

©Manning Publications Co. To comment go to liveBook

MEAP Edition
Manning Early Access Program

Learn Quantum Computing with Python and Q#
A Hands-on approach

Version 8

Copyright 2020 Manning Publications

For more information on this and other Manning titles go to
manning.com

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://www.manning.com/

©Manning Publications Co. To comment go to liveBook

welcome
Thank you for joining the MEAP for Learn Quantum Computing with Python
and Q#: A Hands-on approach we hope you'll enjoy getting started with
quantum computing!

Quantum computing has recently been gaining more interest as the research
field is maturing and large tech companies are investing heavily in it. With all
this hype, it is both interesting and important to learn what we could do with
these new devices as well as what will likely be out of scope. Our goal with this
book is to both introduce you to this exciting new field, as well as Microsoft’s
domain-specific programming language for quantum computers: Q#.

When we were learning quantum computing ourselves, it was very exciting
but also a bit scary and intimidating. Looking back, it doesn't have to be that
way, as a lot of what makes topics like quantum computing confusing is the
way in which they are presented, not the content itself. With this book, there is
an opportunity both for us as authors and for you as readers to learn without
this obstruction, using modern programming languages like Python and Q# to
help along the way.

We've written the book to be accessible to developers, rather than the
"textbook" style common to most other quantum computing books. If you have
done some programming before and are familiar with matrices, vectors, and
some basic operations involving matrices, such as what you might use in
computer graphics or machine learning, you should be good to go! We are
importantly not assuming any prior knowledge of quantum mechanics or
physics, we will help you learn what you need along the way.

By the end of the book, you should be able to:
• Understand what a quantum computer is and why it is such a rapidly

expanding field
• Write quantum programs in Q#, Microsoft's new quantum programming

language
• Predict what kinds of problems might be suitable to solve with a quantum

computer

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

• Program and use quantum simulators that can be used to run quantum
algorithms on classical computers today

We are excited for you to start your own journey through quantum computing
by joining this MEAP, and we look forward to hearing from you in the
liveBook Discussion Forum about what you find along your way!

—Sarah Kaiser and Chris Granade

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

brief contents
PART 1: GETTING STARTED WITH QUANTUM

 1 Introducing Quantum Computing

 2 Qubits: The Building Blocks

 3 Sharing Secrets With Quantum Key Distribution

 4 Nonlocal Games: Working With Multiple Qubits

 5 Teleportation and Entanglement: Moving Quantum Data Around

PART 2: PROGRAMMING QUANTUM ALGORITHMS IN Q#

 6 Changing the odds: An introduction to Q#

 7 What is a Quantum Algorithm?

 8 Quantum sensing: It’s not just a phase

PART 3: APPLIED QUANTUM COMPUTING

 9 Solving Chemistry Problems with Quantum Computers

10 Searching with Quantum Computers

11 Arithmetic With Quantum Computers

APPENDIXES

A Installing Required Software

B Linear Algebra Refresher

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

1
This chapter covers:
• Why people are excited about quantum computing,

• What a quantum computer is,

• What a quantum computer is and is not capable of, and

• How a quantum computer relates to classical programming.

Quantum computing has been an increasingly popular research field and source of
hype over the last few years. There seem to be news articles daily discussing new
breakthroughs and developments in quantum computing research, promising that we
can solve any number of different problems faster and with lower energy costs.
Quantum computing can make an impact across society, making it an exciting time to
get involved and learn how to program quantum computers and apply quantum
resources to solve problems that matter.

In all of the buzz about the advantages quantum computing offers, however, it is easy
to lose sight of the real scope of the advantages. We have some interesting historical
precedent for what can happen when promises about a technology outpace reality. In
the 1970s, machine learning and artificial intelligence suffered from dramatically
reduced funding, as the hype and excitement around AI outstripped its results; this
would later be called the "AI winter." Similarly, Internet companies faced the same
danger trying to overcome the dot-com bust.

One way forward is by critically understanding what the promise offered by quantum
computing is, how quantum computers work, and what they can do, and what is not in
scope for quantum computing. Also it’s just really cool to learn about an entirely new
computing model! To develop that understanding, as you read this book you’ll learn

Introducing Quantum Computing

1

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

how quantum computers work by programming simulations that you can run on your
laptop today. These simulations will show many of the essential elements of what we
expect real commercial quantum programming to be like, while useful commercial
hardware is coming online.

1.1 WHO THIS BOOK IS FOR
This book is intended for people who are interested in quantum computing and have
had little to no experience with quantum mechanics, but some programming
background. As we learn to write quantum simulators in Python and quantum programs
in Q#, Microsoft’s specialized language for quantum computing, we’ll use traditional
programming ideas and techniques to help us out. A general understanding of
programming concepts like loops, functions, and variable assignments will be helpful.
Similarly, we will be using some mathematical concepts from linear algebra such as
vectors and matrices, to help us describe the quantum concepts — if you’re familiar
with computer graphics or machine learning, many of the concepts we need here will
be similar. We’ll use Python to review the most important mathematical concepts
along the way, but familiarity with linear algebra will be helpful.

1.2 WHO THIS BOOK IS NOT FOR
Quantum computing is a wondrous and fascinating new field that offers new ways of
thinking about computation, and new tools for solving difficult problems — this book
can help you get your start in quantum computing, so that you can continue to explore
and learn. That said, this book isn’t a textbook, and isn’t intended to prepare you for
quantum computing research all on its own. As with classical algorithms, developing
new quantum algorithms is a mathematical art as much as anything else; while we
touch on the math in this book and use it to explain algorithms, there’s a variety of
different textbooks available that can help you build on the ideas that we cover here.

If you’re already familiar with quantum computing, and want to go further into the
physics or mathematics, we suggest one of the following resources:

1.2.1 Textbooks and other resources for learning further
• Quantum Computing: A Gentle Introduction by by Eleanor G. Rieffel and

Wolfgang H. Polak (ISBN-13: 9780262526678)
• Quantum Computing since Democritus by Scott Aaronson (ISBN-13:

9780521199568)
• Quantum Computation and Quantum Information by Michael A. Nielsen and

Isaac L. Chuang (ISBN-13: 9781107002173)
• Quantum Processes Systems, and Information by Benjamin Schumacher and

Michael Westmoreland (ISBN-13: 978S0521875349)

1.3 HOW THIS BOOK IS ORGANIZED
The goal of this text is to enable you to start exploring and using the practical tools we

2

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

have now for quantum computing. The text of this book is broken up into three main
parts that build on each other.

• Part I will gently introduce the concepts needed to describe qubits, the
fundamental unit of a quantum computer. This Part will describe how to simulate
qubits in Python, making it easy to write simple quantum programs.

• Part II will describe how to use the Quantum Development Kit and the Q#
programming language to compose qubits, and to run quantum algorithms that
perform differently than any known classical algorithms.

• In Part III, we will apply the tools and methods from the previous two Parts to
learn how quantum computers might be applied to real-world problems such as
simulating chemical properties.

DEEP DIVE: It’s OK to snorkel!
Quantum computing is a richly interdisciplinary area of study, bringing together ideas from programming,
physics, mathematics, engineering, and computer science. From time to time throughout the book, we’ll
take a moment to point to how quantum computing draws on ideas from these other fields to put the
concepts we’re learning about into that richer context.
While these asides are meant to spark curiosity and further exploration, they are by nature tangential.
You’ll get everything you need to enjoy quantum programming in Python and Q# from this book whether
or not you plunge into these deep dives. Taking a deep dive can be fun and enlightening, but if deep
dives aren’t your thing, that’s OK too; it’s perfectly fine to snorkel.

1.4 WHY DOES QUANTUM COMPUTING MATTER?
Computing technology advances at a truly stunning pace. Three decades ago, the
80486 processor would allow users to execute 50 MIPS (million instructions per
second), but today, small computers like the Raspberry Pi can reach 5,000 MIPS, while
desktop processors can easily reach 50,000 to 300,000 MIPS. If you have an
exceptionally difficult computational problem you’d like to solve, a very reasonable
strategy is to simply wait for the next generation of processors to make your life easier,
your videos stream faster, and your games more colorful.

For many problems that we care about, however, we’re not so lucky. We might hope
that getting a CPU that’s twice as fast lets us solve problems twice as big, but just as
with so much in life, more is different. Suppose we want to sort a list of 10 million
numbers and find that it takes about 1 second. If we later want to sort a list of 1 billion
numbers in one second, we’ll need a CPU that’s 130 times faster, not just 100 times.
Some problems make this even worse: for some problems in graphics, going from 10
million to 1 billion points would take 13,000 times longer.

Problems as widely varied as routing traffic in a city and predicting chemical reactions
get more difficult much more quickly still. If quantum computing were simply a
computer that runs 1,000 times as fast, we would barely make a dent in the daunting
computational challenges that we want to solve. Thankfully, quantum computers are
much more interesting than that. In fact, we expect that quantum computers will likely
be much slower than classical computers, but that the resources required to solve many

3

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

problems scale differently, such that if we look at the right kinds of problems we can
break through "more is different." At the same time, quantum computers aren’t a magic
bullet, in that some problems will remain hard. For example, while it is likely that
quantum computers can help us immensely with predicting chemical reactions, it is
possible that they won’t be of much help with other difficult problems.

Investigating exactly which problems we can obtain such an advantage in and
developing quantum algorithms to do so has been a large focus of quantum computing
research. Understanding where we can find advantages by using quantum computers
has recently become a significant focus for quantum software development in industry
as well. Software platforms such as the Quantum Development Kit make it easier to
develop software for solving problems on quantum computers, and in turn to assess
how easy different problems are to solve using quantum resources.

Up until this point, it has been very hard to assess quantum approaches in this way, as
doing so required extensive mathematical skill to write out quantum algorithms and to
understand all of the subtleties of quantum mechanics. Now, industry has started
developing software packages and even new languages and frameworks to help
connect developers to quantum computing. By leveraging the entire Quantum
Development Kit, we can abstract away most of the mathematical complexities of
quantum computing and help people get to actually understanding and using quantum
computers. The tools and techniques taught in this book allow developers to explore
and understand what writing programs for this new hardware platform will be like.

Put differently, quantum computing is not going away, so understanding what scale of
what problems we can solve with them matters quite a lot indeed! There are already
many governments and CEOs that are convinced that quantum computing will be the
next big thing in computing. Some people care about quantum attacks on cryptography,
some want their own quantum computer next year. Independent of the whether or not a
quantum "revolution" happens, quantum computing has and will factor heavily into
decisions about how to develop computing resources over the next several decades.

1.4.1 Decisions that are strongly impacted by quantum computing.
• What assumptions are reasonable in information security?
• What skills are useful in degree programs?
• How to evaluate the market for computing solutions?

For those of us working in tech or related fields, we increasingly must make or provide
input into these decisions. We have a responsibility to understand what quantum
computing is, and perhaps more importantly still, what it is not. That way, we will be
best prepared to step up and contribute to these new efforts and decisions.

All that aside, another reason that quantum computing is such a fascinating topic is that
it is both similar to and very different from classical computing. Understanding both
the similarities and differences between classical and quantum computing helps us to
understand what is fundamental about computing in general. Both classical and
quantum computation arise from different descriptions of physical laws such that

4

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

understanding computation can help us understand the universe itself in a new way.

What’s absolutely critical, though, is that there is no one right or even best reason to be
interested in quantum computing. Whether you’re reading this because you want to
have a nice nine-to-five job programing quantum computers or because you want to
develop the skills you need to contribute to quantum computing research, you’ll learn
something interesting to you along the way.

Further reading
If you are interested in exploring the more philosophical or foundational implications of quantum
computing, much of this is covered in computational complexity.
Some good resources along these lines are:
• The Complexity Zoo (https://complexityzoo.uwaterloo.ca/Complexity_Zoo),
• Complexity Theory: A modern approach (ISBN-13: 9780521424264), or
• Quantum Computing Since Democritus (ISBN-13: 9780521199568).

1.5 WHAT CAN QUANTUM COMPUTERS DO?
As quantum programmers we would like to know:

If we have a particular problem, how do we know it makes sense to solve it with a
quantum computer?

We are still learning about the exact extent of what quantum computers are capable of,
and thus we dont have any concrete rules to answer this question yet. So far, we have
found some examples of problems where quantum computers offer significant
advantages over the best known classical approaches. In each case, the quantum
algorithms that have been found to solve these problems exploit quantum effects to
achieve the advantages, sometimes referred to as a quantum advantage.

1.5.1 Some useful quantum algorithms
• Grover’s algorithm (Chapter 10): searches a list of N items in steps.
• Shor’s algorithm (Chapter 11): quickly factors large integers, such as those used

by cryptography to protect private data.

Though we’ll see several more in this book, both Grover’s and Shor’s are good
examples of how quantum algorithms work: each uses quantum effects to separate
correct answers to computational problems from invalid solutions. One way to realize a
quantum advantage is to find ways of using quantum effects to separate correct and
incorrect solutions to classical problems.

What are quantum advantages?
Grover’s and Shor’s algorithms illustrate two distinct kinds of quantum advantage. Factoring integers
might be easier classically than we suspect, as we haven’t been able to prove that factoring is difficult.
The evidence that we use to conjecture that factoring is hard classically is largely derived from
experience, in that many people have tried very hard to factor integers quickly, but haven’t succeeded.
On the other hand, Grover’s algorithm is provably faster than any classical algorithm, but uses a
fundamentally different kind of input.

5

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://complexityzoo.uwaterloo.ca/Complexity_Zoo

©Manning Publications Co. To comment go to liveBook

Other quantum advantages might derive from problems in which we must simulate quantum
dynamics. Quantum effects such as interference are quite useful in simulating other quantum effects.

Finding a provable advantage for a practical problem is an active area of research in quantum
computing. That said, quantum computers can be a powerful resource for solving problems even if we
can’t necessarily prove that there will never be a better classical algorithm. After all, Shor’s algorithm
already challenges the assumptions underlying large swaths of classical information security — a
mathematical proof is in that sense made necessary only by the fact that we haven’t yet built a quantum
computer in practice.

Quantum computers also offer significant benefits to simulating properties of quantum
systems, opening up applications to quantum chemistry and materials science. For
instance, quantum computers could make it much easier to learn about the ground state
energies of chemical systems. These ground state energies then provide insight into
reaction rates, electronic configurations, thermodynamic properties, and other
properties of immense interest in chemistry.

Along the way to developing these applications, we have also seen significant
advantages in spin-off technologies such as quantum key distribution and quantum
metrology, as we will see in the next few chapters. In learning to control and
understand quantum devices for the purpose of computing, we also have learned
valuable techniques for imaging, parameter estimation, security, and more. While these
are not applications for quantum computing in a strict sense, they go a long way to
showing the values of thinking in terms of quantum computation.

Of course, new applications of quantum computers are much easier to discover when
we have a concrete understanding of how quantum algorithms work and how to build
new algorithms from basic principles. From that perspective, quantum programming is
a great resource to learn how to discover entirely new applications.

1.6 WHAT IS A QUANTUM COMPUTER?
Let’s talk a bit about what actually makes up a quantum computer. To facilitate this,
let’s briefly talk about what the term "computer" means. In a very broad sense, a
computer is a device that takes data as input and does some sort of operations on that
data.

COMPUTER A computer is a device that takes data as input and does some sort of operations on that data.

There are many examples of what we have called a computer, see for some examples.

6

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.1. Several examples of different kinds of computers, including a mainframe operated
by Rear Admiral Hopper, a room of humans working to solve flight calculations, a mechanical
calculator, and a LEGO-based Turing machine. Each computer can be described by the same
mathematical model as computers like cell phones, laptops, and servers.

When we say the word "computer" in conversation, though, we tend to mean
something more specific. Often, we think of a computer as an electronic device like the
one we are currently writing this book on (or that you might be using to read this
book!). For any resource up to this point that we have made a computer out of, we can
model it with classical physics — that is, in terms of Newtons’s laws of motion,
Newtonian gravity, and electromagnetism.

Following this perspective, we will refer to computers that are described using classical
physics as classical computers. This will help us tell apart the kinds of computers we’re
used to (e.g.: laptops, phones, bread machines, houses, cars, and pacemakers) from the
computers that we’re learning about in this book.

Specifically, in this book, we’ll be learning about quantum computers. By the way we
have formulated the definition for classical computers, if we just replace the
term classical physics with quantum physics we have a suitable definition for what a
quantum computer is!

QUANTUM
COMPUTER

A quantum computer is a device that takes data as input and does some sort of operations on
that data, which requires the use of quantum physics to describe this process..

The distinction between classical and quantum computers is precisely that between
classical and quantum physics. We will get in to this more later in the book, but the
primary difference is one of scale: our everyday experience is largely with objects that
are large enough and hot enough that even though quantum effects still exist, they

7

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

don’t do much on average. Quantum physics still remains true, even at the scale of
everyday objects like coffee mugs, bags of flour, and baseball bats, but we can do a
very good job of describing how these objects interact using physical laws like
Newton’s laws of motion.

DEEP DIVE: What happened to relativity?
Quantum physics applies to objects that are very small and very cold or well-isolated. Similarly, another
branch of physics called relativity describes objects that are large enough for gravity to play an important
role, or that are moving very fast — near the speed of light. We have already discussed classical physics,
which could also be said to describe things that are neither quantum mechanical nor relativistic. So far
we have primarily been comparing classical and quantum physics, raising the question: why aren’t we
concerned about relativity? Many computers use relativistic effects to perform computation; indeed,
global positioning satellites depend critically on relativity.

