quantum
details

¢ Software developers should be aware of the fact that moving some parts of an algorithm
to adifferent area might lead to huge improvements.
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Hello World, Quantum Computing

This chapter covers

an introduction to Strange, a quantum computing library in Java
a simple demo of the high-level API of Strange

a very basic sample of the low-level API of Strange

a basic visualisation of quantum circuit

references to concepts that will be explained later in the book

In this chapter, you will be introduced to Strange, an Open Source Quantum Computing project
including a Quantum simulator, and a library that exposes a Java API that you can use in regular
Java applications.

Throughout the book, we will dicuss concepts of Quantum Computing, and their relevance to
Java developers. We will show how Java developers can benefit from these concepts.

Strange contains a pure Java implementation of the required quantum concepts. When discussing
the concepts, we point the interested reader to the relevant code implementation of the concept in
Strange. This is part of a low-level API.

Most Java developers will not have to deal with low-level quantum concepts at all. However,
they might benefit from algorithms that take advantage of these concepts. For this group, Strange
provide a set of high-level algorithms that can be used in regular Java applications. These
algorithms are what we call the high-level Java API.

2.1 Introducing Strange

Figure 2.1 shows a high-level overview of the components of Strange.
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Java Quantum API’s
high-level API

Quantum Core Layer
low-level API

. W,
y y
Localhost Cloud-based

Simulator Simulator
L .

Figure 2.1 High-level overview of the Strange architecture.

The Java Quantum API provides an implementation for a number of typical quantum algorithms.
These are the high-level algorithms that can be used by Java developers in their regular Java
applications. No knowledge about quantum computing is required in order to use the algorithms.

The Quantum Core Layer contains the low-level API which provides deeper access to the real
quantum aspects. The high-level API does not contain a concept specific to quantum computing,
but its implementation leverages the low-level Quantum Core Layer. Where the high-level API
shields the user from the quantum concepts, the low-level API at the contrary exposes those
concepts to the user.

The high-level API provides developers with a ready-to-use interface to quantum algorithms. By
using it, you can benefit from the gains realised by quantum computing. However, if you want to
be able to create your own algorithms, or modify existing algorithms, the low-level API is the
starting point.

2.2 Running a first demo with Strange

This book comes with a repository containing a number of samples that leverage Strange. The
requirements and instructions for running those samples are explained in Appendix A. The first
demo sample is located in the hel | ost r ange folder in the ch02 directory.

We use the gradle build tool for building and running the samples, but users familiar with maven
will be able to easily run the samples with maven.

We do recommend you run the samples using your favourite IDE (IntelliJ, Eclipse or NetBeans).
The instructions on how to run Java applications are different for each IDE. Therefore, in this
book, we use the gradle build system from the command line.

Using the provided gradle (or maven) scripts implicitly makes sure all required code
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dependencies are downloaded. The code is compiled, and executed, as illustrated in Figure 2.2

Download
a dependencies

Gradle

Compile code
maven

run code

L >

Figure 2.2 Using gradle or maven to run java applications

The result of

./ gradl ew run

on linux and macos or

gradl ew. bat run

on Windows will result in the following output:

> Task :run
Usi ng high-level Strange APl to generate random bits

Generate one random bit, which can be 0 or 1. Result =1
CGenerated 10000 random bits, 4961 of themwere 0, and 5039 were 1.

BUI LD SUCCESSFUL in 3s

Congratulations! You just executed a program that involves Quantum Computing.

2.2.1 Inspecting the code for HelloStrange

In order to understand the output of the HelloStrange demo application, it is recommended to
have a look at the source code for the application. Before we investigate the Java code, we have a
look at the bui I d. gr adl e file that is in the root directory of the sample. The bui I d. gr adl e file
contains the instructions that allow gr adl e to compile the Java classes, download and install
dependencies, and run the application.

Typically, you shouldn’t worry about the structure of the bui | d. gr adl e file, unless you plan to
create applications or projects yourself. In that case, you can find great resoures about using
Gradle online.
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For clarity, the bui | d. gr adl e file is shown in Listing 2.1:

Listing 2.1 build.gradle file for HelloStrange sample

pl ugi ns { (1]
id 'application'
id 'org.javanodul arity. nodul epl ugin' version '1.2. 1

}

repositories { (2]
mavenCentral ();

}

dependenci es { (3]
conpi l e ' com gl uonhq: strange: 0. 0. 5'

}

mai nCl assNane = ' com gl uonhg. j avagc. ch02. hel | ost range. Mai n* (4]

©  declare what plugins gradle should use Gradle is a build system that allows third
parties to provide pluginsin order to make it easier to build and deploy
applications. The demo application is an application, and therefore uses the
appl i cati on plugin. Strangeisusing Java 11 and the modularity concepts that
have been introduced in Java 9. Our demo applications don’t require knowledge
about the modular system in Java though. However, in order for the build tools to
be able to leverage the modularity, we aso declare the use of thej avanodul arity

plugin.
@ declare where to download dependencies . Since our demo application isusing a
Javalibrary, Gradle needs to know where to find this library in order to useit for

compiling and running the demo application. The Strange library is uploaded to the
mavenCent r al repository, hence we declare that in ther eposi t or i es section.

©  declare the dependencies. The HelloStrange demo application uses the Strange
library. In the dependenci es section of the build.gradle, we declare that we need
version 0. 0. 3 of the Strange library, which is defined by the combination of a
package name com gl uonhg and an artifact name st r ange. The conpi | e keyword
tells Gradle that this library is needed to compile the application, and by default it
will then aso use this library to run the application.

©  declare the main class that should be executed when running the demo. Finally, we
need to tell Gradle where it can find the main entry point to our application. In this
case, the project has only a single Java source file with a mai n method, hence this
isthe entry point.

The bui | d. gradl e file is interesting to developers and code maintainers who are working on
project development, deployment, testing and distribution.

The Java source files in a project are very relevant to all developers. Gradle requires by default
that Java source files are placed in a folder src/ nai n/j ava, followed by the packagename and
the name of the Java source file. In the case of the HelloStrange application, the single source file
is thus located in sr ¢/ mai n/ j ava/ con? gl uonhq/ j avaqc/ ch02/ hel | ost r ange/ Mai n. j ava.

Before we show the code, we will briefly explain what we want to achieve. In this first sample,
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we will invoke a method on the high-level Strange API. This method is called randomBit() and it
generates a classic bit which is either 0 or /. We will discuss the randomBit() method call
shortly. Apart from this call, all Java code used in the sample only uses the standard API’s that
are part of the JDK. The flow for the sample is shown in Figure 2.3

Main class
Java code
l Classic.randomBit()
4 N\
Java Quantum API’s
high-level API
. J
4 N\
Quantum Core Layer
low-level API
. J
£ N
Localhost Cloud-based
Simulator Simulator
. >

Figure 2.3 High-level overview of the first Java sample

From this flow, it can be seen that the Java class we create depends on the high-level Strange
API. We don’t have to worry about how it is implemented in the lower layers of Strange.

The complete source code for the application is shown in Listing 2.2. We will analyse this source
code right away.
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Listing 2.2 Main.java file for HelloStrange sample

package com gl uonhg.j avaqc. ch02. hel | ostrange;
i mport com gl uonhg. strange. al gorithm C assi c;
public class Min {

public static void main (String[] args) {
System out. println("Using high-level Strange APl to generate random bits");

System out . printl n( M- --- oo mm oo );
int randonBit = Classic.randonBit(); (1]
System out. println("Generate one random bit, which can be 0 or 1. Result = "+randonBit);

int cntZero = 0;
int cntOne = 0;

for (int i = 0; i < 10000; i++) { (2)
if (Cassic.randonBit() > 0) {
cnt One ++;
} else {

cntZero ++;
}
}

System out. println("CGenerated 10000 random bits, "+cntZero+" of themwere O,
and "+cnt One+" were 1.");

9 Wecall the Strange high-level API to generate one random bit
@  We generate 10000 random bits

This Java code follows the basic Java conventions, which we assume you are familiar with. For
this sample, we briefly mention the typical concepts in a Java application.

The Java code in this source file belongs to the package
com gl uonhg. j avaqgc. ch02. hel | ost r ange which is declared at the top of the file.

We rely on functionality provided by the Strange library, and we import the Java class that
provides the functionality we need:

import com gl uonhg. strange. al gorithm O assic

We will have a deeper look at this O assi ¢ class later. For now, we simply assume it provides
the functionality we need.

The name of this Java class is Mai n, as it has to match the name of the file.

In Java, entrypoints in files need to be declared with a method public static void
mai n(String[] args). Build tools like Gradle will invoke this method when asked to execute
an application.

When the mai n method is invoked, it will first print some information:

System out. println("Using high-level Strange APl to generate random bits");
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In the next line of code, we call a method on the C assi ¢ class, that is part of the Strange library
that we imported. The method we call is the C assi c. randonBi t () method, and it returns a
Java integer that either holds the value 0 or the value 1.

After the statement

int randonBit = Classic.randonBit();

the value of randomBit is thus 0 or 1.

NOTE The classname Classic indicates that Strange offers this class for classic
invocations. Code calling this class is not expected to contain any
guantum-specific implementations. However, the implementation of the
Classic class itself contains quantum implementations. Therefore, the
implementation of Classic.randomBit() is not simply returning a default Java
random bit, but it is using a quantum circuit to do so --- as we will show
later in this chapter.

In the next line, this value is printed. Note that when you execute the application, there is 50%
chance you will see a 0 printed, and 50% chance that you will see the 1 printed.

The C assi c. randonBi t () is a Java method that under the hood leverages quantum principles.
We will discuss the implementation later. For now, we assume that there is an equal change for
this method to return 0 and 1.

In order to demonstrate this, the next part in the Java source code will call this
d assi c. randonBit () 10,000 times, and it will keep track on how many times a 0 is returned
and how many times a 1 is returned.

Two variables are introduced, for keeping track of this occurences:

int cntZero = O;
int cntOne = 0;

Clearly, cnt Zer o will hold the number of times the returned value is 0 where cnt One holds the
count for the calls that return 1.

We then create a loop which inner code calls the randonBi t () method and increments the
appropriate variable. This is done in this code snippet:

for (int i =0; i < 10000; i++) {
if (Aassic.randonBit() > 0) {
cnt One ++;
} else {

cnt Zero ++;
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Finally, the results are printed. Since the random values are truly random, the final results will
very likely be different every time you run the application. The sum of the cnt One and cnt Zer o
values will always be 10,000 and it is expected that the cnt Zer o and cnt One values both are in
the neighbourhood of 5000.

2.2.2 Java API's versus implementations

If you are familiar with Java development, the code we have shown and used so far will be very
familiar. No specific knowledge on quantum physics or quantum computing has been required.
We only used the O assi c. randonBi t () method call, which is a method call similar to all other
Java method calls that you see in Java applications. Under the hood, however, the
d assi c. randonBi t () call is using either a Quantum Simulator or a real Quantum Computer.
The Java developer is not confronted with the implementation though, as one of the great things
about Java is that the implementation is typically hidden for developers, who program their
applications using API’s. In this case, Cl assi c. randonBit () is an API that is called by the
developer.

Although Java developers don’t need to know the details about the underlying implementations,
it often helps to have at least some insight in those details. This is not only the case for
algorithms on Quantum Computing, it is applicable to many fields. While documentation (e.g.
JavaDoc) is typically very helpful for general cases, it might help to understand some of the
details if you want to keep track of performance, for example. In the case of Quantum
Computing, it is recommended for Java developers to at least have some basic knowledge about
the underlying implementation of the quantum API’s, as this provides useful information that can
be used to judge wether a quantum algorithm is applicable or not for a specific usecase, and what
the performance impact will be.

Also, without this basic knowledge, users might worry about the initial performance of some of
the algorithms. Indeed, if a quantum algorithm is executed on a Quantum Simulator, the
performance will probably be worse than if a classic algorithm was used. However, if the
quantum algorithm is well-written and if the problem is applicable for quantum speedup, the
performance will dramatically improve once real quantum hardware is used.
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2.3 Obtaining and installing the Strange code

As explained in the previous section, developers typically don’t need to understand the
implementation details of an algorithm. However, in this book we explain the basic concepts of
quantum computing by showing code snippets of quantum algorithms. By having a look at the
implementation of some algorithms, developers learn more about the concepts of quantum
computing, and they will be more knowledgable about the areas where quantum computing can
make a big difference.

The Strange library we use throughout this book is written in Java. This not only allows Java
developers to use the quantum API’s in their own applications, it also enables them to have a
deeper look in the implementations, and maybe modify or extend them when needed.

If you are using a partiular IDE (e.g. NetBeans, IntelliJ or Eclipse), you should have no problems
opening the library and reading the files.

2.3.1 Downloading the code

Similar to the samples and demoes used in this book, the code for the Strange library can be
downloaded from github as well. The following command will provide you with a local copy of
the Strange library:

git clone https://github. conl gl uonhg/strange. git

Note: if you want to use the Strange library in your application, you don’t need to download the
source code. Binary releases of Strange are uploaded to Maven Central, and build tools like
Gradle and Maven will retrieve them from this uploaded location.

If for some reason you want to make modifications to Strange, and test them locally, you can
easily compile the whole project. Similar to our demo application in the previous section,
Strange uses the Gradle build system to create the library.

The following gradle command can be used to build the library:

./gradl ew build

The result of this operation will be a local copy of the Strange library, that you can then use in
local applications. Before you can use your own library, you need to take into account two
things:

® thebuil d. gradl e filecontainsaver si on key. Y ou can change that to whatever you
want, but you have to be sure to use the same version in the dependenci es section of
your application.

® your application now needsto include mavenLocal () inthelist of itsrepositories.
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2.3.2 A first look into the library

You can open the code in your IDE, or you can manually browse through the different files. As
an example, you can open the O assi ¢ file that we referred to in the HelloStrange application
that we discussed in the previous section. The source code for the Cl assi ¢ class is in the
d assi c. j ava file which is in the src/ mai n/ j ava/ comf gl uonhg/ st range/ al gori t hmfolder
under the directory where you cloned the git repository.

We will discuss this file in detail in Chapter 5, but we already show a snippet that shows the link
between the Cl assi c. randonBi t () call from the previous section to the implementation using
a Quantum Computer or a Quantum Simulator:

public static int randonBit() {
Program program = new Progran(1);
Step sO = new Step();
s0. addGat e( new Hadamar d(0)) ;
program addSt ep(sO0);
Quant unExecut i onEnvi ronment gee = new Si npl eQuant unmExecut i onEnvi ronnent () ;
Result result = gee.runProgran(progran;
Qubit[] qubits = result.getQubits();
int answer = qubits[O0].neasure();
return answer;

This snippet shows that the random bit returned by the randonBi t () method is not simply
generated by a classic random function, but it involves steps specific to quantum computing.
Again, Java developers typically don’t need to know much about the implementation, but by
looking at it, you can learn a lot about quantum computing.

2.4 Next steps

Now that you downloaded the Strange library and ran your first Java application leveraging
quantum computing, it is time to learn more about the basic concepts of Quantum Computing. If
you want to look into more code first, you’re welcome to browse through the different files in the
Strange library. However, it is recommended to first read about the basic concepts. Whenever we
introduce a concept, we will point to some code in Strange where the concept is applied.

In this chapter, you learned

the basic concepts of a Quantum Simulator

how to call the high-level API of this Quantum Simulator

to run avery basic application that is leveraging the high-level AP

® some basic information on how the high-level API interacts with the low-level API.
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Qubits and Quantum Gates, the basic units
In Quantum Computing

This chapter covers:

* we will introduce the important concept of a qubit and compare this with the more
familiar concept of the (classical) bit

® we introduce 2 notations for qubits
® we discuss how quantum gates allow to perform operations on qubits

®* we show a very simple gate, and use the Strange Ul applicationto visualise the
effect of this gate.

When creating typical applications using classic computers, most developers don’t think about
the transistors and the operations at the lowest level that ultimately allow applications to execute
on hardware. Classic hardware is commodity in a sense that most developers take it for granted
and don’t think about it. The details about how it works are not relevant to allmost all
applications that are being developed. High-level programming languages shield developers from
the low-level (assembly) code, and standards in chip design make it even less relevant for
developers to understand the physical working of the hardware in a computer.

This used to be different. In the early days of classical computing, there were no high-level
programming languages, and developers were working closer on the "bare metal". Once the
hardware for classic computers became more mainstream and standardized, focus moved to
higher-level programming languages.

It can be expected that Quantum Computing will follow a similar path. In the future, no
knowledge about the basic concepts of quantum computing will be required for a developer who
leverages quantum computing. Similar to the situation in classic computers, higher-level
languages and intermediate layers will shield developers from the implementation details in the
hardware.
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Today, if developers want to leverage quantum computing, it definitely helps if they have at least
some basic understanding of the underlying principles that allow quantum computing.

In this chapter, we introduce those basic concepts. We discuss qubits and quantum gates, and we
briefly touch the link to the physical world that allows their implementation. By no means this
chapters is an introduction into quantum mechanics. The interested reader is referred to the
specialized literature (links!).

Classic bit versus Qubit

"Suppose you work for a bank, and you need to make sure the account number and
balances for each customer are stored, and can be retrieved. Somehow, developers need to
work with this information. How can you represent this information on a classic
computer?"

Before computers can work with information (numbers, text, images, videos,...), the information
needs to be represented in a way computers understand it.

The classic bi t is one of the most common low-level structures that is understood and used by
most developers. A bit contains the most granular information in classic computing, and it has a
value of eiter 0 or 1.

1

Figure 3.1 A single bitcan beOor 1

The bit allows other structures, for example the byt e which is an ordered sequence of 8 bits.

At any moment in the execution of a classic algorithm, each bit is in a very specific state: it is 0
or it is 1. As a consequence, a byte is, at any given moment, in a very specific state as well. Each
of the 8 bits in a byte is either 0 or 1,

oj1(0f(1}1,1||0}|1

Figure 3.2 A single byte contains a sequence of 0 and 1

The size of the memory of a computer is expressed as the number of bits that can be accessed by
the processor. The amount of memory is one of the main contributors to the quality and
performance of computers. The more memory a computer has, the more data it can hold.
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The core idea of a bit, the fact that its value at a given moment is either '0' or '1' is also one of its
limitations.

In quantum computing, the equivalent of the bit is the qubit. Similar to a bit, a qubit can hold the
values '0' and '1". But contrary to a bit, a qubit can also hold values that are "combinations" of the
'0' and the '1' state. When this is the case, the qubit is in a so-called superposition state. While
this may sound counterintuitive at first, it is actually exactly what is happening in nature, with a
number of the most granular particles, and it is directly linked to the core ideas of quantum
mechanics. The fact that this superposition state occurs in nature with very granular particles is a
good indication that building quantum computers is very realistic. Classic computers ignore
those quantum effects, and therefore the classic hardware can not be made smaller and smaller
indefinitely without hitting the boundaries where quantum effects come into the picture.

When a qubit is measured, it will return '0' or '1' and not something in between. The relation
between the superposition state of the qubit and the actual value when it is measured is explained
in the next chapter. Very roughly, the superposition relates to how likely it is that a given qubit,
when measured, will hold the value '0' or the value '1".

‘ measurement

oj1,0|1(1 101

Figure 3.3 When measured, qubits fall back to either '0' or '1".

We will discuss the idea of "superpositions" of the '0' and 'l' state in the next chapter. For now,
the most important part is that as a consequence, a number of qubits can contain more
information than the same number of classical bits since a single qubit contains more complex
information than simply '0' or '1'. This is important for problems or algorithms that theoretically
require exponentially more bits for linear increasingly complexity.

3.2 Qubit notations

Although we didn’t discuss superposition in detail yet, the previous paragraphs means that it is
not (always) possible to identify the state of a qubit with a single 0 or a 1.

There are different notations for a Qubit. Depending on the use case (e.g. showing the state of a
circuit, explaining how gates work), one notation may be preferred over another notation. We
will now cover two different notations, the Dirac notation and the vector notation. We will only
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cover the simple cases in this chapter. Once we discussed superposition in the next chapter, we
will come back to these notations and extend them. For now, we only consider the basis states of

a Qubit, which represent the values 0 and 1.

3.2.1 One qubit

SIDEBAR Linear algebra
At this point, we will sometimes use concepts and notations that are taken
from linear algebra. If you want to get more background on these concepts,
you can first read Appendix B to get a short introduction on the linear

algebra we use in this book.

For the simple case where a Qubit is in one of its basic states, the vector representation of a
single qubit is very straightforward. We represent the qubit as a vector with 2 elements. If the
qubit holds the value 0, the first element in the vector is /, and the other is 0, as shown in

Equation 3.1

EQUATION 3.1

The Dirac notation of this qubit is as follows:

EQUATION 3.2
|0>

Since both notations are interchangable, we can also write

EQUATION 3.3

1

0 >= 0

Similar, if the qubit holds the value /, we can represent it in a vector where the first element is 0
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and the second element is /. The Dirac representation of this single qubit is |1>, hence the
representations can be written as

EQUATION 3.4

0

11 >= |

3.2.2 Multiple qubits

In a system with more than one qubit, the state of the qubits in the Dirac notation is achieved by
concatting the individual qubits. For example, 2 qubits, each holding the value of 0 can be
described by

EQUATION 3.5
10/0>

This is often abbreviated as follows:

EQUATION 3.6
|00>

The vector notation of a multiple qubit system requires some vector operations. The resulting
vector, representing the multiple qubit system, is obtained by the tensor multiplication of the
vectors of each qubit. Tensor multiplication is explained in Appendix B. Although it helps
providing more insight, you do not need to know sow those vectors are obtained.

EQUATION 3.7

o
oo o

In a system where the first qubit is / and the second qubit is 0, the notation of the qubits is as
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follows:

EQUATION 3.8

-]
—
o = O O

SIDEBAR From binary to decimal

Classic computers work with bits which are '0' or '1' but combined they can
represent more complex information. A decimal number (e.g. '14") can be
described by a number of bits. When bits are put in a sequential order, they
can considered to be indicators as follows:

EQUATION 3.9

0101=0x2%+1x22+0x211+0 x 20
=0x8+1x4+0x2+1x1=5

SIDEBAR Hence, each bit in the sequence indicates whether or not a corresponding
power of 2 should be added to the decimal number. When a bit is '1', the
corresponding power of 2 is added, when the bit is '0" it is not added. The
most right bit of a sequence is said to have an index of '0". The bit left of it
has index '1' and so on. In general, a bit with index 'i' corresponds with the

value of '2"".

There is another handy relation between the Dirac notation and the vector notation. If we would
consider the qubits as bits, the bits in the Dirac notation would equal an integer value, e.g.

EQUATION 3.10

(1) |00>=0

2) [01>=1
(3) |10> = 2
(4) |11> = 3
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The only element which has the value of / in the corresponding vector notation occurs at the
position indicated by this integer value, assuming we start to count from position 0. Indeed, as
shown above, |10> corresponds to a vector whose third element equals /.

Hence, if we read the bits in the Dirac notation as a decimal number, say n, the corresponding
vector will be a vector with all zeroes, expect for the element at position # (starting from 0),
which will be 'I".

If we add another qubit to the system, we need to add another tensor multiplication. For example,
a 3-qubit system where the first qubit is /, the second qubit = 0 and the third qubit is / can be
represented as follows:

EQUATION 3.11

—
=
—
—

o O = O

oo, O o O oo

Note that the above mentioned relation still holds: |101> is the digital representation of the

integer 3, and if we start counting the first row in the vector as row 0, the element at row 5 equals
1.

The size of the resulting vector quickly grows when the number of bits increases. In general, for
n bits, the resulting vector contains 2" elements.

One may wonder why we make it so complex. Why do we need a vector with 8 elements when
we just use 3 qubits, and only one out of those 8 elements is 1? The answer will be given in the
next chapter. So far, we only discussed qubits in a basic state. Once we talk about qubits in a
superposition state, it will become very useful and even required to represent qubits in this way.
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Physical representations of a qubit

Although it should not influence the behavior of an application, it is
interesting to have a rough idea on how bits or qubits are created and
maintained in the real, physical world. It is important to realize that there
are different options for the physical realisations of bits and qubits, and that
developers are abstracted away from those physical realisations. For
example, a bit stored in the main memory of a computer can be realised by
an electrical pulse that keeps the bit "on". When a bit is stored on a hard
disk, a different technique is used, for example leveraging magnetic
properties.

The general principle for storing qubits is similar to the principle for
storing bits: we leverage phenomenons that are encountered in nature, and
apply them to our goal. The electrical pulse that can be used to keep a bit
"on" (giving it the value of 1) is a classic example of this. Quantum
phenomenons that describe a two-state system can be used to represent
gubits. In such a system, the state is not simply 0 or 1, but it can be in a
more complex "superposition" of 0 and 1. We will discuss superposition in
chapter 4. The important thing to understand is that there are physical
phenomenons that exactly represent the behavior of a qubit. This is not a
coincidence of course, and the statement could very well be reversed into
"qubits behave exactly similar to some phenomenons encountered in
guantum mechanics."

There are different physical phenomenons that lead to a quantum
two-state system. The wikipedia
en.wikipedia.org/wiki/Quantum_computing#Developments  lists those
options. At this moment, most of the efforts for creating and manipulating
gqubits are based on superconducting electronic circuits. The physical
superconducting qubits that can be created in a superconducting
environment can have different characteristics, so there are still different
possible implementations of qubits leveraging superconducting circuits.
Most important to developers, though, is that this context allows to create
qubits that can be in a superposition until they are measured—which is
what we will describe in Chapter 4.
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3.3 Gates: Manipulating and measuring qubits

Being able to represent and store data is fine, but in computing, we need to be able to manipulate
data. Forms need to be processed, interest rates need to be applied, colors need to change,... and
so on; all kinds of operations are possible on data. In a high-level software language like Java,
there are a huge amount of libraries that somehow manipulate input data. At the lowest level, all
these operations come down to a sequence of simple manipulations of the bits in the computer
systems. Those low-level operations are achieved using gates. It can be shown that with a limited
number of gates, all possible scenario’s can be achieved.

Gates are typically represented using simple pictures. A very simple classical gate is the NOT
gate, also known as the inverter.

Figure 3.4 Representation of the NOT gate

This gate has one input bit, and one output bit. The output bit of the gate is the inverse of the
input bit. If the input is "0", the output will be "1". If the input is "1", the output will be "0".

The behavior of gates is often explained via simple tables where the possible combinations of
input bits are listed, and the resulting output is listed in the last column. The following table
shows the behavior of the NOT gate:

Table 3.1 Behavior of the NOT gate

input output
A NOT A
0 1
1 0

When the input of the gate is '0', the output is '1'. When the input of the gate is 'l', the output is
'0".

The NOT gate involves a single bit only, but other gates involve more bits. The XOR gate, for
example, takes the input of 2 bits, and outputs a value that is '1' in case exactly one of the 2 input
bits is 1 and the other is '0'".

Figure 3.5 Representation of the XOR gate
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The following table shows the behavior of the XOR gate:

Table 3.2 Behavior of the XOR gate

input output

A B A XOR B
0 0 0

0 1 1

1 0 1

1 1 0

Quantum gates have similar characteristics as classical gates, but there are also important
differences. Similar to classical gates, quantum gates operate on the core concept, in this case on
the qubits. They can alter the value of qubits. One of the important differences between classical
gates and quantum gates though is that quantum gates should be reversible. That is, it should
always be possible to apply another gate and go back to the state of the system before the first
gate was applied. This restriction is not in place with classic gates. For example, the XOR gate is
not reversible. If the result of an XOR gate is 'l', it is impossible to know whether the first bit

was '0', or whether it was the second bit.

Because of the need for gate operations to be reversible, a quantum system needs different gates
than a classical system. Therefore, low-level quantum applications require a different approach

then low-level classical applications.

3.4 A very first [quantum] gate: the Pauli-X gate

Suppose you work for a bank. You managed to create a system that stores data (account
numbers and balances). Now you are asked to modify balances, e.g. apply an interest to a
balance. That means you need to manipulate data. How will you do this?

One of the core ideas of software development is to write functionality that manipulates data, e.g.
"add one EUR to all balances". This requires the ability to modify data, and this is what happens
at a huge scale in classic computers.

If we want Quantum computers to execute your algorithm, those computers should be able to
manipulate data. This is what, at a low level, is done by quantum gates.

A first example of a quantum gate is the Pauli-X gate.

Figure 3.6 Symbol of the Pauli-X gate
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This gate 'inverts' the value of a qubit. When we delve into superposition in the next chapter, we
will come back to this example. For now, we only take the special cases into account, where a
qubit is in the '0' or in the '1' state. The Pauli-X gate, will flip the value of '0' into '1' and vice
versa, as shown in the following picture.

This process is reversible. If the value of a qubit, after a Pauli-X gate has been applied, is '1', we
know it had the value of '0' before the gate was applied. If on the other hand the end value is '0',
we know the original value was 'l'. Hence, the principle of reversible gates holds so far. By
applying a second Pauli-X gate after applying the first Pauli-X gate, the original state of the
system is restored, as explained in 3.7.

o— LI N 0
L/ L/
N N .
N N

Figure 3.7 Two Pauli-X gates restore the system

3.5 Playing with Qubits in Strange

We haven’t discussed superposition and entanglement yet, and our introduction to qubits was
only very basic. At this point, however, we create a very simple application using Strange to see
the Pauli-X gate in action.

In Chapter 2, we used the high-level API of Strange to create an application that uses a quantum
algorithm return random values. In the following demo, we will use the low-level API of Strange
and directly work with Qubits and Gates.

The code in Listing 3.1 will create a single Qubit (which has the initial value of '0"), apply the
Pauli-X gate, and measure the resulting value.

TIP The source code for this demo can be found in the ch03/paulix directory in
the sample repository. See Appendix A for more information on how to
obtain the sample code.
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Listing 3.1 Java application using aPauli-X gate.

public static void main(String[] args) {
Quant unExecut i onEnvi ronnment si nul ator =
new Si npl eQuant unExecuti onEnvi ronment () ;
Program program = new Progran(1);
Step step = new Step();
st ep. addGat e(new X(0));
program addSt ep(step);
Result result = simulator.runProgran(program; (3]
Qubit[] qubits = result.getQbits();
Qubit zero = qubits[0];
int value = zero.neasure();
System out. println("Value = "+val ue); o

(X

an Environment is created for declaring and executing a quantum application.
a Program is defined.

after the Program is defined, it can be executed on the Environment and a Result
can be obtained.

©  the Result can be processed and returned to the user.

Now, let’s run the code!

./ gradl ew run

As could be expected, the output of the program is as follows

Value = 1

In this code, we introduce a number of concepts encountered in Strange. We talk about an
execution environment, a program consisting of steps, and some results. Note that those concepts
are typically used in all kinds of Quantum Computing simulators and editors.

3.5.1 QuantumExecutionEnvironment

The physical location and conditions of where and how a Quantum application is executed are
not relevant to the developer and the options are still evolving. There are already cloud services
offering real Quantum infrastructure (e.g. IBM, Rigetti), but it also possible to assume a
Quantum co-processor will be able to execute Quantum applications. Today, most Quantum
applications are executed on Quantum Simulators, which can run either locally or in a cloud
enviroment.

In summary, this means that there might be a number of completely different execution
environments that are capable of executing Quantum applications.

Strange abstracts the differences in execution environments, and provide an interface
Quant unExecut i onEnvi ronment in the com gl uonhg. st range package which provides the
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API for Quantum applications to interact with the execution environment. Strange contains a
number of implementations of this Quant unExecuti onEnvi ronnent but the most important
thing is that Quantum applications written with Strange can run on all current and future
implementations without being modified.

The simplest execution environment is using a built-in simulator, and it is instantiated using

Quant unExecut i onEnvi ronnment si nul at or = new
Si npl eQuant unExecut i onEnvi ronnent () ;

The Si npl eQuant unExecuti onEnvi ronment which is in the com gl uonhg. strange. | ocal

package provides a quantum simulator which executes quantum operations using classical
software. Clearly, it is slower than real hardware, and since Quantum simulators are memory
hungry when dealing with large numbers of qubits, it is not recommended to be used with lots of
qubits.

For the demos in this book, the Si npl eQuant unExecuti onEnvi ronnent is more than good

enough. We will talk about other execution environments in Chapter XX.

3.5.2 Program

If you want to create a Quantum application in Strange, you have to create a new instance of
Progr am The Pr ogr amclass is in the com gl uonhg. st r ange package, and it provides an entry
point to quantum applications you want to write.

The Pr ogr amconstructor requires a single integer parameter, defining the number of qubits you
will use in this application.

In the case of our simple application, we will only use a single qubit, which explains the

Program program = new Progran{ 1)

line.

3.5.3 Steps and Gates

SIDEBAR What is a Quantum Program
A Progr amis composed by one or more steps operating on the qubit.

Each step is defined by an instance of St ep. The St ep class is in the com gl uonhg. strange
package as well, and has a zero-argument constructor. Inside a step, you define which gates are
used.

In our sample, we have a single step that is created by
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Step step = new Step()

and that is further defined by adding a gate. The gate we use here is the Pauli-X gate, which is
defined by the X class in the com gl uonhg. strange. gat e package. The constructor of the
Pauli-X gate requires one integer to be passed, which is the index of the qubit the gate is acting
on. In this case, since we have a single qubit only, the index is 0.

Creating this gate, and adding it to the St ep instance we just created is thus done via

st ep. addGat e( new X(0));

In a single step, each qubit may be affected by not more than one gate. A gate may act on more
than one qubit, but two gates in the same step can not act on the same qubit. For example, the
following code snippet is wrong, as we add two gates to the same step, and both gates operate on
the same qubit (with index '0");

st ep. addGat e( new X(0));
st ep. addGat e(new H(0));

Note that we introduced another gate here, the Hadamard gate represented by the H class. We
will cover this gate in the next chapter, and only used it here to show that it is not allowed to
have two gates operating on the same qubit in a single step.

At this point, the single execution step in our program is ready. We have to instruct the Pr ogr am
instance that our St ep instance should be added to the program, which is done by

program addSt ep(step);

3.5.4 Results

We briefly mentioned in this chapter that a Qubit can be in a so-called superpositions, but once it
is measured, it will either hold the value '0' or the value 'l'. Therefore, it is impossible to have
intermediate results in Quantum applications. Quantum simulators that are not using real phyical
qubits, do not have this restriction though, so for debugging purposes intermediate values can be
used and can be useful, as we will demonstrate later.

When a Quantum application or a Pr ogr amhas been executed, a result can be obtained. Strange
defines the Resul t class in the com gl uonhg. st r ange package, and instances of it are created
by the execution environment. The result is returned when the r unPr ogr an() method is called
on the Quant unExecut i onEnvi r onment .

Result result = sinmulator.runProgran(progran;

The resulting instance of the Resul t class contains information about the final state of the
quantum system. We will talk about this in more detail in the next chapters. For now, we are
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only interested in the status of the single qubit that is in our system.

The Resul t class contains a method to retrieve the qubits:

Qubit[] qubits = result.getQubits();

Since we only have one qubit in the system, it can be obtained as follows:

Qubit zero = qubits[O0];

We can now ask for the value of this qubit after the program has been executed:

int value = zero. neasure();

Finally, we print the value using simple Java commands:

System out. println("Value = "+val ue);

Initially, qubits are in the '0' state. Our simple application sends the qubit through a Pauli-X gate,
and then measures the new value, which is always equal to '1".

3.6 Visualisation of Quantum circuits

The code in the snippet above is not hard to understand and easy to follow, but it represents a
very simple Quantum circuit with only a single qubit and a single gate being involved.

Once the applications become more complex, it might be difficult to read the code and have a
clear understanding what is happening. Many quantum simulators or applications that allow to
generate quantum applications therefore come with a visualisation tool.

The Strange library has a companion library called StrangeFX which allows to render programs
in an intuitive way. StrangeFX is written in Java as well, and it uses JavaFX, the standard Java
UI Platform, for rendering.

The example in this chapter named 'paulixui' shows this library in action.