That said, all of the computation that is implemented using relativistic effects can also be described
using purely classical models of computing such as Turing machines. By contrast, quantum computation
cannot be described as faster classical computation, but requires a different mathematical model. There
has not yet been a proposal for a "gravitic computer" that uses relativity to realize a different model of
computation, so we’re safe to set relativity aside in this book.

Quantum computing is the art of using small and well-isolated devices to usefully
transform our data in ways that cannot be described in terms of classical physics alone.
We will see in the next chapter, for instance, that we can generate random numbers on
a quantum device by using the idea of rotating between different states. One way to
build quantum devices is to use small classical computers such as digital signal
processors (DSPs) to control properties of exotic materials.

PHYSICS
AND

QUANTUM
COMPUTING

The exotic materials used to build quantum computers have names that can sound
intimidating, like "superconductors" and "topological insulators." We can take solace, though,
from how we learn to understand and use classical computers. Modern processors are built
using materials like semiconductors, but we can program classical computers without knowing
what a semiconductor is. Similarly, the physics behind how we can use superconductors and
topological insulators to build quantum computers is both a fascinating subject, but it’s not
required for us to learn how to program and use quantum devices.

Quantum operations are applied by sending in small amounts of microwave power and
amplifying very small signals coming out of the quantum device.

Other qubit devices may differ in the details of how they are controlled, but what
remains consistent is that all quantum devices are controlled from and read out by
classical computers and control electronics of some kind. After all, we are ultimately
interested in classical data, and so there must eventually be an interface with the
classical world.

TIP For most quantum devices, we need to keep them very cold and very well isolated, since
quantum devices can be very susceptible to noise.

By applying quantum operations using embedded classical hardware, we can

8

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

manipulate and transform quantum data. The power of quantum computing then comes
from carefully choosing which operations to apply in order to implement a useful
transformation that solves a problem of interest.

Figure 1.2. An example of how a quantum device might interact with a classical computer
through the use of a digital signal processor (DSP). The DSP sends low-power signals into the
quantum device, and amplifies very low-power signals coming back to the device.

1.7 HOW WILL WE USE QUANTUM COMPUTERS?
It is important to understand both the potential and the limitations of quantum
computers, especially given the hype surrounding quantum computation. Many of the
misunderstandings underlying this hype stem from extrapolating analogies beyond
where they make any sense — all analogies have their limits, and quantum computing
is no different in that regard.

TIP If you’ve ever seen descriptions of new results in quantum computing that read like "we can
teleport cats that are in two places at once using the power of infinitely many parallel universes
all working together to cure cancer," then you’ve seen the danger of extrapolating too far from
where analogies are useful.

Indeed, any analogy or metaphor used to explain quantum concepts will be wrong if
you dig deep enough. Simulating how a quantum program acts in practice can be a
great way to help test and refine the understanding provided by analogies. Nonetheless,
we will still leverage analogies in this book, as they can be quite helpful in providing
intuition for how quantum computation works.

One especially common point of confusion regarding quantum computing is the way in
which users will leverage quantum computers. We as a society now have a particular
understanding of what a device called a computer does. A computer is something that
you can use to run web applications, write documents, and run simulations to name a
few common uses. In fact, classical computers are present in every aspect of our lives,
making it it easy to take computers for granted. We don’t always even notice what is
and isn’t a computer. Cory Doctorow made this observation by noting that "your car is
a computer you sit inside of" (https://www.youtube.com/watch?v=iaf3Sl2r3jE).

9

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://www.youtube.com/watch?v=iaf3Sl2r3jE

©Manning Publications Co. To comment go to liveBook

Quantum computers, however, are likely to be much more special-purpose. Just as not
all computation runs on graphical processing units (GPUs) or field-programmable gate
arrays (FPGAs), we expect quantum computers to be somewhat pointless for some
tasks.

IMPORTANT Programming a quantum computer comes along with some restrictions, so classical computers
will be preferable in cases where there’s no particular quantum advantage to be found.

Classical computing will still be around and will be the main way we communicate and
interact with each other as well as our quantum hardware. Even to get the classical
computing resource to interface with the quantum devices we will also need in most
cases a digital to analogue signal processor as shown in .

Moreover, quantum physics describes things at very small scales (both size and
energy) that are well-isolated from their surroundings. This puts some hard limitations
to what environments we can run a quantum computer in. One possible solution is to
keep our quantum devices in cryogenic fridges, often near absolute 0 K (-459.67 °F, or
-273.15 °C). While this is not a problem at all to achieve in a data center, maintaining a
dilution refrigerator isn’t really something that makes sense on a desktop, much less in
a laptop or a cell phone. For this reason, it’s very likely that quantum computers will,
at least for quite a while after they first become commercially available, be used
through the cloud.

Using quantum computers as a cloud service resembles other advances in specialized
computing hardware. By centralizing exotic computing resources in data centers, it’s
possible to explore computing models that are difficult for all but the largest users to
deploy on-premises. Just as high-speed and high-availability Internet connections have
made cloud computing accessible for large numbers of users, you will be able to use
quantum computers from the comfort of your favorite WiFi-blanketed beach, coffee
shop, or even from a train as you watch majestic mountain ranges off in the distance.

1.7.1 Exotic cloud computing resources
• Specialized gaming hardware (PlayStation Now, Xbox One).
• Extremely low-latency high-performance computing (e.g. Infiniband) clusters for

scientific problems.
• Massive GPU clusters.
• Reprogrammable hardware (e.g. Catapult/Brainwave).
• Tensor processing unit (TPU) clusters.
• High-permanence high-latency archival storage (e.g. Amazon Glacier).

1.8 WHAT CAN’T QUANTUM COMPUTERS DO?
Like other forms of specialized computing hardware, quantum computers won’t be
good at everything. For some problems, classical computers will simply be better
suited to the task. In developing applications for quantum devices, it’s helpful to note
what tasks or problems are out of scope for quantum computing.

10

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

The short version is that we don’t have any hard-and-fast rules to quickly decide
between which tasks are best run on classical computers, and which tasks can take
advantage of quantum computers. For example, the storage and bandwidth
requirements for Big Data–style applications are very difficult to map onto quantum
devices, where you may only have a relatively small quantum system. Current quantum
computers can only record inputs of no more than a few dozen bits, a limitation that
will become more relevant as quantum devices are used for more demanding tasks.
Although we expect to eventually be able to build much larger quantum systems than
we can now, classical computers will likely always be preferable for problems which
require large amounts of input/output to solve.

Similarly, machine learning applications that depend heavily on random access to large
sets of classical inputs are conceptually difficult to solve with quantum computing.
That said, there may be other machine learning applications exist that map much more
naturally onto quantum computation. Research efforts to find the best ways to apply
quantum resources to solve machine learning tasks are still ongoing. In general,
problems that have small input and output data sizes, but large amounts of computation
to get from input to output are good candidates for quantum computers.

In light of these challenges, it might be tempting to conclude that quantum
computers always excel at tasks which have small inputs and outputs, but have very
intense computation between the two. Notions like "quantum parallelism" are popular
in media, and quantum computers are sometimes even described as using parallel
universes to compute.

NOTE The concept of "parallel universes" is a great example of an analogy that can help make
quantum concepts understandable, but that can lead to nonsense when taken to its
extreme. It can be sometimes helpful to think of the different parts of a quantum
computation as being in different universes that can’t affect each other, but this description
makes it harder to think about some of the effects we will learn in this book, such as
interference. When taken too far, the "parallel universes analogy" also lends itself to
thinking of quantum computing in ways that are closer to a particularly pulpy and fun
episode of a sci-fi show like Star Trek than to reality.

What this fails to communicate, however, is that it isn’t always obvious how to use
quantum effects to extract useful answers from a quantum device, even if it appears to
contain the desired output. For instance, one way to factor an integer classically is to
list each potential factor, and to check if it’s actually a factor or not.

1.8.1 Factoring N classically.
• Let i = 2.
• Check if the remainder of N / i is zero.

o If so, return that i factors N.
o If not, increment i and loop.

We can speed this classical algorithm up by using a large number of different classical
computers, one for each potential factor that we want to try. That is, this problem can

11

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

be easily parallelized. A quantum computer can try each potential factor within the
same device, but as it turns out, this isn’t yet enough to factor integers faster than the
classical approach above. If you run this on a quantum computer, the output will be
one of the potential factors chosen at random. The actual correct factors will occur with
probability about , which is no better than the classical algorithm above.

As we’ll see in Chapter 11, though, we can improve this by using other quantum
effects, however, to factor integers with a quantum computer faster than the best-
known classical factoring algorithms. Much of the heavy lifting done by Shor’s
algorithm is to make sure that the probability of measuring a correct factor at the end is
much larger than measuring an incorrect factor. Cancelling out incorrect answers in
this way is where much of the art of quantum programming comes in; it’s not easy or
even possible to do for all problems we might want to solve.

To understand more concretely what quantum computers can and can’t do, and how to
do cool things with quantum computers despite these challenges, it’s helpful to take a
more concrete approach. Thus, let’s consider what a quantum program even is, so that
we can start writing our own.

1.9 WHAT IS A PROGRAM?
Throughout this book, we will often find it useful to explain a quantum concept by first
re-examining the analogous classical concept. In particular, let’s take a step back and
examine what a classical program is.

PROGRAM

A program is a sequence of instructions that can be interpreted by a classical computer to
perform a desired task.

Examples of classical programs

• Tax forms

• Map directions

• Recipes

• Python scripts

We can write classical programs to break down a wide variety of different tasks for
interpretation by all sorts of different computers.

12

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.3. Examples of classical programs. Tax forms, map directions, and recipes are all
examples in which a sequence of instructions is interpreted by a classical computer such as a
person.

Let’s take a look at what a simple "hello, world" program might look like in Python:

>>> def hello():
... print("Hello, world!")
...
>>> hello()
Hello, world!

At its most basic, this program can be thought of as a sequence of instructions given to
the Python interpreter, which then executes each instruction in turn to accomplish some
effect — in this case, printing a message to the screen.

We can make this way of thinking more formal by using the dis module provided with
Python to disassemble hello() into a sequence of instructions:

>>> import dis
>>> dis.dis(hello)
 2 0 LOAD_GLOBAL 0 (print)
 2 LOAD_CONST 1 ('Hello, world!')
 4 CALL_FUNCTION 1

13

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 6 POP_TOP
 8 LOAD_CONST 0 (None)
 10 RETURN_VALUE

NOTE You may get different output on your system, depending on what version of Python you’re
using.

Each line consists of a single instruction that is passed to the Python virtual machine;
for instance, the LOAD_GLOBAL instruction is used to look up the definition of
the print function. The print function is then called by
the CALL_FUNCTION instruction. The Python code that we wrote above
was compiled by the interpreter to produce this sequence of instructions. In turn, the
Python virtual machine executes our program by calling instructions provided by the
operating system and the CPU.

Figure 1.4. An example of how a classical computing task is repeatedly described and
interpreted.

At each level, we have a description of some task that is then interpreted by some
other program or piece of hardware to accomplish some goal. This constant interplay
between description and interpretation motivates calling Python, C, and other such
programming tools languages, emphasizing that programming is ultimately an act of
communication.

In the example of using Python to print "Hello, world!," we are effectively
communicating with Guido von Rossum, the founding designer of the Python
language. Guido then effectively communicates on our behalf with the designers of the
operating system that we are using. These designers in turn communicate on our behalf
with Intel, AMD, ARM, or whomever has designed the CPU that we are using, and so

14

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

forth. As with any other use of language to communicate, our choice of programming
language affects how we think and reason about programming. When we choose a
programming language, the different features of that language and the syntax used to
express those features mean that some ideas are more easily expressed than others.

1.10 WHAT IS A QUANTUM PROGRAM?
Like classical programs, quantum programs consist of sequences of instructions that
are interpreted by classical computers to perform a particular task. The difference,
however, is that in a quantum program, the task we wish to accomplish involves
controlling a quantum system to perform a computation.

Figure 1.5. Writing a quantum program with the Quantum Development Kit and Visual Studio
Code.

The instructions available to classical and quantum programs differ according to this
difference in tasks. For instance, a classical program may describe a task such as
loading some cat pictures from the Internet in terms of instructions to a networking
stack, and eventually in terms of assembly instructions such as mov (move). By
contrast, quantum languages like Q# allow programmers to express quantum tasks in
terms of instructions like M (measure).

Figure 1.6. An example of how a quantum device might interact with a classical computer
through the use of a digital signal processor (DSP). The DSP sends low-power signals into the

15

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

quantum device, and amplifies very low-power signals coming back to the device.

When run using quantum hardware, these programs may instruct a digital signal
processor such as that shown in to send microwaves, radio waves, or lasers into a
quantum device, and to amplify signals coming out of the device.

If we are to achieve a different ends, however, it makes sense for us to use a language
that reflects what we wish to communicate! We have many different classical
programming languages for just this reason, as it doesn’t make sense to use only one of
C, Python, JavaScript, Haskell, Bash, T-SQL, or any of a whole multitude of other
languages. Each language focuses on a subset of tasks that arise within classical
programming, allowing us to choose a language that lets us express how we would like
to communicate that task to the next level of interpreters.

Quantum programming is thus distinct from classical programming almost entirely in
terms of what tasks are given special precedence and attention. On the other hand,
quantum programs are still interpreted by classical hardware such as digital signal
processors, so a quantum programmer writes quantum programs using classical
computers and development environments.

Throughout the rest of this book, we will see many examples of the kinds of tasks that
a quantum program is faced with solving or at least addressing, and what kinds of
classical tools we can use to make quantum programming easier. We will build up the
concepts you need to write quantum programs chapter by chapter, you can see a road
map of how these concepts will build up in.

16

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.7. This book will try to build up the concepts you need to write quantum programs.

1.11 SUMMARY
In this chapter you learned:

• Recognize the significance of quantum computing in modern society,
• Predict what kinds of problems a quantum computer may be good at solving,
• and recognize the similarities and differences between programming for a

quantum computer vs. a classical computer.

17

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

2
This chapter covers:

• Why random numbers are an important resource.

• What is a qubit?

• What are the basic operations we can perform on a qubit?

• How to program a quantum random number generator in Python.

In this chapter, we are going to start to get our feet wet with some quantum
programming concepts. The main concept we will explore is the qubit, the quantum
analogue of a classical bit. We use qubits as an abstraction or model to describe the
new kinds of computing that are possible with quantum physics. To help learn about
what qubits are and how we interact with them, we will use an example of how they
are being used today: random number generation. While we can build up much more
interesting devices from these qubits, the simple example of a quantum random
number generator (QRNG) will be a good way to get familiar with the qubit!

Qubits: The building blocks

18

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.1. In this Chapter, we will be covering topics in simulating quantum hardware and
intrinsic operations for the quantum devices.

2.1 WHY DO WE NEED RANDOM NUMBERS?
Humans like certainty. We like it when we press a key on our keyboard and it does the
same thing every time. However, there are some contexts in which we do want
randomness.

2.1.1 Things some humans like to use randomness for
• Playing games
• Simulating complex systems (e.g.: stock market)
• Picking secure secrets (e.g.: passwords and cryptographic keys)

In all of these situations where we want randomness, we can describe the "chances" for
each outcome. Being random events means that describing the chances is all we can
say about the situation until the die is cast (or the coin is flipped or the password is re-
used). When we describe the "chances" of each example, we say things like:

2.1.2 Statements about probability
• if I roll this die, then I will see a six with probability 1 out of 6,
• if I flip this coin, then I will see a heads with probability 1 out of 2.

We can also describe cases where the probabilities aren’t the same for every outcome
we could measure. In Wheel of Fortune™ (), the probability that if we spin the
wheel then we will get a $1,000,000 prize is much smaller than the probability
that if we spin the wheel, then we will go bankrupt.

19

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.2. Probabilities of $1,000,000 and Bankrupt in Wheel of Fortune™

Like in game shows, there are also may contexts in computer science where
randomness is critical, especially when security is required. If we want to keep some
information private, then cryptography lets us do so by combining our data with
random numbers in different ways. If our random number generator isn’t very good —
that is to say if an attacker can predict what numbers we use to protect our private data
— then cryptography doesn’t help us very much. We can also imagine using a poor
random number generator to run a raffle or a lottery; an attacker who figures out how
our random numbers are generated can take us straight to the bank.

WHAT ARE
THE ODDS

You can lose a lot of money by using random numbers that your adversaries can predict. Just
ask the producers of Press Your Luck!, a popular 1980s game show. A contestant found that he
could predict where their new electronic "wheel" would land, letting him win more than
$250,000 in today’s money. Read more at: https://priceonomics.com/the-man-who-got-no-
whammies/.

As it turns out, quantum mechanics lets us build some really unique sources of
randomness. If we build them right, the randomness of our results is guaranteed
by physics, not an assumption about how long it would take for a computer to solve a
difficult problem. This means that for a hacker or adversary they would have to break
the laws of physics to break the security! Now, this does not mean that you should use
quantum random numbers for everything, humans are still the weakest link in security
infrastructure ����

20

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

DEEP DIVE: Computational Security and Information Theoretic Security
Some ways of protecting private information rely on assumptions about what problems are easy or

hard for an attacker to solve. For instance, the RSA algorithm is a commonly used encryption algorithm,
and is based on the difficulty of finding prime factors for large numbers. RSA is used on the web and in
other contexts to protect user data, under the assumption that adversaries can’t easily factor very large
numbers. So far, this has proven to be a rather good assumption, but it is entirely possible that a new
factoring algorithm is discovered, undermining the security of RSA. New models of computation like
quantum computing also change how reasonable or unreasonable it is to make computational
assumptions like "factoring is hard." As we’ll see in Chapter 11, a quantum algorithm known as Shor’s
algorithm allows for solving some kinds of cryptographic problems much faster than classical computers,
challenging the assumptions that are commonly used to promise computational security.