Once you have a Program, it is very easy to visualise it. You just have to modify the
bui | d. gr adl e file and add a dependency to StrangeFX. The build.gradle now looks as follows:

pl ugi ns {
id 'application'
id 'org.openjfx.javafxplugin' version '0.0.6

}

repositories {
jcenter();

}

dependenci es {
conpi l e ' com gl uonhq: strange: 0. 0. 6'
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conpi |l e ' com gl uonhq: strangefx: 0.0.1'

}

javaf x {
modul es = [ 'javafx.controls' ]

}

mai nCl assNane = ' com gl uonhgq. j avagc. ch03. paul i xui . Mai n'

Note that we added the

id 'org.openjfx.javafxplugin' version '0.0.6'

line to the plugins. This plugin will make sure all the code required for running JavaFX
application can be used. Further, we have to add the depdendency to StrangeFX to the list of
dependencies:

conpi | e ' com gl uonhg: strangefx: 0. 0. 1'

Finally, since our application will now use the JavaFX Controls module, we have to tell the Java
system to load this module:

javafx {
modul es = [ 'javafx.controls' ]

}

The code required for rendering a program is very simple. StangeFX contains a class
com gl uonhg. st rangef x. render . Render er that has a static method

Render er . r ender Progr an( Pr ogr am pr ogr anj ;

This method will analyse the program, and create a visual representation of the program where
each qubit is represented on a line. The initial state, with all qubits in the |0> state, is on the left.
Going to the right, quantum gates are pictured when they are encountered. At the end of the line,
the probability of this gate being measured with 1 is shown.

Hence, if we want to render the circuit we composed before, we have to modify the end of our
application as follows:

int value = zero. neasure();
System out. println("Value = "+val ue);
Render er . r ender Pr ogr an( pr ogr an ;

Running this program results in the following user interface being rendered:
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| NN StrangeFX

q[0] 10>

Figure 3.8 Ul representation of a gingle qubit with a Pauli X gate

In this diagram, the visual components refer to the different components of the application, as

explained in Figure 3.1.

[ NN StrangeFX

! |
qubit result

gate

Figure 3.9 Explaining the different components in the StrangeFX screenshot.

3.7 What did we learn?

In this chapter, we introduced the most fundamental concepts of quantum computing: qubits (or
quantum bits) and quantum gates. We showed similarities and differences between those
concepts and their counterparts in classical computing. We introduced two different notations for
qubits. We didn’t really touch the key reasons of why qubits are so powerful, and that is what we
will do in the next chapters.

We created a simple application that introduced us to some of the core aspects of working with

Quantum simulators and related software.
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Superposition

This chapter covers:

® we introduce the term "superposition"

® we explain why superposition allows for much more (exponentially more) data in
quantum system to be processed

we explain that processing is done via quantum gates

we show that quantum gates can be represented by matrix operations

we introduce the Hadamard gate, which brings a qubit in a superposition state.
we show code that applies the Hadamard gate, and measure the resulting value

In the previous chapter, we briefly mentioned superposition. It is one of the most fundamental
concepts of Quantum Computing, and it is one of the reasons why Quantum Computers are
expected to be able to run some applications much faster than classical computers.

In this chapter you will learn what superposition is, and how it is relevant in creating quantum
algorithms. We will talk about a specific gate that brings a qubit in a superposition state, and we
show a simple but very relevant sample that demonstrates superposition.

We try to keep the physical explanations to a minimal. The scientific work behind the physics is
mind boggling, but it requires different skills and is less relevant to software development. Keep
in mind that even for the most knowledgable persons Quantum Computing and its concepts are
very difficult to grasp, so do not worry when the physical concepts behind superposition are not
clear. What matters to the developer is how to use these concepts and write more suitable
applications.

The flow of the chapter is explained in Figure 4.1.
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Superposition ‘

' Superposition allows for much more processing power

' Processing is achieved by applying gates

Gates W

The Hadamard Gate allows for superposition

L Hadamard Gate }

Figure 4.1 From superposition to the Hadamard gate.

E Processing power ‘

4.1 What is superposition

A qubit can be in different states. We mentioned before that a qubit can hold the value '0', the
value 'l', but also some sort of a combination of the value '0' and 'l". There are some important
restrictions on what combination are allowed though, and we will discuss these now.

We said before that when a qubit is measured, it will always return the value 0 or the value 1.
But that doesn’t say everything about what is happening before we measure it.

In order to understand this, we’ll make a short detour to the world of quantum mechanics.
Remember that what software developers call a "qubit" is backed by some real-world
phenomenon. The software behavior and properties of a qubit therefore have to correspond
somehow with the behavior and properties of the real-world phenomena.
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Electron
with spin Josephson
P Junctions
Trapped
ions

Physical world Software world

Figure 4.2 The characteristics of physical particles match the characteristics software
gubits.

In quantum mechanics, some particles have interesting properties. An electron, for example, has
a property called "spin". When measured, this property can have two states: 'up' and 'down'. Note
the similarity with bits so far, who can be 'l' (corresponding to 'up') or '0' (corresponding to
'down'). This is shown in Figure 4.3.

1

0

Figure 4.3 An electron spin that is up (left) and another one that is down (right),
corresponding to 1 and O respectively.

The quantum theory, however, describes that the spin of an electron can also be in a so-called
superposition of the 'up' and 'down' states --- which we call the basis states. Symbolically, this
can be represented by Figure 4.4.
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0

Figure 4.4 An electron spin that is in a superposition of up and down

Again, when it is measured, it always falls down to one of those two basis states.
There are a number of misconceptions about superposition state.

1. Being in a superposition does not mean that the electron is both in the 0 (spin down) state
or the 1 (spin up) state. Actually, the theory of superposition does not say in what state it
is, it rather describes the probability of states when it was going to be measured at that
particular point.

2. Being in asuperposition does not mean that the spin of the electron isin either the up or
the down state and that we simply don’t know yet. One of the fundamental (and weird)
things of quantum computing isthat a system isinfluenced when it is measured. It isonly
when measuring the spin that it takes a "decision” to be in the up or the down state.

From the previous chapter, you remember that a qubit that holds the value 0 is described in the
Dirac notation as |0> . In case the corresponding physical element is an electron, you can say that
this is similar to the electron having a 'spin down' property. Similar, when the qubit holds the
value /, this is described in the Diract notation as |1> which can correspond to the real-world

situtation where an electron has a 'spin down' property

NOTE Most existing prototypes for quantum computers are not using electrons as
qubit representations. However, the spin up/down property of an electron is
often easier to understand than the more complex phenomena used by
most of the quantum computers (e.g. Josephson junctions). Since we try to
make abstraction of the physical background as much as possible, we
prefer to make the analogy by using a more simple physical representation.

As we explained, an electron can be in a spin up or a spin down state, but its spin can also be in a
superposition of the up and down states. As a consequence, a qubit can be in a "superposition" as

well.

We now give the qubit a name, similar to how we give variables or parameters in classical
programs names. Greek symbols are often used for this, and in order to be consistent with most
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of the literature, we will use those symbols as well. Hence, a qubit named s (pronounced 'psai')
that holds the value 0 (corresponding to an electron with spin down) is desribed as follows:

EQUATION 4.1
N\ > = 10>

Similar, when the qubit named s holds the value 1 (corresponding to an electron with spin up),
you can describe it as

EQUATION 4.2
Ny > = [1>

The interesting thing is the description of a qubit in a superposition state, corresponding to an
electron with a spin that is in a superposition of up and down. When a qubit is in a superposition
state, this state can be described as a linear combination of the basis states:

EQUATION 4.3

> = a|0> + B|1>

The equation tells you that the state of the qubit is a linear combination of the basis state 0> and
the basis state |1> with « and 8 being numbers related to probabilities as we will explain shortly.

This equation highlights one of the fundamental differences between classical computing and
quantum computing. While the "simple" cases of a qubit holding the value 0 or the value / can
also be reproduced with classical variables, the combination of both values is impossible for a
classical computer, as explained in Figure 4.5.

Quantum computer Classical computer
|w>=|0> boolean a = false
ly>= 1> boolean a = true
ly>=0a|0>+B|1> boolean a = ????

Figure 4.5 Variable assignments in quantum computers versus classical computers.

You can also write Equation 4.3 in vector notation. Leveraging the definitions of the Dirac
notations for |0> and |1> you can rewrite equation 4.3 as follows:
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EQUATION 4.4

+ 8|5 =

Y >=a 1|~ |8

0

The Dirac notation and the vector notation refer to the same principle: the considered qubit is in a
superposition of the |0> state and the |1> state.

There are a number of ways that try to explain what this equation pysically means. At its core,
the equation means that the electron is in such a state that, when it would be measured at that

2 2
moment, there is a probablity of o that we will measure 0 and a probability of 3 that we will
measure 1.

Since we will measure either 0 or 1, there is an additional restriction on the values of « and j.
The sum of the probabilities should be 1 (since you measure something).

Hence,

EQUATION 4.5

2 2
a+p =1

As we said a number of times before, understanding quantum mechanics is very hard.
Fortunately, as a developer, you only have to take into account the equations, and leave out the
physical interpretation.

What we described above for the spin of electrons also applies for other properties of other
elementary particles. When we talk about a Qubit, its underlying physical implementation
leverages the behavior of these properties. As a developer, you are shielded away from the
physical behavior. Hence, when we talk about a Qubit in a superposition, the developer does not
need to know anything about the physical representation of this qubit.

At this point, one of the most common questions asked by developers is the following:

“Great, a qubit can be in a superposition of 0 and 1, but when we measure it, is is still either 0 or

1. What'’s the difference with a classical computer then?”

This is a very reasonable question, and we’ll give the answer in the next sections.
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NOTE Quantum computing is sometimes linked to working with probabilities
instead of working with certainties. A classical bit is either 0 or 1 and can
always be measured. As you just learned, in quantum computing the state
of a system is rather described by probabilities. This requires a different
way of thinking.

4.2 The state of a quantum system as a probability vector

So far, we mainly talked about qubits, and the values that those qubits hold. After introducing
superposition, you now know that a single qubit can be in a combination of 2 base states during
processing, and it will fall back to one of the base states (either 0 or /) when measured. In
classical computing, the value of parameters is the most important concept in processing. When
talking about quantum computers, however, those values are not uniquely defined during
processing — due to superposition. Therefore, it is often more convenient to talk about
probabilities instead of values of qubits. This is what we explain in this section, and one of the
consequences is the processing power of quantum computers.

In the previous chapter, you learned that the state of a quantum system can be represented by a
vector. For a quantum system with 1 qubit, a vector with 2 elements describes the probalities for
the value of that single qubit, when it would be measured. A quantum system with 2 qubits can
be represented by a vector with 4 elements, and in general a quantum system with n qubits is
represented by a vector with 2" elements. Figure 4.6 explains this principle.

1 qubit 2 combinations = 21

= o

00

01

2 qubits 4 combinations = 22

11

000
001
010
011
3 qubits  1gg 8 combinations = 23
101
110
111
Figure 4.6 With a growing number of qubits, an exponentially growing number of
combinations is possible.
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The probability vectors we showed in Chapter 3 representing the state of a quantum system with
all qubits in a base state were very simple: all elements are 0, expect for one element. That
element defines the state of the system and it correspond to a clear value for each qubit: either 0
or 1.

You now learned that a qubit can be in a superposition, in which its state is a linear combination
of the 0 value and the 1 value.

For a single qubit system, the state can be described in Dirac Notation and in vector notation as
follows:

EQUATION 4.6

81

1P >=al0 > +8|1 >= 3

A system with two qubits can be described as follows:

EQUATION 4.7

8783
X Qp 05051
..'30 ..'30 ..'30@1

Vo1 >=

This equation shows that a system with two qubits can be described by a (probability) vector
with 4 values. Two qubits can hold 4 values simultaneously. Of course, once measured, only 1
value for each qubit remains. But all the computations in a quantum algorithm operate on the 4
values.

By extension, a system with n qubits corresponds to a vector with 2" elements. This is an
indication why quantum computers are expected to help with exponential problems: with an
increasing number of qubits, a quantum system can work with an exponentially increasing
number of values.

In Figure 4.1 we show a system with 6 qubits.
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e - ~,
Xo 0
X3
1
0
System with 6 qubits . : measure -
64 probabilities 1 result

Figure 4.7 Quantum system with 6 qubits.

In this picture, it is shown that 6 qubits correspond to a vector with 64 (which is 2°) elements.
Once measured, one of these elements holds the value 1, and all other elements have the value 0.
From the index of the element that holds the value 1, the individual values for the 6 qubits can be
calculated. Hence, you started with 6 values (each either 0 or 1) and you ended with 6 values
(each either O or 1).

At first sight, there might be no clear value due to superposition. You can hold an exponential
number of elements in the system, but once you measure it, it seems you are back in the classical
state where each bit has exactly one well defined value.

SIDEBAR The real value lies in the fact that a quantum system can do processing
while the qubits are in a superposition state. Hence, the operations defined
by the quantum algorithms do not manipulate just 6 bits, they manipulate
64 probability values. One step in a quantum algorithm on a quantum
computer with 6 qubits is therefore modifying 64 values. Adding one qubit
doubles the processing capabilities of the quantum computer. This explains
the term "exponential" that is often used together with quantum computing:

adding n qubits adds processing power proportional to 2", where the n is in
the exponent of this equation.

Let’s compare a classical computer with 6 bits to a quantum computer with 6 qubits. Both
computers have 1 value, consisting of 6 bits as input to an algorithm, and after measuring the
output of the algorithm, they will both read a value of 6 bits again. Both computers can process
64 possible combinations as an input value. The key difference is that a quantum computer can
process those 64 combinations at the same time.

This is shown in Figure 4.2
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Classical computer guantum computer
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Figure 4.8 Comparing a classical computer and a quantum computer with 6 bits input and
output
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We can show this with some Java code. First, let’s assume you use a classical computer with a
single bit, and you apply a function to that bit. You will use the boolean type as this is the Java
primitive type that can hold 2 values: false and true, corresponding to 0 and /.

bool ean i nput;
bool ean out put;

out put = soneFunction(i nput);

where someFunction is a Java function with the following signature:

publ i c bool ean soneFuncti on(bool ean v) {
bool ean answer;
. // do sonme processing (1]
return answer;

9  thereal processing is done here.

If you have to apply someFunction to all possible values of input, you have to invoke the
function twice:

bool ean[] input = new bool ean[ 2] ;
bool ean[] out put = new bool ean[ 2] ;

input[0] = false;
input[1] = true;
for (int i =0; i <2; i++) {

output[i] = someFunction(input[i]);

}

You will now do the same for a Quantum Computer with some pseudo Java code.
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NOTE For this sample, you will not use real Java code, since we will make a
number of simplications. The code below is pseudo-code for a number of
reasons. There are more differences between classical algorithms and
guantum algorithms than only the concept of superposition, as we will see
in the next chapters. One of the other important differences that we will
explain in the next chapter is that qubits don’t operate in an isolated way.
An operation on one qubit may affect another, seemingly unrelated qubit.
As a consequence, when doing operations on qubits, the whole system (all
qubits) need to be taken into consideration.

You create an instance of a Qubit, and bring it into superposition with a fictive superposition
method. Later in this chapter we explain Zow a qubit can be brought in a superposition.

Qubit qubit = new Qubit();
qubi t . superposition();

The someFunction now has to work with a qubit, hence you define it as follows:

public Qubit soneFunction(Qubit v) {
Qubi t answer;
. I/ do sonme processing
return answer;

So far, this looks very similar to the classical case. However, you can now evaluate the case
where the qubit is 0 and the case where the qubit holds the value / with a single function

evaluation by applying the function to the qubit in superposition:

Qubit qubit = new Qubit();
qubi t . superposition();
qubit = soneFunction(qubit);

The key element here is that the function someFunction takes a qubit as input, and has a qubit as
output. If the input qubit is in a superposition state, the function operates on both states.
Similarly, if you have a function that has 2 qubits as input, it can operate on the 4 different
combinations of the qubit states. In general, a function operating on »n qubits can operate on 2"
possible states. This explains why the probability vectors are often used when talking about
quantum computing, as those vectors have 2" elements, describing the probablity to find the
qubits in a specific state.

Now that you know why quantum computers allow for exponentially scaling, you need to find
out how to benefit from this, as the exponential power only applies during processing — and not
during measurement.

The trick when writing quantum algorithms is to come up with those operations that, when
applied, will lead to a measurement that tells more about the solution of a problem.
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This is shown in Figure 4.3.

- ~ ~ ~ s ~
Xo Yo 0
X3 Y1
D :
. 0
gate operations
. . measure
System with 6 qubits : / - W, -
64 probabilities 64 probabilities 1 result

Figure 4.9 Gates applied to a quantum system with 6 qubits.

In this picture, we showed that before the quantum system is measured, processing is done by
applying quantum gates. Those quantum gate operations modify the state of the probability
vector.

NOTE an analogy to this is the following: suppose that someone gives you 1000
numbers, and tells you that one of those number is a prime number. You
have to find the index of the prime number. Imagine you could manipulate
all those numbers simultaneously, and process them in a way that all
numbers become 0, except for the prime number which becomes 1. A
single measurement then reveals the position of the prime number. While
there is no easy quantum algorithm for this, the analogy shows that there is
a benefit in being able to process a large number of values, even if the end
result is a single value only.

We talked a number of times about operations on quantum systems. This brings us closer to
software, as we ultimately want to use software to manipulate the state of a quantum system.

Before we turn our attention to software, we will explain how quantum gates manipulate qubits
and the probability vector.

4.3 Introducing matrix gate operations

We try to keep the mathematical parts in this book to a minimum. However, in order to
understand the core concepts of Quantum Gates, it helps to have a basic understanding of linear
algebra and matrix operations. In this section, we briefly describe the required background.

We will explain this using the most simple, yet useful quantum gate: the Pauli-X gate. After we
discuss how the Pauli-X gate corresponds to a matrix operation, we will generalize the concept to
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all gates.

In the beginning of this chapter, we showed the flow (see Figure 4.1). In this section, we will add
some details on the Gat es block in that picture, as explained in the following detail:

[ Superposition }
[ Processing power 1

paiXgote — m

[ Hadamard Gate }

Figure 4.10 Detailing the gate concept from the flow: first discuss the Pauli-X gate, then
make it more general.

These steps are needed in order to get at the final part of this chapter: the discussion of the
Hadamard gate. The Pauli-X gate we will discuss now is an easy to understand gate, and you will
get a clear understanding of how gates work after this section.

In the previous paragraph, we explained that we can represent the state of a system with n qubits
with a vector containing 2" elements. We mentioned that a quantum computer can do processing
on this vector, and in this section we explain what we mean by this. The fact that a quantum
computer can operate on a combination of states at the same moment is a great opportunity for
performance, but it comes with some complexity: instead of thinking about individual qubits,
you need to think about probabilities tor the combination of qubits.
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4.3.1 The Pauli-X gate as a matrix

In the previous chapter, we described the Pauli-X gate. We mentioned the Pauli-X gate has
similarities with the classical NOT gate, and we used a simple table to explain the behavior of
the NOT gate. For clarity, we repeat that behavior table here again:

Table 4.1 Behavior of the NOT gate

input output
A NOT A
0 1
1 0

This table would also make sense when talking about the Pauli-X gate, but it only takes into
account the basis states, where the input is either '0' or 'l'. As we mentioned earlier in this
chapter, the general state of a Qubit can be a linear combination of the basis states. The state is
not simple '0' or '1', but a combination of probabilities: the probability that if you measure the
qubit you will measure '0' and the probability that you will measure '1'. In this case, a simple
table is no longer sufficient to describe the behavior of a gate. You would need a table with an
infinite number of rows as shown in the following table --- taking into account that there are
already infinite values between 99% and 100%.

Table 4.2 Behavior of the NOT gate on a qubit, shown as a table.

input output
A NOT A

100% chance on 0, 0% change on 1

0% chance on 0, 100% change on 1

99% chance on 0, 1% change on 1

1% chance on 0, 99% change on 1

98% chance on 0, 2% change on 1

2% chance on 0, 98% change on 1

0% chance on 0, 100% change on 1

100% chance on 0, 0% change on 1

In Quantum computing, a typical way to describe gates is by using matrix operations.

4.3.2 Applying the Pauli-X gate to a qubit in superposition

The state of a quantum system with qubits can always be represented by a vector. When gates act
upon qubits, the values in the vector change. In linear algebra, this can be achieved by
representing the gate with a matrix and multiplying the matrix with the qubit vector in order to
obtain the new state of the qubit vector.

We will now show that the Pauli-X gate can be represented by the following matrix:
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EQUATION 4.8

0 1
1 0

Let’s start with something simple. First, suppose that the qubit originally holds the value '0". You
already learned in the previous chapter that after applying a Pauli-X gate to this qubit, the qubit
will hold the value '1".

In the Dirac notation, the qubit is originally written as [0>. In vector representation, this
corresponds to

EQUATION 4.9

Applying a gate to a qubit corresponds to multiplying the gate matrix and the qubit vector.

EQUATION 4.10

0 1)\ |1 0
1 0/ (0] |1

In this equation, a matrix-vector multiplication is introduced. Note that a vector is a special
matrix, as it has exactly one column. The result of the matrix-vector multiplication is a new
vector. When multiplying a matrix and a vector, there is a strong requirement that the number of
columns in the matrix equals the number of rows in the vector. In this case, there are 2 columns
in the matrix, and 2 rows in the vector, so that matches. Second, the resulting vector will have the
same number of rows as the original matrix. The Pauli-X matrix has 2 rows, and the resulting
vector has 2 rows as well.

The values in the resulting vector are calculated as follows: the element at position i in the
resulting vector is the sum of the multiplications of all elements at row i of the matrix with the
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corresponding element in the original vector. Concrete, the first element in the vector is obtained
by

Hence, the Pauli-X gate applied to a qubit in state |0> (the original vector in the equation) results
in the qubit having state |1> (the result after applying the matrix multiplication). This is indeed
what we learned in the previous chapter.

Second, suppose the qubit orinially holds the value 1, and thus is represented with the Dirac
notation |1>, or by the vector

EQUATION 4.11

0
1

In this case, multiplying the Paul-X gate matrix with the qubit vector goes as follows:

EQUATION 4.12

0 1Y\ 10 1
1 0/ (1] |0

The result is the vector representation for a qubit with a value of 0, or in Dirac notation [0>.

The 2 use cases we calculated above show that for the "simple" cases where the qubit either
holds the value 0 or 1, the matrix we created in Equation 4.8 indeed corresponds with what we
expect from the Pauli-X gate.

But those are 2 "edge" cases, and we want to know what happens when a qubit is in a
superposition state. In this case, the state of the qubit is written as

EQUATION 4.13
U= al0> + B|1>

or in vector notation:
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EQUATION 4.14

|
[y

You will now apply a Pauli-X gate to this qubit, by multiplying the matrix from Equation 4.8
with this vector:

EQUATION 4.15

0 1)\ |« 15
1 0/ |p !

As you can see from this equation, the Pauli-X gate in general swaps the probabilities of finding
0 and finding 1 when the qubit is measured. In the extreme case that the qubit is either O or either
1 before the Pauli-X gate is applied, the gate will simply invert the value.

4.3.3 A matrix that works for all gates

In the previous section, we showed how the Pauli-X gate operating on a single qubit can be
described by a multiplication of the Pauli-X gate matrix with the probability vector of the qubit.

In this section, you will learn how this principle of matrix multiplications work for any gate.
Throughout this book, we will introduce new gates, and it helps understanding the general
principle on how gates relate to matrices in general.

The general action of applying a gate to a single qubit, as shown in Figure 4.4

b

R GATE >

R

Figure 4.11 Applying a gate to a qubit

is the equivalent of the following matrix multiplication:
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EQUATION 4.16

al 00agl\ |« o

3 10a,1) [8] ~ |8
Originally, the qubit is in the state | > which can also be written as

EQUATION 4.17

The gate in Figure 4.4 corresponds to the matrix

EQUATION 4.18

00(1-01
10(1-11

Applying the gate to the qubit corresponds to multiplying the matrix with the qubit probability
vector:

EQUATION 4.19
00 apy X

10 a1 3

The multiplication of the gate matrix with the qubit state results in a new vector describing the
qubit state.
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EQUATION 4.20

00(1-01 ap 00«a —f—ﬂ-[)llﬁ
10(1-11 3 N 10&+G113

After applying the gate to the qubit thus brings the qubit in the following state:
EQUATION 4.21

00 + apy B| |
10@ —+ ai 3 N 3"

Now that you learned how gates correspond to a matrix operation, it is time to talk about a gate
that is essential to the subject of this chapter: superposition.

4.4 The Hadamard Gate, the gate to superposition

In order to bring a particle into a superposition state, some very high-skilled phyiscs need to be
applied. Fortunately, as a developer, bringing a qubit into a superposition state simply requires
applying a specific gate to that qubit.

Figure 4.5 shows the gate that brings a qubit that is originally in the 0 state into a superposition
state. This gate is called the Hadamard Gate.

Hadamard .
Gate

0

0
Figure 4.12 Hadamard gate brings a qubit in superposition

The Hadamard Gate is one of the most fundamental concepts in quantum computing. After
applying a Hadamard Gate to a qubit that holds the value 0, there is 50% chance that the qubit
will be measured as 0, and there is 50% chance that the qubit, when measured, will hold the

value /.
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NOTE We mentioned this before, but it can’'t be repeated enough: the wording
when measured is extremely important in the previous explanation. As long
as the qubit is not measured, it can stay in a superposition. Other gates
can be applied, and the probabilities will change. Only when the qubit is
measured, it will have a value of either O or 1.

Similar to the Pauli-X gate, the Hadamard gate acts on a single qubit, and can be represented by
a 2 x 2 matrix as well.

The Hadamard Gate is defined as follows:

EQUATION 4.22

I /1 1

V2 \1 —1

We want to find out what happens when we apply this gate on a qubit that is in the |0> state.
This can be inspected by multiplying the gate matrix to the qubit vector:

EQUATION 4.23

I /1 1\ (1] 1 |1

2\ 1) 0] T a1

This equation shows that, after applying the Hadamard gate to a qubit that is in the |0> state, the
qubit enters a new state where the probability of measuring 0 is

EQUATION 4.24

And the probability of measuring 1 is also
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EQUATION 4.25

In conclusion, applying the Hadamard gate to a qubit that is in state |0> brings the qubit in a
superposition state where the probability of measuring 0 is equal to the probability of measuring
1.

What would happen if you apply the Hadamard gate to a qubit that is in state [1> ?

The vector representation of a qubit in that state is given by

EQUATION 4.26

0
1

Hence, applying a Hadamard gate to this qubit means multiplying the Hadamard matrix with the
above vector:

EQUATION  4.27

L /1 1\[0f 1 (|1

S\ =11 5 |1

If you would measure the qubit at this point, the chance of measuring 0 would be

EQUATION 4.28
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and the chance of measuring 1 would be

EQUATION 4.29

Hence, in both cases (qubit |0> or qubit |1>) applying a Hadamard Gate gives an equal chance
for the qubit to be 0 or 1' when measured.

4.5 Java code using the Hadamard gate

You are now going to use the Hadamard gate to create a random number generator. This is
already a useful application, as random numbers are very useful in cryptography.

You learned the theory about the Hadamard gate, now it is time to use it in quantum applications.

Similar to how you created a quantum application with a Pauli-X gate in the previous chapter,
you will now create a simple quantum application with a Hadamard gate. The code for this
sample can be found in our samples, under ch04/ hadamar d. This sample contains 2 parts. In the
first part, you only run the application once. The relevant code for this part is shown below:

Listing 4.1 first code snippet using a Hadamard gate.

public static void singleExecution(String[] args) {
Quant unmExecut i onEnvi ronnment si nul at or = new Si npl eQuant unExecut i onEnvi ronnent () ;
Pr ogram program = new Progran(1);

Step step = new Step(); (1]
st ep. addGat e( new Hadamar d(0)) ; (2]
program addSt ep(step);

Result result = sinmulator.runProgranprogram; (3]

Qubit[] qubits = result.getQubits();

Qubit zero = qubits[O0];

int value = zero.neasure(); (4]
System out. println("Value = "+val ue);

At this point, the environment is ready and you can add gates.
A Hadamard gate is added to the qubit.

The quantum program is executed.

®© © © o

The qubit is measured, and will have avalue of '0" or '1'.

Note the similarity between this sample and the Pauli-X sample from the previous chapter. This
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time, we skip the detailed explanation about the steps that are similar to the Pauli-X sample.

You create the Quant unExecut i onEnvi r onnent which will run your program. Next you create
a Pr ogr aminstance that will deal with a single qubit, and you create a St ep instance.

Instead of adding the Pauli-X gate to that step, you now add the Hadamard gate to the step:

st ep. addGat e( new Hadamard(0));

This will apply a Hadamard gate to the qubit. By default, qubits are originally in the |0> state.
You learned in this chapter that after applying a Hadamard gate to a qubit that is in that state,
there is 50% chance the qubit, when measured will be 0 and 50% chance that it will be 1.

The remainder of the code snippet is again similar to the Pauli-X sample: you add the step to the
program, and run the program on the simulator.

Finally, you measure the qubit, and print the value.

If you run this program once, you will either see

Value = 0
or
Value = 1

After the sample code prints out the measured value, it visualises the quantum circuit using
StrangeFX. This is done using the following line of code:

Render er . r ender Progr an( pr ogran) ;

As a result of this action, a window is shown containing the quantum circuit, as can be seen in
Figure 4.13

| BON StrangeFX

Figure 4.13 Rendering a quantum circuit with one qubit, and one gate: the Hadamard gate.
As can be seen from this picture, the resulting qubit has a 50% probability of being measured as
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The second part of the sample invokes the manyExecut i on function, which is very similar to the
si ngl eExecuti on discussed above, but this time you run the program 1000 times. The
Quant unExecut i onEnvi ronment and the Program have to be created only once. After the
program has been created, the following loop is added to the application:

Listing 4.2 doing multiple runs of the Hadamard snippet

int cntZero = 0;
int cntOne = 0;

for (int i = 0; i < 1000; i++) {A (1]
Result result = sinmulator.runProgran(program; (2]
Qubit[] qubits = result.getQubits();

Qubit zero = qubits[O0];

int value = zero. neasure(); (3]
if (value == 0) cntZero++; o
if (value == 1) cnt One++;

Y ou run the following loop 1000 times
Y ou run the quantum program

Y ou measure the qubit

Based on the measured valued ('O’ or '1) you increment one counter or the other.

From this snippet, it can be seen that the r unPr ogr am method is called 1000 times on the
simulator. Each time, you measure the resulting qubit. If the qubit holds the value 0, the cnt Zer o
counter is incremented. If the qubit holds the value 1, the cnt One counter is incremented. After
applying this loop, the results are printed:

System out. println("Applied Hadamard circuit 1000 tines, got "
+ cntZero + " times 0 and " + cntOne + " times 1.");

The result of this application therefore shows something similar to

1000 runs of a Quantum Circuit with Hadamard Gate
Appl i ed Hadamard circuit 1000 tines, got 510 times O and 490 tines 1.

What you created here, is a random number generator using the low-level Quantum API’s. The
single qubit in the program is brought into a superposition, and then measured. When running
this program on the Quantum Simulator, or by extension on any classical computer that
simulates quantum behavior, the randomness is still somehow deterministic, as you use classic
algorithms to generate a random number. Typically, simulators work with probability vectors,
and when a measurement is required, a random number is used to pick one of the
probabilities — taking into account, of course, the value of the probabilities.
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On real quantum hardware, this is different. Nature itself will pick one value when we measure
the qubit. This process is truly random (at least, this is what most quantum physicists currently
assume). While this simple application seems a complex way to generate a random number, it
has real value. It shows how one can generate a truly random number using quantum hardware.
Random numbers are extremely important in a number of areas including encryption.

4.6 Summary

In this chapter

® you learned the idea behind superposition, the important concept that indicates why
guantum computing is interesting for dealing with algorithms that show exponential
complexity.

® you learned about the different notations for the state of a quantum computer.

* you made the link between applying gates on qubits and multiplying the probability
vector with a matrix

® you managed to bring a qubit in a superposition state by applying the Hadamard gate.
® you hacked avery simple algorithm using Strange that shows the Hadamard gate in
action.

©Manning Publications Co. To comment go to liveBook

https:/lilel@ek s@antey RanHAsuri@a o esnpan@iordieur peeiidscussion



70

Entanglement

This chapter covers

* the analogy between flipping a coin and getting a random number

® how flipping a number of coins comes is related to the mathematical concept of a
probability vector

¢ the physical concept of "quantum entanglement"

® qguantum entanglement to create random numbers that are connected with each
other

® a game that allows you to learn more about how the concepts of superposition and
entanglement can be leveraged in Java applications.

In the previous chapter, we introduced and explained the concept of superposition. This concept
does not exist in classical computing, and it is one of the reasons why quantum computing is
fundamentally different from classical computing. Nevertheless, we managed to describe
superposition in such a way that a Java programmer can leverage it in his own code. In this
chapter, we will introduce quantum entanglement, a concept that is also not encountered in
classical computing and that makes quantum computing really powerful. Again, we will show
how you can simulate quantum entanglement and deal with it using Java code.

5.1 Predicting heads or tails

Have you ever been at a magician show where the magician is able to predict a property that
seems to be random? A spectator can choose a card from a deck, and the magician tells which
card it is without seeing it. Or the spectator can toss a coin, hides the result, and the magician is
capable of telling whether the coin landed heads or tails.

In this chapter, you will learn to write code that does something similar to this example.
However, there is no magic involved here. You will only use the programatic consequences of
quantum physics.
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We will use the spinning coin that can land in either heads or tails analogy throughout this
chapter. First, you will write classic code that simulates 2 spinning coins, and measure the result.
Next, you will write a quantum algorithm that achieves the same, leveraging the superposition
principle explained in the previous chapter. Finally, you will use a new gate and entangle the 2
coins. Although the measured values are still random, measuring one coin tells you the value of
the other coin.

This is shown in Figure 5.1.

( Classic Probabilities } o o o o

[ Quantum Probabilities } o o o °

Quantum dependent
(“entangled”) Probabilities “

Figure 5.1 Using heads-tails coins throughout this chapter.

5.2 Independent probabilities, the classic way

Suppose you have 2 coins, coin A and coin B. Each coin can be head or tails. You spin them, and
while spinning, you move them apart from each other, into different rooms. You then wait for
the coins to stop spinning, and you see if they are heads or tails. What will be the result? We
can’t tell that with certainty, but we can say something about the probabilities. There is 50%
chance that coin A will be heads, and 50% chance that coin A will be tails. Similarly, there is
50% chance that coin B will be heads, and 50% chance that coin B will be tails. If we link the
outcome heads with the value 0 and the outcome fails with the value 1, there is 50% chance a
coin will be measured as 0 and 50% chance a coint will be measured as 1, as shown in Figure
5.2.
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0O -
Q0

Figure 5.2 Heads =0, Tails =1

In total, there are 4 possible combinations that we can measure:

® coin A can be heads (0) and coin B can be heads (0). We denote thisas 00 in binary
representation which is 0 in decimal representations

® coin A can be heads (0) and coin B can betails (1). We denote thisas 01 in binary
representation which is 1 in decimal representations

® coin A can betails (1) and coin B can be heads (0). We denote thisas 10 in binary
representation which is 2 in decimal representations

® coin A can betails (1) and coin B can betails (1). We denote thisas 11 in binary
representation which is 3 in decimal representations

As we stated before, we often talk about "probabilities" when dealing with quantum computing.
In this case, we have 4 possible outcomes, and each outcome has a specific probability. Hence,
the probabilities can be stored in an array where the decimal representation is the index in that
array. This array is also called the probability vector.

The conversion between heads/tails, binary digits and decimal numbers is shown in Figure 5.3.

00 - -
00 -
00 -

Figure 5.3 Different combinations of heads and tails

If the coins are totally fair, each of these combinations has an equal chance to occur. Hence,
since the total probability needs to be 100%, each combination has a 25% chance to be
measured. In this case, the probability vector is written as follows:
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EQUATION 5.1

25% |
| 25%
P= 1959
25%

As a consequence, if we make 1000 different, independent measurements, we expect every
combination to be measured more or less 250 times.

We don’t need a quantum computer to test this, we can do this with classical software, so let’s
write it. The classiccoin sample contains a class TwoCoins which does the bulk of the
calculations.

Listing 5.1 Classic application for 2 coins

private static bool ean randonBit() { o
bool ean answer = new Randon{) . next Bool ean();
return answer;

}

public static int[] calculate(int count) { (2]
int results[] = newint[4];
for (int i =0; i < count; i++) {
bool ean coi nA = randonBit(); (3]
bool ean coi nB = randonBit();
if (!coinA & !coinB) results[O0]++; (4]

if (!coinA & coinB) results[1]++;
if (coinA &k !coinB) results[2]++;
if (coinA &k coi nB) results[3]++;

}

return results; (5]

In this function, arandom boolean is created and returned.
This function calculates the probality vector for 2 coins that can be heads or tails.

First, create 2 random bits, which can be either true or false, independent from each
other.

©  Based on the values of the 2 bits, one element in the probablilty vector is
incremented.

©  The probability vector is returned to the caller of the function.

The randonBi t () function in this snippet returns a random boolean. The Mat h. r andon() Java
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function is used to generate a random number between 0 and 1. There is 50% chance that this
number if smaller than 0. 5 in which case the random boolean will be '0', and 50% chance that
the random number will be bigger than 0.5, in which case the random boolean returns '1".

The cal cul ate(int count) function takes an integer as input, which defines how many times
the experiment needs to be done. It returns an array of 4 integers, with each value containing the
number of cases the the experiment led to a specific outcome. In each experiment, 2 random
booleans (named coi nA and coi nB) are obtained using the r andonBi t () function. Based on the
coversion scheme shown in <<ch5:hhtt>, one of the counters is incremented. For example, if
coi nAis true and coi nBis f al se, which means we have a Tai | s- Head outcome, equivalent to
a 10 outcome, the counter at index 2 will be incremented.

The mai n method for this application is as follows:

public static void main(String[] args) {

int results[] = TwoCoi ns. cal cul ate(count);
Systemout.println("W did "+count+" experinents.");
Systemout.printin("0 O occured "+resul ts[0]+" tines."
Systemout.println("0 1 occured "+resul ts[1]+" tinmes."
Systemout.printin("1 0 occured "+resul ts[2]+" tines."
Systemout.printin("1 1 occured "+resul ts[3]+" tines."
Platformstartup(() -> showResults(results)); (3]

®e

~— — — —

9  First, thecal cul at e function isinvoked, returning the array with occurences of
the different possible outcomes.

The different outcomes are printed.

The different outcomes are shown in a graph.

Note: the code for showing the results in a graph is using JavaFX, but the details are outside of
the scope of this book.

If you run this application, you’ll see a more or less evenly spread distribution:

We did 1000 experinents.
0 0 occured 244 tines.
0 1 occured 246 tines.
1 0 occured 272 times.
1 1 occured 238 tinmnes.

The application shows a chart as well with this distribution, as shown in Figure~5.4
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| BON | Two coins, classic case

Classic probability distribution
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M occurences

Figure 5.4 Distribution of probabilities

If you run this application multiple times, the individual probabilities will be different, but in
general, all probabilities are equally possible, so therefore the numbers are in the same range.

Independent probabilities, the Quantum way

So far, there is nothing really exciting about our experiment. We just showed we can simulate the
random values of the coins using a classic algorithm on a classic computer. We will now move to
quantum computers, and do something similar. In the previous chapter, we created a random
number generator using quantum gates. More specifically, we learned that the Hadamard gate
brings a qubit in a superposition state. When measured, the qubit will fall down into one of its
basis states, and we measure either a value of 0 or a value of /.

If we extend our system from the previous chapter with another qubit, and apply a Hadamard
gate to that qubit as well, we can simulate the two coins from the previous (classic) sample using
qubits. The circuit for this is shown in Figure 5.5
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® StrangeFX

woro- |0 o |
o [ N

Figure 5.5 Quantum circuit with 2 qubits

You will now write the code for generating this circuit, and measuring the results. The code for
this sample is in the ch05/ quant untoi n directory of the sample repository and shown below as

well:

Listing 5.2 Quantum application for 2 coins

private static final int COUNT = 1000; o
public static void main(String[] args) {
int results[] = newint[4]; (2
Quant unmExecut i onEnvi ronnment si nul ator = new
Si mpl eQuant unExecut i onEnvi ronment () ; (3]

Pr ogram program = new Program(2);

Step stepl = new Step();

st epl. addGat e( new Hadamard(0));

st epl. addGat e( new Hadamard(1));

program addSt ep(stepl);

for (int i =0; i < COUNT; i++) { (4]
Result result = sinmulator.runProgran(program;
Qubit[] qubits = result.getQubits();
Qubit zero = qubits[O0];
Qubit one = qubits[1];

bool ean coi nA = zero. neasure() == 1,
bool ean coi nB = one. neasure() == 1;
if (!coinA & !coinB) results[0]++; e

if (!coinA & coinB) results[1]++;

if (coinA & !coinB) results[2]++;

if (coinA & coinB) results[3]++;
}
Systemout.println("We did "+COUNT+" experinents.");
Systemout.printin("[AB]: O O occured "+results[0]+" tinmes."
Systemout.printin("[AB]: 0 1 occured "+results[1]+" tinmes."
Systemout.printin("[AB]: 1 0 occured "+results[2]+" tinmes."
Systemout.printIn("[AB]: 1 1 occured "+results[3]+" times."

—— — —

Render er . r ender Progr an( pr ogran ;
Render er . showPr obabi | i ti es(program 1000);
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You will do 1000 experiments
Ther esul t s array contains the occurences for the different possible outcomes
A guantumExecutionEnvironment is created, and the Program is constructed

The program is executed 1000 times, and the results are measured

© 6 © o o

Depending on the outcome, one of the countersisincremented.

If we run this code, we’ll see a rather similar distribution to the classical case. The program
prints the following output:

We did 1000 experinents.

[AB]: O O occured 268 tines.
[AB]: O 1 occured 260 tines.
[AB]: 1 O occured 216 tines.
[AB]: 1 1 occured 256 tines.

Also, the program visualizes this output. The image in Figure 5.6 shows this distribution.

Measured probability distribution

275
250
225
200
175
150
125
100 -
75
50 -

25

00 01 10 1

B occurences

Figure 5.6 Probability distribution for 2 quantum coins

All outcomes have a 25% probability. For example, there is a 25% chance an experiment will
result in probability index 0, corresponding to a measurement of 00. All other outcomes have
25% chance as well.

This outcome can be expected if you analyse the code, or look at the circuit in Figure 5.5. In the
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code, you create a Quantum Program that involves 2 qubits by using the appropriate constructor:
Pr ogr am program = new Progranm2);

The program contains a single step only. In this single step, you assign a Hadamard Gate to each
individual qubit:
Step stepl = new Step();

st epl. addGat e( new Hadamard(0));
stepl. addGat e( new Hadamard(1));

The step is added to the program via

program addSt ep(stepl);

Hence, the program you created contains of a single step, which contains a Hadamard gate on
each individual qubit. Intuitively, it is clear that there is no connection between the qubits, and
both qubits will be randomly 0 or / when measured, independent from each other. Again, this
looks similar to what we showed in the previous section with classical bits.

5.4 The physical concept of entanglement

With the algorithm in the previous section, we showed that we can use a quantum algorithm to
achieve the same as a classic algorithm. But we promised we would go beyond the classic
capabilities.

In this section, we make a detour to the physical world, to explain the physical concept of
quantum entanglement. After this, we go back to the software world, and we will show how we
represent this phenomenon.

With qubits, it is possible to do something that is impossible to achieve with classic bits. With
the physical representation of qubits, it is possible to achieve something that is impossible to
achieve with the physical representation of bits, and we can leverage this in our software
representation.

In classic software, 2 different bits do not influence each other. Clearly, we can copy the value of
one bit into another bit, but then we explicitly assign a value to the second bit.

The quantum phenonemon that we will leverage now is called quantum entanglement. This is
one of the weirdest physical phenomenons, and some of the brightest physisists in history had
strong discussions about this. There are still ongoing discussions about what quantum
entanglement really is, and how it fits with other physical concepts.
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SIDEBAR As the famous physisist Richard Feynman said: "If you think you
understand quantum mechanics, you don’'t understand quantum
mechanics." Fortunately, you don’t need to understand quantum
mechanics if you want to leverage it. While it is interesting to think about
the quantum mechanical concepts behind quantum computing, you do not
need to understand them before you can program quantum computers.
Similarly, you can be a great developer in classical computing without
understanding how a transistor works.

We said before that the physical representation of a qubit has a property (let’s call it spin) that
can be in any of two states, but also in a superposition of those two states. We can create many
qubits, and bring them in a superposition state. This is actually the underlying physical approach
in the previous section. If we send our application to a real quantum computer, the corresponding
phyical flow will be that two qubits are each brought in a superposition state, and then both are
measured. This is shown in Figure 5.7 shows this distribution.

SUPErposition |le— .

0
0
1
superposition
0
0]

Figure 5.7 2 particles, each brought in a superposition state

If one of the particles is now measured, there is 50% chance we will measure spin up, and 50%
chance we will measure spin down. If we then measure the other particle, there is again 50%
chance this will be in spin up, and 50% chance it will be in spin down. The result of the second
measurement is independent of the result of the first measurement.

This is shown in Figure 5.8
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1 1 ]
= Superposition —.
0 0
0 0 OR OR OR
1
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sl superposition . @
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0 0
Figure 5.8 Measurement on 2 particles in superposition

As you can see, there are 4 possible outcomes from the measurement. This corresponds to what
we showed in the previous section: when measuring the states of 2 qubits that are independent
from each other in a superposition, there are 4 possible outcomes, each with a probability of
25%.

It is already fantastic that this superposition state can be realised, but entanglement goes one step
further. Entangled particles, or entangled qubits, share their state. They might appear indepent
particles in a superposition, but as soon as one of them is measured, the outcome of a
measurement on the other one is fixed as well. There are a number of ways to create 2
entanglement particles, and we will safely stay away from discussing this creation process.
Schematically, though, this can be represented as in Figure 5.9.
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T~

Those particles are now related. They can
0 be 0 or 1, but once one is measured, the
other must have the same value

~

entangle

Here, 2 unrelated particles
are converted into related
or “entangled” particles

Figure 5.9 2 entangled particles being created.

In this scheme, after the physical entanglement operation, both particles are in a superposition
and so far, it looks exactly the same as in the previous case. It turns out, however, that when one
particle of an entangled pair is observed and its state is measured, the state of the other particle is
determined as well. Depending on what entanglement technique is used, the state of the second
particle will be the same or the opposite of the state of the first particle. For simplicity, we will
assume that the entanglement technique that is used will generate two particles that when
measured have the same state.

When the first particle is measured, there is 50% chance we measure spin up, and 50% chance
we measure spin down. So far, this is exactly the same as in the previous case (with 2 particles in
superposition). When the second particle is measured, there is also 50% chance we measure spin
up, and 50% chance we measure spin down. However, and this is the crucial difference with the
previous case, the results are not independent anymore. When the first particle results in a spin
up measurement, there is 100% chance the second particle also results in a spin up measurement.
Vice versa, when the first particle results in a spin down measurement, there is 100% chance the

second particle also results in a spin down measurement.

This is shown in Figure 5.10
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Figure 5.10 Measurement on 2 entangled particles

In this case, there are only 2 possible outcomes, instead of the four in the previous case. The only
possible outcomes are {up, up} or {down, down}. Each of these outcomes has a probability of

50%. It is impossible to have an outcome of {up, down}, or {down, up}.

Hence, when we measure the individual particles, it seems they produce a random value. While

that is true, the measurements are 100% dependent on each other.

SIDEBAR

NOTE

After this detour to the physical world, we will now move back to software. We need to find a

This is something we can use to address the goal posted in the beginning
of this chapter: we want to "predict" the outcome of a coin spin, which
seems to be completely random. Indeed, the coin can land in heads or
tails, but the result will be the same as the result of our entangled coin. So
while looking at our coin, we know the end result of the other coin without
looking at it. Again, note that this is just an analogy, the quantum
entanglement we are talking about here works with sub-atomic particles,
and can not be extrapolated to large objects as coins!

When two particles are entangled, that does not mean they are both in an
up state or a down state and that we simply don’t know yet. They can really
be in a superposition, until one of them is measured. This has very
important consequences, as we will see in the next chapters.

way to represent quantum entanglement using gates, so that we can create programs.
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5.5 A Gate representation for Quantum Entanglement

In the previous chapter, you learned that the physical concept of superposition can be leveraged
in quantum computing by the Hadamard gate. In this section, you will see how the concept of
quantum entanglement can be leveraged in quantum computing as well, by using a combination
of 2 gates.

5.5.1 Converting to probabiliy vectors

The end result of the entanglement of 2 qubits is that, when measured, the qubits are either both
in spin up, or both in spin down. We will write this information using a probability vector, as we
did before. Remember that a qubit with spin up corresponds to a '1' and a spin down corresponds
to a '0' value. Hence, the only possible combinations are '00' (both qubits in spin down) or '11'
(both qubits in spin up).

The probability vector we need to create thus contains:

00 (index 0) : 50% chance both qubits have spin down

01 (index 1) : 0% change one qubit has spin down and the other spin up.
10 (index 2) : 0% change one qubit has spin up and the other spin down.
11 (index 3) : 50% change both qubits have spin up

This corresponds to the following matrix:

EQUATION 5.2

Sl -
)
—_— O O =

Note the square root of 2 in this equation. The reason for this is that a probability correspond to
the square of the value at a specific position.

Indeed, the probability of measuring 00 (index 0) is the square of the value at index 0:
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EQUATION 5.3

which corresponds to 50%. Similarly, the probability of measuring 11 (index 3) is the square of
the value at index 0, which leads to 50% as well.

The probability of measuring 01 (index 1) is the square of the value at index 1:

EQUATION 5.4

which corresponds to 0%.

5.5.2 CNot gate

We now need to find a combination of gates that leads to the probability vector we just created.
It turns out that this can easily be achieved, but we need a new gate for this, the CNot gate.

The CNot gate operates on 2 qubits, and is symbolically depicted as in Figure 5.11.

control qubit

A

™~

target qubit

Figure 5.11 Schematic representation of a CNot gate
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The 2 qubits involved in the CNot gate are often called the control qubit (the upper one) and the
target qubit (the lower one). The behavior of the CNot gate is as follows:

® |n casethe control qubit is |0, nothing happens.

® |ncasethe control qubit is|1, the target qubit will be flipped: if the target qubit was |0 it
will beflipped to |1 and if the target qubit was |1 it will be flipped to |O.

We can verify this with a simple application using Strange. The sample called "cnot" shows a
CNot gate in action in 4 different cases. The CNot gate acts on 2 qubits, and we will check the
outcome for the 4 different edge cases, where the qubits are either in the |0 or the |1 state.

The main method of the sample will invoke those 4 cases as follows:

public static void main(String[] args) {
run00() ;
run01();
runlo();
runll();
}

The run00() method will apply the CNot gate to 2 qubits that are both in the |0 state. The
run01() method does the same for the case where the first qubit is in the |0 state and the second
is in the |1 state. Similarly, the run10() method applies a CNot gate do a set of qubits where the
first is in the |1 state and the second in the |0 state. Finally, the r un11() method applies the CNot
gate to 2 qubits that are both in the |1 state.

In the first case, where we apply the r un00() method, we will have both qubits in the |0 state
before we apply the CNot gate. Since the control qubit (the first qubit) is |0, we don’t expect
anything to change in the outcome.

The visual result of the first sample is show in Figure 5.12.
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® 0 StrangeFX

GII_F|" 10> — -

Figure 5.12 CNot gate applied to |[00>

As expected, the outcome of this circuit always has the qubits in the 'Off' value, which means
that when measured, we will always measure '0'.

Let’s have a look at the code that leads to this output. By now, most of the statements in the code
should look familiar.

Quant unExecut i onEnvi ronnment si nul ator =
new Si npl eQuant unExecut i onEnvi ronnent () ; (1)
Pr ogram program = new Programn(2);
Step stepl = new Step();
st epl. addGat e(new Cnot (0, 1)) ; (3]
program addSt ep(stepl);
Result result = simulator.runProgran(progran;
Qubit[] qubits = result.getQubits(); (4]
Qubit g0 = qubits[0];
Qubit g1 = qubits[1];
int vO = q0. neasure();
int vl = ql.neasure();
Systemout.println("v0 = "+v0+" and vl = "+vl);
Render er . r ender Progr an( pr ogran ; (5]

We create a new environment to run our quantum program

A quantum program working on 2 qubitsis created.

A CNot gate is added to the first (and only) step in this program. Since the CNot
gate operates on 2 qubits, we need to specify on which qubitsit operates. The CNot
constructor therefore takes two arguments: the control qubit (in this case the first
one, with index 0) and the target qubit (in this case the second one, with index 1).

The program is executed, and the results are measured.

The program and the outcome is rendered.

The other 3 cases require an additional step: before applying the CNot gate, at least one of the
qubits needs to be brought in the |1 state. As you learned in Chapter 3, this can be done by
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applying the Pauli X gate. For example, the following snippet shows how to create the program
for applying the case where the control qubit is |0 and the target qubit initially is |1:

Program program = new Progran(2);

Step stepl = new Step(); {1
stepl. addGat e(new X(1)); o
program addSt ep(stepl);

Step step2 = new Step();

st ep2. addGat e( new Cnot (0, 1)) ; (3)
program addSt ep( st ep2);

© A first Step is created
@ A Pauli-X gateis applied to the target qubit (with index 1) and added to this step.
© A second step, this time with the CNot gate is created and added to the program.

The visual output for this circuit is shown in Figure 5.13

® 0 StrangeFX

q[0] 10> -

q[1] 10> n——— |

Figure 5.13 CNot gate applied to |01>

The code for the cases where the input state is |[10> and |11> is very similar, and you can find it

in the sample.

If you run the sample, you will see 4 different visuals, with the outcome of the program applied
to the 4 different input states. The first two visuals has already been shown, the other 2 are

displayed below.
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® 0 StrangeFX

g[0] 10>

q[1] 10>

Figure 5.14 CNot gate applied to |10>

[ NON | StrangeFX

q[0] 10>

o P-S

Figure 5.15 CNot gate applied to |11>

In summary, we can create the following table showing how the CNot gate alters (or keeps) the
value of the control qubit and the target qubit:

Table 5.1 Behavior of the CNOT gate

control qubit target qubit apply CNOT (o [0] gl
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0
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5.6 Creating a Bell state: dependent probabilities

The four samples in the previous section where special cases, where the input to the CNot gate is
either |0 or |1. But what should we expect when the control qubit is in a superposition state, as
shown in Figure 5.16?

Hadamard gate indicates
superposition state

q[0] 10>

q[1] 10> —

Figure 5.16 CNot gate applied to a control qubit in superposition

Remember from the previous chapter that you can use a Hadamard Gate to bring a qubit in a
superposition state.

The code for creating this circuit can be found in the sample named bel | st at e

public static void main(String[] args) {
Quant umExecut i onEnvi ronment si mul ator = new Si npl eQuant umExecut i onEnvi ronnment () ;
Program program = new Progran(2);
Step stepl = new Step();
st epl. addGat e( new Hadanmar d(0));
program addSt ep(stepl);
Step step2 = new Step();
st ep2. addGat e(hew Cnot (0, 1));
program addSt ep( st ep2) ;
Result result = simulator.runProgran(program;
Qubit[] qubits = result.getQubits();
Qubit g0 = qubits[O0];
Qubit gl = qubits[1];
int vO = 0. neasure();
int vl = ql. neasure();

Render er . r ender Pr ogr an{ pr ogr anj ;
Render er . showPr obabi i ti es(program 1000);

If you run this application, you will see either one of the following lines as the output:

Result of H CNot conbination: qO

0, g1 =0

or

Result of H CNot conmbination: g0 =1, g1 =1
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No matter how many times you run this application, you will notice that the output is always one
of those two outcomes. You will never see

Result of H CNot combination: q0 = 0, g1 =1

or

Result of H CNot conbination: qO 1, ql =0

When you run the application, apart from the text output, you will also see the circuit output and
the probability distribution.

From the circuit output, shown in Figure 5.17 you can tell that there is 50% chance that qubit 0
will be measured as 0 and 50% chance that it will be measured as 1.

| NN StrangeFX

q[1] 10> 50,0% B

Figure 5.17 Result of a CNot gate applied to a control qubit in superposition

Similarly, that output shows that there is 50% change that qubit 1 will be measured as 0 and 50%
chance it will be measured as 1. This matches your observations, when you run the example
many times. Both the first qubit and the second qubit can be measured as 0 and 1. However, this
output does not show the additional restriction that we observe, namely the fact that the
combinations are limited. From our observations from the text output, it shows that if the first
qubit is measured as 0, the second qubit is measured as 0 as well. And when the first qubit is
measured as 1, the second qubit is measured as 1 as well.

This is shown in the probability distribution, which is rendered in Figure 5.18.
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Figure 5.18 Probability distribution of a CNot gate applied to a control qubit in
superposition

This is an interesting result. It seems that applying the CNot operator on a pair of qubits where
the control qubit is in a superposition and the target qubit is in the |0 state always results in an
entangled pair. The result we see here is exactly the state that we described before for an
entangled pair. This result is also called a Bell state.

SIDEBAR When measuring individual elements of an entangled pair, the values you
measure seem to be entirely random. While that is true, however, there is a
full match between the "random" values of bit elements of the entangled
pair.

Hence, by using a combination of a Hadamard Gate and a CNot Gate, we can "create" quantum
entanglement. The word "create" is not entirely correct, as we didn’t physically create
entanglement, but the circuit we created results in the same probabilities as the state of two
entangled qubits. This means we found a programmatic way to represent the quantum
entanglement behavior.

In the next chapters, we will extensively use this behavior.
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5.7 Mary had a little qubit

Now that you learned the basic concepts of quantum computing, you can start using them in
applications. To get you started, we created a simple game based on the "Mary had a little
lambda" application that was created by Stephen Chin in order to demonstrate the usage of
Streams and Lambda’s in Java. You can read more about this game at
www.oracle.com/technical-resources/articles/java/rich-client-lambdas.html.

We modified the game so that the lambs that are managed by Mary are actually qubits. The code
for this game is available in the repository, in the ch05 directory under the name mar yqubi t .
You can start it by entering

m/n cl ean javafx:run

This will show the start screen from Figure 5.19.

L A=K ] Mary Had a Little Qubit

You see Mary in a landscape with a number of elements. Some of these elements corresponds to
quantum gates, and when a lamb visits the quantum gate while it is active, that gate is applied to
the lamb-qubit.

On the top of the screen, the corresponding circuit is shown.

There are many things to be discovered in this game, and the interested reader is encouraged to
browse through the source code of the game. In a later chapter, we will come back to specific
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parts of this game.

One particular interesting exercise is the following: Walk with Marh through the gates, and
create a 3 qubit circuit that shows a Bell State and a third qubit with a Hadamard gate. The result
of this is shown in Figure 5.20.

0@ Mary Had a Little Qubit
q[0] 10> n ‘

ql]10> - — —

If you look at the code for this game, you will see how you can combine the Strange simulator,
the StrangeFX visualisation and your own application. The StrangeBri dge class is where
everything comes together.

5.8 Summary

In this chapter,

® you created arandom coin simulator that creates 2 coins with random values using
classical software

¢ you did the same using quantum software

* you modified the quantum generator so that it generates an entangled pair or random
values.
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Quantum Networking, the basics

This chapter covers:

how quantum computers and quantum networks are related

the challenges for creating a quantum network

a teleportation algorithm that sends a qubit from one part of the system to another.
a quantum repeater, allowing to send qubits over a long distance

6.1 Quantum computing versus quantum networking.

So far, we talked about quantum computing. Computing is indeed a very important part in the
software world, but most applications developed by todays software developers do not work in
isolation. At the contrary, applications typically contain different modules that may or may not
be located on the same server. They talk to external components, e.g. over REST interfaces.
They read and write information from and to data storage systems. In general, software is
typically very distributed. One of the key elements to get a complete software application
working is a reliable, predictable network of computers.

6.1.1 From classical networks to quantum networks

A typical setup of a classical application that combines different modules over a network is
shown in Figure 6.1.
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Figure 6.1 classic application using modules in a network

Classical computing heavily relies on a classical network. Similarly, quantum computing can
benefit from quantum networks as we will learn in this chapter.

In the previous chapters, the focus was on a quantum computer. You learned how a quantum
computer manages a set of qubits and applies gates to those qubits. You created small programs,
dealing with a number of qubits and gates. All qubits and all gates were local to the program:
although we did not make specific assumptions, it is reasonable to assume that the qubits are
located inside a single quantum computer, and that the gates are inside this quantum computer as
well, which is shown in Figure 6.2

Figure 6.2 A single quantum computer

Everything that is needed to execute the quantum programs we created in the previous chapters
can be contained inside a single quantum computer.

A similar observation applies to our quantum simulator Strange. So far, all applications we
created are executed in a Si npl eQuant unExecut i onEnvi r onnent .

It is expected that most useful quantum applications running on a quantum computer require a
large number of qubits. However, as you will experience in this chapter, there are also quantum
applications that can work with a network of quantum computers that have a small number of
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qubits. An example of such a quantum network is shown in Figure 6.3

Figure 6.3 A quantum network combining 3 small quantum computers

In this Figure, we show 3 small quantum computers that are connected to each other using a
quantum network. Actually, the "small quantum computers" could be real classical computers,
with some quantum capabilities --- e.g. the capability to measure or manipulate a single or a few
qubits.

The quantum network allows the quantum computers to exchange qubits. As a consequence, a
qubit from one computer may be transfered to another computer. This sounds very similar to the
classic case where a computer sends a bit to another computer.

6.1.2 Topology of a quantum network

The simplest form of quantum networking is the direct connection between two quantum
computers, as shown in Figure 6.4.

Telecom fiber

Figure 6.4 A quantum network combining 2 small quantum computers

With some limitations that we discuss later in this chapter, existing fibre optical connections can
be used to transfer qubits from one quantum computer to another one.

A more valuable quantum network contains more than two quantum computers. Similar to
classical networks, opportunities often grow with the number of connected computers. This can
spread the load of heavy computation between different computing instances, or it can connect
system with different input to each other. A possible setup is shown in Figure 6.5.
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Figure 6.5 A guantum network combining a larger number of small quantum computers

Such a network topology would be harder to realise as it requires direct connections between the
different computers. A typical networking approach is to use switches that direct traffic to the
right computer, which is shown in Figure 6.6.

ol

Figure 6.6 A quantum network using a switch to combine a number of of small quantum
computers

While the network topology for a quantum network might look similar to the network topology
for a classical network, there are important differences that on one hand make it much harder to
realise a quantum network, while on the other hand open new opportunities.

©Manning Publications Co. To comment go to liveBook

https://lilel@er s@antay DaiAARcRI@arthe esfpanr@ifordiee Bee/discussion



98

TIP One of the most intriguing aspects that you can think about for a moment
already is this: in the previous chapter, you wrote code that shows that 2
qubits in a system can be entangled with each other. The outcome of a
guantum program depends very much on this entanglement. What
happens when one of those 2 qubits is sent to another quantum computer,
where it becomes part of another quantum program?

6.2 Obstacles for quantum networking.

Before we talk about the benefits of quantum networking, we want to temper the expectations. In
this section, you will learn that the typical approach for sending bits over a classical network
does not easily apply to quantum networks. In the next section, you will see that this problem can
be "solved", and moreover, it leads to new huge opportunities, including secure communication.

6.2.1 Classical networking in Java

In the typical case of classic networking, information is transfered from one computer to another
computer.

Let’s have a look at how this would happen at the level of a Java Application.

NOTE In a typical Java application, developers use libraries on top of the low level
networking API’s that are part of the Java Platform. These libraries typically
provide convenience methods for easily transfering data from one
computer to another, using protocols like XML or JSON. The low level
networking API's that we use in our samples help to understand how
information is really transfered from one computer to another. A typical
stack is shown in Figure 6.7
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Java Application

$

Java Network library
{(XML/ISON based)

(>

Java.io API's

{

Java Native implemtation

Platform-specific
Network implementation

Figure 6.7 A typical approach where a Java application uses libraries for networking.

Developers typically leverage high-level network libraries, that shields them from low-level
code. In most enterprise applications, Java developers hardly ever manually create an instance of
the j ava. net. Socket class, but the libraries they use make plenty use of this and related
classes. Similarly, it can be expected that many developers writing applications leveraging
quantum computing do not directly deal with the low-level classes that enable quantum
communication. High-level libraries will hide the low-level complexity and allow developers to
take advantage of quantum communication without having to manually code for it.

The blueprint for such a quantum network stack is not yet finalized. A number of groups and
standardisation organisations are discussing a quantum version of the classical stack, shown in
6.7. One of the interesting initiatives is the Quantum Internet Alliance (see
quantum-internet.team) . The Figure in 6.8 shows a proposal for a quantum network stack,
created by Axel Dahlberg from QuTech (qutech.nl) , Delft University of Technology. More
information about this stack can be found in the paper at arxiv.org/pdf/1903.09778.pdf

Application
Transport Qubit transmission
Network Long distance entanglement

Link Robust entanglement generation

Physical | Attempt entanglement generation

Figure 6.8 A proposal for a quantum network stack, by QuTech.

In order to understand the challenges and opportunities associated with quantum networks, it
helps to see how they compare with classical networks.
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In the sample in the ch06/ cl assi ¢ directory, a Mai n java file demonstrates how networking at a
low level is done in Java.

The relevant code for this is shown belog :

Listing 6.1 Classic network application for sending a byte

static final int PORT = 9753; (1)

public static void main(String[] args)
throws | nterruptedException {
start Recei ver ();
start Sender () ;

(X~

}

static void startSender() {
Thread t = new Thread() ({
@verride public void run() {
try {
byte b = 0x8;
Systemerr.println("[Sender] Create a connection to port "+PORT);
Socket socket = new Socket ("l ocal host", PORT);
Qut put St ream out put Stream = socket . get Qut put St rean() ;
Systemerr.println("[Sender] Wite a byte: "+b);
out put Streamwite(b);
out put Stream cl ose();
Systemerr.println("[Sender] Wote a byte: "+b); (6]
} catch (1 OException e) {
e.printStackTrace();
}
}
IE
t.start();
}

static void startReceiver() throws |nterruptedException {
final CountDownLatch | atch = new Count DownLat ch(1);
Thread thread = new Thread() {
@verride public void run() {
try {
Systemerr.println("[Receiver] Starting to listen for incom ng data
at port "+PORT);
Server Socket server Socket = new Server Socket ( PORT) ; (7]
| at ch. count Down() ;
Socket s = server Socket.accept(); (8]
| nput St ream i nput Stream = s. get | nput Strean();
int read = inputStreamread(); (9]
Systemerr.println("[Receiver] Got a byte "+read); (10}
} catch (1 OException e) {
e.printStackTrace();
}
}
IE
thread. start();
latch. awai t () ;

9  The PORT number you define here is shared between the thread that sends data
and the thread that reads data.

The code for receiving bytesis performed on one thread

The code for sending bytes is performed on a second thread
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The sender thread opens alow-level Java network socket
The sender writes a specific byte over that socket to the receiver
The value of the transfered byte can still be used (e.g. printed) by the sender

®© 6 © ©

The receiver opens alow-level Java network serversocket, listening for incoming
requests

©®  \When aconnection is discovered at the serversocket, a direct socket connection is
created between the sender and the receiver

The receiver reads a byte from this connection.

The receiver prints the value of the byte he received.

The output of this application looks as follows:

[ Receiver] Starting to listen for incom ng data at port 9753
[ Sender] Create a connection to port 9753

[ Sender] Wite a byte: 8

[ Sender] Wote a byte: 8

[ Receiver] Cot a byte 8

Note that after we sent the byte to the other "computer", we still have its value locally. What
happens internally is that the byt e that we declared in Java, points to some memory in our
computer. When the byte is transfered to the other computer, it is not removed from memory.
Rather, the low-level network drivers of the operating system read the value of the byte at the
specific memory location, and they send a copy of that value to the other computer.

That sounds very trivial — and indeed, in the case of classic computing it is trivial — but this is
not trivial when we talk about quantum computers.

To explain the challenges at a high level, have a look at the schematic representation of the Java
program you just created, shown in Figure 6.9.

NOTE The program above created 2 threads on the same computer, where the
picture shows 2 different computers. The latter is of course more realistic,
but in network demonstrations it is common to use communication between
2 threads on the same computer that communicate over a socket. The
endpoint of a socket is defined by a combination of the host name and the
port nunber. The host nane corresponds to the physical address of the
computer, where the portnunber corresponds to an internal port of the
computer. For our purposes, it is enough to specify a port number only, and
keep the communication inside one computer.
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receiver

m copy *

n
Itmnsfer

Figure 6.9 Transfering a byte from the sender to the receiver.

This picture shows two major steps in classical networking:

1. the byte we want to tranfser is copied
2. the byteistransfered over a network to the other computer (where it is copied again).

The bad news is that there are issues with both of those steps in quantum computing:

1. qubits can not be copied
2. qubits can not easily be transfered over long distances

In the next sections, we will discuss these issues in more details. After that, we will explain how
these issues can be solved, and turned into opportunities.

6.2.2 No cloning theorem

One of the core concepts of quantum computing that we didn’t discuss yet, is the no cloning
theorem. This states that it is impossible to make an exact copy of a qubit. In classical
computing, you can inspect the value of a bit, and create a new bit with the exact same value. By
doing so, you don’t alter the value of the original bit.

The following java code demonstrates how we can copy the value of a Boolean object into
another Boolean object in Java. Note that this can be done much simpler in Java, but we want to
mimick the clone-behaviour so that we can try to apply that to a Qubit object as well.

stati c Bool ean makeCopy(Bool ean source) { o
Bool ean target;
if (source == true) {
target = Bool ean. val ueX (true);
} else {
target = Bool ean. val uer (fal se);

}

return target;
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public static void main(String[] args) {
Bool ean trueSource = Bool ean. TRUE;
Bool ean trueCopy = makeCopy(trueSource); (2]
Systemerr.println("Source: "+trueSource+" and copy : "+trueCopy);

Bool ean fal seSource = Bool ean. FALSE;
Bool ean fal seCopy = makeCopy(fal seSource); (3]
Systemerr.println("Source: "+falseSource+" and copy : "+fal seCopy);

9  the makeCopy method takes a Boolean object as a parameter, and return a new
Boolean which holds the same value as the passed source parameter

@ you make acopy of aBoolean containing t r ue, and print both the original and the
copy

©®  you make acopy of aBoolean containing f al se, and print both the original and
the copy

In this code snippet, which you can find in ch06/ cl assi ccopy in the sample repository, we
have a method makeCopy which takes a Bool ean sour ce as an argument, and which returns a
new Bool ean instance that has the same value as the source instance. When the source
instance holds the value t r ue, the returned instance will also hold the value t r ue. In case the

sour ce instance holds the value f al se, the returned instance will hold the value f al se as well.

The returned Bool ean object is a new and independent object. After applying the makeCopy
method, the values of the sour ce and the returned instance are exactly the same. By repeating

this procedure, we can make exact copies or a series of bits,

It is tempting to do this in quantum computing as well. Remember from Equation XREF
diracqubit that we can write the state of a qubit as a linear combination of the |0 state and the |1>
state:

EQUATION 6.1
W) =al0)+B[1)

If you look at the source code for the Qubi t class in the Strange simulator under the package
com gl uonhg. st r ange, you notice this class contains the following fields

private Conpl ex al pha;
private Conpl ex beta;

These fields contain the information about the qubit, needed for the simulator to perform
operations. We could easily add a constructor to the Qubit class that does the following:
public Qubit(Qubit src) {

this. al pha = src. al pha;
this.beta = src. beta;
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Doing so, we have a Java approach for copying the information from one qubit into another
qubit. Our quantum applications could leverage it, and we can write code where we happily copy
qubits all over the place.

However, it would be impossible to implement this on a real quantum computer. Hence, your
application could copy qubits in the Strange simulator, but it would not work on a real quantum
computer. Therefore, there is no "copy constructor”" for a Qubit in Strange.

SIDEBAR It's all about probabilities

The real value of a Qubit is not the value that you measure. What makes a
qubit so powerful, is that it actually holds a probability to measure '0' or '1'.
Simply measuring a qubit is not enough to reconstruct this probability.

In quantum computing, if you want to inspect the value of a qubit in a superposition, you have to
measure it. And as you learned before, measuring a qubit destroys its superposition state, and it
falls back into one of the basis states. Hence, by doing so, not only you destroy the original qubit,
but you also don’t have enough information to create a new qubit with the same value. Let’s
show that with an example.

Suppose you have a qubit that has 25% chance to be measured as 0, and 75% chance to be
measured as 1. The state of this qubit can be written as follows:

EQUATION 6.2
| W) =1/210)++3/2]1)

Remember that if we want to obtain the possibility of measuring 0, we need to take the square of
o . In this case, o equals 1/2 hence the square of « is 1/4 or 25%. Similar, the possibility of
measuring 1 is obtained as the square of v3/2 which is 3/4 or 75%.