By contrast, if an adversary can only ever randomly guess at secrets, even with very large amounts of
computing power, then a security system provides much better guarantees about its ability to protect
private information. Such systems are said to be informationally secure. In the next chapter, we will see
that generating random numbers in a hard-to-predict fashion allows us to implement an informationally
secure procedure called a one-time pad.

This gives us some confidence that we can use them for vital tasks, such as to protect
private data, run lotteries, and to play Dungeons and Dragons™. Simulating how
quantum random number generators work lets us learn many of the basic concepts
underlying quantum mechanics, so let’s jump right in and get started!

Figure 2.3. Quantum random number generator algorithm.

One great way to get started is to look at an example of a quantum program that
generates random numbers. Let’s call it a quantum random number generator or QRNG
for short. Don’t worry if the algorithm doesn’t make a lot of sense right now, we’ll
explain the different pieces as we go through the rest of the chapter.

2.1.3 Quantum random number generator algorithm
• Ask the quantum device to allocate a qubit.
• Apply a Hadamard instruction to our qubit.
• Measure our qubit and return the result.

21

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

In the rest of the chapter, we’ll develop a Python class QuantumDevice to let us write
programs that implement algorithms like the one above. Once we have
a QuantumDevice class, we’ll be able to write out QRNG as a Python program similar
to classical programs that you’re used to.

NOTE Please see Appendix A for instructions on how to setup Python on your device to run quantum
programs.

Listing 2.1. qrng.py : A quantum program that generates random numbers. Note that
this sample will not run until you have written the simulator in this chapter 😊😊

def qrng(device : QuantumDevice) -> bool: ❶
 with device.using_qubit() as q: ❷
 q.h() ❸
 return q.measure() ❹

❶Our quantum programs are written just like the classical programs that you’re used to. In this case,
we’re using Python, so our quantum program is a Python function qrng that implements a quantum
random number generator.

❷Quantum programs work by asking quantum computing hardware for qubits, quantum analogues of bits
that we can use to perform computations.

❸Once we have a qubit, we can issue instructions to that qubit. Similarly to assembly languages, these
instructions are often denoted by short abbreviations; we’ll see what h() stands for later on in this
chapter.

❹To get data back from our qubits, we can measure them. In this case, half of the time, our
measurement will return True, and the other half of the time, we’ll get back False.

That’s it!

Four steps and we’ve just created our first quantum program. This QRNG returns true
or false. In Python terms, this means that you get a 1 or a 0 each time you run qrng.
It’s not a very sophisticated random number generator but the number it returns is truly
random.

To run the qrng program above, we’ll need to give our function a QuantumDevice that
can give us access to qubits and that implements the different instructions we can send
to qubits. Though we need only one qubit, to start, we’re going to build our own
quantum computer simulator. Existing hardware could be used for this modest task, but
what we will look at later will be beyond the scope of available hardware. It will run
locally on a laptop or desktop and behave in the same way as actual quantum hardware.
The simplest kind of device that we can consider is a simulator that runs locally on a
laptop or desktop, and that behaves in the same way as actual quantum hardware.
Throughout the rest of the chapter, we’ll build up the different pieces we need to write
our own simulator and to run qrng.

22

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

2.2 WHAT ARE CLASSICAL BITS?
When learning about the concepts of quantum mechanics, it can often be helpful to
step back and re-examine classical concepts in a way that makes it easier to make the
connection to how that concept is expressed in quantum computing. With that in mind,
let’s step back and take another look at what bits are.

Suppose that you’d like to send your dear friend Eve an important message, such
as ����. How can we represent our message in a way that it can be easily sent?

We might start by making a list of every letter and symbol that that we could hope to
use in writing down messages. Thankfully, the Unicode Consortium
(https://unicode.org/) has already done this for us, and has assigned a code to a very
wide variety of the characters we use across the world to communicate with each other.
For instance, I is assigned the code 0049, while is given the code A66E, ⸎ is
denoted by 2E0E, and ���� by 1F496. These codes may not seem too helpful at first
glance, but they’re useful recipes for how to send each symbol as a message. If we
know how to send two messages, let’s call them 0 and 1, these recipes let us build up
more complicated messages like , ⸎, and ���� as sequences of 0 and 1 messages:

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

Now we can send whatever we want if we know how to send just two messages to Eve,
a 0 and a 1 message. Using these recipes, our message of " ����" becomes 0001 1111
0100 1001 0110 or unicode 1F496.

TIP Don’t send 0001 1111 0100 1001 0100 by mistake, or Eve will get a ��� from you!

We call each of the two messages "0" and "1" a bit.

NOTE To distinguish bits from the quantum bits that we’ll see throughout the rest of the book, we’ll
often emphasize that we’re talking about classical bits.

When we use the word bit, we generally mean one of two things:

• Any physical system that can be completely described by answering one true/false
question.

23

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://unicode.org/

©Manning Publications Co. To comment go to liveBook

• The information stored in such a physical system.

For example, padlocks, light switches, transistors, left or right spin on a curveball, and
wine in wine glasses can all be thought of as bits, as we can use all of them to send or
record messages:

Table 2.1. Table Examples of bits

Label Padlock Light Switch Transistor Wine Glass Baseball

0 Unlocked Off Low voltage Has white wine Rotating to the left

1 Locked On High voltage Has red wine Rotating to the right

These examples are all bits, because we can fully describe them to someone else by
answering a single true/false question. Put differently, each example lets us send either
a 0 or a 1 message. Like all conceptual models, a "bit" has its limitations — how would
we describe a rosé wine, for instance?

That said, a "bit" is a useful tool because we can describe ways of interacting with bits
that are independent of how we actually build the bit.

2.2.1 What Can We Do With Classical Bits?
Now that we have a way of describing and sending classical information, what can we
do to process and modify our information? We describe the ways that we can process
information in terms of operations, which we define as the ways of describing how a
model can be changed or acted upon.

To visualize the NOT operation, let’s imagine labeling two points as "0" and "1".

Figure 2.4. We depict a classical bit as a black dot in either the 0 or 1 position.

The NOT operation is then any transformation which turns "0" bits into "1" bits and
vice versa. In classical storage devices like hard drives (and even floppy disks!), a
NOT gate flips the magnetic field that stores our bit value. We can think of NOT as

24

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

implementing a 180° rotation between the "0" and "1" points we drew above.

Figure 2.5. The classical NOT operation flips a 0 bit to a 1 bit and vice versa.

Visualizing classical bits this way also lets us extend our notion of bits slightly to
include a way to describe random bits (which will be helpful later). If we have a fair
coin (that is, a coin that lands heads "half" of the time and "tails" the other half), then it
wouldn’t be correct to call that coin a "0" or a "1". We only know what bit value our
coin bit has if we set it with a particular side face up on a surface, or we can flip it for a
random bit value. Every time we flip a coin, we know that eventually it will land and
we will get a heads or tails. Whether it lands heads or tails is governed by a probability
called the bias of the coin. We have to pick a side of the coin to describe the bias,
which is easy to phrase as a question like this: What is the probability the coin will
land heads? Thus a fair coin would have a bias of 50% because it lands with the value
heads half of the time, which is mapped to the bit value 0 in .

25

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.6. Extending the concept of a bit to describe a coin, which has a probability of being
found in either "0" or "1" each time it is flipped.

Using this visualization, we can take our previous two dots indicating the bit values "0"
and "1" and connect them with a line on which we can plot the bias of our coin. It
becomes easier to see that a NOT operation (which still works on our new probabilistic
bit) doesn’t do anything to a fair coin. If "0" and "1" occur with the same probability,
then it doesn’t matter if we rotate a "0" to a "1" and a "1" to a "0", we’ll still wind up
with "0" and "1" having the same probability.

What if our bias is not in the middle? If we know that someone is trying to cheat by
using a weighted or modified coin that almost always lands on "heads", we could say
the bias of the coin is 90% and could plot it on our line bit by drawing a point much
closer to "0" than to "1."

STATE We say that the point on a line where one would draw each classical bit is the state of that bit.

Let’s consider a scenario:

Say I want to send you a bunch of bits stored using padlocks, what is the cheapest
way I could do so?

One approach is to mail a box containing many padlocks that are either open or closed
and hope that they arrive in the same state that I sent them in. On the other hand, we
can both agree that all padlocks start off initially in the "0" (unlocked) state, and I can
send you instructions on which padlocks to close. This way, you can go buy your own
padlocks, and I only need to send a description of how to prepare those padlocks using
classical NOT gates. Sending a piece of paper or even just an email is way cheaper
than mailing a box of padlocks!

This illustrates a principle we will rely on throughout the book: The state of a
physical system can also be described in terms of instructions for how prepare

26

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

that state. Thus, the operations allowed on a physical system also define what states
are possible.

Though it may sound completely trivial, there is one more thing that we can do with
classical bits that will turn out to be critical to how we understand quantum computing:
we can look at them. If I look at a padlock and conclude that "aha! that padlock is
unlocked~!," then I can now think of my brain as a particularly squishy kind of bit. The
"0" message is stored in my brain by my thinking "aha! that padlock is unlocked~!,"
while a "1" message might have been stored by my thinking "ah, well, that padlock is
locked ���." In effect, by looking at a classical bit, I have copied it into my brain. We
say that the act of measuring the classical bit copies that bit.

More generally, modern life is built all around the ease with which we copy classical
bits by looking at them. We copy classical bits with truly reckless abandon, measuring
many billions of classical bits every second that we copy data from our video game
consoles to our TVs.

On the other hand, if a bit is stored as a coin, then the process of measuring involves
flipping it. Now measuring doesn’t quite copy the coin, as I might get a different
measurement result the next time I flip. If I only have one measurement of a coin, I
can’t conclude what the probability of getting a heads or tails was. We didn’t have this
ambiguity with our padlock bits, because we knew the state of our padlocks was either
"0" or "1". If I measured a padlock and found it to be in the "0" state, I would know
that unless I did something to the padlock, it would always be in the "0" state.

The situation isn’t precisely the same in quantum computing, as we’ll see later on in
the chapter. While measuring classical information is cheap enough that we complain
about precisely how many billions of bits a $5 cable can let us measure, we will have
to be much more careful with how we approach quantum measurements.

2.2.2 Abstractions are our friend
Regardless of how we physically build a bit, we can thankfully represent them in the
same way in both math and in code. For instance, Python provides the bool type (short
for Boolean, in honor of the logician George Boole), which has two valid
values: True and False. We can then represent transformations on bits such as NOT
and OR as operations acting on bool variables. Importantly, we can specify a classical
operation by describing how that operation transforms each possible input, which is
often called a truth table.

27

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

TRUTH
TABLE

A table describing the output of a classical operation for every possible combination of inputs is
called that operation’s truth table.

Figure 2.7. Truth table for the logical operation AND.

For example, we can find the truth table for the NAND (short for NOT-AND)
operation in Python by iterating over combinations of True and False:

Listing 2.2. Using python to print out a truth table for NAND

>>> from itertools import product
>>> for inputs in product([False, True], repeat=2):
... output = not (inputs[0] and inputs[1])
... print(f"{inputs[0]}\t{inputs[1]}\t->\t{output}")
False False -> True
False True -> True
True False -> True
True True -> False

TRUTH
TABLES ALL

THE WAY
DOWN

Describing an operation as a truth table holds for more complicated operations as well; in
principle even an operation like addition between two 64-bit integers can be written as a truth
table. This isn’t very practical, though, as a truth table for two 64-bit inputs would have 2128

\approx \times 1038 entries, and would take 1040 bits to write down. By comparison, recent
estimates put the size of the entire Internet at closer to 1027 bits.

Much of the art of classical logic and hardware design is making circuits which can
provide very compact representations of classical operations, rather than relying on
potentially massive truth tables. In quantum computing we use the name unitary
operators for similar truth tables for our quantum bits, which we will expand on as we
go along.

28

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

In summary,

• Classical bits are physical systems which can be in one of two different states,
• Classical bits can be manipulated through operations to process information,
• The act of measuring a classical bit makes a copy of the information contained in

the state.
NOTE In the next section, you’ll use linear algebra to learn about qubits, the basic unit of information

in a quantum computer. If you need a refresher on linear algebra, this would be a great time to
take a detour to visit Appendix B. We’ll be right here when you get back!

2.3 QUBITS: STATES AND OPERATIONS
Just like classical bits are the most basic unit of information in a classical
computer, qubits are the basic unit of information in a quantum computer. They can be
physically implemented by systems that have 2 states, just like classical bits, but that
behave according to the laws of quantum mechanics, which allows for some behaviors
that classical bits are not capable of. Let’s treat qubits like you would any other fun
and new computer part: plug it in and see what happens!

EXAMPLE 2.3. SCENARIO

Say you just got a brand new computer part for your desktop. You have a thick manual,
a quick start guide, and a driver CD. What steps do you take to figure out how to set it
up correctly and verify that it works ok?

The easiest approach would to be to just plug it in and hope it works! But some very
hard working technical writers and devs worked to put together that quick start guide
and system requirements… We will treat the rest of this chapter as a sort of quick start
guide to qubits, so let’s see if they work!

29

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.8. Our brand new quantum development (the CD they provide is just a novelty coaster).

SIMULATED
QUBITS

For almost all of this book, we won’t be using actual qubits, but will be using classical
simulations of qubits. This lets us learn how quantum computers will work, and to get started
programming small instances of the kinds of problems that quantum computers can solve,
even if we don’t yet have access to the kinds of quantum hardware we’ll need to solve practical
problems.

The trouble with this is that simulating qubits on classical computers takes an exponential
amount of classical resources in the number of qubits, such that the most powerful classical
computing services can simulate up to about 40 qubits before having to simplify or reduce the
types of quantum programs being run. For comparison, current commercial hardware maxes
out at about 70 qubits at the time of this writing. Devices with that many qubits are extremely
difficult to simulate with classical computers, but currently available devices are still too noisy
to complete most useful computational tasks.

Imagine having to write a classical program with only 40 classical bits to work with! While 40
bits is quite small compared to the gigabytes that we are used to working with in classical
programing, there are still some really interesting things we can do with only 40 qubits, and
that help us prototype what an actual quantum advantage might look like.

2.3.1 State of the qubit
Looking through the listed system requirements for our quantum hardware, the first
thing listed is qubits, followed by a bunch of stuff like "initial state: |0⟩". This is more
helpful than it might first seem, as our manual is telling us about how to describe and
initialize our new qubits. We have used locks, baseballs, and other classical systems to
represent our classical bit values of 0 or 1. There are many physical systems we can
use to act as our qubit, and states are the "values" our qubit can have.

Similar to the 0 and 1 states of classical bits, we can write labels for quantum states.

30

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

The qubit states that are most similar to the classical "0" and "1" are and , as we
draw in . These are referred to as "ket 0" and "ket 1" respectively. With this in mind,
the "|0⟩" in our manual tells us what state our qubits start off in when we pull them out
of the box.

KET? The term "ket" comes from a kind of whimsical naming that is seen in quantum computing
owing its history to a particularly silly pun. As we’ll see more of when we look at
measurements, there’s another kind of object called a bra that gets written like ⟨0|. When you
put a bra and a ket together, you get a pair of brackets ⟨⟩. The use of bras and kets to write out
math for quantum mechanics is often called Dirac notation after Paul Dirac, who both invented
the notation and the truly groan-worthy pun that we’re now stuck with. We will see more of this
style of whimsey throughout the book.

Figure 2.9. Bracket notation for qubits.

One thing to be mindful of, though, is that a state is a convenient model use to predict
how a qubit behaves, not some inherent property of the qubit itself. This distinction
becomes especially important when we consider measurement later in the chapter — as
we will see, we cannot directly measure the state of a qubit.

IMPORTANT In real systems, we will never be able to extract or perfectly learn the state of a qubit given a
finite number of copies.

Don’t worry if this doesn’t all make sense yet, we’ll see plenty of examples as we go
through the book. What’s important to keep in mind for now is that qubits aren’t states.

If we want to simulate how a baseball moves once it’s thrown, we might start by
writing down it’s current location, how fast it’s going and in what direction, which way
it’s spinning, and so forth. That list of numbers helps us represent a baseball on a piece
of paper or in a computer so that we can predict what that baseball will do, but we
wouldn’t say that the baseball is that list of numbers. To get our simulation started,

31

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

we’d have to take a baseball we’re interested in and measure where it is, how fast it’s
going, and so forth.

We say that the full set of data we need to accurately simulate the behaviour of a
baseball is the state of that baseball. Similarly, the state of a qubit is the full set of data
we need to simulate it and to predict what results we’ll get when we measure it. Just as
we need to update the state of a baseball in our simulator as it goes along, we’ll update
the state of a qubit when we apply operations to it.

THE MAP IS
NOT THE

TERRITORY

One way to remember this subtle distinction is that a qubit is described by a state and but it is
not true that a qubit is a state.

Where things get a little more subtle is that while we can measure a baseball without
doing anything to it other than copying some classical information around, as we’ll see
throughout the rest of the book, we can’t perfectly copy the quantum information
stored in a qubit — when we measure a qubit, we have an effect on its state. This can
be sometimes confusing, as we record the full state of a qubit when we simulate it,
such that we could look at the memory in our simulator whenever we want. There’s
nothing we can do with actual qubits that lets us look at their state, so if we "cheat" by
looking at the memory of a simulator, we won’t be able to run our program on real
hardware.