Next, suppose that you measure the qubit, and you measure the value 0. At that point, you still
don’t know if that qubit was actually holding a value of 0, or if it was in a superposition with
25% chance on a 0 measurement, or 95% chance on measuring 0, or any other state — apart
from the state where o« equals 0. In order to get an accurate idea about the original state of the
qubit, you would need an infinite number of measurements on that qubit. However, the laws of
quantum physics determine that you get only a single shot. After one measurement, the qubit is
no longer in a superposition state, and the information is lost.

In summary, you are not able to reconstruct the probability and that is the number that matters
when talking about qubits.
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NOTE The no cloning theorem is directly related to quantum physics. Any
software approach we could easily circumvent this --- but then, your
appliacation would only run on the simulator, and not on real hardware
when that is available.

The no cloning aspect of qubits makes a number of things very challenging:

® sending a qubit from one place to another can not be done by taking a copy and transmit
that

® the concepts of network switches and signal repeaters require that the bits being read,
perhaps amplified, and put on a different wire again. If we can’'t copy a qubit, how can
we deal with this networking requirements?

On the other hand, the cloning aspect also leads to interesting opportunities: it is impossible to
evedrop on a quantum communication channel without being notified. When an attacker wants to
intercept a qubit that is being sent from A to B, he has to measure the qubit. As a consequence,
the information kept in the original qubit is gone, and the receiver knows there was an issue. We
will discuss this opportunity in a next chapter, but we first have a few issues to solve.

In section 6.4, you will learn how to bypass the problem created by the no cloning theorem. You
will create a quantum circuit that allows to send the information contained in one qubit to
another qubit.

6.2.3 Physical limitations on transfering qubits

Let’s start with some good news: qubits can be transfered via a number of existing physical
communication channels. For example, qubits can be represented by photons that can be
transfered via existing optical fiber or via satellite connections. This is very interesting, as it
means that the investment of telecom companies in classical physical communication
infrastructure can largely be reused for quantum communication.

The bad news is that it is very difficult to preserve the state of the qubits over a long distance.
The longer a photon travels over an optical fiber cable, the more likely errors will occur. At
present, the maximum distance that can be covered is in the range of 100 km. This is large
enough to be practical, but not large enough to allow for long-distance connections without
additional solutions.

If we want to send qubits over long distances using existing optical fiber, we somehow need to
be able to connect the different segments and have the qubits travelling from the end of one
segment to the beginning of the next segment, as shown in Figure 6.10.
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\d 19/

Figure 6.10 Sending a qubit over a long distance, covering multiple segments.

At first sight, this problem may look very similar to existing situation with classical
communication: when using a signal to transmit data over a physical connection, the signal
becomes weaker (the signal-to-noise ratio decreases) while traveling. At some point, the signal
needs to be amplified to increase the signal-to-noise ratio again. This is done by so-called
repeaters.

The problem with quantum communication is that we can not simply use a traditional repeater,
as that will somehow measure the qubit and "amplify" it. But by measuring the qubit, the
information it carries is gone. Hence, we need a different kind of repeater: a quantum repeater.
The current technologies already allow to create such quantum repeaters, and it can be expected
that these components, which are crucial for a real long-distance quantum network, will become
available over the next years. In section 6.5, you will write a software solution that allows a
quantum repeater to be created.

6.3 Pauli-z gate and Measurement

Before we can work on the quantum algorithm that allows to overcome the obstacles described
in the previous section, we will to introduce a new gate, and we have to spend a bit more time on
what a measurement means in terms of a quantum program. We will use the new gate and the
measurement block in the upcoming algorithm.

6.3.1 Pauli-z gate

In section 3.4, we introduced the Pauli-X gate, which is often called the Quantum NOT gate. In
section 4.3, we explained how this gate can be represented by the matrix

EQUATION 6.3
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A variant to this gate is the Pauli-Z gate, which is represented by the following matrix:

EQUATION 6.4

If you want to know what this gate does when applied to a qubit, we have to multiply this matrix
with the probability vector of the qubit.

The considered qubit is represented as

EQUATION 6.5
Y)=al0)+p[1)

and this corresponds with the following probability vector:

EQUATION 6.6

After the Pauli-Z gate is applied to this qubit, the probability vector is calculated as follows:

EQUATION 6.7

Hence, the qubit is now in the state

EQUATION 6.8
Y)=al0)-p[1)

When only this gate is applied to a qubit, the probability of measuring either 0 or 1 is not altered.

Don’t let the minus sign in front of 3 confuse you: the probability of measuring 1 is the square of
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2

—B which is still 8

The physical relevance of this gate is beyond the scope of this book. It is important though to
realise that there are physical ways to realise this gate, and it corresponds to real quantum
physics behavior, hence we can leverage it in software.

The symbol for this 7 gate is shown in Figure 6.11

| -
j 7 =

Figure 6.11 Strange symbol for the Pauli-Z gate

Similar to how the Controlled-Not gate, which is introduced in section 5.5.2, conditionally
applies the Pauli-X gate when a control qubit would be measured as 1, the Controlled-Z gate, or
short Cz, is a two-qubit gate that applies a Pauli-Z gate when the control qubit measures as 1.

The symbol for this Controlled-Z gate is shown in Figure 6.12

Figure 6.12 Strange symbol for the Controlled-Z gate

6.3.2 Measurements

We already talked about measurements before. In section 3.1, we explained that when a qubit is
measured, it will always have either the value 0 or the value 1. If the qubit was in a superposition
state before the measurement, that superposition state is gone after the measurement. In many
quantum simulators, including Strange, it is possible to do a measurement on a qubit in a
program. Once a measurement is applied, the qubit is "destroyed" and the result is now a
classical bit. Hence, it is not possible anymore to apply any gate that relates to superpostion. In
Strange, you can do a measurement on a qubit by applying a "Measurement Operation" to it.
While a measurement is not really a gate, Strange provides the
com gl uonhg. st range. gat e. Measur ement class which extends from the Gat e interface. The
reason for this is that doing so, the Measur ement class can benefit from functionality provided
by the Gat e interface and subclasses. We use the term Measurement Operation to make it clear
that a measurement is not a gate.

When a Measurement Operation is applied to a qubit in Strange, the line representing the qubit
flow will become a double line. The Measurement Operation itself is marked with an M, as
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shown in Figure 6.13.

Figure 6.13 Strange symbol for the Measurement Operation

EXERCISE 6.1

You can now create a simple quantum circuit with 2 qubits. First, apply a
Hadamard gate to the first qubit. Next, apply a Controlled-z gate to the 2
qubits, with the first qubit being the control qubit. Finally, measure the 2
qubits.

6.4 Quantum teleportation

Because of its name, quantum teleportation is a concept that easily attracts attention. While we
are not going to teleport a person from one physical location to another location, what we are
going to discuss is an extremely important step towards a real quantum network.

6.4.1 The goal of quantum teleportation

In this section, you will send the information from a qubit that is held by Alice to a qubit held by
Bob. Alice’s qubit stays with Alice though, so we do not physically transfer the qubit. However,
the end result is that you transfer some quantum information from Alice to Bob. That sounds
very related to the core problem described in the previous sections: a qubit can not be cloned, but
if we have a way to transfer its quantum information over a distance, we get much closer to a
quantum network.

In the next sections, the algorithm for teleportation will be shown. You will step by step create a
program that allows to achieve quantum teleportation, using the techniques and gates that were
discussed before. It can be mathematically proven that the algorithm you are about to program
indeed teleports the information from Alice to Bob. However, this prove is not in the scope of
this book. We will rather artificially give some initial values to the qubit we want to teleport, so
that we can later check if the teleportation was succesful.

6.4.2 Part 1, entanglement between Alice and Bob
The qubit held by Alice is shown in Figure 6.14 as qubit qg.
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o -
Alice Bob
Figure 6.14 Alice want to "send" her qubit g to Bob

A prerequisite for quantum teleportation is that Alice and Bob share an entangled pair of qubits,
as shown in Figure 6.15:

Bob

Figure 6.15 Alice and Bob share an entangled pair of qubits

From what you learned in the previous chapter, you can write the code to obtain this state. The
follow code snippet shows how to achieve the situation from Figure 6.15:

Listing 6.2 Alice and Bob sharing an entangled pair

Program program = new Progran(3); o
Step stepl = new Step();

st epl. addGat e( new Hadamard(1)); (2]
Step step2 = new Step();

st ep2. addGat e(new Cnot (1, 2)); (3]
program addSt ep(stepl); (4]
program addSt ep(step2);

9  Thisprogram contains 3 qubits: 'q’, the qubit we want to teleport to Bob; 'a and 'b'
the entangled qubits

Adding a Hadamard gate to qubit 'a
Adding a CNot gate to qubits'a and 'b'
The steps (with the gates) created so far are added to the program.

Schematically, this code snippet is represented by the circuit in Figure 6.16
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q[O] 10>

oo Bl

q[2] 10>

Figure 6.16 Circuit showing Alice with a qubit 'q' and Alice and Bob sharing an entangled
pair.

Keep in mind that qubits g[ 0] (which is the qubit q) and q[ 1] (which is the qubit a) are located
with Alice, where qubit q[ 3] (which is qubit b) is located with Bob.

6.4.3 Part 2, Alice operations

In the second part of the teleportation algorithm, Alice will let the qubit q interact with her
component of the entangled qubit pair.

Schematically, this is shown in Figure 6.17:

Bob
Figure 6.17 Alice let her qubit interact with her part of the entangled pair

It can be mathematically proven that the following steps will transfer the information from qubit
q to the qubit b that is held by Bob. However, instead of the mathematical evidence, we will
build the required code here, and then test it.

* Alicewill first apply a CNot gate between her qubit g and her half of the entangled pair
® Next, Alice applies a Hadamard gate to her qubit.

The schematic representation of the quantum circuit we created so far is shown in Figure 6.18
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q[1] 10> | —= I

D
ql[2] 10> .y,

Figure 6.18 Adding the interaction between Alice’s qubit and her half of the entangled pair

We added two steps to the quantum circuit, and in the code, this is achieved as follows:

Step step3 = new Step();

st ep3. addGat e(new Cnot (0, 1)) ; (1)
Step step4 = new Step();
st ep4. addGat e( new Hadamar d(0) ) ; (2]

program addSt ep(st ep3);
program addSt ep( st ep4);

©  Adding a CNot gate to the qubits q and a
©®  Adding a Hadamard gate to the qubit g
©  The new steps (with the gates) we created are added to the program.

In the next step, Alice has to measure her 2 qubits.

The schematic representation of the quantum circuit we created so far is shown in Figure 6.19

q[0] 10> "
interact Measure
q[1] 10> —-
entangle
al2] 10> | -

Figure 6.19 Alice measures her qubit and qubit A
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The code that is required to perform these measurements is shown below:

Step step5 = new Step();

st ep5. addGat e( new Measurenent (0));
st ep5. addGat e( new Measurenent (1));
program addSt ep( st ep5) ;

6.4.4 Part 3, Bob’s operations

Finally, based on the measurements of Alice, Bob applies some operations on his qubit. If the
measurement of the first qubit (the original qubit we want to teleport) is 1, Bob will apply a
Pauli-X gate to his qubit. If the measurement of the qubit A is 1, Bob will apply a Pauli-Z gate to
his qubit.

The schematic representation of the quantum circuit you created is shown in Figure 6.20

q[0] 10>
modify
based on

al1] 10>
Alice info

Figure 6.20 Depending on Alices measurements, Bob applies a Pauli-X and/or a Cz gate.

The code for these conditional steps is shown below:

Step step6 = new Step();

st ep6. addGat e(new Cnot (1, 2)); o
Step step7 = new Step();
step7. addGat e(new Cz(0, 2)); (2]

program addSt ep( st ep6) ;
program addSt ep( st ep7);

9 Incasethequbit [ 1] (whichisa) ismeasured as 1, apply aPauli-X gateto q[ 2]
(whichisb)
@

In case the qubit [ 0] (whichisq) ismeasured as 1, apply a Pauli-7 gate to q[ 2]

That is all that is needed to teleport the information from qubit g to qubit b.
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6.4.5 Running the application

You can now run the entire program, e.g. by running

mvn javaf x: run

and you will see the output shown in Figure 6.21

e StrangeFX

ql0] 10> —»—m 50,0%
ql1] 10> m 50,0%

L

Ny

Measured probability distribution

o0 010 on 100

M occurences

101 110 m

Figure 6.21 output from the teleport program

The output contains 2 parts. In the top half of the screenshot, you see the circuit with 3 qubits,
with the probability to measure 1 at the right side. This probality result shows a number of
things:

® thereis 50% chance that the qubit q (denoted by q[ 0] ) ismeasured as 1 and a 50%
chanceit ismeasured as 0

® thereis50% chance that the qubit q_A (denoted by g[ 1] ) is measured as

® thequbit q_B (denoted by g[ 2] ) is guaranteed to be measured as 0.

The last part is the most important one. Initially, g was holding the value 0. At the end of the
teleportation circuit, the value of g is not determined, but the value of q_B is now 0. Hence, the
information from qubit q is teleported to qubit q_B.

The same information can be obtained by analysing the bottom part of the figure. The bottom
part shows the statistical results of 1000 simulated executions of our quantum teleportation
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program. Of those 1000 runs, there were

¢ about 250 runs that had the outcome 000 (hence all qubits are measured 0)

® about 250 runs with outcome 001, which means q was measured 1 and bothg_Aand q_B
were measured 0

® about 250 runs with outcome 010, which means q was measured 0,

® about 250 runs with outcome 011, which means q was measured 1, g_A was measured 1
and q_B was measured 0.

Note that in all those cases q_B is measured 0. The other qubits can hold either 0 or 1, but q_B is
always 0.

These results seem to indicate that the algorihm you programmed is indeed teleporting a qubit
from Alice to Bob. At least, when the value of Alice’s qubit is 0, the resulting value of Bob’s
qubit is O too.

EXERCISE 6.1

As an exercise, you can now check if the algorithm also works when Alice’s
qubit has the value 1. In that case, we expect the end result of the
algorithm always has the value of g_B to be 1 as well.

If you did the exercise correctly, you added a Pauli-X gate to the first qubit, so that Alice’s qubit
was holding a 1 before the whole teleportation algorithm started. This shows that the algorithm is
also working when the qubit is in the 1 state, but what if it is in a superposition?

Fortunately, Strange has a capability to test this. Before a program is executed, you can initialize
the value of a qubit, using the PrograminitializeQubut (int index, double alpha)
method. In this method, i ndex specifies the index number of the qubit we want to set, and al pha
specifies the value we want to give to $alpha$.

For example, add the following line to the program, before the r unPr ogr amis invoked:
programinitializeQubit(0, .4);

Doing this will set the « value of the original qubit q[ 0] to 0. 4. The probability to measure O is
the square of « , which means there would be 16%chance to measure 0 and hence 84%chance to
measure 1.

If you run the modified program, you will now see something similar to the the output shown in
Figure 6.22
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Figure 6.22 Output from the teleport program with an initialized qubit

From the top half of the output, we see that there is now 84%chance that Bob’s qubit q[ 2] will
now be measured as 1. The bottom part of the figure shows a similar result. This is exactly what
we hoped for. It shows that the algorithm feleports the quantum information originally contained
in the qubit held by Alice, to a qubit held by Bob. Again, note that we didn’t provide
mathematical evidence, which is beyond the scope of this book. Evidence can easily be find in a
number of online resources, e.g. www.ryanlarose.com/uploads/1/1/5/8/115879647/quic02.pdf .

Congratulations, you just sent a qubit from one person to another!

6.4.6 Quantum and classical communication

A very important thing to note is that there is only very limited "quantum interaction" between
Alice and Bob. In the first step of the algorithm, you created an entangled pair of qubits, were
one part of the entangled pair is held by Alice, and the other part is held by Bob. Apart from this
step, there is no quantum communication needed between Alice and Bob. Whether Bob needs to
apply a Pauli-X gate, a Pauli-Z gate, or nothing at all, depends on the outcome of two
measurements done by Alice. The result of a measurement is always a classical bit, hence the
outcome can be transfered using a classical network.

Therefore, the communication aspects of the quantum teleportation algorithm can be split into
two steps:
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1. Make sure Alice and Bob each have a qubit that belongs to an entangled pair
2. Perform classical communication to send the 2 measurement result (either 0 or 1 from
Aliceto Bob.

Schematically, this is shown in Figure 6.23

Classical communication

Figure 6.23 Communication between Alice and Bob is split between a classical and a
guantum channel.

In this figure, it is shown that the entangled qubit travels over a quantum channel, while the
outcome of the measurements travels over a classical channel.

As a result, if we have a device that can create an entangled pair of qubits, and if that device can
send one of these qubits to Bob, we can transfer any qubit from Alice to Bob without additional
requiring quantum interactions between Alice and Bob.

6.5 A quantum repeater

In the previous section, you managed to transfer the information from one qubit to another qubit,
without violating the no-cloning theorem. If we can transfer entangled qubits, we can transfer the
information contained in a qubit.

But what if Alice and Bob are located very far away from each other (e.g. more than 1000 km
apart)? The classical data channel is not a problem. If the signal to noise ratio drops too much,
classical repeaters can be used to amplify the signal. However, it becomes extremely difficult to
send one of the entangled qubits from Alice to Bob.

In this section, you will create a software solution for this problem that leverages the code you
already wrote earlier in this chapter.

We need to make use of quantum repeaters. A quantum repeater will not amplify the signal in a
qubit (as that would require to measure it, hence destroy the information), but it can use the same
quantum teleportation to transfer the information from one segment to the next segment as
explained in Figure 6.24
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Figure 6.24 A guantum repeater separating the distance between Alice and Bob into
segments, transfering the qubit from one segment to the other.

Before we show the code for creating this quantum repeater, let’s have a look at the high level
how we are going to do this. In the relative simple case where Alice and Bob are close to each
other (that is, close enough to send half of an entangled pair from Alice to Bob), the situation is
shown in Figure 6.15

The case with a quantum repeater in between Alice and Bob is shown in Figure 6.25

Repeater

Figure 6.25 A quantum repeater between Alice and Bob

In this case, there are 2 entangled pairs:

® Alice and the Repeater share an entangled pair with qubits gA and R1
® The Repeater and Bob share an entangled pair with qubits R2 and gB

The code for the quantum repeater can be found in the directory ch06/ r epeat er of the sample
repository. Since we are now dealing with 5 qubits (1 qubit which information we want to
teleport, and 2 entangled pairs of qubits), the Program is now constructed as follows:

Program program = new Progran(5);

The preparation of the system now requires the creation of 2 entangled pairs. In the quantum
teleportation code, the entangled pair was created at the beginning of the code. We extend this
now as follows (the lines we added are annotated):

Step stepl = new Step();

stepl. addGat e( new Hadanmard(1));

st epl. addGat e( new Hadamar d(3)); (1]
Step step2 = new Step();

st ep2. addGat e(new Cnot (1, 2));

st ep2. addGat e( new Cnot (3, 4) ) ; ()

©  Add aHadamard gate to q[ 3]
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®  Add aCNot gate between g 3] and q[ 4]

Note that we added a Hadamard gate to qubit 3 and a CNot gate between qubits 3 and 4, which
creates an entangled pair between qubits 3 and qubits 4.

Apart from this preparation, the first part is to transfer the information from qubit g to qubit R/,
using the teleportation algorithm created above.

The flow of this first part is shown in Figure 6.26

o -
0 0 Q _____________________________ o ':b‘

Alice

Repeater

Figure 6.26 Alice interacts with the first entangled pair, teleporting her qubit to R1

The code for this is identical to the code we had before in the teleportation algorithm, and we
won’t duplicate it here.

The information that was originally in Alice’s qubit ¢ is now in the qubit R/ at the Repeater.
Next, we repeat the teleportation algorithm, this time teleporting the information in R/ to gB The
flow of this second part is shown in Figure 6.27

L S

Bob

Repeater

Figure 6.27 The repeater let the R1 qubit, interact with the second entangled pari, thereby
teleporting the information in the qubit to gB

The code required to do this is very similar to the first part, but the gates now operate on
different qubits. In the first part, steps 3 till 7 were doing the teleportation. You will now add
steps 8 till 12 to perform similar operations to the other qubits:

Step step8 = new Step();

st ep8. addGat e( new Cnot (2, 3));

Step step9 = new Step();

st ep9. addGat e( new Hadanmard(2));
Step stepl0 = new Step();

st epl0. addGat e( new Measurenent (2));
st epl0. addGat e( new Measurenent (3));

e © ©

©Manning Publications Co. To comment go to liveBook

https://lilel@er s@antay DaiAARcRI@arthe esfpanr@ifordiee Bee/discussion



120

Step stepll = new Step();

stepll. addGat e( new Cnot (3, 4)); (5
Step stepl2 = new Step();
stepl12. addGat e(new Cz(2, 4)); (6]
©  Add aCNot gate between g[ 2] and q[ 3]
®  Apply aHadamard gateto q[ 2]
©  Measureq[ 2]
©  Measureq| 3]
©® Incaseq[ 3] ismeasured as 1, apply a Pauli-X gateto q[ 4]
(6

In caseq[ 2] ismeasured as 2, apply a Pauli-Z gateto q[ 4] .

Note that in the code in the sample repository, we artificially initialized the original qubit (the
one we want to transfer) similar to how we did it before so that it has 16%to be measured as 0
and 84% to be measured as 1. This is achieved using the same code as in the quantum
teleportation algorithm:

programinitializeQubit(0, .4);
Note that we only do this so that the results are easier to interpret.

When the program is now executed, the result should be similar to the output in Figure 6.28

LX) StrangeFX
qlo] 10> n-m m:
ql1] 10> n .\ n ﬂ:
(3] 10> n L n m:
oo —d 4

Measured probability distribution

m
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Figure 6.28 Result of the quantum repeater program
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From this output, it is indeed clear that the information originally contained in Alice’s qubit q[ 0]
is transfered to the Qubit held by Bob, q[ 4]

6.6 Summary

Many interesting applications of quantum computing depend on quantum networking, where

qubits are send from one quantum computer to another quantum computer.

In this chapter,

you learned about the differences between classical and quantum networks.
you learned the issues that are typically encountered with quantum networks.

you created a Java application that is capable of teleporting the information from one
qubit to another qubit

you created the software code for a quantum repeater that allows to teleport qubits over a
longer distance.
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Our Helloworld explained

This chapter covers:

® the different components between low-level quantum hardware and high-level
programming languages

® the main options for developers leveraging quantum computing

® a brief overview of some quantum computing simulators and their approach

® a description of how Strange allows for high-level programming where no
knowledge about quantum computing is involved, as well as low-level programming
which requires more understanding of quantum computing, but which is more

® flexible

®* how to debug quantum applications using Strange and StrangeFX
the different runtime targets: local, cloud or real device

Tools in software development have specific goals. Some tools are helping with devel oper
productivity, others help managing dependencies, or give easy access to specific frameworks.
Developers using those tools should be very aware of what the tools they use can do, and what
their limitations are. In this chapter, we explain the benefits of quantum computer simulators,
and we explore some of the specific features of Strange that makes the use of Quantum
Computing algorithms easy for existing (Java) developers. Strange, like any other quantum
computer simulator, is not going to solve all your application issues by applying a quantum
sauce to it. It will help developers though, to leverage benefits of quantum computing without
being an expert in quantum computing. In order to maximally benefit from the advantages
Strange is offering, some understanding of quantum computing tools in general is helpful. That
isthe focus of this chapter.

The Java code for the HelloWorld sample in chapter 2 is very familiar to Java developers. The
goal of Strange is to provide a library that is both familiar to Java developer, but that is also
capabl e to leverage quantum phenomenons discussed in the earlier chapters.

For some developers, quantum computing will be an implementation "detail" that they don’t
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need to worry about. For others, leveraging the right quantum computing concepts in the right
place, can be the main differentiator of their application.

With Strange, both options are possible. We will discuss the typical stack for a high-level
programming language on top of quantum hardware. Before we do that, we make the analogy
with classical stacks. There are 2 reasons why we do this:

1. The optionsto either write low-level code that allows to exploit specific hardware
functionality or high-level code that is not dealing with any hardware specifics existsin
the classical stack as well. We can learn from the classical approach in order to come up
with options for a quantum stack.

2. We will explain why the quantum stack and the software stack are different and why we
can’'t ssimply have a classical software stack on top of quantum hardware

7.1 From hardware to high-level languages
There are typically many steps between the hardware operations of a computer, and the
high-level programming languages used by developers. Schematically, the flow in Figure 7.1
shows a classical software stack running on top of hardware (a CPU).

NOTE the relevant hardware of a classical stack consists of more than only the
CPU. However, the goal of this chapter is not to explain the classical
hardware-software stack, hence we make this over-simplication.

Most convenient

High-level language A
& Euag for developer

Low-level language

Assembly language

Machine language

Maost convenient
for machine

Figure 7.1 Typical software stack on top of a classical CPU. At the
bottom, the hardware is depicted. The top of the stack is a high-level
language used by software developers. The different layers in
between allow for the next layer to be build on top of the previous
layer.
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The machine language is very integrated with the CPU. Different types of CPU’s have different
kinds of machine language. Assembly language is a more readable format, but it is still very
dependent on the CPU type. Low-level languages abstract most of the CPU-specific architecture,
but may still require differences for different types of CPU’s (e.g. 32 bit or 64 bit based). A
high-level language like Java does not depend on hardware at all.

Figure 7.2 shows the relative amount of code reuse for code written in the different layersin the
stack for 2 different CPU’'s. AMD64 and AARCHG64. At the very low level, the machine
language for those CPU’s is very different and there is no code reuse at all. The higher in the
stack, the smaller the differences, and the more code can be reused. Finally, in the Java layer,
there is 100% code reuse. A Java application that runs on an AMD64 CPU has the exact same
sourcecode as a Java application that runs on an AARCH64 CPU.

Java code runs
on AMDG4 and
AARCHE4 CPU’s

Assembly language

Assembly language

AMDG4

instruction set

AARCHG4
instruction set
AMDG4 and
AMDE4 AARCHG4 AARCH64 CPU's
are very different

Figure 7.2 Comparison of code reuse when targeting 2 different CPU’s. The wider the bar
in the middle column, the more code reuse. Code for high-level languages typically runs
on different kinds of hardware. Low-level code requires parts that are only relevant to a
specific architecture (e.g. AMD64 or AARCHG64).

Compilers and linkers make sure that the application written in a high-level programming
language can ulitmately be executed leveraging the specific hardware that belongs to a specific
computer. One of the reasons for the success of the Java Platform, is that it alows developers to
write applications in a single language (e.g. Java) and then execute these application on all kinds
of hardware, ranging from cloud servers over desktop running Windows, MacOS X or Linux to
mobile and embedded devices. At the lower levels, there are a large number of differences
between the different target systems, but developers are shielded from those differences.
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7.2 Abstractions at different levels

Applications written in a high-level language like Java can leverage different types of hardware.
For example, Java applications can be executed on a linux system with an AMD 64 CPU, but
also on a Linux system with an AARCH64 CPU, or on a Windows system with an AMD64
CPU.

One may wonder if we can expect a guantum chip to replace the existing classical chips, and
have existing applications running on top of those quantum chips. If that is the case, the schema
in Figure 7.2 would a'so apply to the case where the CPU is actually a quantum computer. In that
case, we can keep all our existing languages and libraries, and add another low-level abstraction
layer that translates the high-level language (e.g. Java) into sort of an assembly language for
guantum hardware.

However, as you learned in the previous chapters, there are a number of things that make
guantum hardware very different from classical hardware, e.g. superposition (see Chapter 3) and
entanglement (see Chapter 4). If we want to leverage the quantum capabilities of quantum
processors, the layers above the hardware should leverage these capabilities. That means we
need to leverage superposition and entanglement in the stack towards high-level application
languages. Those concepts are not present in the classical assembly languages.

IMPORTANT If we want to leverage the real power of quantum computing, the core
concepts (e.g. superposition and entanglement) need to be used inside the
software stack. That does not mean that they have to be exposed at the
top-level of any high-level language

There are anumber of approaches for this:

1. Don’'t make abstractions at all, and propagate the quantum characteristics to the
high-level application language. In this case, developers need to understand and use the
guantum concepts like superposition and entanglement.

2. Make abstractions at the low level, and have high-level languages leveraging these
abstractions. In this case, developers do not need to understand anything about quantum
computing. It requires high-level languages to be very aware of al aspects of quantum
computing. Decisions about whether to do something using a classical or quantum
approach need to be taken to the language.

3. Something in the middle.

The first approach is followed by Microsoft, where the third approach is followed by most other
initiatives. With Strange, we use the third approach as well. The second approach would allow
most developers to leverage quantum computing without even understanding the basics of it.
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Thisis not unrealistic in the very long term but it will take a very long time before languages are
capable enough to hide al quantum characteristics from the high-level development. Even then,
there are use cases where it is beneficial to directly use quantum characteristics.

7.3 Other languages

Strange is not the only quantum computer simulator out there. There are a large and growing
number of quantum simulators that follow the same or a different approach. A number of big IT
companies (Microsoft, IBM, Google) created a quantum computer simulator as well.

Microsoft created a DSL (Domain Specific Language) called Q#, based on the analogy of C#
and F#. The advantage of a DSL is that it allows to add very specific features in the language
that can be leveraged by the developer. Doing so, it is possible to optimize applications for
guantum features like superposition and entanglement. The drawback of this approach is that
developers need to learn yet another new language, and it also requires a rather deep
understanding of quantum computing.

IBM and Google took a different approach. They created a simulator in Python, which is clearly
an existing language. The advantage of this approach is that Python developers do not need to
learn a new language if they want to get started with Quantum Computing. This is the same
advantage that Java devel opers have when using Strange.

7.3.1 Resources

As mentioned before, the area related to quantum computer simulators is rapidly growing. It is
impossible to give a list today that would still be complete by the time this book is published.
There are some online resources though that are kept up-to-date with new evolutions.

Below, we provide a few pointers to relevant resources, but keep in mind that these resources
may become outdated, or moved to different locations.

® Anexhaustive list of quantum simulators, sorted by programming language can be found
at https://www.quantiki.org/wiki/list-qc-simulators

®* ThelBM Qiskit project is available at https://qiskit.org/

® Microsoft has information about its Q# programming language at
https://docs.microsoft.com/en-us/quantum/

® Cirg, aguantum simulator in Python created by Google, can be found at
https://cirqg.readthedocs.io/

7.4 Strange: high-level and low-level approach

The Helloworld sample that you created in Chapter 3 uses the top-level API of Strange. You
also learned that the top-level API leverages a low-level API. For convenience, we repeat the
high-level architecture diagram herein Figure 7.3.
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Main class

Java code
l Classic.randomBit()
4 ™
Java Quantum API’s
high-level API
\ J
4 ™
Quantum Core Layer
low-level API
r ™
Localhost Cloud-based
Simulator Simulator
. J

Figure 7.3 HelloWorld sample and Strange high and low level API's

The high-level API’s focus on Java, where the low-level API’s deal with quantum gates. If you
want to develop using the high-level API’s, you focus on Java code. If you want to develop using
the low-level API's, you focus on quantum circuits with quantum gates. Internally, the
implementation of the high-level API’s depend on the low-level API's, as explained in Figure
7.4
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4 ™
z/.... a ..\,,
lava Quantum API's i int randomBit(); )
high-level AP = . ] . . : S
- T searchiList<T> List, Function<T, Integer> function -
\ J B
4 h i -
Quantum Core Layer )
low-level API | H CNOT
.\ /-'
- / X

Figure 7.4 high-level and low-level API's and their implementation

Hence, the high-level and the low-level API’s ultimately use the same low-level concepts. The
difference isthat the high-level API hides the complexity of these concepts to developers.

7.4.1 Top-level API

The Strange top-level APl isatypica Java AP, following the normal Java patterns. The API for
thisisin the class

com gl uonhg. strange. al gorithm C ass

NOTE At the time of writing, Strange is at version 0.0.9. Until the Strange 1.0
version is released, API's may change location.

Some examples of methods in this class are

public static int randomBit(); public static int gsum(int a, int b); public static<T> T search(List<T> list,
Integer> function);

The API deals with some of the restrictions of quantum computing. For example, once a qubit is
measured, it can not be used in a circuit anymore. This restriction comes from the real quantum
world, where measuring the physical representation of a qubit destroys the information in that
gubit. However, the Java developer should not worry about this restriction. The Strange top-level
API's are created in a way that they can not enforce situations that are not compatible with real
guantum systems.

Let’s repeat the most important line of the Hel | owor | d sample from Chapter 2, where arandom
bit was generated:

int randomBit = Classic.randomBit();

©Manning Publications Co. To comment go to liveBook

https:/lilel@ek s@antey RanHAsuri@a o esnpan@iordieur peeiidscussion



129

The C assi c. randonBi t () doesn’t throw an exception. Hence, the developer can assume that
the implementation does everythng to ensure that there are no inconsistenties with the quantum
world. Also, the concept of quantum gates is never exposed in the top-level API.

IMPORTANT The signature of the high-level API's do not depend on quantum specific
objects. For example, the return value of a high-level API call is never a
qubit.

7.4.2 Low-level API

The Strange low-level API’s are spread over different packages. The typical approach that is
followed when using those API’ s can be summarized as follows:

® create a quantum program with a given number of qubits
® add anumber of quantum gates to this program

® run the program

® measure the qubits, or process the probability vector.

In Chapter 2, we showed how the high-level d assi c. randonBit () method leverages the
low-level APl and we promised to go in more detail in this chaper. By now, you have aready
seen more low-level code samples, to the implementation of the C assi c. randonBi t () method
will probably look more familiar.

Let’srepeat the code here:

Listing 7.1

public static int randonBit() {
Program program = new Progran(1);
Step sO = new Step();
s0. addGat e( new Hadamar d(0));
program addSt ep(sO0);
Quant umExecut i onEnvi ronnent gee =
new Si nmpl eQuant unExecut i onEnvi ronment () ;
Result result = qgee.runProgran(progran;
Qubit[] qubits = result.getQubits();
int answer = qubits[O0].neasure();
return answer;

0000 00000

A new quantum Program is created, using 1 qubit

A new step is created that will added later to the Program

A Hadamard gate, working on the first qubit (with index 0 is added to the new step
The step is added to the Program

A runtime s created.

@ © 6 © © o

The quantum Program is executed
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9 Thefina state of the qubitsis asked. Note that although thisis an array, the array
contains a single qubit only since the Program started with a single qubit

The value of the qubit is measured. It will be either 0 or 1.

Theresulting value is returned to the caller.

Asyou can see from this code, whenever the r andonBi t () function isinvoked, a new quantum
Program is created and executed. The return value, however, is a plain Java integer, and has no
guantum information associated with it. This marks the clear separation between the low-level
API’sand the high-level API’s.

It is another magjor difference between the high-level and the low-level API's, and it is explained
inFigure 7.5.

7 lava types et

Java Cuantum ARy 1" [(int, String, Function,...) /
", y

high-level API

L. A
i’ ™ e ——
Quantum Core Layer g Quantum types )
low-level AP .. [Qubit, Hadamard,...)
L J -

Figure 7.5 high-level and low-level API's and the types that they
use

Java developers that wish to use existing Java types only, can do this by leveraging the
high-level API’s. Developers who are more familiar with quantum concepts, or want to
experiment with those types, can use the low-level API’sfor this.

7.4.3 When to use what

Developers can choose to use the high-level API’s or they can use the low-level API’s. In the
previous sections, you learned about the differences between the high-level API’s and the
low-level API’s. Below, we summarize the different reasons for using either the high-level or the
low-level API's. Keep in mind that it is very ok to use both approaches. There are cases where
the high-level API's are more suitable, and cases where the low-level API's are more

appropriate.

It is recommended to use the high-level API’sin case

® You need to work on a project where an existing, well known and already implemented
guantum algorithm can provide an advantage --- typically a performance advantage
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® You want to experiment with classical code that could benefit from quantum algorithms.

It is recommended to use the low-level API’sin case

® you want to learn about quantum computing
® you want to experiment with existing quantum algorithms
® you want to develop new quantum algorithms

7.5 StrangeFX, a development tool

The success of most popular classical programming languages is partly due to the availability of
tools that allow developers to be very productive in that language. Almost all Java developers are
using an |DE when they create applications.

Similarly, in order to make programming quantum applications productive, there is a need for
tools that makes development easier. With StrangeFX, developers can easily visualise and debug
their quantum applications.

7.5.1 Visualisation of circuits

The quantum circuits discussed in the previous chapters were relatively simple. The
programming approach is easy to follow for Java developers. However, it often helps to get a
visual overview of the created quantum circuit. Especially when programs become more
complex, such a visualisation becomes more important. As we explained in Chapter 3, the

StrangeFX library allows for a quick visualisation of quantum circuits. A call to
Renderer.renderProgram(program);

generates awindow with a graphical overview of the circuit.

The quantum program in the "randombit” directory in the sample repository shows the
visualisation. It also contains debug elements being discussed in the next section, and for now,
we show the code without the debug elements:

Program program = new Program(dim); Step step0 = new Step(new Hadamard(0), new X (3)); Step stey
Step(new Cnot(0,1)); program.addSteps(step0, stepl); QuantumExecutionEnvironment gee = new
SimpleQuantumExecutionEnvironment(); Result result = gee.runProgram(program); Qubit[] qubits =
result.getQubits(); for (inti =0; i < dim; i++) { System.err.printin("Qubit["+i+"]: "+qubitgi].measure(
Renderer.renderProgram(program);

Running this program shows the measurements of the qubits, but also the circuit, including the
probabilities for the qubits. The output of the measurements can be either

Qubit[0]: 0 Qubit[1]: O Qubit[2]: 0 Qubit[3]: 1
or

Qubit[0]: 1 Qubit[1]: 1 Qubit[2]: 0 Qubit[3]: 1
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The visualisation of the circuit, which is shown in Figure 7.6 helps understanding these 2
different possible outcomes.

StrangeFX

Figure 7.6 visualisation of the circuit

The visualisation shows that the quantum program starts with 4 qubits. In a first step, a
Hadamard and a Not gate is added to the circuit. Next, a CNot gate is applied to gates g0 and gl.
At the right side of the picture, the resulting qubits are shown, with the probability that they are
measured as 1.

7.5.2 Debugging Strange code

In the previous chapters, you learned how to create simple and more complex quantum circuits.
One of the most important restrictions of quantum circuits is that measuring a qubit influences its
state. If aqubit isin a superposition state, and it is measured, it will fall back to either 0 or 1. It
can't go back to the state it was before it was measured.

While this provides great opportunities for security (as we will explain in the next chapter), this
makes debugging quantum circuits hard. In a typical classical application, you often want to
follow the value of a specific variable during the program flow. Debuggers are very popular with
developers, and examining the change in a variable often provides valuable insight in why a
specific application is not behaving in the way a devel oper expectsit to behave.

However, if measuring a variable changes the behavior of the application --- as is the case in
guantum computing --- this technique can not be used.

To make it more complex, even if we would be able to restore the original state of a qubit after
measuring it, the measurement itself, being 0 or 1 doesn’t give all information. As we explained
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anumber of times before, the real value in quantum programs is not only the measured value of a
qubit, but mainly the probability distributions.

Fortunately, Strange and StrangeFX alow for a way to render the probability distributions.
Strange allows to use afictive gate, the Probabi | i ti esGat e which can be used to visualise the
probability vector at a given moment in the program flow.

We'll reuse the program from the previous section, but this time we use the
Probabi | i ti esGat e to render the probabilities after a given step.

Thefirst part of the code is changed as folllows:

Listing 7.2

Program program = new Progran(di nm;

Step pO = new Step (new ProbabilitiesGate(0)); (1]
Step step0 = new Step(new Hadamard(0), new X(3)); (2}
Step pl = new Step (new ProbabilitiesGate(0));

Step stepl = new Step(new Cnot(0,1));

Step p2 = new Step (new ProbabilitiesGate(0));

program addsSt eps(p0, stepO, pl, stepl, p2);

9 A new step is created containing a ProbabilitiesGate
®  Theorigina steps are still created

Running the sample again shows the same circuit, but this time, you see a probability vector
being displayed after each step, as shown in Figure 7.7.
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4 qubits in Result
this circuit  Firststep ~ >econd step
[ ] StraflgeFx

q[0] 10>

g[1] 0=

ql2110= E
q[3] 10= n 100,0%

allla

Probality vectors
before or after a step

Figure 7.7 Visualisation of the circuit with probabilities. Before and after each
step, the probability vector is shown. This gives an indication about what
possible outcomes there are after each step, without measuring the qubits.

Let’s have a closer ook to what is happening.

The first step that is added to the program contains a Pr obabi | i t i esGat e. This does not change
the probability vector at any point, but it triggers the renderer to display the vector. Zooming in
on the left side of the visual output, we see in Figure 7.8 a probability vector immediately after
the qubit declaration, and before the Hadamard and Not gates are applied.
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u

= Probability vector before pro cessing

LT

Figure 7.8 Probability vector before any processing is
done

The probability vector is visualised as a rectangle divided in 16 parts. The first part represents
the probability of measuring 0000 in case a measurement would be done at this point. The
second part corresponds to the probability of measuring 0001 and so on.

The more a part is colored, the higher the corresponding probability. In this case, the first part is
entirely colored, which means the probability of measuring 0000 is 100%. This is indeed what
you would expect from a quantum circuit with 4 qubits and no gates. All qubits initially are in
the 0000 state, and that is what you would measure.

After applying the first real step, which contains a Hadamard gate and a Cnot gate, another
probability vector is rendered. This vector is highlighted in Figure 7.9 together with the
corresponding qubit measurements.
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n 0000
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Figure 7.9 Probability vector after applying a Hadamard and a Not gate. The '1000' and
'1001' states are the only possible ones after this step, wich an equal probability.
Rendering this vector does not measure the qubits, so the processing can still continue.

This figure shows the probabilities of measuring one of the 16 combinations, in case a
measurement would be made at this point. Again, keep in mind that we are talking about 16
probabilities, and not about the individual values of 4 qubits.

From the figure, it becomes clear that there are 2 possible outcomes for a measurement at this
stage:

® 50% chance that we would measure 1000
® 50% chance that we would measure 1001

This corresponds to what we would expect when analysing the single step that has been applied
to this circuit so far. Applying the NOT gate to the most significant qubit (g3) will cause that
qubit to be measured as 1. Without applying the Hadamard gate to qubit g0, the status would
thus be 1000. Applying the Hadamard gate to this qubit will result in 50% chance to measure
this qubit as 0 and 50% chance to measure it as 1. In summary, there will be 50% chance that
after this step, the system is in the 1000 state and 50% chance the system will be in the 1001
state, exactly what is shown by the probability vector.

The second step applies a CNot gate on the qubits 0 and 1. The resulting probability vector is
shown in Figure 7.10.
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Figure 7.10 Probability
vector after applying a
CNot gate.

Thisfigures indicates that there are 2 possible outcomes to measure at this point:

® 50% chance to measure 1000
® 50% chance to measure 1011

This corresponds with what you learned in Chapter 5, when creating a Bell state. Applying a
Hadamard gate, followed by a CNot gate, brings the 2 involved qubits (qO and gl) in an
entangled state. Both qubits can be 0 and both qubits can be 1. If both qubits are 0, the total state
of the quantum circuit is measured as 1000. If both qubits are 1, the total state is measured as
1011.

This matches the final visualisation of the circuit outcome, shown in Figure 7.11.

Figure 7.11
Different
possible
measurements
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From this last figure, we know that g2 will always be measured as 0 and g3 will always be
measured as 1. The other 2 qubits, g0 and g1 can be either 0 and 1.

At first glance, this might correspond to what we learned by looking at the probability vector, but
there is some important information that is missing when looking at the possible measurements
for the qubits only. Indeed, the probability vector states that the first two qubits can be either 00
or 11 but they can never be in 01 or 10 because they are entangled. There are only 2 possible
combinations, not 4. This is something that can not be seen from simply looking at the potential
outcomes for qubit measurements.

IMPORTANT The probability vector contains more information than the list of qubits with their
individual probabilities. The latter misses the information about possible or impossible
combinations, which is exactly what is available in the probability vector, as in this one, each
entry deals with all qubits.

7.6 Simulators, cloud services and real hardware

Ultimately, the reason for creating quantum algorithms is to execute them on real guantum
hardware. In order to take advantage of the special characteristics of guantum computing, we
need to use real quantum devices. Understanding the real benefits of quantum computing, and
writing algorithms and code that leverage quantum computing takes time. Using a quantum
simulator, you can learn the principles of quantum computing, and you can create applications
that can benefit from quantum hardware. If you master quantum algorithms by the time quantum
hardware becomes available, you have a competitive advantage.

It is desired and expected that applications written for a quantum simulator can also work on real
guantum hardware without any change, or only with limited changes, related to configuration.
Therefore, as a developer, you focus on the application code, and not on the execution
environment.

Thisisshownin Figure 7.12

Development Runtime

Application

Application

Figure 7.12 Development stack versus runtime stack
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When developing applications that leverage quantum computing via Strange, developers use the
public API's that are exposed by Strange. These can be the high-level API's, the low-level
API’s, or acombination.

When running those applications, there are a number of options:

® you run your application on alocal simulator
® you run your application on a cloud simulator
® you run your application on real hardware (or) in acloud

During the development phase, when you’ re writing the application, testing it, integrating it with
other components, running the application on alocal simulator is the easiest approach. Y ou don’t
need quantum hardware for this, and you don’t need to setup a connection to a cloud service. The
drawback is clear: a local simulator requires more resources, and doesn’t provide the
performance that can be expected from areal quantum device.

The second option, running applications in a cloud simulator, is becoming available at the time
of this writing. A number of cloud companies are offering cloud API’s for doing quantum
development. Inside the cloud, both simulators as well as real devices can be used. This adds
another abstraction layer: applications can talk to cloud services, and their request might be
served by real quantum hardware or quantum simulators.

Thisisshownin Figure 7.13.

p \ v \

: e r
q e : Y
Requests from applications / Quantum Quantum devices Vi
Cloud '

Quantum simulators

— \‘. ./_,"

Figure 7.13 Cloud services with real quantum hardware or simulators.

In this figure, the Cloud service offers a single API. Based on a number of criteria, it can be
decided to forward the request internally to area quantum device, or to a quantum simulator in
the cloud. Quantum simulators in cloud environments can benefit from the large scale and
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virtualisation typical cloud providers offer. They can thus use more memory and CPU power
compared to local quantum simulators.

Many experts expect that the first batch of commercial quantum computers will mainly be
deployed in cloud environments. This will address some of the challenges introduced by the
current prototypes for quantum computers, e.g. cooling the environment to aimost zero Kelvin.
Dealing with infrastructure requirementsis easier done in a cloud facility then in on a deskopt or
laptop in a private home environment. Obviously, a quantum processor on a mobile phone is
even harder to create.

As long as cloud providers provide the same API’s for accessing real quantum devices in their
cloud as well as classical quantum simulators, the devel oper does not have to worry about it.

The Strange API’s provide another level of abstraction. In Chapter 3, we talked about the
interface Quant unExecut i onEnvi ronment . We explained that this interface defines the
methods that can be leveraged by developers for executing quantum applications, without having
to specify where the program is being executed.

At this moment, Strange only contains a single implementation of this
Quant unExecut i onEnvi ronnent, and that one is used throughout his book and samples:
Si mpl eQuant unExecut i onEnvi ronment . However, work is underway to provide more
implementations that communicate with external cloud services for accessing third party
guantum cloud environments. The magjor benefit for developers using Strange today, is that their
applications will work tomorrow on third-party cloud services with ssimulated or real hardware.
The only change that will be required is to change the Si npl eQuant unExecut i onEnvi r oment
into d oudQuant unExecut i onEnvi r onment

Based on the current draft work in Strange, this would require applications that are currently
using the following snippet

Program program = new Program(...); ... QuantumExecutionEnvironment gee = new
SimpleQuantumExecutionEnvironment(); Result result = gee.runProgram(program);

into using the new snippet:

Program program = new Program(...); Map<String, String> params; ... QuantumExecutionEnvironmen
CloudQuantumExecutionEnvironment(params); Result result = gee.runProgram(program);

In this snippet, the par ans parameter provided to the G oudQuant unExcecut i onEnvi r onment
constructor contains information that allows Strange to select the most appropriate cloud service,
and to provide relevant info (e.g. credentials) to this cloud service.
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7.7 Summary

® you learned the difference between low-level and high-level quantum API’s, and when
they should be used. High-level quantum API’s are easier to use than low-level quantum
API’s, and you should use them when they are directly applicable to your application. In
case no high-level API exists (yet), you can combine the low-level API’sto create your
own agorithm.

® you wrote code that visualizes a quantum application, and that helps in understanding the
programming flow.

* you debugged a quantum application by looking at the probabilities after each step. Using
StrangeFX, you can render the probability vector, and check whether that matches with
your expectations. Doing so, you don’t need to manually recal culate each step.

® you learned about the different execution environments for running quantum
applications. Y ou learned that quantum offerings via a cloud service are already
available.
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Secure communication using Quantum
Computing

This chapter covers

solving the bootstrap problem of secure communication

an introduction to Quantum Key Distribution

a step-by-step composition of the BB84 algorithm

a Java application that shows how Java developers can securely distribute shared
keys between two parties.

In this chapter, you will create a useful quantum application. We will show that quantum
computing allows you to create a secret key that can be shared between 2 parties in a very secure
way. This so-called Quantum Key Distribution (QKD) is the basis for a number of encryption
techniques that are proven to be secure — even the best quantum computer can’t break this
security!

8.1 The bootstrap problem

We started Chapter 6 by showing how classical networks are used to send classical information
from one node (or computer) to another. We explained how different pieces of information travel
from Java applications to a low level implementation, where they are sent as bits to the other
node, and travel upwards again. This is shown in Figure 8.1.
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Java Application Java Application

Java Network library
(XML/JSON based)

Java Network library
(XML/JSON based)

Java.io API's

4

Java Native implemtation

Java.io API's

$

Java Native implemtation

Platform-specific
Network implementation

Platform-specific < 01100110110010
Network implementation

Figure 8.1 Java applications using classical communication.

8.1.1 Issues with sending bits over a network

In this chapter, we focus on what happens at the communication level between the 2 nodes. Bits
are transfered over a network connection, e.g. over optical fiber.

How secure is this? Security and privacy are gaining importance, and for many applications, it is
crucial that the bits that are sent over physical networks between computers are not intercepted
by third parties, and can also not be altered by third parties.

The ideal situation is shown in Figure 8.2.

Alice

0110

Platform-specific
Network implementation

Platform-specific

Network implementation

Figure 8.2 Ideal situation in network communication.

In this situation, the bits are sent from Alice to Bob, and nobody is listening or altering the bits.
Alice can send a message to Bob, and Bob will receive this message. Nobody else received or
modified the message.
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READING MESSAGES

However, in practice, it is very well possible that there is an eavesdropper on the line, as shown
in Figure 8.3.

~
-

Alice Bob

Eve

Platform-specific

Platform-specific
Network implementation r—- 0110 ’ Network implementation

Figure 8.3 Eve, the eavesdropper, reads the network communication.

There are different scenarios how this can happen. The eavesdropper, who is often depicted as
"Eve", can physically cut the network cable, listens to the incoming bits, write them down, and
then send the same bits to the other part of the cable. Whatever technique Eve is using, the result
is that she can read the bits that are sent over the communication channel between Alice and
Bob.

Because the bits still arrive at Bob’s end, neither Alice or Bob will know that Eve has been
eavedropping. Alice and Bob think they communicated in a secure way, but Eve listened to
everything they exchanged.

MODIFYING MESSAGES

The other problem that should be faced is that Eve might be altering the bits on the network line.
For example, in Figure 8.4 it is shown that Eve switches the third bit from 1 to 0.

Alice

Platform-specific
Network implementation

Platform-specific

Network implementation

Figure 8.4 Eve, the eavesdropper, modified a bit

This can lead to serious problems. For example, suppose Alice is sending the following message
to Bob: "Let’s meet at 8 am." Eve intercepts the message, and alters it into "Let’s meet at 5 pm.".
Bob receives that message, and isn’t aware of any manipulation by Eve. You can imagine Alice
and Bob have some issues.

In many real-world situations, it is impossible to completely secure the physical channel that
provides the low-level communinication between two parties. Rather than assuming this, we
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need techniques that allow us to create secure communication channels built on top of insecure
networking channels.

Fortunately, there are a number of classical techniques that improve the security and privacy of
communication. We are not going to cover all these techniques, but we’ll pick one that is very
popular: the one-time pad.

8.1.2 One-time pad to the rescue

The state of every message, every object, every data that is used in classical computing can be
written down as a sequence of bits. A one-time pad is a series of bits, at least equally long as the
original message that needs to be transfered. If the source (Alice) and the receiver (Bob) of the
message have access to the same one-time pad, and if Eve has no access to it, it is possible to
securely encrypt the message in a way that only Alice and Bob can decrypt it. The "One-time"
part of one-time pad means that the key should only be used once. If this is the case, it can be
proven that the message encrypted with the one-time pad is really transmitted in a secure way.

Let’s give an example.

NOTE In the following samples, we are going to use very short sequences of bits,
to keep things simple. Keep in mind though that the principles apply to very
long sequences as well.

Suppose that Alice wants to send the following message (a bit sequence) to Bob:

0110

Before Alice and Bob started to communicate, they agreed on a secret key (a one-time pad). We
will discuss later how they created this, but for now, let’s assume this is their secret key:

1100

Only Alice and Bob know this key. Before Alice sends the message to Bob, she combines the
message with the secret key: every bit in the original message is replaced by the XOR operation
applied on the original bit and the corresponding bit in the key:

® if theoriginal bit and the corresponding bit in the pad are equal (both 0 or 1), the
resulting bit iso

® if theoriginal bit and the corresponding bit in the pad are opposite (hence 0 and 1 or 1
and 0), the resulting bit is 1

The result of this combination is an encrypted bit sequence.

0110 (original nessage)
1100 (one tinme pad)
( XOR operation)
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1010 (result)

Alice now sends the encrypted bit sequence '1010' to Bob, who needs to decode the sequence. To
do this, Bob also applies an XOR operation on every bit he receives with the corresponding bit in
the key:

1010 (encrypted nessage, received fromAlice)

1100 (one tine pad)

(XR)
0110 (original nessage)

As you can see, the result of this operation is the exact original message that is sent by Alice. It
can be proven that this is not coincidence, and this always works regardless of what message is
sent by Alice.

Schematically, the communication between Alice and Bob can now be represented by Figure 8.5

Alice

0110

1100 €= Eve 1100 €%

1010 — 10107 -

Figure 8.5 Alice and Bob communicating via a one-time pad

What happens if Eve still intercepts the message sent over the network? Instead of reading the
original message ('0110'"), she will read an encrypted message ('1010'), and since she doesn’t
have the key that Alice and Bob use, she can not decypher that message. Even if she knew that
Alice and Bob used a secret key, and encrypted their message by using a bitwise XOR operation,
without the secret key itself there is no way she can decrypt the message.

You just learned that if Alice and Bob share a secret key, a sequence of bits that has the same
length as the original message, their communication can not be intercepted. Actually, it can be
intercepted, but the eavesdropper can not decrypt the intercepted message.

8.1.3 Sharing a secret key

The difficult question though is how Alice and Bob can share a secret key. The naive approach
would be to send a key over the network... but that brings us back at square one: we need a
secret key to send our secret key in a secure way over the network.
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This recursive problem is visualised in Figure 8.6

I’'m going to send you a message 1

First send a secret key to encrypt the message

I'll send a secret key }

| Make sure to encrypt that key

I'll send a fourth secret key to encrypt the
third secret key to encrypt the second
secret key to encrypt the first secret key... “

Alice Bob
Figure 8.6 Alice and Bob discover the bootstrap problem

For real critical applications, secret keys are often not shared via the internet, but via traditional
post or other ways.

In the remainder of this chapter, you will learn how quantum computing can fix this bootstrap

problem.

8.2 Quantum Key Distribution

In this section, you’ll learn how quantum computing can be used to generate a secret key and
share it in a secure way between two parties, Alice and Bob. Once Alice and Bob have such a
key, they can use it to encrypt the messages they want to send to each other. If we can share a
secret key between Alice and Bob in a secure way, the bootstrap problem explained in the
previous section is fixed.

The generation and distribution of such a secret key using quantum techniques is called Quantum
Key Distribution, or QKD, and it is often considered one of the hot topics and key advantages of
quantum computing.

There are a number of algorithms that can be used to generate QKD. Perhaps the most
well-known algorithm is the BB84 algorithm, named after its inventors Charles Bennett and
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Gilles Brassard who created it in 1984. We will eventually create this algorithm, but instead of
starting from the physics behind the algorithm, we will use a software-oriented approach to
arrive to the algorithm.

In the following section, we assume that we can somehow send qubits over a network. In Chapter
6, we discussed Quantum Teleportation, which allows us to send the status of a qubit over a
classical network connection, provided the two parties share an entangled qubit before the
classical communication starts. Later in this chapter, we will introduce a project that simulates
(and eventually will provide) a real quantum network. Using this quantum network, we can send
qubits from one node (or computer) to another node. Before we do that, though, the algorithms
we develop will be executed on a single node. Keep in mind that the code you write and exectue
on a single node will also be capable of being executed on nodes that are connected to each
other.

8.3 Naive approach

In a naive approach, Alice would create a sequence of qubits that hold either the value of |0) or
|1) and send those to Bob. Bob would then measure the qubits, thereby getting the original
sequence of bits created by Alice. The sequence of qubits created by Alice (which can be done
by using random bits) is the secret key, and after Bob measures the qubits, he has the same secret
key as Alice. Alice and Bob can then use this secret key as a one-time pad, as explained in the
previous section.

Schematically, this is explained in Figure 8.7.

___—» aliceBits bobBits 0100 ‘ \
dd oo r

Alice Bob

Figure 8.7 Alice generates random bits and uses qubits to sent the values to Bob.

Using the techniques you learned in the previous chapters, you can create an application that
does this. The following code snippet is taken from the sample ch08/ nat i ve:
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Listing 8.1 Naive approach for generating a quantum key and sending it.

© 6 © 6 © o o

(8]

final int SIZE = 4, (1)
Random random = new Randon() ;

bool ean[] aliceBits = new bool ean[ Sl ZE] ;
for (int i =0 ; i < SIZE i++) {
aliceBits[i] = random next Bool ean(); (2]

}

Quant unExecut i onEnvi ronnment si nul ator =
new Si npl eQuant unExecut i onEnvi ronnment () ;

Program program = new Progran( Sl ZE) ; (3]
Step stepl = new Step();
Step step2 new Step();
for (int i =0; i < SIZE i++) {

if (bits[i]) stepl.addGate(new X(i));

st ep2. addGat e( new Measurenent (i));

©0o

}

program addSt ep(stepl);
program addSt ep(st ep2);

Result result
Qubit[] qubit

= simul at or. runPr ogr am( progranj ;

= resul t. get Qubits(); (6]
int[] measurenent
bool ean[] bobBits

new int[ Sl ZE] ;
new bool ean[ Sl ZE] ;

N

for (int i =0; i SI ZE; i++) {
measurenment[i] = qubit[i].neasure(); (7]
bobBits[i] = measurenent[i] == 1;
Systemerr.printIn("Alice sent "+(bits[i] ? "1" : "0") +
" and Bob received "+ bobBits[i] ? "1" : "0");
}

Render er . r ender Pr ogr an( pr ogran ; (8]

In this sample, you create akey with afixed size: 4 bits.

Alice generates the key, by assigning random values to each bit.

Y ou create a program that involves 1 qubit for every bit in the key
When a bit is TRUE, a Pauli-X gateis applied to the corresponding qubit.
All qubits will be measured in step 2.

The program is executed, and the results are in an array of Qubits.

The qubits are measured, and their value is printed next to the original value of the
corresponding bit that used by Alice.

The quantum circuit of this application is rendered.

This program contains only simple quantum operations. Alice first generates the secret key, a

series of random classical bits. She then creates qubits based on those bits. Initialy, a qubit is in

the

value |0). When a qubit has to be created that corresponds to the bit 1, Alice applies a Pauli-X

gate to the qubit. Next, qubits are sent to Bob one by one. Bob performs a measurement, and
reads the key bit by bit.
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When you execute this program, e.g. by running nvn j avaf x: run,

you will see the following output on the console

Alice sent 0 and Bob received 0
Alice sent 1 and Bob received 1
Alice sent 0 and Bob received 0
Alice sent 0 and Bob received 0
NOTE the exact output of this program is different each time you run it, since we

used random values to initialize the bits used by Alice.

Also, the quantum circuit that is the representing the algorithm you created is shown:

| XON | StrangeFX

g[0] 10> n
g[2] 10> m
q[3] 10> m

Figure 8.8 Quantum circuit showing the algorithm used by our application.

At the end of the previous section, we explained that for now, we will be running the samples on
a single node. That means that both the part of the algorithm executed by Alice and the part
executed by Bob are executed on the same node. Keep in mind though that there is an implicit
point in the algorithm where we assume that the qubits are sent from Alice to Bob. This is shown
in Figure 8.9.
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@® ® StrangeFX

q[0] 10> m ! on !:
|

ql1] 10> m Off N
I
q[2] 10> m ! !—
]
af3] 10> } m ! oft s
| |

v i

Alice Network Bob

Figure 8.9 The first part of the algorithm is executed by Alice, then the qubits are sent
over a quantum network to Bob, where the second part of the algorithm is executed.

The output from the application shows that Alice can create a sequence of random bits, and that
Bob can receive the same sequence of random bits. You used qubits to transport the bits over a
network cable.

In case the quantum network is reliable and secure, this approach should work. You learned
before that qubits can not be cloned, and that once a qubit is measured, it falls back to one of its
basic states. This behavior can be very helpful when dealing with quantum networks that should
prevent eavesdropping.

However, the current application is far from secure. Suppose Eve is still in the middle, and she is
measuring all qubit communication beteen Alice and Bob. We know that when Eve measures a
qubit, the qubit will be either hold the value 0 or the value 1. If it was in a superposition state, the
information about that superposition is lost. But in the current algorithm, there are no qubits in a
superposition state. Hence, Eve knows that when she is measuring 0, the original qubit was in the
state |0). She can then create a new qubit in the initial |0) state, and put that back on the wire
towards Bob. Similar, when Eve measures a qubit and obtains the value 1, she knows that the
qubit was in the |1) state. She can create a new qubit in the |0) state, apply a Pauli-X gate to bring
it in the |1) state, and send it to Bob.

This is shown in Figure 8.10
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) ___— aliceBits bobBits ~ 0100 .
£ oo

Alice Bob
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Figure 8.10 Eve is reading the qubits, and create new qubits based on what she
measures.

In this figure, you see that the eavesdropping part happens in the network layer. When Eve has
access to the network, she can obtain the (not so) secret key that Alice and Bob share. She
measures the same values that Alice used to generate the qubits, and those values are the secret
key. What is especially dangerous is that Alice and Bob are not aware of this. Bob receives
qubits, measures them, and constructs the secret key. Bob and Alice successfully exchange a
message encrypted with their secret key, but if Alice intercepts this message, she can decrypt it.

8.4 Leveraging superposition

So far, our attempts in using quantum technologies to generate a real secure secret key that is
only shared by Alice and Bob were not succesful. But we didn’t really leverage the fact that
qubits are very different from classical bits. If we are guaranteed that the qubits are either in the
|0) state or the |1) state, much of the advantages qubits offer, get lost.

After measuring, Eve can easily reconstruct the original qubit (or at least she can create a new
qubit in the same state as the original qubit), if she knows that the original qubit is either |0) or

|1). But if the qubit is in a superposition state, she will measure |0) or |1) without getting any
information about the original state of the qubit. You will soon extend the initial naive algorithm
by leveraging superposition. The qubits sent by Alice will no longer be in the |0) or the |1) state,
but in a superposition of these states. We will explain how Bob can retrieve the original state of
the qubit, after he received it from Alice.

8.4.1 Applying 2 Hadamard gates
Before we modify the algorithm, we need to explain an interesting fact about the Hadamard gate.
It can be proven that when a Hadamard gate operates on a specific qubit, and another Hadamard
gate operates on the result of this first operation, the resulting qubit will be in the same state it
had originally.

Let’s write some code to check if this is true. The code from ch8/ haha does this, and the

relevant snippet is shown below:
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Listing 8.2 Applying two Hadamard gates in a row

Quant unExecut i onEnvi ronnment si nul ator =
new Si npl eQuant unExecut i onEnvi ronment () ;

Program program = new Progran(2); o
Step step0 = new Step();

st ep0. addGat e(new X(0)); (2
Step stepl = new Step(); (3

st epl. addGat e( new Hadamard(0));
stepl. addGat e( new Hadamard(1));

Step step2 = new Step(); (4]
st ep2. addGat e( new Hadanard(0));
st ep2. addGat e( new Hadanard(1));

program addSt ep( st ep0); (5
program addSt ep(stepl);
program addSt ep( st ep2);

Result result
Qubit[] qubit

si mul at or. runPr ogr am( pr ogr an ;
result.get Qubits();

X

Render er . r ender Progr an( pr ogran ; (8

We create a program with 2 qubits

Weflip thefirst qubit to be |1) while we keep the second qubit at |0)

We apply a Hadamard gate to both qubits

We apply another Hadamard gate to both qubits
All steps are added to the program

The program is executed

We measure the qubits

© ©¢ ©¢ © 6 ©

The results are rendered graphically.

The result of this application is shown in Figure 8.11

L ] StrangeFX

XygyH g H

Figure 8.11 Result of applying two Hadamard gates in a row

This figure shows that if the original qubit was in the state |0), we are guaranteed that the qubit
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will be in the state |0) again after applying two Hadamard gates. Similarly, if the original qubit
was in the state |1), it will without doubt be in the state |1) again after the two Hadamard gates
have been applied.

NOTE While we only proved that this holds for qubits that are initially in [0) or |1), it
can mathematically be proven that the same applies to a qubit in any state.

What we learn from this code is the following: if Alice applies a Hadamard gate before she sends
her qubit to Bob, and Bob applies another Hadamard gate before he measures the qubit, the qubit
is back in the state that Alice prepared (so either in |0) or |1))

8.4.2 Sending qubits in superposition

We will now modify our original algorithm in order to leverage this superposition benefit. Alice
will still create a key with qubits that are based on random bits, but before she sends a qubit to
Bob (in the |0) or |1) state), she applies a Hadamard gate. When Bob receives the qubit, he will
also first apply a Hadamard gate, which should bring the qubit back in the original state created
by Alice.

SIDEBAR Before we show this schematically, we introduce a short notation for a qubit
that is transformed from a base state into a superposition. In Chapter 4,
you learned that applying a Hadamard gate to a qubit in the |0) state brings
the qubit in a new state:

1
— (|0 > +[1 >)

V2

Since this state is often encountered in algorithms, it can also be denoted
by the shortcut |+).

Similarly, applying a Hadamard gate to a qubit in the |1) state brings
that qubit into the following state:

1
7 (0> —1>)

The short notation for this state is |-)

We will use these notations throughout the text and figures in this book.

Schematically, the situation where Alice and Bob both apply a Hadamard gate is shown in Figure
8.12
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0100 __—» aliceBits bobBits 0100
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Figure 8.12 Alice applies a Hadamard gate before sending a qubit, Bob applies a
Hadarmard gate before measuring the qubit.

The new code can be found in the sample ch08/ super posi ti on and the relevant part is shown
below in Listing 8.3.

Listing 8.3 Using superposition to prevent easy reading of secret key

final int SIZE = 4;
Random random = new Randon() ;

bool ean[] aliceBits = new bool ean[ Sl ZE] ;
for (int i =0 ; i < SIZE i++) {
aliceBits[i] = random next Bool ean(); o

}

Quant unExecut i onEnvi ronnment si mul ator = new Si npl eQuant unExecuti onEnvi ronnment () ;

Pr ogram program = new Progran( Sl ZE) ;

Step prepareStep = new Step();

Step superPositionStep = new Step();

Step superPositionStep2 = new Step();

Step nmeasureStep = new Step();

for (int i =0; i < SIZE i++) {
if (aliceBits[i]) prepareStep.addGate(new X(i));
super Posi ti onSt ep. addGat e( new Hadamard(i));
super Posi ti onSt ep2. addGat e( new Hadamard(i));
neasur eSt ep. addGat e( new Measurenent (i));

0000

}

@

program addSt ep( pr epar eSt ep) ;
program addSt ep(super Posi ti onSt ep) ;
program addSt ep( super Posi ti onSt ep2) ;
program addSt ep( nmeasur eSt ep) ;

si mul at or . runPr ogr am( pr ogr anj ; (7]
resul t.get Qubits();

Result result
Qubit[] qubit

int[] measurenent = new int[SIZE];
bool ean[] bobBits = new bool ean[ Sl ZE] ;
for (int i =0; i < SIZE, i++) {
measurenment[i] = qubit[i].neasure(); (8]
bobBits[i] = neasurenment[i] == 1;
Systemerr.printin("Aice sent "+(aliceBits[i] ? "1" : "0") + " and Bob received
"+(bobBits[i] ? "1" : "0"));

©  Alice creates a key containing random bits.
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©  Sheinitializes her qubits according to these random bits. A random bit of 0 will

lead to a |0) qubit, while arandom bit of 1 will lead to a|1) qubit

©  Alice performs a Hadamard transformation to bring the qubit in a superposition
and sends it over the network

Bob receives the qubit and performs a second Hadamard transformation
Bob measures the qubit
The steps are added to the quantum program

The program is executed

© ©¢ ¢ o o

Bobs bit are measured, and both the bits from Alice and Bab are printed. They
should be bitwise equal.

When you execute this application, e.g. using nvn javafx: run you will see the following
output (again, not the actual values are likely to be different since we generate the bits based on
random values):

Alice sent 0 and Bob received 0
Alice sent 1 and Bob received 1
Alice sent 0 and Bob received 0
Alice sent 0 and Bob received 0

The application also shows the circuit that is created, and this is shown in Figure 8.13

| JON | StrangeFX
oo PRI
Gl X ¢ H g H g M

Figure 8.13 Leveraging superposition to send qubits over a network

As expected, the qubits measured by Bob yield the same value that Alice used to prepare the
qubits, before the double Hadamard gate was applied. Hence, from a functional point, this
algorithm still provides Alice and Bob with the same key. But is it secure?
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In case Eve is still able to listen on the network line, she can still measure the qubits sent by
Alice. However, regardless of the original bit used to create the qubit by Alice is 0 or 1, Eve will
always have 50% chance to measure 0 and 50% chance to measure 1. Hence, she won’t be able
to reconstruct the incoming qubit and send it to Bob --- at least not in the way she did before.

This is shown in Figure 8.14

__~ aliceBits bobBits -
' ~1101
ﬂ 0100 r

Alice Bob

Eve

E@:HC»H |42 —s MOE|D>—oH|+> [@} M
E1>H 1> — Moo Hi+ @) m
BioH 1+ — M Hi- (@ M
E@g lo=H |+ — M 0{@3\& H I+ [@} M

Figure 8.14 Eve measures the qubits sent by Alice, and send new qubits to Bob

As you can see from this Figure, things will go terribly wrong for Eve. When she measures the
qubits from Alice, she will randomly obtain a value of 0 or a value of 1. The qubits sent by Alice
all are either in the | + > state or in the |—) state. Both these states, when measured, will have
50% of having the value 0 and 50% change of having the value 1. The real information is
somehow hidden in the superposition composition. Eve is not aware of this, and the values she
read might be correct, but they also might be wrong. For example, the first qubit in the picture,
which originally was |0) is measured as |0) by Eve, so she is correct there. However, the second
value, which originally was |1) is measured as |0) by Eve. Hence, Eve will not obtain the correct
shared key using this approach. To make things worse, when Eve tries to hide her traces, she
creates a new qubit based on her measurement, and send that to Bob. In the case of the first
qubit, where she was lucky enough to measure 0, she constructs a new qubit |0) and sends that to
Bob. But Bob, not realising what happend, assumes Alice sent him a qubit in a superposition,
and will apply a Hadamard gate. This now brings the qubit, sent by Eve, in a superposition.
When Bob measurs this qubit, he can measure either |0) or |1). In the figure, Bob measured a 1,
which clearly is not what Alice has sent. In typical encryption algorithms, Alice and Bob use part
of the transmitted bits to check if everything went correct. They share the value of those bits
(which makes those particular bits useless as they are not secure anymore). If the value of the
bits is different, they know something went wrong, and the whole key is not considered secure.

As a consequnce, it is clear that using this approach Eve can not obtain the secret without errors,
or without being detected.