Put differently, while it can be useful for debugging our classical simulators as we are
building them to look at states directly, we have to make sure we are only writing
algorithms based on information we could plausibly learn from real hardware.

CHEATING
WITH OUR

EYES SHUT

As mentioned above, when we are using a simulator, the simulator must store the state of our
qubits internally — this is why simulating quantum systems requires is so difficult. Every qubit
could in principle be correlated with every other qubit, so we need exponential resources in
general to write down the state in our simulator (we’ll see more about this in Chapter 4). If we
"cheat" by looking directly at the state stored by a simulator, then we can only ever run our
program on a simulator, not on actual hardware. We’ll see in later chapters how to cheat more
safely, by using assertions and by making cheating unobservable.

2.3.2 The game of Operations
Now that we have names for these states, let’s show how to represent the information
they contain. With classical bits we can record the information contained in the bit at
any time as simply a value on a line: 0 or 1. This worked because the only operations
we could do consisted of flips (or 180° rotations) on this line. Quantum mechanics
allows us to apply more kinds of operations to qubits, including rotations by less than
180°. That is, qubits differ from classical bits is in what operations we can do with
them.

32

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

IMPORTANT While operations on classical bits are logical operations that can be made by combining NOT,
AND, and OR in different ways, quantum operations consist of rotations.

For instance, if we want to turn the state of a qubit from to and vice-versa, the
quantum analogue of a NOT operation, we rotate the qubit clockwise by an angle of
180°.

Figure 2.10. A visualization of the quantum equivalent of a NOT operation operating on a qubit
in the |0⟩ state, leaving the qubit in the |1⟩ state.

We have seen how rotation by 180° is the analogue to a NOT gate, but what other
rotations can we do?

REVERSIBILITY When we rotate a quantum state, we can always get back to the same state we started with
by rotating backwards. This property, known as reversibility, turns out to be fundamental to
quantum computing. With the exception of measurement, which we’ll learn more about
later in this chapter, all quantum operations must be reversible.

Not all of the classical operations that we’re used to are reversible, though. Operations like
AND and OR aren’t reversible as they are typically written, so they cannot be implemented
as quantum operations without a little bit more work. We’ll see how to do this in Chapter 6
when we introduce the "uncompute" trick for expressing other classical operations as
rotations.

On the other hand, classical operations like XOR can easily be made reversible, so we can
write them out as rotations using a quantum operation called the "controlled NOT"
operation, as we will see in Chapter 4.

If rotate a qubit in the state clockwise by 90° instead of 180°, we get a quantum
operation that we can think of as a "square root" of a NOT operation.

33

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.11. Rotating a state by less than 180 degrees.

In the same way as we earlier defined the square root √𝑥𝑥 of a number 𝑥𝑥 as being a
number 𝑦𝑦 such that 𝑦𝑦² = 𝑥𝑥, we can define the square root of a quantum operation. If we
apply a 90° rotation twice, we get back the NOT operation, so we can think of the 90°
rotation as the square root of NOT.

HALVES
AND

HALVE-
NOTS

Every field has it stumbling blocks. Ask a graphics programmer whether positive 𝑦𝑦 means "up"
or "down," for instance. In quantum computing, the rich history and interdisciplinary nature of
the field sometimes comes across as a double-edged sword in that each different way of
thinking about quantum computing comes with its own conventions and notations.

One way this manifests is that it’s really easy to make mistakes with where to put factors of
two. In this book, we’ve chosen to follow the convention used by Microsoft’s Q# language.

We now have a new state that is neither nor , but an equal combination of them
both. In precisely the same sense that we can describe "northeast" by adding the
directions "north" and "east," we can write this new state as shown in .

34

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.12. Rotating a state by 90°.

|+⟩ AND
|−⟩

We call this state the state (due to the sign between the terms). We say that
the |⟩ state is a _superposition_ of |0⟩ and |1⟩. If the rotation was by a −90° (anti-clockwise),
then we call the resulting state stem instead. Try writing out the rotations
above using −90° to see that you get !

2.3.3 A mouthful of math
At first glance, something like |+⟩ = (|0⟩ + |1⟩) / √2 would be terrible to have to say out
loud, making it rather useless in conversation. In practice, however, quantum
programmers often take some shortcuts when speaking outloud or sketching things out
at the whiteboard.

For instance, the "√2" part always has to be there, since vectors representing quantum
states always have to be length one; that means we can sometimes be a little bit casual
and write things like "|+⟩ = |0⟩ + |1⟩," relying on our audience to remember to divide by
√2. If we’re giving a talk, or discussing quantum computing over some nice tea, we
may say this as "ket plus is ket 0 plus ket 1," but the reuse of the word "plus" gets a
little confusing without bras and kets to help. To emphasize verbally that addition
allows us to represent superposition, we might say "the plus state is an equal
superposition of zero and one" instead.

The state of a qubit can be represented as a point on a circle that has two labeled
states on the poles: and More generally, we will picture rotations by arbitrary
angles θ between qubit states as follows in.

35

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.13. A visualization of the state of a qubit.

Mathematically, we can write the state of any point on the circle that represents our
qubit as + , where and are different ways of writing the
vectors [[1], [0]] and [[0], [1]] respectively.

TIP One way to think of ket notation is as giving names to vectors that we commonly use. When we
write |0⟩ = [[1], [0]], we’re saying that [[1], [0]] is important enough that we name it after "0."
Similarly, when we wrote that |+⟩ = [[1], [1]] / √2, we gave a name to the vector representation
of a state that we will use all the time throughout the book.

Another way to say this would be a qubit is generally the linear combination of the
vectors of and with coefficients that describe the angle that would have to be
rotated to get to the state. To write this in a way that is useful for programming, we can
write out how rotating a state affects each of the and states:

36

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

TIP This is precisely the same as when we used a basis of vectors earlier to represent a linear
function as a matrix.

There are other quantum operations that we will learn about in this book, but these are
the easiest to visualize as rotations. Here is a table summarizing the states we have
learned to create from these rotations:

Table 2.2. Table showing state labels, expansions in Dirac notation, and representations
as vectors.

State label Dirac notation Vector representation

|0⟩ |0⟩ [[1], [0]]

|1⟩ |1⟩ [[0], [1]]

|+⟩ (|0⟩ + |1⟩) / √2 [[1 / √2], [1 / √2]]

|−⟩ (|0⟩ − |1⟩) / √2 [[1 / √2], [−1 / √2]]

2.3.4 Measuring Qubits
When we actually want to retrieve the information stored in a qubit, we need to
measure it. Ideally, we would like a measurement device that would let us directly read
out all the information about the state at once. As it turns out, this is not possible by the
laws of quantum mechanics, as you’ll see more about in Chapters 3 and 4. That said,
measurement can allow us to learn information about the state relative to particular
directions in the system. For instance, if we have a qubit in the state and we look to
see if it is in the state, we’ll always get that it is. On the other hand, if we have a
qubit in the state and we look to see if it is in the stem:[] state, we'll get a "0"

37

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

outcome with 50% probability. This is because the stem:[overlaps equally with
the and states, such that we’ll get both outcomes with the same probability.

Figure 2.14. The |+⟩ state overlaps equally with both |0⟩ and |1⟩, because the "shadow" it
casts is exactly in the middle.

IMPORTANT Measurement outcomes of qubits are classical bit values! Put differently, whether we measure
a classical bit or a qubit, our result is always a classical bit.

Most of the time, we will choose to measure whether we have a or a ; that is,
we’ll want to measure along the line between the and . For convenience, we give
this axis a name, calling it the 𝑍𝑍-axis. We can visually represent this by projecting our
state vector onto the 𝑍𝑍-axis (see), using the inner product we saw earlier. Think of
shining a flashlight from where we draw the state of a qubit back onto the 𝑍𝑍-axis; the
probability for getting a 0 or 1 result is determined by shadow the state leaves on the 𝑍𝑍-
axis.

38

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.15. A visualization of a quantum measurement, which can be thought of as projecting
the state along a particular direction.

DEEP DIVE: Why isn’t measurement linear?
It may seem odd, after having made such a big deal of the linearity of quantum mechanics, that we

immediately introduce measurement as being non-linear. If we’re allowed non-linear operations like
measurement, can we also implement other non-linear operations like cloning qubits?

The short version is that while everyone agrees on the math behind measurement, there’s still a lot
of philosophical discussion about the best way to understand why quantum measurement acts the way
that it does. These discussions fall under the name of quantum foundations, and attempt to do more
than simply understand what quantum mechanics is and what it predicts, by also understanding why. For
the most part, foundations explores different ways to interpret quantum mechanics. In the same way that
we can understand classical probability by considering counterintuitive thought experiments such as
game show strategies or how casinos can win even from games that seem to lose money, quantum
foundations develops new interpretations through small thought experiments that probe at different
aspects of quantum mechanics. Thankfully, some of the results from quantum foundations can help us
make sense of measurement.

In particular, one critical observation is that you can always make quantum measurements linear
again by including the state of the measurement apparatus into your description; we’ll see some of the
mathematical tools needed to do so in Chapters 4 and 6. When taken to its extreme, this observation
leads to interpretations such as the many-worlds intepretation. The many-worlds interpretation solves
the interpretation of measurement by insisting that we only consider states that include measurement
devices, such that the apparent nonlinearity of measurement doesn’t really exist.

At the other extreme, we can interpret measurement by noting that the nonlinearity in quantum
measurement is precisely the same as in a branch of statistics known as Bayesian inference. Thus,
quantum mechanics only appears nonlinear when we forget to include that there is an agent performing
the measurement who then learns from each result. This observation leads to thinking of quantum
mechanics not as a description of the world, but as a description of what we know about the world.

Though these two kinds of interpretations disagree at a philosophical level, both offer different ways
of resolving how a linear theory such as quantum mechanics can sometimes appear to be non-linear.
Regardless of which interpretation helps you to understand the interaction between measurement and

39

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

the rest of quantum mechanics, you can take solace in that the results of measurement are always
described by the same math and by the same simulations. Indeed, relying on simulations (sometimes
sarcastically called the "shut up and calculate" interpretation) is the oldest and most celebrated of all
interpretations.

What this squared length of each projection represents is the probability that the state
you are measuring would be found along that direction. If you have a qubit in
the state and try to measure it along the direction of the state, you will get a
probability of zero, because the states are opposite each other when we draw them on a
circle. Thinking in terms of pictures, the |0⟩ state has no projection onto the |1⟩ state —
in the sense of , |0⟩ doesn’t leave a shadow on |1⟩.

TIP If something happens with probability 1, then that event always occurs. If something happens
with probability 0, then that event is impossible. For example, the probability that a typical 6-
sided die rolls a "7" is zero, since that roll is impossible. Similarly, if a qubit is in the |0⟩ state,
getting a "1" result from a 𝑍𝑍-axis measurement is impossible, since |0⟩ has no projection onto
|1⟩.

If you have a and try to measure it along the direction, however, you will get a
probability of 1 because the states are parallel (and of length 1 by definition). Let’s
walk through what measuring a state that is neither parallel nor perpendicular would
look like.

EXAMPLE
Say you had a qubit in state (same as stem: from our table), and you wanted to

measure it or project it along the 𝑍𝑍-axis. Then, we can find the probability that the classical result will be
a 1 by projecting |⟩ onto |1⟩.

We can find the projection of one state onto another by using the inner product between their vector
representations. In this case, we write the inner product of |+⟩ and |1⟩ as ⟨1 | +⟩, where ⟨1| is the
transpose of |1⟩, and where butting the two bars against each other indicates taking the inner product.

We can write this out as follows.

NOTE In the next chapter, we’ll see that ⟨1| is the conjugate transpose of |1⟩, but we’ll set that aside
for now.

To turn this projection into a probability, we square it, getting that the probability of observing a "1"
outcome when we prepare a |+⟩ state is ½.

40

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

We will often project onto the 𝑍𝑍 axis because it is convenient in many real
experiments, but we could have also measured along the X-axis, to see if we have
a] or a stem:[\left|-\right\rangle] state. Measuring along the 𝑋𝑋 axis, we would have
gotten stem:[with certainty and would never have gotten \left|-\right\rangle.

Figure 2.16. Measuring |+⟩ along the 𝑋𝑋 axis always results in |+⟩.

NOTE We can get a fully certain measurement out come only because we know the "right" direction
to measure ahead of time in this case — if we are simply handed a state with no information
about what the "right" measurement direction is, we cannot predict any measurement outcome
perfectly.

2.3.5 Generalizing measurement: basis independence
Sometimes you may not know how your qubit was prepared so you will not know how
to measure the bits properly. More generally, any pair of states that don’t overlap (that
are opposite poles) defines a measurement in the same way. The actual outcome of a
measurement is a classical bit value that indicates which pole the state is aligned with
when we perform the measurement.

More general measurements still
Quantum mechanics allows for much more general kinds of measurements — we’ll see a few of

these as we go along, but mostly we focus in this book on the case of checking between two opposite

41

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

poles. This choice is a pretty convenient way of controlling most quantum devices, and can be used in
almost any of the commercial platforms for quantum computing that are currently available.

Mathematically, we use notation like "⟨measurement | state⟩" to represent measuring a
qubit. The left component ⟨measurement| is called a bra, and we have seen the ket part
on the right already. So together they are called a braket!

Bras are very similar to kets, except that to switch from one to the other you have to
take the transpose (turn rows to columns and vice versa) of the bra or ket you have,

Another way to think of this is that taking the transpose turns column vectors (kets)
into row vectors (bras).

NOTE Since we’re only working with real numbers for now, we won’t need to do anything else to go
between kets and bras, but when we work with complex numbers in the next chapter, we’ll
need the complex conjugate as well.

Bras let us write down measurements, but to see what measurements actually do, we
need one more thing at our disposal: a rule for how to use a bra and a ket together to
get the probability for seeing that measurement result. In quantum mechanics,
measurement probabilities are found by looking at the length of the projection or
shadow that the ket for a state leaves on a bra for a measurement. We know from our
experience from the party that we can find projections and lengths using inner
products. In Dirac notation, the inner product of a bra and a ket is written as
⟨measurement | state⟩, giving us just the rule we need.

For example, if we have prepared a state] and we want to know the probability that
we observe a "1" when we measure in the 𝑍𝑍 basis, then projecting in the way we saw
with figure 2.15; we can find the the length we need. The projection of stem:[onto
⟨1| tells us that we see a "1" outcome with
probability . Thus,
50% of the time, we’ll get a "1" outcome. The other 50% of the time, we’ll get a "0"
outcome.

BORN’S
RULE

If we have a quantum state |state⟩ and we perform a measurement along the ⟨measurement|
direction, we can write the probability that we will observe "measurement" as our result as

In words, the probability is the square of the magnitude of the inner product of the
measurement bra and the state ket.

This expression is called Born’s rule.

In table 2.3, we’ve listed several other examples of using Born’s rule to predict what
classical bits we will get when we measure qubits.

42

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Table 2.3. Table Examples of using Born’s rule to find measurement probabilities

If we prepare… …and we
measure… …then we see that outcome with probability.

|0⟩ ⟨0| |⟨0 | 0⟩|² = 1

|0⟩ ⟨1| |⟨1 | 0⟩|² = 0

|0⟩ ⟨+| |⟨+ | 0⟩|² = |(⟨0| + ⟨1|) |0⟩ / √2|² = (1 / √2 + 0)² = 1 / 2

|+⟩ ⟨+| |⟨+ | +⟩|² = |(⟨0| + ⟨1|) (|0⟩ + |1⟩) / 2|² = | ⟨0 | 0⟩ + ⟨1 | 0⟩ + ⟨0 |
1⟩ + ⟨1 | 1⟩ |² / 4 = | 1 + 0 + 0 + 1 |² / 4 = 2² / 4 = 1

|+⟩ ⟨−| |⟨− | +⟩|² = 0

−|0⟩ ⟨0| |−⟨0 | 0⟩|² = |-1|² = 1²

−|+⟩ ⟨−| |−⟨+ | −⟩|² = |(−⟨0| − ⟨1|) (|0⟩ − |1⟩) / 2|² = | −⟨0 | 0⟩ − ⟨1 | 0⟩ +
⟨0 | 1⟩ + ⟨1 | 1⟩ |² / 4 = | −1 − 0 + 0 + 1 |² / 4 = 0² / 4 = 0

TIP In , we used that ⟨0 | 0⟩ = ⟨1 | 1⟩ = 1 and ⟨0 | 1⟩ = ⟨1 | 0⟩ = 0. (Try checking this for
yourself!) When two states have an inner product of zero, we say that they are orthogonal
(or perpendicular). That |0⟩ and |1⟩ are orthogonal makes a lot of calculations easier to
do quickly.

We now have made it to the bottom of the Qubit quick start guide! Let’s review the
requirements we needed to satisfy to make sure we had working qubits.

QUBIT A qubit is any physical system satisfying three properties:

• The system can be perfectly simulated given knowledge of vector of numbers (the
"state").

• The system can be transformed using quantum operations (e.g.: rotations).

• Any measurement of the system produces a single classical bit of information,
following Born’s rule.

Anytime we have a qubit (a system with the above three properties) we can describe it
using the same math or simulation code, without further reference to what kind of
system we are working with. This is similar to how we need not know whether a bit is
defined by the direction of a pinball’s motion or the voltage in a transistor in order to
write down NOT and AND gates, or to write software which uses those gates to do
interesting computation.