But Eve can learn as well. If Eve knows that Alice applied a Hadamard gate before sending the
qubit over the wire, she might apply a Hadamard gate as well before measuring --- doing exactly
what Bob is doing. This will give her the information that would otherwise be obtained by Bob:
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the same bits that were used by Alice to prepare the qubits.

This would still not help Eve, since Bob won’t receive qubits. By measuring them, Eve destroyed
the superposition. However, now that Eve knows what Alice was doing, she can create new
qubits doing exactly what Alice was doing. Hence, Bob would receive a qubit in the same state
as it would have come from Alice. He applies a Hadamard gate, and then measures the qubit, and
he gets the same bits that were used by Alice.

This is schematically shown in Figure 8.15

_—» aliceBits bobBits
- ~0100 ..
ﬂ 0100 4

Alice Bob

Eve

E@E jo>H |+ —=H|o> MU%@;D:H—F Hlo= 5:@;1 M
Bi|>H - —Hi> M1iEisH—————— Hi®> |[@i| M
i lo>H 1+ —>H 10> M o]io-H
iE@i|10>H 1+> — Hlo> M o[ jo-H

Figure 8.15 Eve applies a Hadamard gate before she measures the qubits sent by Alice,
and send new qubis to Bob after she applied another Hadamard gate.

As a consequence, using this approach not only Alice and Bob share the bits of their secret key,
but also Eve. Hence, this approach is not secure either.

8.5 BB84

The previous approach failed, because Eve knew upfront what Alice did and what Bob was
going to do. In this section, we’ll make it harder for Eve --- or actually impossible.

8.5.1 Confusing Eve

The reason that Eve can go undetected is because she manages to send a qubit in the same state
to Bob as the one she intercepted from Alice. In case Alice only uses a Pauli-X gate or nothing at
all before transfering her qubit to Bob, Eve can measure the qubit and she will obtain the original
information. In case Alice also applied a Hadamard gate, Eve needs to apply a Hadamard gate as
well before measuring the qubit.

But what if Eve doesn’t know if Alice used a Hadamard gate or not? Should she apply a
Hadamard gate herself, or not? Let’s analyse that situation. We have 3 variables that can each
take 2 options, leading to 8 scenarios.

® Alicesendsaoorail
® Alice applies a Hadamard or not
® Eve applies aHadamard or not.
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The example in ch8/ guess simulates the possible outcomes for the 8 different scenarios.

The relevant part of this algorithm is shown in Listing 8.4

Listing 8.4 Using superposition to prevent easy reading of secret key

final int SIZE = 8; (1]

for (int i =0; i < SIZE i++) {
if (i > (SIZE/ 2-1)) prepareStep. addGate(new X(i));
if ( (i/2) %2 == 1) superPositionStep.addGat e( new Hadamard(i));
if (i9% ==1 )superPositionStep2. addGat e( new Hadamard(i));
measur eSt ep. addGat e( new Measuremnent (i));

We consider the 8 possible cases (numbered from 0 to 7)
Inthefirst 4 cases, Alice applies aPauli-X gate
In cases 2,3,6 and 7, Alice applies a Hadamard gate

© © o o

Incases 1, 3, 5and 7, Eve applies aHadamard gate

The code inside the for loop creates the 8 different scenarios. The visual output of the
application, shown in Figure 8.16 clarifies this.
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Figure 8.16 Different scenarios and their outcome

50,0%
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No Pauli-X gate was applied to the first 4 qubits, hence they are representing a bit value of 0.
Let’s look at those 4 scenario’s in a bit more detail. The analysis we will do here also applies to
the last 4 qubits, with the difference that the initial value in that case is 1.

Figure 8.17 shows the situation of the first 4 qubits.
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Figure 8.17 Alice is sending a 0 and the measurement depends on the presence of
Hadamard gates.

In case both Alice and Eve apply a Hadamard operation or not, Eve will without doubt measure a
0 value as well. But if either of them applies a Hadamard operation while the other doesn’t, there
is a 50% chance that Eve will measure a 0 and a 50% chance tha Eve will measure a 1. These
cases are marked in red on Figure 8.17. The problem for Eve is that she can’t tell if her
measurement is correct or not. She doesn’t know if Alice applied a Hadamard gate or not, so she
can not tell with certainty which scenario applies. To make things worse for Eve, she is also
unable to create a qubit in the same state as the original one.

For example, suppose Eve measures the qubit as a 0. From Figure 8.16, it appears that there are 6
potential scenarios' that would lead to a measurement of 0. The scenarios with g[ 0] and q[ 3]
will absolutely lead to a measurement of 0, but each of the scenarios q[ 1], q[ 2], q[ 5] and q[ 6]
have 50% chance of resulting in a measurement of 0 as well. in the case of scenarios g[ 5] and
q[ 6] , the original bit was 1 and in the other scenarios, the original bit was 0. Since Eve knows if
she applied a Hadamard gate or not, she can exclude half of the scenarios, but there is always the
possiblity that the original bit was 0 and the possibility that the original bit was 1. Since Eve
doesn’t know the original scenario, she can make a guess, and prepare a qubit that fits a valid
scenario, but chances are this is the wrong scenario, and Bob will receive a qubit in a different
state then the one sent by Alice. We will shortly show that this can be detected.

8.5.2 Bob is confused too

If Eve can’t reconstruct the original scenario, the same must apply to Bob. Indeed, we assume
that Alice and Bob have no upfront knowledge --- otherwise we would have fixed the bootstrap
problem already.
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In our algorithm, we will instruct Bob to randomly apply a Hadamard gate or not before
measuring the incoming qubit. The situation for Bob is then very similar to the situation with
Eve. In case Alice and Bob both applied a Hadamard gate, or in case none of them applied a
Hadamard gate, the measurement of Bob would guaranteed correspond to the initial value of
Alice. We can see this from Figure 8.16 and Figure 8.17 if we assume Bob is performing the
second part instead of Eve. But if Alice applied a Hadamard transformation and Bob didn’t, or if
Alice didn’t apply a Hadamard transformation but Bob did, the result can be wrong.

It seems that by making the situation complex for Eve, we made it equally complex for Bob.
Both Alice and Bob randomly decided whether they apply a Hadamard gate or not. From the
output of the previous application, it is clear though that if Alice and Bob both decided to apply a
Hadamard gate, or if they both decided not to use a Hadamard gate, they can share a key. In that
case, the initial value used by Alice is guaranteed to be the same value measured by Bob.

8.5.3 Alice and Bob are talking

From the previous discussion, it is clear that if Alice and Bob both used a Hadamard gate, or
neither of them used a Hadamard gate, the original bit used by Alice and the measured bit used
by Bob are guaranteed to be the same, and it can be used in a secret key.

But how do they know that? The answer is simple: they tell each other whether they applied a
Hadamard gate or not.

IMPORTANT This might sound surprising. If Alice and Bob tell each other over a public
channel whether they appled a Hadamard gate or not, Eve may be
listening! The trick is this: Alice and Bob only share that information with
each other after Bob has received and measured its qubit. At that moment,
Eve can’t do anything anymore. If Eve would have known the information
upfront, she would be able to manipulate the system, since she could
easily reproduce the qubit from Alice if she knew whether Alice applied a
Hadamard gate or not. But she had to make a decision before sending a
gubit to Bob. And that decision was made, based on a measurement of the
qubit she intercepted from Alice. Hence, all information in that qubit is
destroyed. Pity for Eve, but the public information is useless.

When Alice and Bob have each others information about the Hadamard gates, they simply
remove the values measured on qubits that had non-matching Hadamard gates. The remaining
values are guaranteed to be correct.

IMPORTANT Alice and Bob only share the information about the Hadamard gates, they
do not share the initial value (in Alice’s) case, or the measured value (in
Bob’s) case. They know though that those values are equal, and they can
use those as part of a shared secret key.
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Typically, Alice and Bob use a part of their secret key to check if the connection was
eavesdropped or not. In case Eve isn’t discouraged by the fact that she can’t get the original key
without getting noticed, she might still try to do so. But she will have to make wild guesses about
whether to apply a Hadamard gate or not. In case she makes the wrong guess, she will send a
qubit to Bob that is in a different state from the one Alice would have sent to Bob. Hence, there
is a chance that Bob will measure a different value than Alice has been using. If both or none of
Alice and Bob applied a Hadamard gate, but if the initial value from Alice is different from the
measured value by Bob, Alice and Bob know that the connection was tampered with.

8.6 QKD in Java

The combined knowledge obtained in the previous sections allow you to create a Quantum Key
Distribution application in Java. The example in ch08/ bb84 does exactly this.

8.6.1 The code

We won’t paste the whole sample code, but will highlight a few important snippets.

INITIALIZE SOME VARIABLES

First of all, we initialize a number of arrays:

final int SIZE = 8;

bool ean[] aliceBits = new bool ean[ SI ZE] ;
bool ean[] bobBits = new bool ean[ S| ZE] ;
bool ean[] aliceBase = new bool ean[ S| ZE] ;
bool ean[] bobBase = new bool ean[ Sl ZE] ;

00000

©  Weare going to create a key with maximum 8 bits. Keep in mind that we will have
to remove the bits for which Alice and Bob used a different strategy (Hadamard or
not), so on average the real length of the key is half of the size specified here.

@ Inthisarray, Alice keeps the random bits she generates, and those serve for the
base she uses.

In this array, Bob stores the bits he measured.

When Alice decides to apply a Hadamard gate for a specific qubit, the
corresponding valuein this array will be set to true.

©  When Bob decides to apply a Hadamard gate for a specific qubit, the
corresponding value in this array will be set to true.

PREPARE THE DIFFERENT STEPS

The quantum application we create contains different steps. The first sets of these steps are
performed by Alice, and the second steps are performed by Bob.

Step prepareStep = new Step();
Step superPositionStep = new Step();
Step superPositionStep2 = new Step();
Step nmeasureStep = new Step();

0000
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9 Inthisstep, Alice will apply aPauli-X gate in case the random bit under
considerationis 1.

In this step, Alice will apply a Hadamard gate (or not)
In this step, Bob will apply a Hadamard gate (or not)

In this step, Bob will measure the result

FILL THE DIFFERENT STEPS

For each bit that can be part of the key, all steps will be created. Three of those steps depend on
random values.

Based on a first random value, a Pauli-X gate will be applied to the pr epar eSt ep. There is 50%
chance that the Pauli-X gate will be applied, causing the qubit to be in the |1) state and 50%
chance that no gate will applied, and the qubit will stay in |0).

The second random value defines whether or not a Hadamard gate is applied to the
super Posi ti onSt ep, which is executed by Alice.

The next step, super Posi ti onSt ep2 uses a random value to decide wether or not Bob applies a
Hadamard gate.

for (int i =0; i < SIZE, i++) {
aliceBits[i] = random next Bool ean();
if (aliceBits[i]) prepareStep.addGate(new X(i));
al i ceBase[i] = random next Bool ean();
if (aliceBase[i]) superPositionStep.addGat e( new Hadamard(i));

(XXX

bobBase[i] = random next Bool ean(); (5)
if (bobBase[i]) superPositionStep2. addGat e( new Hadamard(i));

/'l Finally, Bob nmeasures the result
measur eSt ep. addGat e( new Measurenent (i)); (6]

©  Thefollowing steps will be applied for each bit that is a candidate for the secret
key
A random value determines whether Alice’ s bit will be 0 or 1.
If Alice'shitis1, apply aX gateto the |0 state

A random value (that will be stored in the aliceBase array) decides whether or not
Alice will apply aHadamard gate

©® A random value (that will be stored in the bobBare array) decides whether or not
Bob will apply a Hadamard gate.

©  Finaly, Bob measures the qubit.
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EXECUTE THE APPLICATION

We now have to execute the application in our quantum simulator. This is done using the
techniques you learned in previous chapters.

Quant unExecut i onEnvi ronnment si nul ator =
new Si npl eQuant unExecut i onEnvi ronment () ;
program addSt ep( prepareSt ep) ;
program addSt ep(super Posi tionSt ep) ;
program addSt ep(super Posi ti onSt ep2) ;
program addSt ep( measur eSt ep) ;

©e

Result result
Qubit[] qubit

si mul at or . runPr ogr an{ pr ogr anj ;
resul t.get Qubits();

oo

Create a QuantumExecutionEnvironment
Add the steps created in the previous phases

Run the quantum program on the simulator

© © © o

Assign the resultsto an array of qubits

PROCESS THE RESULTS

Now that the program is executed, and the results are in, we can process those results. In this
phase, we will decide whether a specific bit should be part of the key, both for Alice and Bob.

int[] measurenment = new int[SlIZE];

for (int i =0; i < SIZE i++) { (1]
measurenment[i] = qubit[i].neasure();
bobBits[i] = measurenent[i] == 1; (2
if (aliceBase[i] != bobBase[i]) { (3]

Systemerr.println("D fferent bases used, ignore values "+aliceBits[i]+" and
"+ bobBits[i]);

} else { (4]
Systemerr.println("Same bases used. Alice sent " + (aliceBits[i] ? "1"
"0") + " and Bob received " + (bobBits[i] ? "1" : "0"));
key. append(aliceBits[i] ? "1" : "0"); (5]
}

9 For each candidate-bit, we run the following steps that eval uate whether the bit
should be part of the key or not.

Set the bit in the bobBits array to the measurement value of the qubit.

If the random bases chosen by Alice and Bob for this bit are different, ignore
values and print a message.

©  Otherwise, Alice and Bob used the same Hadamard strategy. The inital value from
Alice matches the measurement from Bob.

©®  Thisbit now becomes part of the secret key
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8.6.2 Running the application

The results shown when running this application vary each time you run the application, which
you can do from the ch8/ bb84 directory with the command

m/n cl ean javafx:run

The following output is just one example of the many possibilities:

Sane bases used. Alice sent 1 and Bob received 1
Sane bases used. Alice sent 0 and Bob received 0
Sanme bases used. Alice sent 1 and Bob received 1
Di fferent bases used, ignore values false and true
Sane bases used. Alice sent 1 and Bob received 1
Di fferent bases used, ignore values false and true
Sane bases used. Alice sent 1 and Bob received 1
Di fferent bases used, ignore values true and true
Secret key = 10111

[ oK ) StrangeFX

o o
alal 10> H Hgg M
a1 o-

Figure 8.18 Resulting output obtained by running the bb84 application

From both the text output and the graphical output, it is clear that Alice and Bob used the same
Hadamard strategy for bits 0, 1, 2, 4 and 6. Those 5 bits are thus part of the secret key. The other
bits are useless since Alice and Bob used a different Hadamard strategy (either Alice applied one
and Bob didn’t, or the other way round).
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8.7 Introducing Simulagron

So far, all our code runs in a single Quantum Execution Environment. Doing so, we could
explain the concepts that lead to the BB84 algorithm. In practice, though, secure communication
requires two different nodes. We need to be able to send a qubit from one node to another if we
want to generate a shared secret key between those two nodes. This requires a distributed version
of a Quantum Execution Environment.

An interesting project that provides a way to transfer qubits from one node to another is the
SimulaQron project from QuTech (qutech.nl). One of the goals of QuTech is to build a network
of quantum computers, using fiber optic cables. From the code we have shown so far, it should
be clear that even with a very limited number of qubits available, quantum networking already
has huge benefits. A single qubit can be used to generate a shared secret bit between 2 parties.
By repeating this process as often as required, a shared secret with as many bits as required can
be obtained.

While work on the physical quantum network is being carried out, QuTech also worked on a
protocol stack similar to a protocol stack of classical networking. Such a stack makes abstraction
of the hardware implementation, and shields developers from the low-level implementations.
Developers using the top-layer of such a protocol stack can create applications that can then run
on different implementation of the protocols. This is not only useful to have the same code
working with different kinds of hardware, it also allows code to be leveraging simulators while
the hardware is not yet available.

SimulaQron provides a protocol called CQC that allows high-level programming languages (e.g.
Java, Python, C,...) to interact with the implementation, and to leverage quantum networking
functionality.

Support for the CQC protocol is being added to the Strange simulator. As a consequence,
applications you write using Strange will work on a distributed system. In a first phase, this will
be a network containing quantum simulators, but in a later phase --- once there will be real
quantum nodes in a network --- this should also work on real hardware.

The current plan is to have a demo with a real quantum network connecting four Dutch cities in
2020.

8.8 Summary

This chapter explained one of the most interesting usecases of quantum computing that does not
need a large number of qubits, and that has a potential to be used on a wider scale in the not too
distant future.
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In this chapter,

you learned the security issues related to sending bits via a phyiscal connectivity layer
you learned the basics of secure communication using a one-time pad

you created a quantum algorithm that generates a one-time pad

you gradually fixed the security issuesin this algorithm
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Deutsch-Jozsa algorithm

This chapter covers

different ways to obtain information from classical functions

the difference between function evaluations and function properties
quantum gates that correspond to classical black box functions

the Deutsch algorithm

the Deutsch-Jozsa algorithm

9.1 When the solution is not the problem

Do you know if the number 168153 can be divided by 3? There are a number of ways to find
out. For example, you can simply take a calculator and obtain the result:

168153 / 3 = 56051

The result of the division is 56051. But that was not the question. Actually, we don’t care about
this result. Fortunately, thanks to this evaluation, we also know the real answer. There are no
digits after the decimal point, hence we can conclude the number can indeed be divided by 3.

There is another simple approach to find the answer to this question, and you might know this
simple trick: take the sum of the individual digits that compose the number, and see if that sum
can be divided by 3. If so, the original number can be divided by 3 as well. Let’s to that:

1+6+8+1+5+3=24
Since 24 can indeed be divded by 3, we can conclude that 56051 can be divided by 3 as well.

The first approach (using the calculator) gave us a result of a division, and it provided us with the
real answer. The second approach (sum of the individual digits) only provided the real answer,
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and not the outcome of the division.

The relevance of this is that in many cases, we are interested in a specific property of something
(e.g. a number or a function). We are not interested in a function evaluation, but we somehow
want to obtain information about the function. Evaluating the function is often the easiest way to
do so, but it can be more efficient to indirectly look at the properties of the function, and draw
conclusions from there.

This is of particular interest in quantum computing. A quantum computer with » qubits that
needs to examine a specific function, can only evaluate the function one by one. Applying the
quantum circuit to a given specific set of input qubits, will result in a modified state of these
qubits. Measuring them gives a particular result, and if you want a new result, you need to run
the circuit again. Even though we can apply Hadamard gates to the input qubits to bring them in
superposition — which allows to evaluate the qubits in the 0 and the 1 state simultaneously —
we can not magically create new qubits that will hold the information of the different cases. This
is shown in Figure 9.1 for a system with 2 qubits.

Figure 9.1 A quantum system with 2 qubits can do many evaluations, but only 2 qubits
can be measured.

The internal computations can contain the equivalent of many evaluations, but we can not obtain
those simultaneously.

We are limited to a result of n qubits. But that is often enough to solve problems. In the case of
our number being a multiplicator of 3 or not, a single qubit is enough for storing the answer. We
don’t need to evaluate the division function.

In this chapter, we will show how this approach is done using quantum computing. We will
investigate a property of a function f acting on » bits, without being interested in the individual
function evaluations. We will show that retrieving the property in the classical way requires 2"/
+ [ function evaluations. With the quantum algorithm, the property can be obtained with a single
evaluation.

The functions we will use are very simple, and there is no direct use case of this problem. But it
demonstrates a very important aspect of quantum computing, and it explains why quantum
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computing is often associated with "exponential" complexity. You can easily see that the more
input bits the function has, the harder it becomes to solve the problem in a classical way. The
number 7 is indeed in the exponent, and as we showed in chapter 1, exponential functions
quickly result in huge values. If a quantum algorithm can fix the same problem in just a single
evaluation (or in general, in less than an exponential number of equations), this is a huge
advantage for a quantum computer.

We will gradually come to the algorithm that achieves this. We will follow the approach shown
in Figure 9.2.

Classical Property?

function
Restriction: Reversible gates!

Quantum
oracle

Property!

!

— |y>

Quantum
oracle

Figure 9.2 Finding the property of a function, approach

First, we’ll talk about properties of functions, and how to obtain them in a classical way. Next,
we convert the functions into quantum blocks called oracles. We will show that there are some
requirements in doing this. Once you can create a quantum oracle that represents a classical
function, this oracle can be used in a quantum circuit. Evaluating this quantum circuit once
results in the property of the function we are looking for.

9.2 Properties of functions

In most typical cases where functions are involved, you are interested in finding the result of a
function. For example, consider the function

¥ =

If we want to know the value of this function for e.g. x = 4 and x = 7, we need to evaluate the

function:

y4) =#=16
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Y(7) =72 =49

In some cases though, the function evaluations are not important, but the characteristics of the
functions are. In this area, quantum algorithms can be helpful. An example that we will discuss
in a later chapter, is the periodicity of a function. We are not interested in the individual
evaluations of a function, but we are interested in the periodicity. A periodic function is a
function where the same pattern of values comes back with a fixed periodicty,

Table 9.1 Table example of a periodic function

X 0 1 2 3
y 7 9 5 7 9

From the table above, you can tell that the function has a periodicity of 3: for every value of x,
the result of the function is the same as the function applied to x + 3.

This is an example where the property of a function can be more interesting than the function
evaluations themselves.

9.2.1 Constant and Balanced functions

In general, the functions we consider are noted as f(x) where f'is the function that operates on an
input variable called x. The evaluation of a function for a specific input is also called the result
and sometimes noted as y, where y = f{x).

In this chapter, we start with a very simple family of functions, that have simple properties. We
will start with a function that has only a single input bit, and we will extend that later to a
function with z input bits. In all cases, the result of the function is always either 0 or 1.

The functions we will discuss here have a special property: they are either balanced functions or
constant functions.

A function is called constant in case the result is not dependent on the input. In our case, that
means that the result is either 0 for all input cases, or 1 for all input cases.

A function is called balanced in case the result is 0 in 50% of the cases, and 1 in the other cases.

The Deutsch algorithm, which we will discuss shortly, deals with a function, called $f$, that
takes a single bit (a boolean value) as its input, and it produces a single bit as well. The function
thus only operates on either '0' and '1' and it result is either '0' or '1",

The combination of 2 input options and 2 output options leads to 4 possible cases for this
function, which we will name f7, /2, f3 and f4:

fI:

©Manning Publications Co. To comment go to liveBook

https:/lilel@ek s@antey RanHAsuri@a o esnpan@iordieur peeiidscussion



173

f(0) = 0and f(1) = 0

12
f(0) = 0 and f{1) = I
3
f(0) =1 and f(1) = 0
14

f()=1andf(I) =1

From those defintions, it appears that /7 and f4 are constant functions, and f2 and /3 are balanced
functions.

In many classical algorithms, it is important to know the output of a function for specific values.
In many quantum algorithms, on the other hand, it is useful to know the properties of the
function under consideration.

This is part of the "different thinking" that is required when thinking about quantum algorithms.
Thanks to superposition, a quantum computer can evaluate many possibilities simultaneously,
but since obtaining a result requires a measurement, the superposition is gone and we are back to
a single value. Hence, the added value is in the function evaluation, and not in the result of those
function evaluation.

In the Deutsch algorithm, a function is provided, but we don’t know what function it is. We
know it is f1, f2, f3 or f4 but that’s all we know. We are now asked to find out if this function is
constant or balanced. Our task is not to find out if the provided function is f1, 2, /3 or f4 . Hence,
we are asked about a property of the function, not about the function itself.

How much function evaluations do we need before we can answer this question with 100%
certainty? If we only make a single evaluation (we only calculate either f(0) or (1)), we don’t
have enough information yet.

Suppose we measure f{()) and the result is 1. From the table above, it seems that in this case, our
function is either f3 (which is balanced) or f4 (which is constant). Hence, we don’t have enough
information. In case the result of measuring f(0) is 0, the table above shows that the function is
either f7 (which is constant) or f4 (which is balanced). Again, this proves that measuring f(0) is
not enough to conclude whether the function is constant or balanced. It can be either.

EXERCISE 9.1
you can prove that measuring f(1) is not sufficient either.
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It turns out we need 2 classical function evaluations before we can determine wether the
provided function is constant or balanced.

Let’s write a Java application that demonstrates this.

Listing 9.1 Two evaluations are needed to declare a function constant or balanced

static final List<Function<lnteger, |nteger>> functions = new ArrayList<>();

static {
Function<l nteger, Integer> f1
Functi on<l nteger, Integer> f2

(I'nteger t) -> 0; o
(Integer t) -> (t == 0) ?2 0 : 1;
Functi on<l nteger, Integer> f3 (Integer t) -> (t == 0) ?2 1: O;
Functi on<l nteger, Integer> f4 (I'nteger t) -> 1;
functions.addAl | (Arrays. asList(f1, f2, 3, f4));

}

public static void main(String[] args) {
Random random = new Random();

for (int i =0; i < 10; i++) { (2
int rnd = random next|nt (4);
Function<lnteger, Integer> f = functions.get(rnd); (3]
int yo = f.apply(0); (4)
int yl = f.apply(1);
Systemerr.printin("f" + (rnd + 1 +" is a " 5]
+ ((y0 == yl) ? "constant" : "bal anced")
+ " function"));
}
}
©  We prepare the 4 possible functions. This step needs to be done only once.
@  Wewill do 10 experiments
©®  We pick arandom function, not knowing anything about its implementation.
©  Two function evaluations are performed, one for input 0 and one for input 1
e

If the results of those 2 evaluations are similar, the function is constant, otherwise
the function is balanced.

In this code snippet, we create the four possible functions in a static block. The reason we do this
is because we want to stress that the creation of the function, and the determination whether they
are constant or balanced should be considered as two independent processes.

After the functions are created, the application really starts. Inside the for loop, a random
function will be picked. Based on the two function evaluations, we can determine whether the
function is constant or balanced.

A possible output of this application is the following:

f4 is a constant function
f4 is a constant function
f3 is a balanced function
flis a constant function
f2 is a balanced function
f2 is a balanced function
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flis a constant function
f4 is a constant function
f3 is a balanced function
f2 is a balanced function

As expected, the application has the correct answers for every loop. But in every loop, we
performed 2 evaluations of the function. As we showed above, a single evaluation would not be
sufficient to conclude whether the function is balanced or not.

9.3 Reversible quantum gates

So far, we talked about classical functions and their properties. Before we can discuss the
quantum equivalent of those functions, we need to look into a requirement of quantum gates in
more detail.

In the previous chapters, you learned and used a number of quantum gates. These gates have
many similarities with gates you encounter in classical computing. However, there are some
fundamental differences.

Quantum gates are physically achieved using properties of quantum mechanics, and therefore
must obey to the requirements and restrictions that are related to quantum mechanics.

One of the key requirements for a quantum gate is that it should be reversible. This means that,
when a quantum gate is applied to a given begin status, there should exist another quantum gate
that brings the result back to the begin status. In a quantum system, information can not simply
disappear. The information that was in a system before a specifc quantum gate is applied, should
be recoverable.

All the gates we discussed so far are reversible. Let’s show that with a simple example: the
Pauli-X gate. The gate that brings a system back in its original state after a Pauli-C gate is
applied, is another Pauli-X gate.

We can explain this in two ways:

® experimental evidence
® mathematical proof

9.3.1 Experimental evidence

We will create a simple quantum application that applies a Pauli-X gate on a single qubit,
followed by another Pauli-X gate. Instead of only taking the special cases into account where the
qubit is either | 0> or | 1>, we aritifically initialize the qubit so that it has 75% chance to be
measured as 1.

The circuit is shown in Figure 9.3.
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Figure 9.3 Quantum program containing 2 Pauli-X gates

The code for this sample can be found in the sample repository under ch09/ r ever si bl eX and
the relevant snippet is shown in the listing below:

Listing 9.2 Two Pauli-X gates applied to a single qubit

Quant unExecut i onEnvi ronnent si nul ator =
new Si nmpl eQuant unmExecut i onEnvi ronnent () ;
Program program = new Progran(1);
Step step0 = new Step();
st ep0. addGat e( new X(0));

(X

Step stepl = new Step();
stepl. addGat e(new X(0));
program addSt ep( st ep0);
program addSt ep(stepl);
programinitializeQubit(O,.5);

Result result = sinmulator.runProgran(program;
Render er. showPr obabi | i ti es(program 1000);
Render er . r ender Progr an( pr ogran ;

©®@ © © ©

We create a quantum application with a single qubit

In thefirst step (step0), a Pauli-X gate is applied to the qubit

In the second step (stepl), another Pauli-X gateis applied to the qubit
The steps are added to the quantum program

© 6 © © ©

The single qubit isinitialized with an alpha value of 0. 5, which leadsto a
probability of 25% of measuring 0

(=]

The quantum program is executed

The statistical results of running this program 1000 times are rendered.

The result of running this circuit 1000 times is shown in Figure 9.4.
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Figure 9.4 Statistical results of a quantum program containing 2 Pauli-X gates

As expected, after applying 2 Pauli-X gates, the probability of measuring 0 is about 25%, and
there is about 75% chance that we will measure 1. This matches the artificial initial value that we
applied to the qubit.

9.3.2 Mathematical proof

In Chapter 4, we explained the mathematical equivalent of applying a gate to a qubit : we
multiply the gate matrix and the probability vector of the qubit. Let’s assume the initial qubit is
described as follows:

Y =al0 > +6]1 >

or in vector notation:
v=l3
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Applying two Pauli-X gates to this qubit brings it in the following state:

WZXX@]

where X is the matrix defining the Pauli-X gate. From Chapter 4, we know the structure of the
matrix, SO we can write

W = 0 1\ /0 1\ |«

' 1 0/\1 0/
Leveraging the matrix multiplication (which is explained in Appendix B), we can write this as
follows

=l DB

Hence, we have proven that the Pauli-X gate is indeed a reversible gate, and that the changes to a
quantum system caused by applying a Pauli-X gate can be undone by applying another Pauli-X
gate.

Now that you learned that the Pauli-X gate is a reversible quantum gate, you can use the same
technique to proof that the other gates you learned so far are reversible as well.

NOTE the gates we introduced so far have the special property that they are their
own inverse. This is not always true, and there is no restriction that a
guantum gate should be its own inverse.

9.4 Defining an Oracle

In many quantum algorithms, the term "oracle" is used. We will use an oracle when we create the
Deutsch algorithm as well. An oracle is used to describe a "quantum black box". Internally, it is
composed of one or more quantum gates, but we typically don’t know which gates. By querying
the oracle (e.g. by sending input and measuring the output), we can learn more about the
properties of the oracle. Because an oracle is composed of quantum gates, the oracle itself needs
to be reversible as well. An oracle can be considered as the quantum equivalent of the black-box
functions we discussed earlier in this chapter. Both an oracle and a function perform some
calculations, but we don’t know the internal details about these calculations.

We will give an example of an oracle that is used in a simple quantum application. Using the

©Manning Publications Co. To comment go to liveBook

https:/lilel@ek s@antey RanHAsuri@a o esnpan@iordieur peeiidscussion



179

Strange simulator, you define an oracle by providing the matrix that is the mathematical
representation of the oracle.

Let’s consider the following snippet, which is taken from the sample in ch09/ or acl e

Listing 9.3 Introducing an oracle in quantum applications

Quant umExecut i onEnvi ronment si mul ator = new Si npl eQuant umExecut i onEnvi ronnment () ;
Program program = new Progran(2);

Step stepl = new Step();

st epl. addGat e( new Hadamard(1)); (2

Conpl ex[][] matrix = new Conplex[][]{ (3]
{ Conpl ex. ONE, Conpl ex. ZERO, Conpl ex. ZERO, Conpl ex. ZERG},
{ Conpl ex. ZERO, Conpl ex. ONE, Conpl ex. ZERO, Conpl ex. ZERC},
{ Conpl ex. ZERO, Conpl ex. ZERO, Conpl ex. ZERO, Conpl ex. ONE},
{ Conpl ex. ZERO, Conpl ex. ZERO, Conpl ex. ONE, Conpl ex. ZERC}

H
Oacle oracle = new Oracl e(matrix); (4]
Step step2 = new Step(); e

step2. addGat e(or acl e) ;

program addSt ep(stepl); (6]
program addSt ep(step2);

Result result = simulator.runProgranprogram; (7]
Render er. showPr obabi | i ti es(program 1000) ;
Render er . r ender Progr an( pr ogran) ;

We create a quantum program that requires 2 qubits

In afirst step, we apply a Hadamard gate to the first qubit

We create a matrix containing complex numbers.

We create an oracle based on this matrix

We create a second step in which the oracle is applied

Both steps are added to the quantum program

© ¢ © 6 © © o

The program is executed, and we display its circuit and the results of 1000 runs.

The circuit is shown in Figure 9.5.
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Figure 9.5 Circuit containing an Oracle

The result of running this circuit 1000 times is shown in Figure 9.6.
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Figure 9.6 Statistical results of a quantum program containing an oracle
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If you look at those statistical results, it seems that there are only 2 possible outcomes: | 00> or
| 11>. Remember from Chapter 5 that a circuit with 2 entangled qubits has the same
probabilities: there is 50% that we will measure | 00> and 50% that we will measure | 11>. This
is an indication that the Oracle we created, combined with the initial Hadamard gate, results in 2
entangled qubits. In Chapter 5, you created 2 entangled qubits by applying a CNot gate after a
Hadamard gate. Hence, we learn that the oracle we created behaves like a CNot gate. If we cheat,
and we look at the contents of the oracle, we see that indeed the matrix that is representing the
oracle matches the matrix of the CNot gate.

This exercise shows that we can apply oracles to quantum circuit. We can apply an oracle
Without knowing the internal details of the oracle.

9.5 From functions to Oracle

In the Deutsch algorithm, we will show that a single evaluation is enough to find out if a
provided function is constant or balanced. Before we can do that, we need to convert the classical
function into a quantum operation.

We can not simply apply a function to a qubit. Remember we explained that all quantum gates
need to be reversible. A function that, after being applied makes it impossible to retrieve the
original input, can not be used in a quantum circuit. Therefore, the function first need to be
transformed into a reversible Oracle.

IMPORTANT The creation of the function, and the creation of the oracle is should be
considered as a totally separated process. In the upcoming algorithms, we
assume someone created an oracle for us. The algorithm itself has no clue
about how the oracle was created, how complex or simple it is etc. This is
often a confusing part, since in order to demonstrate the algorithm, we
obvisouly need an oracle. However, the complexity to create the oracle
should not be considered as part of the complexity of the algorithm. Just
assume someone (yourself, another developer, a real piece of hardware, or
nature itself) created the oracle and provided it to you.

In this section, we will demonstrate how oracles can be created, that can then be used in the
Deutsch algorithm we explain in the next section. Similar to how a classical function is handed
to the classical algorithm, an oracle is handed to the quantum algorithm.

Every classical function that we described earlier in this chapter can be represented by a specific
oracle. Since we had 4 possible functions, we also have 4 possible oracles.

The general way to construct an oracle based on a function is shown in Figure 9.7.
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|x> — | x>

|la> — — |a @ f(x)>

Figure 9.7 Oracle used in Deutsch algorithm

In this appraoch, we have an input qubit called | x>, and an additional qubit named | a>

SIDEBAR Many quantum algorithms require additional qubits for making operations
reversible, or for storing temporary results etc. These qubits are often
called ancilla qubits. We often denote them as | a>

The oracle leaves the | x> qubit in its original state, and the | a> qubit is replaced by the XOR

operation between a and f (x) .
Let’s examine this oracle in a bit more detail. We will investigate how the oracle looks like for

the 4 functions that we defined before.

9.5.1 Constant functions

The first function, f7, is a constant function that returns 0 regardless of the input. Hence, since f{x
) = 0 for any value of x, the output status of the second wire can be simplified as follows:

afix)=a 0=a

The resulting oracle can thus be pictured as in Figure 9.8.

| x> — — x>

|la> — |a>

Figure 9.8 Oracle used in Deutsch algorithm for f1

In this case, the oracle is simply the identity matrix. Both | x> and | a> are unaltered between the
input and the output. The hidden logic inside the oracle can thus be represented by the scheme in

Figure 9.9.
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Bfl

Figure 9.9 Oracle circuit for f1

As a result, the matrix representing the oracle is written as

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
NOTE the circuit shown in 9.9 isn’t the only possible circuit that results in the

identity matrix. There are many other circuits that operate on 2 qubits and
return the 2 qubits in the same state. For example, applying 2 Pauli-X
gates on each qubit results in the exact same state. This is part of the black
box aspect of an oracle: we don’'t know the internal details, and we are
typically not interested in those. We want to investigate a specific property
of the oracle, not its internal implementation.

The fourth function, f4 is a constant function that always returns the value 1, regardless of the
input. As a consequence, the output of the second wire after applying the oracle can be written as
follows:

af(x)=a 0=a

The vertical bar above a variable indicates that this is the inverted variable, which in this case
corresponds to a Pauli-X gate being applied to | a>.

Hence, this oracle can schematically presented by Figure 9.10.

©Manning Publications Co. To comment go to liveBook

https:/lilel@ek s@antey RanHAsuri@a o esnpan@iordieur peeiidscussion



184

Bty

Figure 9.10 Oracle circuit for f4

The matrix corresponding to this oracle can therefore be written as

oo O O
_=o o O
o =~ o O

o O o =

9.5.2 Balanced functions

Let’s have a look at the second classical function, /2. This function is defined as follows:
f0) =0

) =1

This can also simply be written as

f(x) =x

Using this in the general description of the oracle, as shown in Figure 9.7, the scheme simplifies
to Figure 9.11.

| x> — — x>

la> — |a P x>

Figure 9.11 Oracle used in Deutsch algorithm for f2

This is exactly the state that would be obtained if the oracle has a C-NOT gate. Hence, a possible
circuit of the oracle corresponding to the /2 function is shown in Figure
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Figure 9.12 Oracle circuit for f2

The matrix representation of this Oracle is thus simply the matrix representation of the C-NOT

gate:
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
TIP As an exercise, you can now calculate the matrix representation of the
oracle corresponding to the f3 function. The result you should obtain is this:
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

9.6 Deutsch algorithm

The Deutsch algorithm requires only a single evaluation of the oracle in order to know whether
the function under consideration is constant or balanced.

Let’s start with a naive approach, and assume that all we need is to apply the oracle and measure
the result.

The code for this is in ch9/ appl yor acl e. Before we explain the algorithm, we first point to the
part of the code where the different oracles are created. As we stated before, the creation of an
oracle is not part of the algorithm that tries to find out if a function is balanced or not. Although
for practical reasons we create the oracle in the same Java class file as the algorithm, it should be
stressed that the creator of the oracle (who might now the outcome of the problem) and the
creator of the algorithm are not the same.
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From the previous section, it should be clear that there are 4 different types of oracles. There are
an infinite number of oracles that can be used to represent the simple functions we discussed in
the beginning of this chapter, but they all corresponds to one of the 4 gate matrices that we
showed in the previous section.

The algorithm will ask to pick a random oracle, and the code that constructs this random oracle is
shown in 9.4

Listing 9.4 Create an oracle

static Oracle createOracle(int f) { (1)
Conpl ex[ ][] matrix = new Conpl ex[ 4] [4]; (2]

switch (f) {

case 0: (3]
matri x[ 0] [0] = Conpl ex. ONE;
matri x[ 1] [1] = Conpl ex. ONE;
matrix[2][2] = Conpl ex. ONE;
matri x[ 3] [3] = Conpl ex. ONE;
return new Oracle(matrix);

case 1: (4]
matri x[ 0] [0] = Conpl ex. ONE;
matri x[ 1] [1] = Conpl ex. ONE;
matri x[ 2] [ 3] = Conpl ex. ONE;
matri x[ 3] [2] = Conpl ex. ONE;
return new Oracl e(matri x);

case 2: (5
matri x[ 0] [1] = Conpl ex. ONE;
matri x[ 1] [0] = Conpl ex. ONE;
matri x[2][2] = Conpl ex. ONE;
matri x[ 3] [ 3] = Conpl ex. ONE;
return new Oracl e(matrix);

case 3: (6]
matri x[ 0] [1] = Conpl ex. ONE;
matri x[ 1] [0] = Conpl ex. ONE;
matri x[ 2] [ 3] = Conpl ex. ONE;
matri x[ 3] [2] = Conpl ex. ONE;
return new Oracl e(matri x);

defaul t: (7]

throw new ||| egal Argunent Exception("Wong index in oracle");

©  When thisfunction is called, an integer needs to be provided indicating what oracle
type needs to be returned

In all cases, theresult isa4 by 4 matrix with complex numbers

In case the called provided 0, an oracle with the matrix corresponding to f1 will be
returned

©  |ncasethe called provided 1, an oracle with the matrix corresponding to f2 will be
returned

©  |ncasethe called provided 2, an oracle with the matrix corresponding to f3 will be
returned

©  |ncasethe called provided 3, an oracle with the matrix corresponding to f4 will be
returned
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9 |f wereach here, the caller provided awrong value, and we throw an exception.

Now that we have the code that returns us an oracle corresponding with a value we provide, we
can focus on the algorithm that should detect if the oracle is linked with a constant function or a
balanced function.

We start with the simple naive approach where we just apply the Oracle to 2 qubits that are
initially 0, and we hope that the result will tell us with 100% confidence if the underlying
function is balanced or not. The code for this is shown below:

Listing 9.5 Apply the oracle

static void try00() { (1]
Quant unmExecut i onEnvi ronnent simul ator = new Si npl eQuant unExecuti onEnvi ronment () ;
Program program = nul | ;

for (int choice = 0; choice < 4; choice++) { (2]
program = new Program 2); (3]
Step oracleStep = new Step(); (4]

Oracle oracle = createOracl e(choice);
oracl eSt ep. addGat e( or acl e) ;
program addSt ep(oracl eStep) ;

Result result = simulator.runProgran(progran; (5]
Qubit[] qubits = result.getQubits();

bool ean constant = (choice == 0) || (choice == 3); (6]
Systemerr.println((constant ? "C'" : "B") + ", neasured = "
+ qubits[0].measure() + ", " + qubits[1].neasure());

©  Thisfunction is called try00 as it applies the oracles to 2 qubits that are in their
initial state of | 0>.

We will iterate over the 4 possible oracle types
We create a quantum program that contains 2 qubits

We create the oracle corresponding to the loop index choice and add it to the
program

The program is executed, and the results are obtained

Based on the loop index choice we know if the oracle corresponds to a balanced or
constant function. We print that information together with the measurements of the
2 qubits.

The result of this application is shown below:

measur ed
measur ed
measur ed
measur ed

OmmWoO
(TITITIT
FPReE

O O oo
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Note that since we didn’t use superposition, these results are always the same.

Let’s investigate these results. There are 2 possible outcomes we can measure: the result is either
0, Oor1, O0.Unfortunately, a single result doesn’t tell us whether the function was constant (as
indicated by the C) or balanced (as indicated by the B). For example, if we measure 0, 0 the
function is either f7 or f2, but since the first is constant and the second is balanced, we don’t have
an answer to our question.

We can be more clever, and try to run the application again, but this time we first flip one of the
qubits, or both, to the | 1> state using a Pauli-X gate. This is shown in the code in the same file,
and it is a good exercise to create this code yourself before looking at the sample.

Doing so, we run 4 versions of our simple program, each version corresponding to a different
initial state of the 2 qubits. The result is shown below.

Use 00 as input

C, neasured = 0, O
B, neasured = 0, O
B, neasured = 1, O
C, neasured = 1, 0
Use 01 as input

C, neasured =1, 0
B, neasured = 1, 0
B, nmeasured = 0, O
C, nmeasured = 0, 0
Use 10 as input

C, neasured = 0, 1
B, neasured = 1, 1
B, neasured = 0, 1
C, neasured =1, 1
Use 11 as i nput

C, neasured =1, 1
B, nmeasured = 0, 1
B, nmeasured = 1, 1
C, neasured = 0, 1

If you analyse this result, you will conclude that none of those versions is sufficient to detect
wether the oracle corresponds to a constant or a balanced function by doing a single evaluation.

But so far, we didn’t use the powerful superposition. We will now do that.

Before we write the code for the algorithm, we show the quantum circuit that leads to the result
in Figure 9.13.
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Figure 9.13 Quantum circuit of the Deutsch algorithm

We start with 2 qubits. The first qubit is the one that will be evaluated. But instead of evaluating
twice, the first time in the state | 0> and the second time in the state | 1>, we apply a Hadamard
transform to it to bring it in a superposition. You can think of this that this allows us to evaluate
both possible values in a single quantum step.

The second qubit, which is initally | 0> as well, is first flipped into | 1> by applying a Pauli-X
gate. Both qubits are then used as input to the Oracle we discussed in the previous section. After
the Oracle has been applied, we discard the second qubit. On the first qubit, a Hadamard gate is
applied, and the qubit is measured. If the measurement is 0, we are guaranteed that the function
that is represented by the oracle is balanced. If the measurement is 1, we know that the
considered function is constant.

It can be proven mathematically that the probability to measure 0 for the first qubit after the
circuit is applied is given by

(% ((_1)f(0) N (1)f(1)))2

In case f'is a constant function, this will always result in 1.
In case f'is a balanced function, this will always result in 0.

The interesting part of this algorithm is that we managed to make the first qubit dependend on
the evaluation of all values. We don’t have the measurements for all these evaluations, but that
was not the original question. The original goal was to determine if a given function is constant
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or balanced.

We will now show the code that implements the algorithm:

® © © ©¢ ¢ © 6 © o ©

Quant unmExecut i onEnvi ronnment si nul at or = new Si npl eQuant unExecut i onEnvi ronnent () ;
Random random = new Random() ;
Program program = nul | ;
for (int i =0; i < 10; i++) {

program = new Program 2);
Step step0 = new Step();
st ep0. addGat e(new X(0));

© © oo

Step stepl = new Step();
st epl. addGat e( new Hadamard(0));
st epl. addGat e( new Hadamard(1));

Step step2 = new Step();

int choice = random nextlInt(4);
Oracle oracle = createOracl e(choi ce);
st ep2. addGat e(or acl e) ;

X

Step step3 = new Step();
st ep3. addGat e( new Hadanard(1)); (7]

program addSt ep( st ep0) ; (8]
program addSt ep(stepl);

program addSt ep(step2);

program addSt ep( st ep3);

Result result = sinmulator.runProgran(program; (9]
Qubit[] qubits = result.getQubits(); (10}
Systemerr.println("f = "+choice+", val = "+qubits[1].nmeasure());

The following loop will be executed 10 times, each time with arandom oracle.
We create a program with 2 steps

In afirst step, we apply aPauli-X gate to the first qubit

In the second step, we apply Hadamard gates to both qubits

A random oracle is choosen (from a predefined list)

The oracle is added to the quantum circuit

Another Hadamard gate is applied to the second qubit

The steps are added to the quantum program

The quantum program is executed

The second qubit is measured, and based on its value we know the oracle
corresponded with either a constant or a balanced function.
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9.7 Deutsch Josza algorithm

The Deutsch algorithm shows that a specific problem that requires 2 evaluations in a classical
approach can be solved by a single evaluation using a quantum algorithm. While this may sound
a bit disappointing, the principle is very promising. The Deutsch algorithm can easily be
extended to the Deutsch Josza algorithm, in which the input function is not operating on a single
boolean value, but on n boolean values.

In this case, the function can be represented as
Jxp X, X, )

which indicates that the function uses # bits that are either '0' or '1' as input. We are give such a
function, and we are told that again the function is either constant (which means it always returns
'0' or it always returns '1') or balanced (which means in half of the cases it returns '0' and in the
other half it return '1").

The Deutsch algorithm is a special case of this situation, where n = /. In that case, that are only 2
possible input scenario’s. In case n = 2, there are 4 possible input scenarios. In general, there are
2" scenarios when there are n input bits.

How much classical evaluations do we need to do before we really know 100% certain that the
function is either constant or balanced? Suppose that we evaluate half of the possible scenarios
(hence, 2/2 which is 2*77). If at least one of the results is 0 and at least one of the results is /, we
know that the function is not constant, so it must be balanced. But what can we conclude in call
all evalutions resulted in the value '1'? In that case, it looks like the function is constant. But we
still need one additional evaluation, as there is a probability that all the other evaluations will
result in '0'. Hence, in order to be 100% certain, a function with n bits as input requires 2"/
evaluations before we can conclude that the function is either balanced or constant.

However, using a quantum circuit similar to the one in the Deutsch algorithm only a single
evaluation is required. The importance of this is that it shows that quantum algorithms are great
for problems that require exponential complexity using a classical approach.

The Deutsch Josza algorithm is very similar to the Deutsch algorithm. It is shown in
ch09/ deut schj ozsa and the relevant snippet is shown below:

static final int N= 3; (1]

Quant unExecut i onEnvi ronnment si mul ator = new Si npl eQuant unExecut i onEnvi ronnment () ;
Random random = new Randomn() ;
Program program = nul | ;
for (int i =0; i < 10; i++) {
program = new Progran( N+1); (2]
Step step0 = new Step();
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st ep0. addGat e(new X(N)); (3]

Step stepl = new Step();

for (int j =0; j < NtL; j++) { o
st epl. addGat e( new Hadanmard(j));

}

Step step2 = new Step();

int choice = random nextlInt(2);

Oracle oracle = createOracl e(choi ce); (5
st ep2. addGat e(oracl e);

Step step3 = new Step();
for (int j =0; j <N j++) {

st ep3. addGat e( new Hadamard(j)); 6]
}

program addSt ep( st epO0) ;
program addSt ep(stepl);
program addSt ep(step2);
program addSt ep( st ep3);

Result result = sinulator.runProgran(progran; (7]
Qubit[] qubits = result.getQubits();
Systemerr.println("f = "+choice+", val = "+qubits[0]. measure());

Here we define how many input bits we use (in this case, we use 3 input bits).

©®  We create a progam with N+1 qubits. We need N qubits for the input bits, and an
additional ancilla qubit

© A Pauli-X gateis applied to the ancilla qubit

© A Hadamard gateis applied to all qubits, bringing them into superposition.

©® A random oracle is added to the circuit.

O A Hadamard gateis applied to all input qubits (not to the ancilla qubit)

@

The program is executed and the result of the first qubit is measured.

As an exercise, you can proof that the Deutsch-Jozsa algorithm is exactly the same as the
Deutsch algorithm in case N = 1.

The circuit for this algorithm, in case we have 3 input qubits, is shown in Figure 9.14.
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[ NON StrangeFX
q[0] 10>
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q[3] 10>

Figure 9.14 Quantum circuit of the Deutsch-Jozsa algorithm

If we apply this circuit, it can again be proven that the probability of measuring 0 in the first
qubit is given by the following equation:

Similar to the Deutsch algorithm, in case f{x) is a constant function, this equation shows the
probability to measure 0 on the first qubit is 100%.

In case f(x) is a balanced function, the first qubit will always be measured as 1 (as the probability
to measure 0 is null).

The code in the sample will randomly pick one of 2 predefined Oracles. The first oracle
corresponds to the Identity gate, and that corresponds to a constant function that always returns
0. The second oracle corresponds to a CNot gate, where the ancilla qubit is swapped in case the
last input qubit is 1.

Again, our goal is not to create those oracles. You can assume that these are somehow provided
to you, and you have to find out of these oracles correspond to either constant or balanced
functions.
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9.8 Summary

In this chapter, you created the Deutsch-Jozsa algorithm. While there is no direct practical usage
of this algorithm, you achieved a major milestone. For the first time in this book, you created a
quantum algorithm that can execute a task much faster than a corresponding classical algorithm.
The real speedup can only be seen if you use a real quantum computer, but the algorithms you
created clearly show that a single evaluation is required to fix a specific problem, whereas in

classical computing an exponential number of evaluations is required.

Two very important but challenging parts of quantum computing are

to come up with quantum algorithms like this that are proven to be faster than
corresponding classical algorithms

to find practical use cases for such algorithms.

In the next chapter, we will discuss two algorithms that satisfy these requirements.

In this chapter,

you learned that problems can be solved without calculating end results
you learned the difference between function evaluations and function properties

you explored balanced and constant functions, and wrote a classical algorithm to detect
whether a provided function is balanced or constant

you learned how to convert a classical function into a quantum oracle

you wrote a quantum algorithm that detects whether a supplied oracle correspondsto a
balanced or a constant function.
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Grover’s Search Algorithm

This chapter covers

the positioning of Grover's search algorithm relative to existing data storage systems
an explanation of cases and problems where Grover’'s search may be applicable.
classical examples showing cases where Grover’s search could be applicable too
how to use Grover’s search from classical Java code

an intuitive explanation on the internal working of Grover’s search algorithm

In this chapter, we will answer two important questions that developers have:

1. Whenisit agood ideato use Grover’s search algorithm?
2. How does the algorithm work?

Grover’s search algorithm is one of the most popular and well-known quantum algorithms.
Despite its name, this algorithm is not really a replacement for search algorithms that are used
today in classical software projects. In this chapter, we will explain what kind of problems could
benefit of Grover’s search algorithm. After reading this chapter, you will be able to determine if
a particular application you are dealing with can leverage Grover’s search algorithm. If so, you
can immediately use the classical API in Strange that allows to use Grover’s algorithm.

10.1 Do we need yet another search architecture?

There are many excellent libraries, protocols, techniques available for searching structured and
unstructured data systems. Grover’s search algorithm doesn’t compete with those technologies.

10.1.1 Traditional search architecture

Searching a database is one of the most popular tasks delegated to computers. Many IT
applications are architected in a 3-tier approach, as shown in Figure 10.1:
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User Interface
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Business Logic
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Figure 10.1 Typical three-layered architecture for classical applications.

The 3 layers that are involved in this approach are

® auser interface (or presentation layer) alows interaction, requests input and renders
output. Thisistypically a standalone desktop application, a mobile app, or a website.

* amiddletier dealswith businesslogic, rules, and processes. Thistier handles requests
from the presentation layer, and might require access to data in order to process incoming
requests.

® thedatalayer makes sure al datais stored and retrieved in data storages. Very often, the
data is made available via a devel oper-friendly API, that allows to search or modify data
based on different criteriain a performant way.

In many, the middle tier needs to query the data layer, to find some specific data, based on
specific requirements. The quality and performance of many applications strongly depends on
how flexible, reliable and performant these queries are handled. Therefore, the area of data
storage and retrieval is a very important one in todays IT industry.

There are many different approaches to store and retrieve data, and this domain is constantly
evolving. There are relational and non-relational databases, and SQL versus NoSQL approaches.
Quantum Computing, and Grover’s search algorithm in particular, does not provide a new
architecture for storing and retrieving data.

CAUTION Although the name Grover’s search algorithm implies it deals with search
techniques, it does not cover the aspects that are typically discussed when
talking about search architecture.

As a consequence, Grover’s search algorithm is not a replacement for existing search software. It
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can be useful, however, in existing or new software libraries and projects that implement search
functionality. The algorithm can thus be used in different database techniques.

10.1.2 What is Grover’s search algorithm?

Now that we discussed what Grover’s search algorithm is not about, it is probably relevant to
explain what it is about then. We will briefly mention this now, and the link between search
applications and Grover’s algorithms will become clear in the subsequent sections.

SIDEBAR Suppose we are provided a black box that requires an integer number as
input, and that will return an output. The output is always 0, except for one
specific input value (often noted as w), in which case the output is 1.
Grover’s search algorithm allows to retrieve this specific input value in a
performant way.

The concept of the black box is shown in Figure 10.2.

{0, 1,.., N} {0,1}

Figure 10.2 Black box returning either 0 or 1, based on an integer number.

Somehow, the black box checks if the provided input equals w. If so, the output will be 1.
Otherwise, the output will be 0. It is important to realise that we don’t know how the black box
works internally. It might contain a very simple or a very complex algorithm. You have to
assume someone created the black box, and handed it over to you — you were not involved in
how it is created. Indeed, if you were the creator of the black box, there would be no point in
writing algorithms to retrieve the value of w, as you would have used that value to create the
black box.

Somehow, the black box contains information about the value w, and by querying it in a smart
way, Grover’s algorithm is capable of retrieving that value.

The input of Grover’s search algorithm is not a number, a search query, a SQL string,... but it is
the black box that we just discussed. This is explained in Figure 10.3.
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Figure 10.3 Grover’s search algorithm takes a black box as input, and returns the number
w that causes the black box to evaluate to 1.

We will now explain how Grover’s algorithm can help with traditional search problems. We will
start with a classical search problem, and refine that until we are at the point where we can

Grover’s

Search
Algorithm

introduce Grover’s search.

10.2 Classical search problems

Most enterprise IT cases use a number of databases with tables and rows. For demo purposes, we
create a simple data storage containing people, and we store their age and country. The following

table describes our data:

Table 10.1 Table data used in our samples

198

age country
Alice 42 Nigeria
Bob 36 Australia
Eve 85 USA
Niels 18 Greece
Albert 29 Mexico
Roger 29 Belgium
Marie 15 Russia
Janice 52 China

Search applications can leverage this data to provide answers to questions like these:

We will create an application that answers one specific question:

Who is 36 years old and livesin Australia?

How many of those people livein Russia

I's there someone named "Joe" who livesin Greece?
Give me the names of all people older than 34 years.

Find the person who is 29 years old and lives in Mexico

©Manning Publications Co. To comment go to liveBook

https://lilel@er s@antay DaiAARcRI@arthe esfpanr@ifordiee Bee/discussion




199
From the table above, you can see that the answer to this question is Al bert .

We will first address this question using the classical approach. Next, we will reformulate the
question, so that we can deal with it in a more functional approach, as this comes closer to
Grover’s algoritm. Finally, we will use Grover’s algorithm to implement the functionality for this
search. This corresponds to the following mental model:

Functional
Search

Quantum
Search

Figure 10.4 From SQL search to quantum search.

After reading this chapter, you will have a good idea about when Grover’s search algoritm might
be a good fit in your projects, and when it is less relevant.

10.2.1 General preparations
The upcoming samples share common code, and we will not repeat this common code in each
sample.
THE PERSON CLASS

Before we start writing the search functionality, we will define the data we are talking about. All
rows in the table represent a person, hence we create a Java class named Per son
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Listing 10.1 Definition of a Person

public class Person {

private final String nane;
private final int age;
private final String country;

© 000

public Person(String name, int age, String country) {
t hi s. name = nang;
this. age = age;
this.country = country;

}

public String getName() { (5
return this.nane;

}

public int getAge() { (6]
return this. age;

}

public String getCountry() { (7
return this.country;

}

A person has aname

A person has an age

A person livesin acountry

When a Person object is created, the three properties need to be defined
The class provives a method for returning the name of the person.

The class provives a method for returning the age of the person.

© 6 © 6 © © o

The class provives a method for returning the country of the person.

We will use this Person class in all upcoming samples.

CREATING THE DATABASE

While there are a large number of high-quality database libraries available in Java, we will stick
to a very simple database representation in this sample. All instances of the Per son class will be
stored in a simple Java Li st object, since this is a standard class in the Java platform and we
want to avoid introducing dependencies that are not essential to understand quantum computing.
As we mentioned before, the goal of Grover’s search algorithm is not to create another classical
database library. At the contrary, we will explain the algorithm without depending on a particular
type of database.

The following code snippet will populate our database: we simply add a number of Per son
instances into the Li st that is then our data store.
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Listing 10.2 Creating the database

Li st <Per son> pr epar eDat abase() {
Li st <Per son> persons = new Li nkedLi st<>();
persons. add(new Person("Alice", 42, "N geria"));
per sons. add(new Person("Bob", 36, "Australia"));
per sons. add(new Person("Eve", 85, "USA"));
per sons. add(new Person("Niels", 18, "Greece"));
persons. add(new Person("Al bert", 29, "Mxico"));
per sons. add(new Person("Roger", 29, "Belgiunt));
persons. add(new Person("Marie", 15, "Russia"));
per sons. add(new Person("Jani ce", 52, "China"));
return persons;

You will use this method in all our samples. When you invoke this method, you will receive a
Li st of Per son items that match the predefined table at the beginning of this chapter.

10.2.2 Searching the list

We now write the code for the typical approach for searching our data store for an answer to the
original question:

Find the person who is 29 years old and lives in Mexico

Given a list of persons who might be the answer to this question, the following approach iterates
over all persons until the one satisfying the criteria is detected:

Per son fi ndPersonByAgeAndCount ry(Li st <Person> persons, int age, String country) {

bool ean found = fal se; (1]
int idx = 0; (2]
while (!found && (idx<persons.size())) { (3]
Person target = persons. get (idx++); o
if ((target.getAge() == age) && e
(target.getCountry().equal s(country))) {
found = true; (6]
}
}
Systemout.println("CGot result after "+idx+" tries"); (7]
return persons. get (idx-1); (8]

We keep a boolean variable that indicates if we already got the result
We also keep an index that tells us the position of the element we are investigating

Aslong aswe don’'t have aresult, and the index is still lower than the total number
of elements, we execute the following loop

The element under consideration is obtained from the list
The properties (age and country) of that element are checked

If the properties match, we flip the boolean variable to true so that the loop is not
needlessly executed.

9 The number of evaluationsis printed here.
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©®  Theresult isreturned to the caller.

NOTE the same could have been achieved by using the Java Streams API:

return persons. strean()
filter(p -> {return (p.getAge() == age && p.getCountry().equal s(country));})
findFirst().get();

However, in this case the procedural aproach is easier to explain and it allows to count how
many evaluations are required.

In case the list of persons contains the answer, we are guaranteed that this function returns the
correct result. If we are lucky and the correct person is the first one in the list, we will get the
answer after a single execution inside the whi | e loop. If we have bad luck and the correct person
is the last one in the list, the function requires n evaluations, with n being the number of elements
in the list.

On average, the algorithm will require n/ 2 evaluations before returning the correct result. You
can verify this by executing this applications many times, and look at the number of evaluations
that are printed by the program.

10.2.3 Searching using a function

The sample code from the previous section is very flexible, since we can easily modify the
search criteria by providing a different age or a different country to the

fi ndPer sonByAgeAndCount r method. Unfortunately, this is not how Grover’s search algorithm
work. With Grover’s algorithm, we don’t provide search parameters, but we have to provide a
single function that evaluates to 1 for exactly 1 input case, and it evaluates to 0 in all other cases.

In the following, we often use the variable w for indicating the input case that will result in a
function evaluation of 1 --- in other words, w is the value we are looking for. We can define this

as follows:
Jow) =1
fx) =0, x#w

In this section, we will modify the classical sample from the previous sample so that it is using a
functional approach, which can then conceptually being mapped to the quantum algorithm in the
next section.

We will perform the same search query, but instead of checking the entries by examining their
properties one by one, we will apply a function to each entry. When the function evaluates to 1,
we know we have the correct entry.
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We use the Java Function API to achieve this. First, we need to create the function. The code for
this is shown in Listing 10.3:

Listing 10.3 Creating the function

Functi on<Per son, |nteger> f29Mexi co
= (Person p) ->
((p.getAge() == 29) && (p.getCountry().equal s("Mexico"))) ? 1 : O;

00

©  We create a Function that takes a Per son asinput, and returns an | nt eger as
output

When the function is applied, the parameter p contains the supplied person

In case the age of the supplied person is 29 and the country is Mexi co, the function
returns 1. In al other cases, the function returns 0.

Note that this function is a fixed function for a particular problem. If we want to retrieve a person
whose age is 36, we need to create a new function.

Now that we have this function, we can write some Java code that iterates over the list of
persons, and applies the function over each entry until the function returns 1 --- which means the
correct answer has been found.

The code for this is shown below:

Person findPersonByFuncti on(Li st <Person> persons, Function<Person, |nteger> function) {

bool ean found = fal se;
int idx = 0;
while (!found && (idx<persons.size())) {

Person target = persons. get (i dx++);

if (function.apply(target) == 1) {

found = true; (1)

}

}

Systemout.println("Got result after "+idx+" tries");
return persons. get (idx-1);

9 Instead of checking the properties of the target, like we did in the previous sample,
we apply our function to it. When the function returns 1, we know the target is the
correct result.

While the approach is different, the required amount of time is similar to the previous algorithm.
We still iterate over every person in the list, and check if the age and country of the considered
person satisfies our criteria.

The second approach is closer to the quantum approach we will discuss in the following section.
Instead of providing a number of parameters, we provide a function. The search algorithm does
not have to create that function, but it has to evaluate it.
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The differences between the two approaches are highlighted in Figure 10.5.

Application
code

Application
code

Keyl = valuel
Key2 = value2

Function Search

Classic Search

Implementation Implementation

Figure 10.5 Searching using a classic approach versus using functions.

Note that the Function Search Implementation as we call it in the figure is still using classical
code. However, it brings us closer to how Grover’s search algorithm works on a quantum
computer.

10.3 Quantum search: Using Grover’s search algorithm

Grover’s algorithm has some similarities with the function-based search discussed in the
previous section.

When a black box (or a quantum oracle) is provided that is linked to a function like the one
described in the previous section, Grover’s algorithm can return the unique input w that would
result in a function evaluation of 1 in about Vn steps, where each step requires a single evaluation
of the oracle.

IMPORTANT In other words, while the classical search algorithm requires on average
n/ 2 function evaluations, Grover’s algorithm achieves the same goal in n
function evalutions.

For small lists, this is not impressive. A list with 8 elements requires on average 4 function
evaluations for the classical case, and about 3 evaluations for the quantum case. However, for
large lists, the advantage becomes clear. A list with 1 million elements might require 1 million
classical evaluations, but the same result can be obtained with only 1000 quantum evaluations.

The difference between the required evaluations for a classical search versus quantum search
using Grover’s algorithm is visualised in Figure 10.6.
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Figure 10.6 Required number of function evaluations as a function of number of items

In this figure, we only showed the difference between the classical search and Grover’s search
algorithm for lists of up to 100 elements. As you can see from this figure, the larger the size of
the list, the more remarkable the differences become. Hence, it becomes clear that Grover’s
algorithm is particularly useful for lists with a huge number of elements.

SIDEBAR gquadratic speedup

It is often said that Grover’'s algorithm provides a quadratic speedup
compared to classical search algorithms. This is indeed true, since for a
given amount of evaluations (e.g. N) Grover’s algorithm can deal with a list

of N? elements, while a classical algorithm can only deal with lists of N
elements.

At the end of this chapter, we will explain how Grover’s algorithm works. For developers, it is
often more important to realise when an algorithm is applicable rather than how it works.
Therefore, we first explain how to use the builtin Grover functionality in Strange, which hides
the underlying implementation.
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The Strange quantum library contains a classical method that under the hood uses Grover’s
search algorithm to implement a search operation. The signature of the classical method
resembles the signature of the sample we discussed earlier in this chapter:

public static<T> T search(List<T> list, Function<T, Integer> function);
This method takes two parameters as input:

® alist with elements of type T, where T can be a Per son, or any other Java class.

¢ afunction which takes as input an element of type T and returns either 1 (in case the
provided input is the one we are looking for) or 0 (in all other cases)

The following code snippet, which is taken from the sample in ch10/ quant unmsear ch shows
how we can leverage this method.

voi d quantunSearch() {

Functi on<Per son, |nteger> f29Mexi co (1)
= (Person p) -> ((p.getAge() == 29) &&
(p. get Country().equal s("Mexico"))) ? 1 : O;
Li st <Per son> persons = prepar eDat abase() ; (2]
Col | ections. shuf fl e(persons); (3]
Person target = C assic.search(persons, f29Mexico); (4]
Systemout.println("Result of function Search =" (5]

+ target.getNane());

We create afunction, similar to the function in the previous sample
We create the initial database again
The elements in the database are randomly shuffled

The search method that is under the hood invoking Grover’s search is called

®© 6 © © ©

Theresult is printed.

It is important to emphasize that the provided function is created outside the algorithm. In this
case, the function is called f 29Mexi co and the O assi c. sear ch method does not need to know
anything about the internals of that function. The function will be evaluated, but to the algorithm,
this evaluation is a black box.

10.4 The algorithm behind Grover’s search

The d assi c. sear ch method that is available in Strange allows to leverage Grover’s search
algorithm using classical computing only. One of its main benefits is that it allows developers to
understand what type of problems could benefit from Grover’s search.

The internal working of the quantum algorithm is less relevant to most developers, but there are
some reasons why a basic understanding will benefit developers:

® Gover's search agorithm doesn’t require aclassical function as input, but a Quantum
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Oracle that corresponds to a classical function. We will discuss this oracle in the
upcoming sections.

® Understanding how Grover’s search algorithm leverages quantum computing
characteristics can help in creating or understanding other quantum algorithms.

In the following sections, we will explain the different parts of Grover’s search algorithm. The
mathematical evidence will be omitted though.

10.4.1 Running the sample code

The code in ch10/ gr over allows you to run Grover’s search algorithm step by step. We will use
this code to explain the algorithm.

The implementation of the algorithm is done in a method called doG over which has the
following signature:

private static void doGover(int dim int solution)

The first argument to this method, di m specifies how many qubits should be involved. The
second argument, sol uti on, specifies the index of the element we are searching for. Again, note
that in a real scenario, it doesn’t make sense to provide the answer we are looking for (the
sol uti on) to the problem. Someone should provide us with a black box function. In this case
though, the code will use the sol ut i on to construct the black box.

The main method of this sample is very short:

public static void main (String[] args) {
doGover (6, 10);
}

We simply call the doGr over method and specify that we have a system with 6 qubits (hence,
we can accomodate a list with 2° = 64 elements) and the target element is at index 10.

When running the sample, the quantum circuit will be shown, demonstrating the different steps
of the algorithm, along with the probality vectors after each step. The image looks similar to
Figure 10.7.
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Probability vector Element 10 in the Probability vector
High values for g, and g5
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q[2] 10>

q[3]10>

ql4] 10>

ql5110>
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Figure 10.7 Running the Grover sample

The right side of this picture shows the qubits after the algorithm has been applied. Qubits 1 and
3 (denoted as q[1] and q[3]) have a very high probability of being measured as 1 (99,8%), while
all other qubits have a very low probability of being measured as 1 (0,2%). As a result, there is a
very high probability that the following sequence will be obtained when the qubits are measured:

001010

This is the binary representation of the number 10. Hence, Grover’s search algorithm resulted in
returning the index of the element we are searching for.

From Figure 10.7 it is also clear that the algorithm contains a step that is repeated a number of
times. The flow is shown in Figure 10.8.
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Quantum Oracle
Diffusion Operator

Step 2 .. Sqrt(n) Repeat sqrt(n)-1 times

g,
ABC

Measure

Figure 10.8 Flow of Grover’s search algorithm

Each invocation of the step applies a quantum oracle denoted by an O and a diffusion operator
denoted by a D. As we will explain later the Ois the quantum oracle that corresponds to the
function we have been given, and the D is the diffusion operator that we will introduce later.

After every invocation of this step, the probability vector is rendered.

After the first step, which applies a Hadamard gate to each qubit, all options have the same
probablity. After the second step, all options have a rather low probablity. The element at index
10 has a higher probability than the others, but it is still low. Hence, if we would measure the
system after this first step, there is a fair chance that we would measure the correct answer 10 but

there is an even bigger chance that we would measure something else.

With each step, however, the probability of measuring 10 increases. At the last step, the
probability of measuring 10 is 99,8%.

The sample in the st epbyst epgr over is very similar to the sample discussed above, but it deals
with a list of 4 items only, hence it can be handled by 2 qubits. This makes it easier to explain,
and we will use that sample in the following subsections. Note that we also added more
probability visualisations in this sample. After every step, the probability vector is rendered. The
result is shown in Figure 10.9.
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StrangeFX
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Figure 10.9 Running the Grover sample with only 2 qubits

10.4.2 Probabilities and amplitudes

Throughout this book, we emphasized the importance of probabilities. After applying a quantum
circuit, we are left with a number of qubits, that can be in different states. The probability vector
describes how likely it is to measure a specific value. The goal of many quantum algorithms is to
manipulate the probabilty vector in such a way that the measured outcome is likely to be very

relevant to the original question.

In Grover’s search algorithm, we need n qubits if we want to search in a list of 2" elements. For
example, if our list has 128 elements, we need 7 qubits. If we have to deal with 130 elements, we
need 8 qubits, and so on. After applying Grover’s algorithm, we hopefully obtain a set of qubits

that, when measured, return the index of the element in the list we are searching for.

This is explained in Figure 10.10 for a list with up to 64 elements.
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Grover’s

Algortihm

¥ v v v v v

0 1 1 0 0 1

25

Figure 10.10 High level overview of what Grover’s search algorithm achieves.

Suppose that the element we are searching has the index 25. Initially, all qubits have the value 0.
After applying Grover’s algorithm, we measure the qubits, and we hope there is a very high
probability to measure the values 0, 1, 1, 0, 0 and 1 which is the binary representation of 25.

With 6 qubits, there are 2° = 64 possible outcomes, hence we have a probability vector with 64
elements. The goal of Grover’s algorithm is to maximize the value of element 25, and to
minimize the value of all other elements. We will show that in most cases, the resulting
probability for the correct value is very high, but not 100%.