Phase
In the last two rows of , we saw that multiplying a state by a phase of −1 didn’t affect measurement

probabilities. This isn’t a coincidence at all, but points to one of the more interesting things about qubits.
Because Born’s rule only cares about the squared absolute value of the inner product of a state and a
measurement; multiplying a number by (−1) doesn’t affect its absolute value. We call numbers such as
+1 or −1, whose absolute value is equal to 1, phases. In the next Chapter when we work more with
complex numbers, we’ll see a lot more about phases.

43

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

For now, though, we say that multiplying an entire vector by −1 is an example of applying a global
phase while changing from |⟩ to |−⟩ is an example of applying a relative phase between |0⟩ and |1⟩.
While global phases don't ever affect measurement results, there's a big difference between the states
|⟩ = (|0⟩ + |1⟩) / √2 and |−⟩ = (|0⟩ − |1⟩) / √2: the coefficients in front of |0⟩ and |1⟩ are the same in
|+⟩ and are different by a phase of (−1) in |−⟩. We will see much more of the difference between these
two concepts in Chapters 3, 4, 6, and 7.

NOTE Similarly to how we use the word "bit" to mean both a physical system that stores information
and the information stored in a bit, we will also use the word "qubit" to mean both a quantum
device and the quantum information stored in that device.

2.3.6 Simulating qubits in code
The quantum quick start guide lists cryptography as an initial application to check
individual qubits in your new device.

Suppose you would like to keep your ���� for Eve a secret lest anyone else finds out.
How can you scramble up your message to Eve so that only she can read it?

We’ll explore this application more in the next Chapter, but the most basic step we
need for any good encryption algorithm is a source of random numbers that’s difficult
to predict. Let’s write down exactly how we would combine our secret and random bits
to make a secure message to sent to Eve. In , we show an example of how if both Eve
and I know the same secret sequence of random classical bits, we can use that sequence
to communicate securely. At the start of the chapter, we saw how we could write the
message, or plaintext, that we want to send to Eve (in this case, " ����") as a string of
classical bits. The one-time pad is a sequence of random classical bits that will act as a
way to scramble or encrypt our message. This scrambling is done by taking the bitwise
XOR of the message and one-time pad bits for each position in the sequence. This then
produces a sequence of classical bits called the ciphertext. To anyone else trying to
read our message, the ciphertext will just look like random bits. For example, it’s
impossible to tell if a bit in the ciphertext is "1" because of the plaintext or the one-
time pad.

44

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.17. An example of how to use random bits to encrypt secrets, even over the Internet or
another untrusted network.

Now you might ask how to get the random bit strings for our one-time pad? We can
make our own quantum random number generator with qubits! It may seem odd but we
will now simulate qubits with classical bits to make our quantum random number
generator. The random numbers it will generate won’t be any more secure than the
computer we use to do our simulation, but it lets us get a good start in understanding
qubits and how they work.

Let’s send Eve our message! In the same way as a classical bit can be represented in
code by the values True and False, we’ve seen that we can represent the two qubit
states and as vectors. That is, qubit states are represented in code as lists of lists
of numbers.

Listing 2.4. Representing qubits in code with NumPy

>>> import numpy as np ❶
>>> ket0 = np.array(❷
... [[1], [0]]
...)
>>> ket0
array([[1], ❸
 [0]])
>>> ket1 = np.array(
... [[0], [1]]
...)
>>> ket1
array([[0],
 [1]])

❶We use the NumPy library for Python to represent vectors, as NumPy is highly optimized and will make
our lives much easier.

❷We name our variable ket0 after the notation , in which we label qubit states by the "ket" half of ⟨⟩
"brakets."

45

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❸NumPy will print out 2 \times 1 vectors as columns.

As we saw above, we can construct other states such as] by using linear
combinations of |0⟩ and |1⟩. In exactly the same sense, we can use NumPy to add the
vector representations of |0⟩ and |1⟩ to construct the vector representation of stem:[:

Listing 2.5. The vector representation of |+⟩

>>> ket_plus = (ket0 + ket1) / np.sqrt(2) ❶
>>> ket_plus
array([[0.70710678+0.j], ❷
 [0.70710678+0.j]])

❶We can see NumPy using vectors to store the \left|+\right\rangle state, which is a linear combination of
|0⟩ and |1⟩.

❷We will see the number 0.70710678 a lot in this book, as it is a rather good approximation to √2, the
length of the vector [[1], [1]].

In classical logic, if we wanted to simulate how an operation would transform a list of
bits, we could use a truth table. Similarly, since quantum operations other than
measurement are always linear, to simulate how an operation transforms the state of a
qubit, we can use a matrix that tells us how each state is transformed.

LINEAR
OPERATORS

AND
QUANTUM

OPERATIONS

Describing quantum operations as linear operators is a good start, but not all linear operators
are valid quantum operations! If we could implement an operation described by a linear
operator such as 2 × 𝟙𝟙 (that is, twice the identity operator), then we would be able to violate
that probabilities are always numbers between zero and one. We also require that all quantum
operations other than measurement are reversible, as this is a fundamental property of
quantum mechanics.

It turns out that the operations realizable in quantum mechanics are described by matrices 𝑈𝑈
whose inverses 𝑈𝑈⁻¹ can be computed by taking the conjugate transpose, 𝑈𝑈⁻¹ = 𝑈𝑈⁺. Such
matrices are called unitary matrices.

Figure 2.18. Visualizing types of valid quantum operations.

One particularly important quantum operation is called the Hadamard operation,
which transforms |0⟩ to stem:[] and |1⟩ to |−⟩. As we saw above, measuring |⟩ along

46

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

the 𝑍𝑍-axis gives us either a "0" or a "1" result with equal probability. Since we wanted
random bits in order to send secret messages, this makes the Hadamard operation really
useful for us in making our QRNG.

Using vectors and matrices, we can define the Hadamard operation by making a table
of how it acts on the and states, as shown in .

Table 2.4. Table Representing the Hadamard operation as a table.

Input state Output state

|0⟩ |+⟩ = (|0⟩ + |1⟩) / √2

|1⟩ |−⟩ = (|0⟩ − |1⟩) / √2

Because quantum mechanics is linear, this is a fully complete description of the
Hadamard operation!

In matrix form, we write down as H = np.array([[1, 1], [1, -1]]) /
np.sqrt(2).

Listing 2.6. Defining the Hadamard operation

>>> H = np.array([[1, 1], [1, -1]]) / np.sqrt(2) ❶
>>> H @ ket0
array([[0.70710678],
 [0.70710678]])
>>> H @ ket1
array([[0.70710678],
 [-0.70710678]])

❶We define a variable H to hold the matrix representation H of the Hadamard operation that we saw in .
We’ll need H throughout the rest of this chapter, so it’s helpful to define it here.

HADAMARD
OPERATION

The Hadamard operation is a quantum operation which can be simulated by the linear
transformation

Any operation on quantum data can be written as a matrix in this way. If we wish to
transform to and vice versa (the quantum generalization of the classical NOT
operation that we saw earlier, corresponding to a 180° rotation), we do the same thing
as we did to define the Hadamard operation.

Listing 2.7. Representing the quantum NOT gate

>>> X = np.array([[0, 1], [1, 0]]) ❶
>>> X @ ket0

47

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

array([[0],
 [1]])
>>> (X @ ket0 == ket1).all() ❷
True
>>> X @ H @ ket0 ❸
array([[0.70710678],
 [0.70710678]])

❶The quantum operation corresponding to the classical NOT operation is typically called the 𝑋𝑋 operation;
we represent the matrix for 𝑋𝑋 with a Python variable X.

❷We can confirm that X transforms to . The NumPy method all() returns True if every element of X
@ ket0 == ket1 is True; that is, if every element of the array X @ ket0 is equal to the corresponding
element of ket1.

❸The 𝑋𝑋 operation doesn’t do anything to H , since 𝑋𝑋 will swap and and H\ is already a sum

of the two kets: . We can confirm this by using the @ operator

again to multiply X by a Python value representing the state stem: . We can express
that value as H @ ket0.

Returning to the map analogy, we can think of H as a reflection about the ⤢ direction.

Figure 2.19. The H operation as a reflection or flip about ⤢.

The third dimension awaits!
For qubits, the map analogy helps us understand how to write down and manipulate the states of single
qubits. So far, however, we’ve only looked at those states that can be written down using real numbers.
In general, quantum states can use complex numbers. If rearrange our map a bit and make it three-
dimensional, then we can include complex numbers without any problem. This way of thinking about
qubits is called the Bloch sphere, and can be a very useful way of thinking about quantum operations as
rotations and reflections, as we’ll see more of in Chapter 5.

48

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.20. Visualizing qubit states as points on a sphere.

DEEP DIVE: Infinitely many states?
It may seem from that there are infinitely many different states of a qubit. For any two different

points on a sphere, we can always find a point that’s "between" them. While this is true, it can also be a
little bit misleading. Thinking of the classical situation for a moment, a coin which lands heads 90% of
the time is distinct from a coin that lands heads 90.0000000001% of the time. In fact, we can always
make a coin whose bias is "between" the bias of two other coins in this way. Flipping a coin can only ever
give us one classical bit of information, though. On average, it would take is about 10²³ flips to tell a coin
that lands heads 90% of the time apart from one that lands heads 90.0000000001% of the time. For all
intents and purposes, we can treat these two coins as identical because we cannot do an experiment
which reliably tells them apart. Similarly for quantum computing, there are limits to our ability to tell apart
the infinitely many different quantum states that we recognize from the Bloch sphere picture.

The fact that a qubit has infinitely many states is not what makes it unique. Sometimes people say
that a quantum system can be "in infinitely many states at once", which is why they say quantum
computers can offer speedups. THIS IS FALSE! As pointed out above, we can’t distinguish states that are
very close together so the "infinitely many" part of the statement can’t be what gives our quantum
computer an advantage. We will talk more in the upcoming chapters about the "at once" part, but suffice
it to say it is not the number of states that our qubit can be in that makes quantum computers cool!

2.4 PROGRAMMING A WORKING QRNG
Now that we have a few quantum concepts to play with, let’s apply what we’ve learned
to program a quantum random number generator (QRNG) so that we can send ♥s
without a worry. We are going to build a quantum random number generator that
returns either a 0 or a 1.

Random bits or random numbers?
It may seem limiting that our random number generator can only output one of two numbers, either 0

or 1. Quite to the contrary, though, this is enough to generate random numbers in the range 0 to 𝑁𝑁 for
any positive integer 𝑁𝑁. It’s easiest to see this starting with the special case that 𝑁𝑁 is 2^n - 1 for some
positive integer 𝑛𝑛, in which case we simply write down our random numbers as 𝑛𝑛-bit strings. For example,
we can make random numbers between 0 and 7 by generating three random bits 𝑟𝑟₀, 𝑟𝑟₁, and 𝑟𝑟₂, then
returning 4 𝑟𝑟₂ + 2 𝑟𝑟₁ + 𝑟𝑟₀.

49

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

The case is slightly more tricky if 𝑁𝑁 isn’t given by a power of two, in that we have "left over"
possibilities that we need to deal with. For instance, if we need to roll a six-sided die, but only have an
eight-sided die on hand (maybe we played a Druid last time at RPG night), then we need to decide what
to do when that die rolls either a 7 or an 8. The best thing we can do if we want a fair six-sided die is to
simply reroll when that happens. Using this approach, we can build arbitrary fair dice from coin flips —
handy for whatever game we want to play. Long story short, we aren’t limited by having just two
outcomes from our RNG!

As with any quantum program, our quantum random number generator program will be
a sequence of instructions to a device that performs operations on a qubit. In
pseudocode, a quantum program for implementing a QRNG consists of three
instructions:

2.4.1 QRNG

1. Prepare a qubit in the state .
2. Apply the Hadamard operation to our qubit, so that it is in the state .
3. Measure the qubit to get either a 0 or 1 result with 50/50 probability.

Figure 2.21. Steps to writing the QRNG program we want to test out from the new hardware kit.

That is, we want a program that looks something like the following:

Listing 2.8. Example pseudocode for a QRNG program

def qrng():
 q = Qubit()
 H(q)
 return measure(q)

Using matrix multiplication, we can use a classical computer like a laptop to simulate
how qrng() would act on an ideal quantum device.

Our qrng program calls into a software stack that abstracts away whether we’re using a

50

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

classical simulator or an actual quantum device.

Figure 2.22. An example of what a software stack for a quantum program might look like.

There are a lot of parts we see here to the stack, but don’t worry we will talk about
them as we go. For right now we are focusing on the top section (labeled "Classical
Computer"), and will start by writing code for a quantum program as well as a
simulator backend in Python.

NOTE In Chapter 6, we’ll pivot to making use of the simulator backend provided with Microsoft’s
Quantum Development Kit instead.

With this view of a software stack in mind, then, we can write our simulation of a
QRNG by first writing a QuantumDevice class with abstract methods for allocating
qubits, performing operations, and measuring qubits. We can then implement this class
with a simulator and then call into that simulator from qrng().

To design the interface for our simulator in a way that looks like , let’s list out what we
need our quantum device to be able to do:

2.4.2 Quantum device interface requirements.
• Users must be able to allocate and return qubits.

51

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 2.9. An example of specifying an interface into a quantum device as a set of

abstract methods.

class QuantumDevice(metaclass=ABCMeta):
 @abstractmethod
 def allocate_qubit(self) -> Qubit: ❶
 pass

 @abstractmethod
 def deallocate_qubit(self, qubit: Qubit): ❷
 pass

 @contextmanager

 def using_qubit(self): ❸
 qubit = self.allocate_qubit()
 try:
 yield qubit
 finally:
 qubit.reset() ❹
 self.deallocate_qubit(qubit)

❶Any implementation of a quantum device must implement this method, allowing users to obtain qubits.
❷When users are done with a qubit, implementations of the deallocate_qubit will allow users to return the

qubit back to the device.
❸We can provide a Python context manager to make it easy to allocate and deallocate qubits safely.
❹The context manager makes sure that no matter what exceptions are raised, each qubit is reset and

deallocated before being returned to the classical computer.

The qubits themselves then can expose the actual transformations that we need:

2.4.3 Qubit interface requirements.
• Users must be able to perform Hadamard operations on qubits.
• Users must be able to measure qubits to get out classical data.

Listing 2.10. An example of specifying an interface into the qubits on a quantum device

as a set of abstract methods.

class Qubit(metaclass=ABCMeta):
 @abstractmethod
 def h(self): pass ❶

 @abstractmethod ❷
 def measure(self) -> bool: pass

 @abstractmethod

 def reset(self): pass ❸

❶The h method can be implemented to transform a qubit in place (not making a copy) using the
Hadamard operation np.array([[1, 1], [1, -1]]) / np.sqrt(2).

52

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❷The measure method can be implemented to allow users to measure qubits and extract classical data.
❸The reset method makes it easy for users to prepare the qubit from scratch again.
With this in place, we can return to our definition of qrng using these new classes.

Listing 2.11. qrng.py

def qrng(device: QuantumDevice) -> bool:
 with device.using_qubit() as q:
 q.h()
 return q.measure()

If we implement the QuantumDevice interface with a class
called SingleQubitSimulator, then we can pass this to qrng to run our QRNG
implementation on a simulator.

Listing 2.12. qrng.py

if __name__ == "__main__":
 qsim = SingleQubitSimulator()
 for idx_sample in range(10):
 random_sample = qrng(qsim)
 print(f"Our QRNG returned {random_sample}.")

We now have everything we write our SingleQubitSimulator. We start by defining
a couple of constants for the vector and the matrix representation of the Hadamard
operation H.

Listing 2.13. simulator.py

KET_0 = np.array([
 [1],
 [0]
], dtype=complex) ❶
H = np.array([
 [1, 1],
 [1, -1]
], dtype=complex) / np.sqrt(2) ❷

❶Since we’ll be using |0⟩ a lot in our simulator it helps to define a constant for it.
❷Similarly, we’ll use the Hadamard matrix 𝐻𝐻 to define how the Hadamard operation transforms states, so

we define a constant for that as well.

Next, we define what a simulated qubit looks like. From the perspective of a simulator,
a qubit wraps a vector that stores the current state of the qubit. We use a NumPy array
to represent our qubit’s state.

Listing 2.14. simulator.py

class SimulatedQubit(Qubit):
 def __init__(self): ❶

53

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 self.reset()

 def h(self): ❷
 self.state = H @ self.state

 def measure(self) -> bool:
 pr0 = np.abs(self.state[0, 0]) ** 2 ❸
 sample = np.random.random() <= pr0 ❹
 return bool(0 if sample else 1) ❺

 def reset(self):
 self.state = KET_0.copy()

❶As a part of the Qubit interface, we ensure that the reset method prepares our qubit in the state. We
can use that when we create the qubit to make sure that qubits always start in the correct state.

❷The Hadamard operation can be simulated by applying the matrix representation H to the state that
we’re storing at the moment, then updating to our new state.

❸We stored the state of our qubit as a vector, so we know that the inner product with |0⟩ is simply the first
element of that vector. For instance, if the state is np.array([[a], [b]]) for some numbers a and b, then
the probability of observing a 0 outcome is |a|2. We can find this using np.abs(a) ** 2. This gives us the
probability that a measurement of our qubit returns 0.

❹To turn the probability of getting a 0 into a measurement result, we generate a random number between
0 and 1 using np.random.random and check if it’s less than pr0.

❺Finally, we return out to the caller a 0 if we got a 0 and a 1 if we got a 1.

WHAT
RANDOM
NUMBER

CAME
FIRST: 0 OR

1?