Grover’s search algorithm requires a number of steps. We will show that with each step, the
probability to find the correct answer is increasing.

Probabilities can be indicated by numbers, or by corresponding horizontal bars. A probability of
1 indicates that this specific outcome is guaranteed to be measured, and it corresponds with a
filled horizontal bar. A probability of 0 means that there is no change that this specific outcome
can be measured, and it correcponds with an empty horizontal bar. Numbers between 0 and 1
correspond with partially filled horizontal bars.

In case we have a system with 3 qubits, we have 8 possible outcomes. Figure 10.11 shows two
different probability sets for this system, both with a vector with numbers and a notation with
bars.

©Manning Publications Co. To comment go to liveBook

https://lilel@er s@antay DaiAARcRI@arthe esfpanr@ifordiee Bee/discussion



212
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Figure 10.11 Probabilities in a vector and in a bar notation
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Note that the sum of all probabilities should equal to 1.

The probabilities in the probability vector are based on the amplitudes While amplitudes can be
positive as well as negative, probabilities are always positive. That is why the square is used. In
the following sections, we will deal with amplitudes as well though.

We will now discuss the different steps in the algorithm, as shown in Figure 10.8.

10.4.3 Superposition

The first step in Grover’s algorithm brings all qubits in a superposition state. This approach is
often used in quantum algorithms, as it allows the processing to be applied to different cases

simultaneously.

In our 2-qubit sample, the two qubits initially have the state |0>. Hence, the initial state vector is
described by

o o O =

The probability vector, which is obtained by each element taking the square of the corresponding
element in the state vector, looks exactly the same. Indeed, the square of 1 is 1, and the square of
01s 0.

The first element in this vector corresponds with the probability of measuring the two qubits in
the |00> state, which is exactly the initial state.

After applying a Hadamard gate to both qubits, the state vector becomes
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[ [ N [ N ot N

Each element in this vector has an amplitude of 1/ 2 or 0. 5. In the corresponding probability
vector, each element equals 1/ 4 or 0. 25, which is the square of 1/ 2.

Therefore, the probability vector after applying the Hadamard gates is written as

-1

4

1

4

1

4

1

L4

TIP the state vector shows amplitudes while the probability vector shows
probabilities. For real numbers, the probability is the square of the
amplitude.

This is also what can be seen from the probability infogate in Figure 10.12.

| NN StrangeFX

100,0%

Probability vector after step 1

Figure 10.12 After step 1, all probabilities are equal
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10.4.4 Quantum Oracle

The main requirement for the classical variant of Grover’s search algorithm is that we are given a
function that for a single specific value returns 1 and for all other values returns 0.

You learned that Grover’s search algorithm considers this function as a black box, and it does
not have any knowledge about the internals of this function.

However, that is a classical function, and if we want to really leverage the quantum algorithm,
we need a quantum oracle that is linked to this classical function.

SIDEBAR Remember the quantum oracle from Deutsch algorithm
This is very similar to what you learned in the previous chapter about
Deutsch algorithm. Remember that in the case of Deutch algorithm, we
were dealing with a function that was either constant or balanced. You
created an Oracle that operated on two qubits, where the first qubit was left
intact, and the second qubit was transfered via an operation that depends
on the function evaluation.

Figure 10.13 schematically shows the difference between the classical version of Grover’s search
algorithm and the quantum version: in the classical version, the black box is realised by a
classical function, while in the quantum version, the black box is realised by a quantum oracle.

Classical function: f(x)

¥

Black box

* Quantum Oracle: U;

Figure 10.13 Black box in a classical versus quantum context

Obviously, there is a relation between the classical function representing the black box and the
quantum oracle representing the same black box.

The quantum oracle related to a classical function f(x) does the following: for any value of |x>
that is not the specific value w, f(x) is 0, hence the original value [x> will be returned. In case the
value wis passed through the Oracle, the result will be -[x> .

Let’s give a concrete example. Suppose we have a list with 4 elements. In that case, we require 2
qubits (as 2° = 4). The element that we hope to find has index 2. Hence, the function that we
would pass to a classical algorithm is the following:
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(1) f(0)= 0
(2) f1)= 0
(3) f(2)= 1
(4) f3)= 0

This corresponds to the oracle defined by the following matrix:

I 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 1

Multiplying this matrix and the state vector that was obtained after applying the Hadamard gates
results in the following:

1 0 0 0\ [i] [3]
0 1 0 0of|s]_ 1|3
0 0 =1 0fist |—3
1 1
o 0 0 1) |35 |3

Note that the third element in this vector, corresponding to the state |10> (which is the value 2) is
now negative. If we look at the probability vector, though, all elements in this vector are still
equal to 1/ 4, which is shown in Figure 10.14
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| BON StrangeFX

100,0%

Probability vector after applying oracle

Figure 10.14 After applying the quantum oracle, all steps still have an equal probability

The quantum oracle does not change the probabilities. If we would measure the system now, we
would have equal chances of measuring any value. However, the quantum circuit itself works
with the amplitudes, which are modified. In the next step, we will take advantage of this.

This situation shows a very important difference between the state vector, which contains
amplitudes, and the probability vector, which contains probabilities. We typically talk about
probabilities, but in this case, let’s have a deeper look at the amplitudes.

Figure 10.15 shows the state vector after applying the quantum oracle, and we show the 4
different amplitudes as horizontal lines. A line to the right indicates a positive amplitude, a line
to the right indicates a negative amplitude.

-0.5 . 0.5
| |
0.5 —>
0.5 —
-0.5 D
0.5 >

Figure 10.15 Visualisation of the state vector after applying the quantum oracle
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NOTE We stressed in the previous chapter that the creation of the Oracle is out of
scope for the algorithm. It is assumed that we somehow are given an
Oracle, and that we are asked to find out something about it. This is also
the case for Grover’'s search: we are given an Oracle, and our goal is to
find the value wby doing as few evaluations as possible.

This corresponds to the classical problem: we are given a Function, and we are asked for which
value the function evaluation is 1. Where in the classical case, on average n/ 2 function
evaluations are needed to get the answer, in the quantum case sqrt (n) oracle evaluations are

needed to get the answer.

10.4.5 Grover Diffusion Operator: Increasing the probability

The next step of Grover’s search algorithm applies a Diffusion Operator to the state of the
system. This Diffusion Operator can be constructed by applying quantum gates or by creating its
matrix. The interested reader can look at the implementation in the code either in Strange or in

the grover sample.
The Diffusion Operator does a so-called "inversion about the mean", which means the following:

® all vauesin the state vector are summed
® theaverageiscalculated

¢ al values are replaced with the value that would be obtained my mirroring the value
about the mean

Let’s calculate what that does with the state vector we currently have. The 4 elements in the state
vector are 1/ 2, 1/ 2, - 1/ 2, 1/ 2. The sum of those elements is thus 1:

Hence, the average is 1/4.

We now need to "mirror" the elements (which are either 1/ 2 or - 1/ 2) around this value of 1/ 4.

As shown on figure 10.16, mirroring 1/2 results in 0.
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Figure 10.16 Visualisation of the state vector after applying the diffusion operator

Interestingly, mirroring -1/2 results in 1.

The real power of Grover’s search algorithm comes from the combination of the quantum oracle,
which flips the sign of the amplitude of the target value, and the diffusion operator, which inverts
all amplitudes over their mean, thereby amplifying the negative amplitude into the largest
element.

In this particular case, with 2 qubits only, a single step is sufficient to find the correct answer to
the original problem. We were provided with an Oracle, and a single evaluation of that Oracle
was enough to determine that the element at index 2 was given the correct answer to the original
function.

In case there are more than 2 qubits, the probability for measuring the correct answer is larger
than the probability of measuring any of the other options, but it is not 100%. In that case, the
quantum oracle and the diffusion operator have to be applied multiple times. It can be proven
mathematically that the number of steps that provides the optimal result is the value closest to VN
11/4.

10.5 Conclusion

Grover’s search algorithm is one of the most popular quantum algorithms. In this chapter, you
learned that while the algorithm itself is not related to searching a database, it can be leveraged in
applications that require searching through unstructured lists.

As is often the case with quantum algorithms, Grover’s search algorithm increases the
probability of measuring the correct response, and lowers the probability of measuring the wrong
response.

Without any upfront knowledge, all possible answers have the same probability. After applying 1
step of the algorithm, the correct answer will already have a higher probability then the other
possible outcomes. After applying the optimal amount of steps (the number closest to sqrt(N) *
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Pi/4), the correct answer will have the highest probability.

In this chapter

you learned about the problem area Grover’ s search algorithm addresses

you wrote classic code that searches for an element in an unstructured list using a Java
Function

you wrote classic code that performs a similar search, thistime using Grover’ s search
algorithm under the hood

you learned step by step how Grover’s search algorithm is working

you learned that quantum algorithms can work by increasing the probability that the
value measured at the end of the processis indeed the value you intend to find.
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Shor’s Algorithm

This chapter covers

An explanation of Shor’s Algorithm and why it is relevant

A classical approach to solve integer factorization

The quantum approach to solve integer factorization, implemented in a
classical way The same approach, implemented using quantum computing
techniques.

In this chapter, we will discuss one of the most famous quantum agorithms that is currently
known. More important than the results from this algorithm is the approach that is taken to come
to this algorithm. The mental model shown in Figure 11.1 outlines the chapter.
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Expectation management
Problem description

Classical approach

15 guantum approach — 5 x 3

classical implementation

quantum approach
guantum implementation

Figure 11.1 Mental model for this chapter. We will gradually develop a Java application
that leverages quantum computing to factor 15in 5 and 3.

11.1 A quick sample

Before we explain Shor’s algorithm and discussiit, let’s have alook at some real Java code that
invokes Shor’ s algorithm on a quantum computer simulator.

The sample in chll/quantumfactor has everything you need. We will discuss the sample later,
for now it is important to know that the sample uses Strange to simulate the behavior of areal
guantum computer. If you run it, you will see the following output:

Factored 15 in 3 and 5

That'sit. The main application in the last chapter of this book factors 15 in 3 and 5. While that is
something you could easily do with a classical computer as well, or even by head, it is a great
example on where quantum computers can make a real difference, and why. Aswe said before,
the results of the code in this chapter are not impressive. But there are two important reasons
why we put so much emphasis on this algorithm:

® once there are quantum computers with enough high-quality qubits, the results of Shor’s
algorithm will be very impressive, and actually very threatening to many current
encryption techniques

® the approach taken by Shor to implement this problem on a quantum computer might
help othersto find similar approaches for different problems.
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IMPORTANT You don’t need a quantum computer, or a quantum computer simulator to
find out that 15 = 3 x 5. However, by understanding how a quantum
computer can do this, you can work on similar problems that will benefit
from quantum advantages once quantum computers are really powerful.
For example, optimization algorithms, and some machine learning
algorithms might leverage the same quantum techniques as the ones that
we describe in this chapter.

11.2 The marketing hype

In talks about quantum computing, the question is often raised what areas are expected to change
considerably because of quantum computing. One of the most common answers is encryption.
Often, when asking people what they know about quantum computing, the answer is "It will
break encryption”. While that is not necesarily a wrong answer, it should be placed in the right
context. Clearly, it is an answer that sparks discussions, and therefore often increases interest in
guantum computing. However, there are afew caveats to this:

® There are many other impressive targets for quantum computing, apart from breaking
encryption

® |tisexpected to take a number of years before quantum computers are powerful enough
to break the most common encryption techniques used today.

The second caveat should again be taken with a grain of salt. Indeed, current quantum computers
are by no means capable of decrypting messages sent with a 2048 bit RSA key. However, those
encrypted messages can be stored on disk today, and once quantum computers are powerful
enough, they can be decrypted. Maybe in 10 years from now, some secrets from today will be
unveiled.

The basic idea behind the statement that "quantum computing will break current encryption” is
that many encryption techniques used today rely on the assumption that it is extremely hard to
factor alarge integer. Until today, the largest number that has been factored has 829 bits and the
process required about 2700 core-years using Intel Xeon Gold 6130 CPU’s. Since the currently
best performing algorithms still are in the sub-exponential time complexity class, adding asingle
bit makes it aimost exponentially harder for classical computers to factor the target. It is
therefore assumed that e.g. a 2048 bit key isvery secure.

However, in 1994, Peter Shor wrote a paper in which he explained how a gquantum computer
would be able to factor integers in a much faster, and especially more scalable way than the best
possible classical computers.

The agorithm, which was coined "Shor’ s algorithm" after its inventor, has been implemented on

guantum computer simulators (e.g. Strange) and also on real quantum computers. The results
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might look unimpressive, but since the algorithm has polynomial time complexity, the real
benefits will only become visible once the problem is harder, and once there are more stable
qubits in a quantum computer.

NOTE we discussed time complexity in Chapter 1. It might be good to refresh that
information, as we will talk about polynomial and exponential time
complexity throughout this chapter.

11.3 Classic factorization versus quantum factorization

Many encryption algorithms rely on the assumption that it is very hard for computers to factor
large numbers. But isit really that hard?

Since breaking encryption is a rewarding exercise, many research has been done in order to find
the best possible algorithm to factor large numbers. Currently, the best known algorithm for
doing thisis of the sub-exponential time complexity class.

Shor’ s algorithm solves the problem in polynomial time. The absolute numbers depend on many
factors, but the general idea should be clear from Figure 11.2 where we compare the
sub-exponential curve and the polynomial curve.

time complexity

Figure 11.2 Required computing time for sub-exponential
versus polynomial algorithm as a function of number of bits.

The values on the axes are not relevant, and they are just an indication. The main observations of
this comparison are:

® for small numbers of bits, the sub-exponentia approach (e.g. the classic algorithm) is
working very well, and maybe even better than the polynomial approach (quantum
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algorithm)
® once the number of bits becomes large enough, adding a single bit makes the problem
much harder using the classic algorithm compared to using the quantum algorithm

In conclusion, Shor’s algorithm really shows its power when we have to factor large numbers,
which istypically the case when dealing with encryption. This requires alarger number of qubits
than available on todays quantum computers, so we don’t see the real benefit yet.

11.4 A multi-disciplinary problem

There are a number of views to Shor’s algorithm. Obviously, it leverages properties specific to
guantum physics, otherwise it wouldn’t benefit from quantum computing. The algorithm itself is
based on linear algebra, and mathematical equations. Finally, in order to be of practical use, it
should be written in a programming language, and integrated with other software components.

This multi-disciplinary approach is shown in Figure 11.3

CQuantum physics

Shor’s
algorithm

Software Development

Figure 11.3 Different expertise fields are required for Shor’s algorithm. In this
chapter, we focus on the field of software development, but that does not
mean the other fields are less important!

The success of Shor’s algorithm is mainly related to the promising performance. The ultimate
performance is a combination of the properties in the three fields shown in the 11.3. Lots of
research has been done in order to find the best approach, taking into account a number of
characteristics:

® how many qubits are required?
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* how many elementary gates are required?

* what isthe depth of the algorithm (related to how many gate operations can be executed
in parallel)?

The answers to these questions are related to the number of bits in the integer that we need to
factor. It can be proven that both the number of qubits as well as the amount of gates required are
polynomial with the number of bits.

In this chapter, we will focus on the software development parts of Shor’s algorithm. The
mathematical and physical background of the algorithm is rather complex. The interested reader
can find more information in the following paper from Stephane Beauregard:

_Circuit for Shor’ s algorithm using 2n+3 qubits _
which can be found at

https://arxiv.org/abs/quant-ph/0205095

11.5 Problem description

The core concept of many encription techniques is the concept of prime numbers. An integer isa
prime number if it can only be divived by 1 or itself. For example, 7 is a prime number, but 6 is
not—as 6 can be divided by 1, 2, 3and 6.

Suppose that you know 2 prime numbers, e.g. 7 and 11. Calculating the product of those 2 prime
numbersis easy:

7 x 11 = 77

The reverse operation is more complex: given a number that is the product of 2 unknown prime
numbers, come up with those 2 prime numbers. In the simple case above, it is still easy:

77 = 7 x 11
We say that 77 can be factored in 7 and 11. Y ou don’t even need a calculator for this.

However, once the prime numbers become bigger, the problem becomes more complex. A
dlightly more difficult number is 64507. Can you quickly say if this number can be factored in
two prime numbers? That is already harder to answer than factoring 77. The opposite question
would be much easier:

What is the product of 251 and 2577

251 x 257 = 64507

This is one of the basic rules for encryption: it is easy to go from A to B (or from factors to
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number), but very hard to go from B to A (or from number to factors).

Hence, the core problem we try to solvein this chapter is the following:

Gven an Integer N, find 2 integers a and b so that N=a * b with both
aand b >1

We first solve this problem in a purely classical way. This corresponds to the first approach
shown in the mental model, as highlighted in Figure 11.4

Expectation managesment
Prablerm deseription

Classical approach

15 s =5x3

classical implementation

guantum appraach
guantum implementation

Figure 11.4 Referring to the mental model, we are now going
to explain the classic approach.

In general, the classical way for doing integer factorization is straightforward, and it is shown in
Figure 11.5.
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Given an integer N

!

Find factors

!

N=axb

Figure 11.5 Classic flow for
factoring integers. A classic
algorithm will focus on finding the
factors for a given number, and
return those factors.

The approach will immediately try to find the factors for the given integer and return them.
While this may sound very obvious, we will show later that the quantum approach takes a
different path.

A naive approach for doing thisis provided in the sample ch11/ cl assi cf act or

The main method is shown in 11.1 and looks as follows:

Listing 11.1 source code for classic main method

public static void main (String[] args) {
int target = (int)(2120000 * Math.random());
int f = factor (target);
Systemout.println("Factored "+target+" in "+f+ " and "+target/f);

(XX

Pick arandom integer between 0 and 10000

Invoke thef act or method to obtain one factor of the picked integer

Print the obtained factor, and the corresponding one that when mulitplied return the
original picked integer.

The main method delegates the work to the f act or method, which looks as follows:

public static int factor (int N) {
int i =1;
int max = (int) Math.sqrt(N);
while (i++ < max ) {

©e
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if (N% == 0) return i; (3]
}
return N, (4]

©  Wedon't need to check potential factors larger than the square root of the original
number, as those would correspond with factors smaller than the square root of the
original number

@ Try every integer, starting from 2 that is smaller than the square root of the original
number

©  In case the candidate divides the original integer (in which case the modulus of the
divisionis0), return that candidate

9  If no number was successful, return the original number

Clearly, thisis avery naive approach, and more performant approaches exist.

11.6 The rationale behind Shor’s algorithm

The mathematical details for Shor’s algorithm are beyond the scope of this book. However, the
rationale behind those details is very important, as it applies to many potential quantum
algorithms. Shor’s algorithm translates the original problem into another problem: finding the
periodicity of afunction.

A function is called a periodic function if its evaluations are repeated at regular intervals. The
length of thisinterval is called the periodicity of the function.

To give you a more tangible idea of what a periodic function based on modular exponentiation
looks like, consider the casewherea = 7 and N = 15.

In that case, Figure 11.6 shows the value for y = 7”x \mod 15y = 7”x \mod 15.

Figure 11.6 Example of a periodic function. The periodicity of
this function is 4: the same pattern in the y values comes back
after every 4 evaluations. For example, the peaks in the
function occur at x values of 3, 7 and 11.
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Thereis a pattern in this function, that repeats itself. Whenever we increase x by 4, the value of
the function is the same as the original value. For example

y0)=1y(1)=7y(2)=4y(3) =13y(4) =7y(5) =7y(6) =4y(7) =13y(8) =1

From these observations, it turns out that the periodicity of thisfunction is 4

Finding the periodicity of afunction is a problem that can be solved by a quantum computer in
polynomial time. After the quantum computing part, the result needs to be translated to the
original problem again. Thisflow isshownin Figure 11.7.

Given an integer N — Classic preprocessing

!

Period finding

N=axh _ Classic postprocessing

Figure 11.7 Solving a different problem. Instead of directly finding the factors for the
number N, we will translate the original problem to a different problem, solve that, and
translate the result back to the original question which can then be answered.

IMPORTANT Quantum computers can provide a huge speedup for some algorithms, but
not for all algorithms. Therefore, the key in creating quantum applications is
often in finding a way to translate the original problem into a problem that
can be solved easily by a quantum computer (e.g. in polynomial time
instead of exponential time), and then transform it back to the original
domain.

The original problem is to find two integers that, when multiplied together, yield the integer N
that we want to factor.

The problem that we will actually solve using a quantum computer looks very different, and is
formulated as follows:

G ven an integer A and an integer N, find the periodicity of the function
| at exmat h: [a*x \nod N
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While that problem looks very different from the original problem, it can be proven
mathematically that they are related. Once we find the periodicity of this function, we can find
the factorsfor N easily.

We are not going to provide the mathematical proof, but we will show the relation by looking at
some Java code.

The flow that we will follow in this codeisillustrated in Figure 11.8.

Pick a random numbera,a<N

Given an integer N — If a factors N, we're done

Otherwise continue

!

Period finding
Find p, the period of a* mod N

!

~ _ Obtain a from p, so that
N=axb N=axb

Figure 11.8 Detailed flow for both classic and quantum implementation. The
pre-processing and post-processing, which transforms the original problem into the
problem of period finding, is similar for the classic and the quantum implementation. The
period finding itself can be implemented in a classic way and in a quantum way.

In the next section, we will explain how the critical part, finding the periodicity of the modular
exponentiation, is achieved using a quantum algorithm. In this section, we will write out the
complete algorithm using classical computing. Things brings us to the second approach in our
mental model, as shown in Figure 11.9
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Expectation management
Problem description

Classical approach

15
guantum approach -
‘ classical implementation 5 X 3

quariturmn approach
quantem implementation

Figure 11.9 Mental model, classic implementation of the
guantum approach. In this approach, we don't use direct
factorization techniques, as we did in the classic approach.
We use the technique of period finding, which is part of the
guantum approach, but we will first develop that in a classic
way.

The code sample in the chll/semiclassicfactor directory contains a classical
implementation of Shor’s algorithm. Before looking into the code, let’s run the example by
running

mvn conpil e javafx:run

The result will be something like this:

We need to factor 9500

Pi ck a random nunber a, a < N. 5841
calculate gcd(a, N):1

period of f = 150

Factored 9500 in 2 and 4750

This means that the algorithm discovered that 9500 could be written as the product of 2 and
4750.

Let’s have alook at the main method for this sample.

public static void main (String[] args) {
int target = (int)(120000 * Math.random());
int f = factor (target);
Systemout.println("Factored "+target+" in "+f+ " and "+target/f);

This code is straightforward and it is exactly the same as the main method shown in 11.1. A
random integer between 0 and 10000 is generated, and then the f act or method is called to find
adivider of thisinteger. Finally, the divider and the other divider are printed.
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This method delegates the bulk of the work to the f act or method, so let’s have a look at that
one, shown in 11.2. It isworth keeping an eye on 11.8 while looking at the code.

Listing 11.2 factor method for the classical implementation of the quantum

approach.

public static int factor (int N) {
/| PREPROCESSI NG
Systemout.println("W need to factor "+N);
int a =1+ (int)((N1) * Math.random());
Systemout. println("Pick a random nunber a, a < N. "+a);
int gcdan = gcd(N, a);
Systemout.println("cal culate gcd(a, N):"+ gcdan);
if (gcdan != 1) return gcdan;

®© © © ©

/1 PERI OD FI NDI NG
int p=findPeriod (a, N);

(]

/| POSTPROCESSI NG

Systemout. println("period of f = "+p);

if (p® == 1) { (6]
System out. println("bumrer, odd period, restart.");
return factor(N);

}

int md = (int)(Math.powa, p/2) +1); (7

int nm2 nd %N,

if (n2 ==0) {
Systemout.println("bumrer, nm*p/2 + 1 = 0 nod N, restart");
return factor(N);

}
int f2 = (int)Mth. powa, p/2) -1;
return gcd(N, f2);

Here, the preprocessing part begins.
Pick arandom number a between 1 and N
Calculate the greatest common denominator (GCD) between a and N

In case this GCD isnot 1, we are done, since that means the GCD is afactor of N

© 6 © © ©

Find the periodicity of the modular exponentiatio function. Thisisthe bulk of the
work, and it will be detailed in the next listing.

O |f the period turns out to be an odd number, we can’t use it and have to repest the
process

9 Perform some minor mathematical operations on the period to obtain afactor of N.

The f act or method will call the fi ndPeri od method to obtain the periodicity of the function
a*x mod N. Thisisthe function that can be executed fast on a quantum computer.

NOTE when we say the function can be executed fast, we actually mean this is
done in polynomial time.

We can of course achieve this on a classical computer as well, but for large numbers this will
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take a very long time. However, for small numbers (e.g. smaller than 10,000 like we have in our
code), it works very well on classical computers.

A naive approach for aclassical java function that does this is shown below:

Listing 11.3 Classic implementation for finding the period of a modular

exponential function

public static int findPeriod(int a, int N) {
int r =1;
long np = (long) (Math.pow(a,r)) %N,
Bi gl nt eger bn = Bi gl nteger.val ued(N);
while (np !'= 1) {
r++;
Bi gl nteger bi = Biglnteger.val ueX (a);

Bi gl nteger nmpd = bi.powr);
Bi gl nt eger npb = npd. nod(bn);
mp = npb. | ongVal ue();

}

return r;

}

This function (finding the periodicity of amodular exponentiation) can also be implemented on a
guantum computer, using a quantum algorithm that leverages quantum properties. It is the core
of Shor’s algorithm, and we will discussit in the next section.

11.7 The quantum-based implementation.

Let’s go back to the original sample in this chapter, which is in the ch11/ quant unf act or
directory. That sample contains a mai n method which is very simple:

public static void main (String[] args) {
int target = 15;
int f = dassic.qgfactor (target);
Systemout.println("QFactored "+target+" in "+f+ " and "+target/f);

}

The only real work in this method is the invocation of the d assi c. gf act or API. The gf act or
method in Strange returns a factor of the supplied integer. This single factor allows us to
calculate the other factor as well. For example, if we ask a factor of the integer 15 and we are
returned the value 3 we know that 5 is another factor, asitis 15/ 3.

The gf act or method uses classical computing for the pre-processing and the post-processing
steps, very similar to what we did in the previous section. But the findPeriod method is
implemented very differently in this approach.

In our mental model, we are now about to discuss the third approach, as shown in Figure 11.10
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Expectation management
Problerm description

Classical approach

15 guantum approach — 5 X 3

clamical implementation

quantum approach
quantum implementation

Figure 11.10 Mental model, quantum implementation of the
guantum approach. In this approach, the pre-processing and
post-processing are done in a classic way, but the period
finding is done using a quantum algorithm.

The implementation of C assi c. gf act or can be found in the source code of Strange, but it is
extremely similar to the code snippet shown above.

The only difference is the implementation of the f i ndPer i od method. In the following, we will
explain how this method isimplemented in Strange, leveraging a quantum algorithm.

From the code snippet above, the challenge we are facing is to find the periodicity of the
following function:

f=a~\mod N f = &*x \mod N

Instead of calling the classical function fi ndPeriod shown in 11.3, we will now use the
guantum implementation, which can be found in C assi c. fi ndPeriod (int a, int nod) .
Note that the signature of this method is exactly the same as the one containing the classical
implementation.

The general trick that we will apply again here is the following: we try to evaluate the function
for al integers between 0 and N at once by creating a superposition state, and then manipulate
the system so that when we measure the result, a useful value is obtained.

We gplit that challenge into 2 issues:

® create aperiodic function
¢ calculate the periodicity based on a measurement

Schematically, the flow for thisis shown in Figure 11.11
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findPeriod

Create a periodic function, and perform a
measurement

Compute the periodicity, based on the
measured value

Figure 11.11 High-level flow for period finding in Shor’s
algorithm

The first part (creating the periodic function) will be done with quantum code, while the second
part is done using classic code only.

The implementation of thef i ndPer i od function illustrates this approach:

public static int findPeriod(int a, int nod) {

int p=0;
while (p == 0) {
p = nmeasurePeriod(a, nod); (1]
}
int period = Conputations.fraction(p, nod); (2]

return period;

9 the periodic function is prepared, and a measurement is done

®  the measured value is used to compute the periodicity

Note that the first part may not return a useful result. In that case, the neasur ePeri od function
will return 0 and the function will be invoked again.

11.7.1 Creating the periodic function

Aswe said before, we won't go into the mathematical details that prove the correctness of Shor’s
algorithm. In this section, we'll give an intuitive approach that explains why the approach works.

This part of the algorithm contains different steps as well. We will highlight those steps by
showing the flow of the algorithm, as well as the quantum circuit that realizes this step.

The flow for creating the perdiodic function is shown in Figure 11.12.
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Create periodic function

Generate a superposition with m qubits,
call this register “X”

Perform modular exponentiation with a
fixed value of Aand N

Transfer result to frequency domain

Perform a measurement

Figure 11.12 Flow for creating a perdiod function

Since this part is done using a quantum algorithm, there is a quantum circuit involved. This
circuit isshown in Figure 11.13.

Iy H
q; H
inv
F
X
F
T
Om H
qu_
A*mod N
qm11

Figure 11.13 Quantum circuit that creates a periodic function

The qubits involved in this schema are divided in two registers where a register is just a set of
qubits that together have a conceptual meaning. The top register is called the input register, and
the bottom register is called the ancilla register.
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CREATING A SUPERPOSITION

We first apply a Hadamard Gate to each qubit in the input register. This brings the input register
in a superposition, and the upcoming calculations can thus be done with a combination of all
possible values that the input register can contain.

Thisis something that can’'t be done on a classical computer, and it is an intuitive indication why
a quantum computer can handle this problem much faster. However, keep in mind that even
though we can create a superposition of all possible values, we can only make a single
measurement on the system. Hence, we need to apply some smart steps so that the single
measurement we obtain is actually useful.

PERFORM MODULAR EXPONENTIATION

Next, the input register is used to calculate the modular exponentiation a*x \mod Na*x \mod N
and that result is computed and stored in the ancilla register. As a consegquence of this operation,
the input register is now a periodic function with periodicity r, where r is the periodicity of [&*x
\mod Na*x \mod N.

This is interesting, as we now have a periodic function. However, we can only make a single
measurement, and whatever we would measure, we would not get much information about the
periodicity of the function.

APPLYING AN INVERSE QUANTUM FOURIER TRANSFORM

By applying an inverse quantum Fourier transform, the periodic function is transformed into a
function with peaks at some specific "frequencies’. It can be proven that the probability vector
has exactly r peaks where the first peak occurs at the value |0> and the other peaks are evenly
spread.

After this, the probability matrix will show a number of peaks, as shown in Figure 11.14.
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1

Figure
11.14
Probability
distribution
with 8
peaks

11.7.2 Calculate the periodicity

If we could measure the probability vector, we would be able to count how many peaks it has.
Unfortunately, we can’t do that. We can only measure the qubits, and a single measurement
corresponds to a single entry in the probability vector. However, we know that there is a very
high chance that the entry we measure is in one of the peaks of the probability vector. Based on
that information, it is possible to determine the number of peaks with a high probability.

We use the continued fraction expansion algorithm for doing this. This algorithm takes the
measured value as input, along with the maximum value of the answer, and will return the
periodicity. Thisagorithm isimplemented in Conput at i ons and its signatureis

public static int fraction (double d, int nex);

In this algorithm, d is the measured value divided by the maximum value, so it is a value
between 0 and 1 and max is the maximum number that can be returned. Based on the knowledge
that the measured value is on or near a peak in the probability distribution, the result of this
algorithm returns the number of peaksin the probablility distribution.

11.8 Implementation challenges

Shor’s algorithm relies heavily on modular exponentiaton. While this may look like just an
implementation detail, it is actually abig challenge.

Mathematical operations on a quantum computer are not very trivia to implement, since al gates
need to be reversible, as we explained before.
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For example, an addition operation in a classical circuit could be implemented as shown in
Figure 11.15.

+ X +y

Figure 11.15 Classic addition
operation

The input to this gate are two values x and y, which are probably bits, and the output is a single
vauex + vy.

Thiswon’'t work in the quantum world, as there is no way to go back fromx + y tox andy. For
example, if x + y = 1, wedon't know if either x was 0 and y was 1 or if on the other hand y
was 0 and x was 1. Therefore, a quantum adder gate is rather implemented as shown in Figure
11.16.

Figure 11.16 Quantum addition
operation

The result of this gate keeps the origina y value, so based onx + y andy it is possibleto obtain
the original x value. Hence, this gate has an inverse gate that brings back the original state.

The addition gate is the basis for the multiplication gate, which in turn is the basis for the
exponential gate. Adding to the complexity is the modular aspect of the arithmetic operations. If
we want to create a circuit for modular exponentiation, we need to be able to perform modular
multiplication, which means we need to be able to perform modular addition.

While there is no direct advantage in doing basic arithmetic operations on a quantum computer,
it is important to realise that those operations are available. For example, as you just learned,
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Shor’ s algorithm heavily depends on modular exponentiation.

Hence, if you need those operations in your own algorithms, you can leverage the arithmetic
operationsin the com gl uonhg. st r ange. gat e package.

11.9 Summary

® Thegoa of Shor’salgorithm isto find the factors of an integer.

® Shor’s algorithm shows that it can be beneficial to transform a specific problem into
another problem, one that can be solved more easily (faster) by a quantim computer. In
particular, Shor’s algorithm transforms the problem of factorization into the problem of
finding the periodicity of a periodic function.

® Youimplemented integer factorisation in a classical way

® Youimplemented integer factorisation using Shor’s algorihm, with aclassic way for
calculating the periodicity of afunction

® Youimplemented integer factorisation using Shor’ s algorihm, with a quantum approach
for calculating the periodicity of afunction

® You learned that in order to leverage the benefits of quantum computing, it is often

required to transform the original problem into a problem that can be dealt with more
efficient by a quantum computer.
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Appendix: Installing Strange

A.l1 Requirements

Strange is a modular Java library, leveraging the module concepts introduced in Java 11. In order
to run applications using Strange, the Java 11 runtime is needed. Developing applications
requires the Java 11 SDK to be installed, which also includes the Java 11 runtime. The Java 11
SDK can be downloaded from jdk.java.net/11. Make sure to download the version that matches
your platform.

Most Java developers use an integrated development environment (IDE) to create Java
applications. The most common IDE’s for Java development are Eclipse
(https://www.eclipse.org/ide), Apache NetBeans (https://www.eclipse.org/ide) and IntelliJ] IDEA
(https://www jetbrains.com/idea). Since Strange is a modular Java library following the same
rules and conventions as any other Java library, it can be used out of the box on those IDE’s,
since they provide support for the Java modular system.

Apart from IDE’s, some developers prefer to use command-line tools to create, maintain and
execute applications. Those applications typically use a build tool like maven or gradle, and
dependencies are declared in specific files, e.g. a pom.xml file for maven or a build.gradle file
for gradle.

All IDE’s provide support for maven and gradle. We assume the reader is familiar with how
his/her IDE supports gradle. This allows us to use command-line driven gradle projects for our
examples. Developers have the choice to either run the examples using the command-line
approach, or run the examples in their favourite IDE leveraging the IDE-specific gradle
integration.
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A.2 Obtaining and installing the demo code

The samples and demoes in this book are available in a git repository located at You can get a
local copy of the samples by cloning the repository via command-line git commands, e.g.

git clone https://github.conljohanvos/ quantunjava. git

or via the git support offered by your favourite IDE.

Cloning the repository creates a directory called quant unj ava on your local filesystem. You will
notice this directory contains a number of subdirectories that correspond to the chapters of this
book. For example, the samples for Chapter 2 are located in the ch02 directory.

A.3 The HelloStrange program

The ch02 directory contains the samples used in this chapter. The first sample we will run in the

hel | ost r ange sample. Like all other samples, this sample can be opened in your favourite IDE.
As discussed before, we will use the gradle command line approach in this book. However, if
you prefer to run the samples from your IDE, that should work equally wel.

A.3.1 Running the program

All samples contain wrapper scripts that will first check if the correct gradle version is already
installed on the system. If this is not the case, the wrapper script will automatically download and
install the required version of gradle.

If you are using Linux or MacOS X, the gradle wrapper script is invoked using

./ gradl ew

If you are using Windows, the gradle wrapper script should be invoked via

gr adl ew. bat

Running the hel | ost range demo application is very straightforward by supplying the r un task
to gradle. On Linux and MacOS X, this is done by calling

./ gradl ew run

and on windows, this is achieved using

gradl ew. bat run

The result of this action depends on whether you already have the required gradle version or not.
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