In making this QRNG, we’ll have to call a classical random number generator. This may feel a
bit circular, but it comes about because our classical simulation is just that: a simulation. A
simulation of a quantum random number generator won’t be any more random than the
hardware and software we use to implement that simulator.

That said, the quantum program qrng.py itself does not need to call a classical RNG, but calls
into the simulator. If we were to run qrng.py on an actual quantum device, the simulator and
hence the classical RNG would be substituted out for operations on the actual qubit. At that
point, we would have a stream of random numbers that would be impossible to predict thanks
to the laws of quantum mechanics.

Running our program, we now get the random numbers we expected!

Listing 2.15. Output from running qrng.py

$ python qrng.py
Our QRNG returned False.
Our QRNG returned True.
Our QRNG returned True.
Our QRNG returned False.
Our QRNG returned False.
Our QRNG returned True.
Our QRNG returned False.
Our QRNG returned False.
Our QRNG returned False.
Our QRNG returned True.

54

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Congratulations! You’ve not only written your first quantum program, but you’ve also
written a simulation backend and used it to run your quantum program in the same way
as you’d run on an actual quantum computer.

DEEP DIVE: Schrödinger’s Cat
You may have already seen or heard of the quantum program above, but under a very different name.
Often, the QRNG program is described in terms of the "Schrödinger’s cat" thought experiment: a cat is in
a closed box with a vial of poison that will be released if a particular random particle decays. Before you
open the box to check, how do you know if it is alive or dead?

The [state] of the entire system would express this by having in it the living and dead cat (pardon
the expression) mixed or smeared out in equal parts.

-- Erwin Schrödinger
Historically, Schrödinger proposed this description in 1935 to express his view that some

implications of quantum mechanics are "ridiculous" by means of a thought experiment that highlights
how counterintuitive these implications are. Such thought experiments, known as gedankenexperiment,
are a celebrated tradition in physics, and can help us understand or critique different theories by pushing
them to extreme or absurd limits.

In reading about Schrödinger’s cat nearly a century later, however, it’s helpful to remember
everything that’s happened in the intervening years. Since his original letter, the world has seen:
• War on a scale never before imagined,
• The first steps that humanity has taken to explore beyond our own planet,
• The rise of commercial jet travel,
• The understanding and first effects of anthropogenic climate change,
• A fundamental shift in how we communicate (television all the way through the Internet),
• A wide availability of affordable computing devices, and
• The discovery of a wondrous variety of subatomic particles.

Put simply, the world we live in isn’t the same world in which Schrödinger tried to make sense of
quantum mechanics. We have a lot of advantages in trying to understand, none the least of which being
that we can quickly get our hands on quantum mechanics by programming simulations using classical
computers. For example, the h instruction we saw earlier puts our qubit in a similar situation as the cat in
the gedankenexperiment above, but with the advantage that it’s much easier to experiment with our
program than with a thought experiment. Throughout the rest of the book, we’ll make use of our
quantum programs to learn the parts of quantum mechanics we need to write quantum algorithms.

2.5 SUMMARY
In this chapter you learned:

• Recognize classical and quantum bits (qubits),
• Predict how different quantum operations transform qubits with linearity,
• program a qubit simulator that can simulate quantum random number generators.

55

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

3
This chapter covers:

• Recognize the implications that quantum resources have for security

• Programming a simulator in Python for a quantum key distribution protocol

• Implementing the quantum NOT operation

Figure 3.1. In this Chapter, we will be covering topics in simulating quantum hardware and
intrinsic operations for the quantum devices.

Sharing secrets with Quantum key
distribution

56

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

3.1 ALL’S FAIR IN LOVE AND ENCRYPTION
In the previous Chapter, we saw that we could use random numbers as a resource to
send secret messages like " ����" to our friends. We also saw that by using quantum bits
or qubits, we could generate truly random numbers that are impossible for any
adversary to predict.

That’s only half the story, though, because we need to share those random numbers
with our friends if we want to use the quantum random numbers to communicate
securely with them. Those random numbers (often called a key) can be use
with encryption algorithms which combine the randomness of the key with information
people want to keep secret in such a way that only someone else with the key can see
the information. We can see in how two people could use a key (here random binary
string) to encrypt and decrypt messages between themselves.

Figure 3.2. Mental model for how you and Eve might use encryption to communicate secretly,
even over the Internet or another untrusted network.

In this Chapter, we will see that quantum technologies can help us with encryption or
other cryptographic tasks, by letting us securely distribute our secret keys. There are
classical methods for sharing random keys (e.g. RSA), but they have different
guarantees about the security of the sharing. In short, using quantum key distribution
(QKD) is provably secure, whereas classical key distribution methods are
often computationally secure. This difference doesn’t matter for most use cases, but if
you are a government, activist group, bank, journalist, spy, or any other group where
information security is a life-and-death matter, this is a huge deal.

EXAMPLE 3.1. COMPUTATIONAL VS. PROVABLE SECURITY

Provable security for our cryptographic protocols is the dream. A method or protocol
for a cryptographic task is provably secure if we can write an proof showing it is
secure using no assumptions about an adversary; i.e. that they can have all the time and
computing power in the universe and still our protocol is secure! Most of our current
cryptographic infrastructure is computationally secure which guarantees the security of
a method or protocol with reasonable assumptions about the capabilities of an
adversary. The designer or user of the protocol can choose thresholds for what finite
computer resources looks like (e.g. largest current super computer or all the computers
on the planet) and what a reasonable time is (e.g. 100 years, 10000 years, the age of the
universe).

57

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

When we share a key with QKD, it does not guarantee that the key will get to the other
person. This is because someone can always do a denial of service attack (e.g. cut the
optical fiber between sender and receiver), which is the same for any other classical
protocol. A good analogy for what QKD can promise is similar to the tamper proof seal
on food products. When a peanut butter company wants to ensure that when you open
the jar it is exactly as it was when it left the factory floor, they put one of these tamper
proof seals on the container. The company makes a promise that if the seal makes it to
you (the consumer) intact, the peanut butter will be good, and that no third party has
done anything to it. Transmitting a cryptographic key with a QKD protocol is like
putting a tamper proof seal on the bits in transit. If someone tries to compromise the
key in transit, the receiver will know and not use that key. Sealing the bits in transit
does not, however, guarantee that the bits make it to the receiver.

There are many protocols that we can use to implement the general QKD scheme. In
this chapter we will be working with one of the most common QKD protocols BB84,
but there are many others as well that we won’t have time to get in to. We will build up
to this throughout this chapter, but you can see in the steps to the BB84 protocol.

Figure 3.3. Timing diagram for the BB84 protocol, a particular variant of a QKD protocol.

QKD is an example of a quantum program that uses a single qubit, as well as a spin-off
technology from quantum computing. What makes it attractive to develop is that we
already have the hardware to implement it today! There are a number of companies

58

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

that have for the last ~15 years have been commercially selling QKD hardware,
however the important next steps for the technology involve hardware and software
security vetting of these systems.

TRY THIS
AT HOME,

BUT NOT
WITH YOU
SECRETS!

The examples we are implementing/using here in this book will simulate provably secure
protocols. Given we are not running the examples on quantum devices, they are not provably
secure. Even when implementing these protocols with real quantum hardware, these security
proofs do nothing to stop side channel attacks or social engineering from separating you from
your key ���� We will talk more about these proof later in this chapter when we talk about the
No-cloning theorem.

Let’s dive into how QKD works! For our purposes here, let’s say you and Eve are the
two people from the previous chapter that want to exchange a key so you can send
secret messages 😍😍 The scenario is as follows.

You wish to send a secret message to your friend. Using your quantum random number
generator from Chapter 2 and the quantum key distribution protocol BB84, and one-
time-pad encryption, design a program to send messages that can be provably secure.

You can visualize the scenario as a kind of timing diagram like .

Figure 3.4. Your scenario for this chapter: Sending a secret message to Eve with BB84 and one-
time-pad encryption.

To start off, note that the key you need to send is a string of classical bits. How can we
use qubits to send those classical bits? We will start by learning how to encode
classical information in qubits, and then learn the specific steps of the BB84 protocol.
In the next section, we will look at a new quantum operation that will help you encode
classical bits with qubits.

3.2 QUANTUM NOT OPERATIONS
If we have some classical information, say a single binary bit, how can we encode this
classical information with a quantum resource like a qubit? Take a look at the

59

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

following algorithm.

3.2.1 Algorithm for sending a random classical bit string encoded in qubits.
• Using a quantum random number generator to generate a random key bit to send.
• Starting with a qubit in the state and then prepare it in a state that represent that

bit value from step 1; here you use if the classical bit was a 0, and |1⟩ if the
classical bit was a 1.

• That prepared qubit is sent to Eve who then measures it and records the classical
bit value they get.

• Repeat steps 1-3 until you and Eve have as much key as you want (usually
dictated by the cryptographic protocol you want to use after).

You can see a timing diagram for this algorithm in .

Figure 3.5. A visualization of the algorithm for sending a classical bitstring with qubits.

Now we need a way to switch the qubit from to |1⟩, so we need another quantum
operation in our toolbox. In step 2, you can use a quantum NOT operation, which is
similar to our classical NOT operation, that rotates the qubit from to |1⟩.

60

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.6. A visualization of the quantum equivalent of a NOT operation operating on a qubit in
the |0⟩ state, leaving the qubit in the |1⟩ state.

We refer to this quantum NOT operation as the x operation. Step 2 from above then
could be re-written as follows:

2\. If your classical bit from step 1 was 0, do nothing; if it was a 1, apply a quantum
NOT operation (a.k.a. x operation) to your qubit.

This algorithm works 100% of the time because when Eve goes to measure the qubit
they receive, the |0⟩ and |1⟩ states can be perfectly distinguished with a measurement in
the 𝑍𝑍-axis. It may seem like you and Even have done a lot of work just to share some
random classical bits, but we will see how adding some quantum behaviors to this
basic protocol will make it more useful! Let’s look at how we could implement this in
code:

Listing 3.2. You and Eve exchange classical bits via qubits, encoding the message with

the |0⟩ and |1⟩ states.

def prepare_classical_message(bit: bool, q: Qubit) -> None: ❶
 if bit:
 q.x() ❷

def eve_measure(q: Qubit) -> bool:
 return q.measure() ❸

def send_classical_bit(device: QuantumDevice, bit: bool) -> None:
 with device.using_qubit() as q:
 prepare_classical_message(bit, q)
 result = eve_measure(q)

61

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 q.reset()
 assert result == bit ❹

❶To prepare our qubit with the classical bit we want to send, we need as input the bit value and a qubit to
use. This function does not return anything because the consequences of the operations we apply to
our qubit are tracked in the single qubit simulator itself.

❷If you’re sending a 1, you can use the NOT operation x to prepare q in the |1⟩ state because the x
operation will rotate |0⟩ to |1⟩ and vice versa.

❸This seems silly to separate measuring as another function given it’s one line, but we will change up
how Eve will measure the qubit in the future so this is a helpful setup.

❹We can check that measuring q gives the same classical bit as you sent.

The simulator you wrote in the previous chapter almost has what you need to
implement this. You just need to add an instruction corresponding to the x operation.
The x instruction can be represented with a matrix 𝑋𝑋, just as we represented
the h instruction using the matrix 𝐻𝐻. In the same way as we wrote down 𝐻𝐻 in Chapter
2, we can write down the matrix 𝑋𝑋 as

X = \left(\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}\right).

Exercise 3.1: truth tables and matrices
In Chapter 2, we saw that unitary matrices play the same role in quantum computing that truth
tables play in classical computing. We can use that to figure out what the matrix 𝑋𝑋 has to look like in
order to represent the quantum NOT operation, x. Let’s start by making a table of what the matrix 𝑋𝑋 has
to do to each input state in order to represent what the x instruction does:

Input Output

|0⟩ |1⟩

|1⟩ |0⟩

This table tells us that if we multiply the matrix 𝑋𝑋 by the vector |0⟩, we need to get |1⟩, and similarly that
𝑋𝑋|1⟩ = |0⟩.
Either by using NumPy or by hand, check that the matrix

matches what we have in our truth table above.

Let’s go on and add the functionality we need to our simulator in order to run the
above snippet. We will be working with the simulator you wrote in the previous
chapter, but if you need a refresher, you can find the code in the GitHub repo for this
book: https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp First, we need
to update the interface for our quantum device, by adding a new method our qubit must
have.

Listing 3.3. Adding the x operation to the interface specification for a qubit.

class Qubit(metaclass=ABCMeta):
 @abstractmethod

62

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp

©Manning Publications Co. To comment go to liveBook

 def h(self): pass

 @abstractmethod
 def x(self): pass ❶

 @abstractmethod
 def measure(self) -> bool: pass

 @abstractmethod
 def reset(self): pass

❶We can model implementing the quantum NOT operation after the h operation from Chapter 1.

Now that our interface for a qubit knows that we want an implementation of
the x operation, let’s add that implementation!

Listing 3.4. Adding the x operation to the implementation of a qubit simulator.

KET_0 = np.array([
 [1],
 [0]
], dtype=complex)
H = np.array([
 [1, 1],
 [1, -1]
], dtype=complex) / np.sqrt(2)
X = np.array([❶
 [0, 1],
 [1, 0]
], dtype=complex) / np.sqrt(2)

class SimulatedQubit(Qubit):
 def __init__(self):
 self.reset()

 def h(self):
 self.state = H @ self.state

 def x(self): ❷
 self.state = X @ self.state

 def measure(self) -> bool:
 pr0 = np.abs(self.state[0, 0]) ** 2
 sample = np.random.random() <= pr0
 return bool(0 if sample else 1)

 def reset(self):
 self.state = KET_0.copy()

❶Let’s add the a variable X to store the matrix 𝑋𝑋 that we need to represent the x operation.
❷Just like the h function defined above, we want to implement the quantum operation x by just applying

the matrix stored in X to the state vector.

63

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

3.3 SHARING CLASSICAL BITS WITH QUBITS
Awesome! Now let’s try out using our upgraded Python qubit simulator to share a
secret classical bit with a qubit. This is not quite the same as a quantum key
distribution protocol yet, but it serves as a good foundation for the types of function
and steps that our end goal QKD protocol has.

Open an IPython session where you are keeping the code for your simulator by
running ipython in your terminal. After importing the Python files, create an instance
of the single qubit simulator and generate a random bit to use as the classical bit we
want to send. (Good thing we have a quantum random number generator!) Then using
a fresh qubit, prepare it based on the classical bit value you want to send Eve. Eve then
measures the qubit, and we can see if you both have the same classical bit value!

Listing 3.5. Using our single qubit simulator to send classical bits with qubits

>>> qrng_simulator = SingleQubitSimulator() ❶
>>> key_bit = int(qrng(qrng_simulator)) ❷
>>> qkd_simulator = SingleQubitSimulator() ❸
>>> with qkd_simulator.using_qubit() as q:
... prepare_message(key_bit, q) ❹
... print(f"You prepared the classical key bit: {key_bit}")
... eve_measurement = int(eve_measure(q)) ❺
... print(f"Eve measured the classical key bit: {eve_measurement}")
...
You prepared the classical key bit: 1
Eve measured the classical key bit: 1

❶We need a simulated qubit to use for our quantum random number generator.
❷Re-using the qrng function that we wrote in the previous chapter, we can generate a random classical

bit to use for our key.
❸We are using a new qubit simulator instance here for the key exchange, strictly speaking we don’t need

to. You will see in the next chapter how to expand the simulator to work with multiple qubits.
❹You encode your classical bit in the qubit provided by qkd_simulator. If the classical bit was 0, you do

nothing to qkd_simulator, and if the classical bit was 1 then you use the x method to change the qubit
to the |1⟩ state.

❺Eve measures the qubit from qkd_simulator and then stores the bit value as eve_measurement.

Our example of secret sharing with qubits above should be deterministic, which is to
say that every time you prepare and send a bit, Eve will correctly measure the same
value. Is this secure? If you suspect it is not secure, you are definitely on to something
:) In the next section we will discuss the security of our prototype secret sharing
scheme, and look at ways you can improve it!

3.4 A TALE OF TWO BASES
You and Eve now have a way of sending classical bits using qubits, but what happens
if an adversary gets a hold of that qubit? They could just use the measure instruction
to get the same classical data that Eve does. That’s a huge problem and would

64

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

reasonably make you wonder why one would use qubits to share keys in the first place.

Thankfully, quantum mechanics offers us a way to make this exchange more secure!
What are some modifications we could make to our protocol above? We could have,
for instance, decided to represent a classical "0" message with a qubit in the |+⟩ state
and a "1" message with a qubit in the |−⟩ state.

Listing 3.6. You and Eve exchange classical bits via qubits, but encode the message

with the |+⟩ / |−⟩ states.

def prepare_classical_message_plusminus(bit: bool, q: Qubit) -> None:
 if bit:
 q.x()
 q.h() ❶

def eve_measure_plusminus(q: Qubit) -> bool:
 q.h() ❷
 return q.measure()

def send_classical_bit_plusminus(device: QuantumDevice, bit: bool) -> None:
 with device.using_qubit() as q:
 prepare_classical_message_plusminus(bit, q)
 result = eve_measure_plusminus(q)
 assert result == bit

❶Everything up to this line of prepare_classical_message_plusminus was the same as we were using
before with prepare_classical_message. Applying the Hadamard gate at this point rotates the |0⟩ / |1⟩
states to |+⟩ / |−⟩ states.

❷Here we use the h operation to rotate our |+⟩ / |−⟩ states back to the |0⟩ / |1⟩ states because our
measure operation is defined to only measure the |0⟩ / |1⟩ states correctly. Another way of thinking
about this is that you are rotating the measurement to match the rotation we are currently working in
(|+⟩ / |−⟩). It’s all a matter of perspective!

Now you have two different ways of sending qubits that you and Eve could use when
sending qubits (see for a summary). These two different ways of sending messages we
call bases, which each contain two completely distinguishable (orthogonal) states. This
is similar to the previous chapter where we looked at map directions (ex. North and
West) which defined a convenient basis for describing directions. Here, we have used
the |0⟩ and |1⟩ states as one basis (called the 𝑍𝑍 basis), and |+⟩ and |−⟩ as another (called
the 𝑋𝑋 basis). The names for these bases refer to the axis along which you can perfectly
distinguish the states (see).

65

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.7. Now in addition to using the 𝑍𝑍 basis to encode a classical bit on a qubit, we can use
the 𝑋𝑋 basis.

Table 3.1. Different classical messages we want to send, and how to encode them in the 𝑍𝑍
and 𝑋𝑋 bases.

 "0" message "1" message

"0" (or 𝑍𝑍) basis |0⟩ |1⟩ = 𝑋𝑋|0⟩

"1" (or 𝑋𝑋) basis |+⟩ = 𝐻𝐻|0⟩ |–⟩ = 𝐻𝐻|1⟩ = 𝐻𝐻𝑋𝑋|0⟩

NOTE In quantum computing there is never really a correct basis, so much as there are convenient
bases that we choose to use by convention.

If you both don’t know which way of sending you are using for a particular bit, you
both have a problem. What happens if we mix sending our messages in 𝑍𝑍 basis and 𝑋𝑋
basis? Good news, you can use your simulator to try it out and see what happens.

Listing 3.7. You and Eve exchange classical bits via qubits, but are not using the same

basis.

def prepare_classical_message(bit: bool, q: Qubit) -> None: ❶
 if bit:
 q.x()

def eve_measure_plusminus(q: Qubit) -> bool:

66

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 q.h() ❷
 return q.measure()

def prepare_classical_message(bit: bool, q: Qubit) -> None: ❸
 if bit:
 q.x()

def eve_measure_plusminus(q: Qubit) -> bool:
 q.h() ❹
 return q.measure()

def send_classical_bit_wrong_basis(device: QuantumDevice, bit: bool) -> None:
 with device.using_qubit() as q:
 prepare_classical_message(bit, q)
 result = eve_measure_plusminus(q)
 assert result == bit, "Two parties do not have the same bit value" ❺

❸Here you will be using the method we saw before to prepare your qubit in the 𝑍𝑍 basis basis by using the
h method.

❹Eve measures in the 𝑋𝑋 basis because she does a Hadamard gate on her qubit before measuring.
❺The function does not return anything, so if you and Eve end up with key bits that don’t match, it will

raise an error.

Listing 3.8. Sending qubits in the 𝑍𝑍 basis, and measuring in the 𝑋𝑋 basis

>>> qsim = SingleQubitSimulator()
>>> send_classical_bit_wrong_basis(qsim, 0) ❶
AssertionError: Two parties do not have the same bit value

❶We will just pick our bit value is 0, and you may have to run this line a few times before you get the
above error.

You can try this out experimentally, and you will find that you get the
above AssertionError (the key exchange failed) about half of the time. Why is that?
To start with, Eve is measuring in the 𝑋𝑋 basis, so she can only tell |+⟩ and |−⟩ apart
perfectly. What will she measure if she is not given a perfectly distinguishable state for
her basis (like here where she is given a |0⟩)? We can write the |0⟩ state in the 𝑋𝑋 basis
as:

Recall that in Chapter 2 we defined |+⟩ in a similar way by adding |0⟩ and |1⟩ together.
The |+⟩ state was also called a superposition of the |0⟩ and |1⟩ states.

NOTE Any time a state can be written as a linear combination of states like this, it is considered to be
a superposition of the states that are added together.

Exercise 3.2: verify that |0⟩ is a superposition of |+⟩ and |−⟩.
Try using what we learned about vectors in the previous chapter to verify that |0⟩ = (|+⟩ + |−⟩) / √2,
either by hand or using Python. Hint: recall that |+⟩ = (|0⟩ + |1⟩) / √2 and that |−⟩ = (|0⟩ − |1⟩) / √2.

67

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Now to calculate the actual measurement with Born’s rule from Chapter 2. Recall we
can calculate the probability of a measurement outcome by measuring a particular state
with the expression:

 .

Writing out the measurement of the |0⟩ state in the 𝑋𝑋 basis you can see that we will get
0 (or |+⟩) half of the time and 1 (or |−⟩) the other half.

Exercise 3.3: measuring qubits in different bases

Using the example above as a guide,
• calculate what the probability of getting the measurement outcome |−⟩ when measuring the |0⟩

state in the |−⟩ direction.
• Also calculate what the probability of getting the |−⟩ measurement outcome with the input state of

|1⟩.

That tells us that if Eve does not know the right basis to measure in, then the
measurements she makes are as good as randomly guessing. This is because in the
wrong basis, the qubit is in a superposition of the two states that define the basis. One
'key' to how QKD works is that without the right additional information (the basis the
qubit is encoded in) any measurement of the qubit is basically useless. Now to ensure
our security, we have to make it difficult for an adversary to learn that extra
information to know the right basis to measure in. The QKD protocol we will look at
next has a solution for this, and a proof (out of scope here) that describes the chance
that the attacker has any information about the key!

3.5 QUANTUM KEY DISTRIBUTION: BB84
We have now seen how to share keys in two different bases, and what happens if you
and Eve don’t use the same basis. You might again ask why we use this to make
sharing the key to our secret keys more secure? There are a wide variety of different
QKD protocols, each with specific advantages and use cases (not unlike RPG character
classes). The most common protocol for QKD is called BB84, named for an
appropriately cryptic encoding of the two authors initials and the year it was published
(Bennet and Brassard 1984).

BB84 is very similar to what we have worked out so far to share keys, but has one
important difference in how you and Eve choose your bases. In BB84, both parties
choose their basis randomly (and independently), which means they will end up using
the same basis 50% of the time. You can see a figure with the steps of the BB84

68

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

protocol in .

Figure 3.8. The steps in the BB84 protocol, a particular version of a QKD protocol.

As a consequences of randomly choosing bases, you and Eve also have to do some
communication over authenticated* classical channels (like the internet) to be able to
take the keys you each have and transform them into a key that you believe is identical
to the key their partner has. This is because this is real life, and when the qubits are
exchanged, it will be possible for both the environment and third party individuals to
manipulate or modify the state of the qubit.

Key expansion
There is one detail we glossed over in our description of the classical communication channel that you
and Eve have, namely in that it must be authenticated. That is, when you send classical messages to Eve
as a part of running BB84, it’s OK if someone else can read them, but you need to make sure it’s really
Eve that you’re talking to. To prove that someone wrote and sent a particular message you
actually already have to have some form of shared secret that you can use to validate someone else’s
identity. So we have to already have some shared secret with the other person in BB84. This secret can
be smaller than the message you’re trying to send, so BB84 is techically more of a key
expansion protocol.

69

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Table 3.2. What state you should send for each random message and basis choice

 "0" message "1" message

"0" (or 𝑍𝑍) basis |0⟩ |1⟩ = 𝑋𝑋|0⟩

"1" (or 𝑋𝑋) basis |+⟩ = 𝐻𝐻|0⟩ |–⟩ = 𝐻𝐻|1⟩ = 𝐻𝐻𝑋𝑋|0⟩

3.5.1 Steps of the BB84 protocol:
• You choose a random one-bit message to send by sampling your QRNG
• You and Eve each choose a random basis with your respective QRNGs (no

communication between the them)
• You prepare a qubit in the randomly selected basis, representing your randomly

selected message (see).
• You send your prepared qubit in the quantum channel to Eve.
• Eve measures the qubit when it arrives, performing the measurement in her

randomly selected basis, and recording the classical bit outcome.
• Communicate on an authenticated classical channel with Eve and share which

bases you used for preparing and measuring the qubit. If they match, keep the bit
and add it to the key.

• Repeat steps 1–6 until you have as much key as you need.

An error free world
Since we are simulating the BB84 protocol, we know that the qubit Eve will receive is exactly the same as
what you sent. BB84 more realistically will be done in batches where n qubits are exchanged first, and
then a round of sharing the basis values (error correction happen). You also have to at the end shrink the
key even further with privacy amplification algorithms to account for the fact that an eavesdropper could
have gotten partial information from the errors you detected. We omitted these steps in our
implementation of BB84 to keep things simple, however the steps are critical for real-world security ����

Let’s jump in and implement the BB84 QKD protocol in Python! We will start by
writing a function that will will run the BB84 protocol (assuming lossless
transmission) for a single bit transmission. That does not guarantee that we get one key
bit from this run however, if you and Eve choose different bases then that exchange
will have to be thrown out.

First, it is helpful to setup some functions that will help us simplify how we write out
the full BB84 protocol. You and Eve need to do things like sample random bits and
prepare and measure the message qubit, which are separated here for clarity.

Listing 3.9. Some helper functions before we get to the full BB84 key exchange.

def sample_random_bit(device: QuantumDevice) -> bool:
 with device.using_qubit() as q:
 q.h()
 result = q.measure()

70

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 q.reset() ❶
 return result

def prepare_message_qubit(message: bool, basis: bool, q: Qubit) -> None: ❷
 if message:
 q.x()
 if basis:
 q.h()

def measure_message_qubit(basis: bool, q: Qubit) -> bool:
 if basis:
 q.h()
 result = q.measure()
 q.reset() ❸
 return result

def convert_to_hex(bits: List[bool]) -> str: ❹
 return hex(int(
 "".join(["1" if bit else "0" for bit in bits]),
 2
))

❶sample_random_bit is almost the same as our qrng function before, except here we will reset the qubit
after measuring as we know we want to be able to use it more than once.

❷Here the qubit is encoded with the key bit value in the randomly selected basis.
❸Similar to sample_random_bit after Eve measures the message qubit, she should reset it because in

the simulator we will be reusing it for the next exchange.
❹To help condense the display of long binary keys, a helper function is used to convert the

representation to a shorter hex string.

Listing 3.10. BB84 protocol for sending a single classical bit between two parties.

def send_single_bit_with_bb84(
 your_device: QuantumDevice,
 eve_device: QuantumDevice
) -> tuple:

 [your_message, your_basis] = [
 sample_random_bit(your_device) for _ in range(2) ❶
]

 eve_basis = sample_random_bit(eve_device) ❷

 with your_device.using_qubit() as q:
 prepare_message_qubit(your_message, your_basis, q) ❸

 # QUBIT SENDING... ❹

 eve_result = measure_message_qubit(eve_basis, q) ❺

 return ((your_message, your_basis), (eve_result, eve_basis)) ❶

❶Here you can randomly choose a bit value and basis using your modified qrng from before, here the
sample_random_bit function.

71

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❷Eve needs to randomly choose a basis with their own qubit, which is why she is using a separate
QuantumDevice.

❸With all the preparation done, you then need to prepare your qubit to send to Eve.
❹Since all of our computation happens inside a simulator on your computer, nothing needs to be done to

"send" the qubit from you to Eve. In real life however, this is where all the bad stuff happens: errors,
loss, even attempted eavesdropping.

❺Now Eve has your qubit, and measures it in the randomly selected basis she chose earlier.
❻This function returns the key bit values and bases you and Eve would have at the end of this one round.

Qubits and No-cloning
From what we’ve seen so far, it seems like our adversary could cheat by eavesdropping on the qubits in
the quantum channel and making copies. Here’s the gig: The eavesdropper (called Bob here) first would
need to (without detection):
Steps for Bob to eavesdrop on you and Eve
1. Copy qubits as they are being sent between you and Eve, and then store them.
2. Next, while you and Eve finish the classical part of the protocol, Bob listens to the bases they

announce and keep track of ones you both chose the same.
3. For the qubits corresponding to bits where you and Eve used the same basis, Bob would

measure their copies of the qubits in the same basis as well.
Ta-da! You, and Eve and Bob would all have the same key! If this seems like a problem, you are right.

Don’t worry though, quantum mechanics has the solution. It turns out the problem with Bob’s plan is in
step 1, where they need to make identical copies of the qubits that you and Eve are exchanging. The
good news is that making an exact copy of a qubit without knowing what it was beforehand is forbidden
by quantum mechanics. The rule that qubits cannot be identically copied without prior knowledge of the
state is called the No-cloning theorem and is stated as follows.

NO-
CLONING

THEOREM

No quantum operation can perfectly copy the state of an arbitrary qubit onto another qubit.

Figure 3.9. The No-cloning theorem visualized.

72

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

You will be able to do the simple proof of this in the next chapter, once we learn how to describe the
state of more than one qubit ����.

Alternately, if Bob could measure a qubit without disturbing it, he could get around needing a copy of
the qubits he intercepts. This is not possible because once you measure a qubit, it "collapses" or changes
in a way that can be detectable to Eve. So measuring in transit is not something Bob can do without
being detected, so his eavesdropping would fail.

Now, exchanging one classical key bit is not going to be sufficient to send a whole key
so now we need to use the above technique to send multiple bits.

Listing 3.11. BB84 protocol for exchanging key with Eve until a specified amount of key

is reached.

def simulate_bb84(n_bits: int) -> tuple:
 your_device = SingleQubitSimulator()
 eve_device = SingleQubitSimulator()

 key = []
 n_rounds = 0

 while len(key) < n_bits:
 n_rounds += 1
 ((your_message, your_basis), (eve_result, eve_basis)) = \
 send_single_bit_with_bb84(your_device, eve_device)

 if your_basis == eve_basis: ❶
 assert your_message == eve_result
 key.append(your_message)

 print(f"Took {n_rounds} rounds to generate a {n_bits}-bit key.")

 return key

73

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❶At this point, you and Eve can publicly announce the bases you each used to measure this bit. If
everything worked right, your results should agree whenever your bases agree. We’ll check that here
with an assert.

The key is now in the bag, so we can move on to using the key and the one-time-pad
encryption algorithm to send a secret message!

3.6 USING OUR SECRET KEY TO SEND SECRET MESSAGES
You and Eve have now sorted out how to use the BB84 protocol to share a random,
binary key generated by a QRNG. The last step now is to use this key to share a secret
message with Eve! You and Eve had previously decided that the best encryption
protocol to use is a one-pad to send your secret messages. This turns out to be one of
the most secure encryption protocols, and given you are sharing keys in one of the
most secure ways possible it makes sense to keep up that standard!

Let’s say that you were trying to send Eve that you like Python, so the message you
want to send is "💖💖💖💖💖💖". Since we are using a binary key, we need to convert the
representation of our unicode message to binary, which is the following lengthy list of
bits.

"1101100000111101 1101110010010110 1101100000111101 1101110000001101
1101100000111101 1101110010111011"

This binary representation of our message is our message text and now we want to
combine that with a key to get a ciphertext that is safe to send over the network. Once
you have the key from the BB84 protocol (at least as long as your message) next you
need to use a one-time-pad encryption scheme to then encode your message. We saw
this encryption technique already in Chapter 2, see for a quick refresher.

Figure 3.10. An example of one-time-pad encryption which uses random bits to encrypt secret
messages.

74

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

To implement this, you will need to use a classical bitwise XOR (the ^ operator in
Python) to combine the message and your key to create the ciphertext that you can
safely then send to Eve. To decrypt your message Eve will do the same bitwise XOR
operation with the ciphertext and her key (which should be the same as yours). This
will give her back the message because any time you XOR a bitstring with another one
twice, you will be left with the original bitstring. Here is what this would look like in
Python.

Listing 3.12. BB84 protocol for exchanging key with Eve until a specified amount of key

is reached.

def apply_one_time_pad(message: List[bool], key: List[bool]) -> List[bool]:
 return [
 message_bit ^ key_bit ❶
 for (message_bit, key_bit) in zip(message, key)
]

❶The ^ operator is a bitwise XOR in Python. This applies a single bit of our key as a one-time-pad to our
message text.

Exercise 3.4: one-time-pad encryption
If you had the ciphertext 10100101 and the key 00100110, what was the message that was originally
sent?

Let’s put it all together and share our message ("💖💖💖💖💖💖") to Eve by running
the bb84.py file we have been building up!

Listing 3.13. Sharing a secret message with Eve with BB84 and one-time-pad

encryption.

if __name__ == "__main__":
 print("Generating a 96-bit key by simulating BB84...")
 key = simulate_bb84(96)
 print(f"Got key {convert_to_hex(key)}.")

 message = [
 1, 1, 0, 1, 1, 0, 0, 0,
 0, 0, 1, 1, 1, 1, 0, 1,
 1, 1, 0, 1, 1, 1, 0, 0,
 1, 0, 0, 1, 0, 1, 1, 0,
 1, 1, 0, 1, 1, 0, 0, 0,
 0, 0, 1, 1, 1, 1, 0, 1,
 1, 1, 0, 1, 1, 1, 0, 0,
 0, 0, 0, 0, 1, 1, 0, 1,
 1, 1, 0, 1, 1, 0, 0, 0,
 0, 0, 1, 1, 1, 1, 0, 1,
 1, 1, 0, 1, 1, 1, 0, 0,
 1, 0, 1, 1, 1, 0, 1, 1
]
 print(f"Using key to send secret message: {convert_to_hex(message)}.")

75

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 encrypted_message = apply_one_time_pad(message, key)
 print(f"Encrypted message:
{convert_to_hex(encrypted_message)}.")

 decrypted_message = apply_one_time_pad(encrypted_message, key)
 print(f"Eve decrypted to get:
{convert_to_hex(decrypted_message)}.")

Listing 3.14. Running the full solution to the scenario for the chapter.

$ python bb84.py
Generating a 96-bit key by simulating BB84...
Took 170 rounds to generate a 96-bit key. ❶
Got key: 0xb35e061b873f799c61ad8fad. ❷
Using key to send secret message: 0xd83ddc96d83ddc0dd83ddcbb. ❸
Encrypted message: 0x6b63da8d5f02a591b9905316. ❹
Eve decrypted to get: 0xd83ddc96d83ddc0dd83ddcbb. ❺

❶Since your and Eve’s bases will agree roughly half of the time, if should take about two rounds of BB84
for each bit of key you want to generate.

❷The exact key you generate will be different every time you run the BB84 simulation — that’s a huge
part of the point of the protocol, after all!

❸Our message here is what we get by writing down each of the Unicode code points for "�������������".
❹When we combine our secret message with the key we got above, using the key as a one-time-pad, our

message is completely scrambled.
❺When Eve uses the same key, she gets our original secret message back!

3.7 SUMMARY
In this chapter you learned:

• Recognize the implications that quantum resources have for security
• Implement the quantum NOT operation
• Program a simulator in Python for a quantum key distribution protocol

Quantum key distribution is one of the most important spin-off technologies from
quantum computing and has huge potential impact for our security infrastructure.
While it is currently quite easy to setup QKD for parties that are relatively close to
each other (< 200 km), there are significant challenges to deploying a global system for
QKD. Usually the physical system used in QKD is a photon and it is hard to send
single particles of light long distances without losing them.

Now that you have built up a single qubit simulator and programmed some single qubit
applications, you are now ready to start playing around with multiple qubits! In the
next chapter we will take the simulator you have built and add features to allow it to
simulate multiple qubit states and use it to play nonlocal games with Eve. 💖💖

76

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

4
This chapter covers:

• Simulate state preparation, operations, and measurement results for multiple qubits,

• Program a simulator for multiple qubits leveraging the QuTiP Python package and tensor products,

• Recognize the proof quantum mechanics is consistent with our observations of the universe by

simulating experimental results.

Figure 4.1. In this Chapter, we will be covering topics in simulating quantum hardware and
intrinsic operations for the quantum devices.

Nonlocal games: working with
multiple Qubits

77

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

4.1 NONLOCAL GAMES
At this point, we have seen how single-qubit devices can be programmed to
accomplish useful tasks such as random number generation and quantum key
distribution. The most exciting computational tasks, however, require using multiple
qubits together. In this chapter, you will learn about nonlocal games: a way to validate
our quantum mechanical descriptions of the universe with friends with multi-qubit
systems.

We will dive into a new Python package called QuTiP that will allow us to program
quantum systems faster and has some cool built-in features for simulating quantum
mechanics. Then you will learn how to leverage QuTiP and program a simulator
for multiple qubits and see how that changes (or doesn’t!) the 3 main tasks for our
qubits: state preparations, operations, and measurement.

4.2 WHAT ARE NONLOCAL GAMES?
We have all played games of one type or another, whether sports, board games, video
games or roleplaying games. Games are one of the best ways we have to explore new
worlds, to test our limits of strength, endurance and understanding. Turns out Eve
loves to play games, and the latest encrypted message from her was the following text.

"Hi player! I am keen to play a game called CHSH. It is a nonlocal game were
we play with a referee. I’ll send the instructions in the next message. STOP"

What makes the game proposed by Eve nonlocal is the fact that the players are (sadly)
not in the same place while playing the game. The players participate in the game by
sending and receiving messages with a central referee but don’t have a chance to talk
to each other while playing the game. What is really cool about it is that by playing it
we can show that classical physics just doesn’t cut it to describe the results we get in
these games with particular strategies. The particular winning strategy we will look at
here involves the players sharing a pair of qubits before the game starts. We will dive
into just what entangling two qubits means as we go through this chapter, but let’s just
start with describing the full rules of our nonlocal game.

NOTE A referee adjudicating a nonlocal game can ensure that they players don’t communicate by
separating the players by a large enough distance that no light from one player could reach the
other before the game ends.

4.3 TESTING QUANTUM PHYSICS ITSELF: THE CHSH GAME
The nonlocal game the Eve has suggested playing is called the CHSH game.[1]

You get the next message from Eve and it contains the following information, as well
the figure shown in .

78

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 4.2. The CHSH game, a nonlocal game with two players and a referee.

The CHSH game is comprised of two players, and a referee. You can play as many
rounds of the game as you like, and each round has 3 steps. As Eve mentioned in her
first message, once a round starts, the players cannot communicate and make their own
(possibly pre-planned) decisions.

4.3.1 Steps for one round of the CHSH game
The referee starts the round by giving you and Eve each a one classical bit. The referee
choses these bits independently and at uniformly random, so you could get a 0 or 1
each with 50% probability, and same for Eve. This means that there are four possible
ways that the referee can start the game (your bit, Eve’s bit): (0,0), (0,1), (1,0), or (1,1).

You and Eve must each independently decide on a single classical bit to give back to
the referee as a response.

The referee then calculates the parity (XOR) of your and Eve’s classical bit responses.
As listed in , in three out of the four cases, you and Eve must respond with even parity
(your answers must be equal) in order to win, while in the fourth case, your answers
must be different. These are definitely unusual rules, but not too bad compared to some
multi-day board games.

79

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Table 4.1. Win conditions for the CHSH game.

Your Input Eve’s Input Response parity to win

0 0 Even

0 1 Even

1 0 Even

1 1 Odd

• We can expand on to get all of the possible outcomes of the game, see .

Table 4.2. All possible states of the CHSH game with win conditions. Input bits come from
the referee, and both of you respond to the referee as well.

Your Input Eve’s Input Your Response Eve’s Response Parity Win?

0 0 0 0 Even Yes

0 0 0 1 Odd No

0 0 1 0 Odd No

0 0 1 1 Even Yes

0 1 0 0 Even Yes

0 1 0 1 Odd No

0 1 1 0 Odd No

0 1 1 1 Even Yes

1 0 0 0 Even Yes

1 0 0 1 Odd No

1 0 1 0 Odd No

1 0 1 1 Even Yes

1 1 0 0 Even No

1 1 0 1 Odd Yes

1 1 1 0 Odd Yes

1 1 1 1 Even No

Let’s look at some Python code to simulate this game. Since your and Eve’s responses
to the referee are allowed to depend on the message that the referee gives you, you can
represent each player’s actions as a "function" that the referee calls.

Exercise 4.1: Umpire state of mind
Since the referee is purely classical, we’ll model them as using classical random number generators. This
leaves open the possibility, though, that you and Eve could cheat by guessing the referee’s questions. A

80

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

possible improvement might be to use the QRNGs from Chapter 2. Modify the code sample in so that the
referee can ask questions of you and Eve by measuring a qubit that starts off in the |+⟩ state.

Listing 4.1. Python implementation for the CHSH game

import random
from functools import partial
from typing import Tuple, Callable
import numpy as np

from interface import QuantumDevice, Qubit
from simulator import Simulator

Strategy = Tuple[Callable[[int], int], Callable[[int], int]] ❶

def random_bit() -> int:
 return random.randint(0, 1) ❷

def referee(strategy: Callable[[], Strategy]) -> bool:
 you, eve = strategy() ❸
 your_input, eve_input = random_bit(), random_bit() ❹
 parity = 0 if you(your_input) == eve(eve_input) else 1 ❺
 return parity == (your_input and eve_input) ❻

def est_win_probability(strategy: Strategy, ❼
 n_games: int = 1000) -> float:
 return sum(
 referee(strategy)
 for idx_game in range(n_games)
) / n_games

❶Here we are declaring a new type Strategy to define the tuple of functions that represent your and
Eve’s one bit functions that represent your individual strategies. Using Python’s typing module lets us
document that a value of type Strategy is a tuple of two functions, each of which takes an int and
returns an int. We can think of these functions as representing what you and Eve each do with the bits
given to you by the referee.

❷The classical random number generator the referee will use.
❸You and Eve confer before the game begins and decide on a strategy. The strategy function will assign

a function to you and eve one-bit functions that represent what you will do based on your input.
❹The referee picks two random bits, one for each player.
❺Give each player their random bit, then compute the parity of their responses.
❻Check to see if the players won.
❼To finish your implementation, you will need a function that runs the CHSH game many times in a row

and checks how often you and Eve win. Here, you can use Python’s built-in sum function to count the
number of times referee returns True for a particular strategy. Divide by the number of games that you
played then gives you an estimate for the probability that your and Eve’s strategy wins the CHSH
game.

Note that in we don’t have a definition yet for the input strategy to the referee. Now
that we have the rules of the game implemented in Python, let’s talk strategy and get to
implementing a classical strategy for playing the CHSH game.

81

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

TIP It’s helpful to choose variable naming conventions that make it obvious what role each variable
plays in your code. Above, we chose to use the prefix n_ in the variable n_games to indicate
that the variable refers to a number or size, and have used the prefix idx_ to refer to the index
for each individual game. Much like driving, it’s good if your code is predictable.

4.4 CLASSICAL STRATEGY
The simplest strategy for both you and Eve to pursue is to ignore your inputs entirely.
Looking at , if both of you agreed before the game that you would never change your
outputs (i.e. always return 0), you will win 75% of the time (this does assume the
referee chooses the random bits for each player uniformly).

Table 4.3. Best classical strategy for the CHSH game, where you both always respond with
0 with win conditions.

Your Input Eve’s Input Your Response Eve’s Response Parity Win?

0 0 0 0 Even Yes

0 1 0 0 Even Yes

1 0 0 0 Even Yes

1 1 0 0 Even No

If we were to write this strategy as a Python function, we would have the code in .

Listing 4.2. An easy, constant strategy for players of a CHSH game. Also the best

strategy you can use with only classical resources.

def constant_strategy() -> Strategy:
 return (
 lambda your_input: 0,
 lambda eve_input: 0
)

Listing 4.3. Testing how often we could expect to win a round of CHSH if we use

the constant_strategy.

>>> est_win_probability(constant_strategy) ❶
0.771

❶Note that you may get slightly more or less than 75% when you try this. This is because the win
probability is estimated using a finite number of rounds (in stats, this is called a binomial distribution).
For this example, we’d expect error bars of about 1.5%.

Ok, so thats an easy strategy, but is there anything more clever you can do? Given that
you and Eve only have classical resources, sadly this is provably the best you can do.
Short of cheating ���� (e.g. communicating or guessing the referee’s inputs) you cannot

82

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

win this game more than 75% of the time on average.

This all leads up to the obvious question: what if you and Eve could use qubits? What
would be your best strategy then, and how often would you win? What does it say
about our understanding of the universe if we have proof that you cannot win CHSH
more than about 75% of the time, and then we find a way that we can beat that win
rate? As you might guess, we can do better than 75% win rate playing CHSH if the
players share quantum resources, i.e. have qubits. Later in the chapter we will get into
quantum based strategies for CHSH, but spoiler we are going to need to simulate more
than one qubit.

4.5 WORKING WITH MULTIPLE QUBIT STATES
So far in this book, we’ve only worked with one qubit at a time. To play a nonlocal
game, for example, each player will need their own qubit. This raises the question, how
do things change when the system we are considering has more than one qubit? The
main difference is that we cannot describe each qubit individually and have to think in
terms of a state that describes the whole system.

IMPORTANT When describing a group or register of qubits, you generally cannot just describe each qubit
individually. The most useful quantum behaviors can only be seen when you describe the state
of a group or register of qubits.

The next section will help relate this system level view with a similar, classical
programming concept of a register.

4.6 REGISTERS
Suppose that we have a register of classical bits; that is, a collection of many classical
bits. We can index through each bit in that register and look at it’s value independently,
even though they are still a part of that register. The contents of the register can
represent a more complex value, like bits that together represent a Unicode character
(as we saw in Chapter 3), but this higher level interpretation is not necessary.

When we store information in a classical register, the number of different states of that
register grows very rapidly as we add more bits. If we have three bits, for example,
there are eight different states that our register can be in; see for an example. We say
for the classical register state 101 that the zeroth bit is a 1, the first is 0, and the second
is 1. When these values are concatenated together, they give us the string 101.

Listing 4.4. Using Python to write out all the possible states of a classical three bit

register.

>>> from itertools import product
>>> ", ".join(map("".join, product("01", repeat=3)))
'000, 001, 010, 011, 100, 101, 110, 111'

If we have four bits, we can store one of 16 different states; if we have n bits, we can

83

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

store one of 2n. We say that the number of different possible states of a classical
register grows exponentially with the number of bits. The bit strings output by show
the actual data in the register for each state of the register. They also serve as
convenient labels for one of 8 possible messages that we can encode with 3 classical
bits.

What does all this have to do with qubits? We saw in Chapters 2 and 3 that any state of
classical bit also describes a qubit state. The same holds for registers of qubits as well.
For instance, the three-bit state "010" describes the three-qubit
state \left|010\right\rangle.

TIP In Chapter 2, we saw that qubit states described by classical bits in this way are called
computational basis states; here, we’ll use the same term for states of multiple qubits that are
described by strings of classical bits.

Just like with single qubits, however, the state of a register of multiple qubits can also
be made up by adding different qubit states together. In the exact same way that we can
write down |+⟩ as to get another valid qubit state, our three-qubit
register can be in a wide variety of different states.

4.6.1 Example three-qubit states

•
•

WHY THE
SQUARE
ROOTS?

We’ll see more as we go along, but just as we needed the square root of 2 to make the

measurement probabilities work out for , we need to divide by and

 in our examples above to make sure all the probabilities for each measurement are
realistic; i.e. add up to one.

This example of the linearity of quantum registers is called the superposition principle.

SUPERPOSITION
PRINCIPLE

The superposition principle tells us that we can add together two different states of a
quantum register together to get another valid state.

To write down the state of a quantum register in a computer, we’ll again use vectors,
just as we did in Chapter 2. The main difference is how many numbers we list in each
vector. Let’s look at what it looks like to write down the state of a two-qubit register on
a computer. For example, the vector for the two-qubit state can also be
written as the state . If we make a list of what
we had to multiply each computational basis state by in order to get the state we
wanted, we have precisely the information we need to write down in our vector. In
listing 4.5, we’ve written down as a vector.

84

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 4.5. Using Python to write out an example of a two-qubit state.

>>> import numpy as np
>>> two_qubit_state = np.array([[❶
... 1, ❷
... 0, ❸
... 0,
... 1
...]]) / np.sqrt(2) ❹

❶We start the same way, using the np.array function to make a new vector.
❷Each entry in this vector describes a different computational basis state. This entry tells us that we have

to multiply |00⟩ by 1.

❸Similarly, this entry tells us how much of the state we need to add to get the state that we want.

❹Finally, we divide by to make sure all the measurement probabilities work out, just as we did with
the |+⟩ state in Chapters 2 and 3.

The numbers in the vector from are coefficients that we multiply by each of the
computational basis states which we then add together to make a new state. These
coefficients are also called the amplitudes for each of the basis states in the sum.

THINKING
WITH

DIRECTIONS

Another way to think about this example is by thinking back to the maps that we saw in
Chapter 2. Each different computational basis state tells us about a direction that a qubit state
can be pointed in. We can think of the state of a two-qubit state as a direction in four
dimensions instead of the two-dimensional maps we saw in Chapter 2. Since this book is two-
dimensional rather than four-dimensional, we unfortunately can’t draw a picture here, but
sometimes thinking of vectors as directions can be more helpful than thinking of vectors as
lists of numbers.

4.7 WHY IS IT HARD TO SIMULATE QUANTUM COMPUTERS?
We have seen above that as the number of bits grow, the number of different states a
register can be in grows exponentially. While this won’t be a problem for us in playing
a nonlocal game with only two qubits, you’ll want to use more than just two qubits as
you proceed through this book.

When you do, you’ll also have exponentially many different computational basis states
for your quantum register, meaning that you will need exponentially many different
amplitudes in your vectors as you grow the size of your quantum register. To write
down the state of a 10-qubit register, you’ll need to use a vector that is a list of 210 =
1024 different amplitudes. For a 20-qubit register, you’ll need about a million
amplitudes in our vectors. By the time we get to 60 qubits, you’ll need
about numbers in our vectors. That’s about one amplitude for each grain of
sand on the planet.

85

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Table 4.4. How much memory is required to store a quantum state?

of
qubits # of amplitudes Memory Size

comparison

1 2 128 bits

2 4 256 bits

3 8 512 bits

4 16 1 kilobit

8 256 4 kilobytes Tap-enabled
credit card

10 1024 16 kilobytes

20 1,048,576 16 megabytes

26 67,108,864 1 gigabyte Raspberry Pi
RAM

28 268,435,456 4 gigabytes iPhone XS Max
RAM

30 1,073,741,824 16 gigabytes Laptop or
desktop RAM

40 1,099,511,627,776 16 terabytes

50 1,125,899,906,842,624 16 petabytes

60 1,152,921,504,606,846,976 16 exabytes

80 1,208,925,819,614,629,174,706,176 16 yottabytes
Approximate
size of the
internet

410 2.6 × 10¹²³ 4.2 ×
10^{124} bytes

Computer the
size of the
universe

In , we summarize what this exponential growth means for us as we try to simulate
quantum computers using classical computers like phones, laptops, clusters, or cloud
environments. This table shows that even though it’s very challenging to reason about
quantum computers using classical computers, you can pretty easily reason about small
examples. With a laptop or desktop, you can simulate up to about 30 qubits without too
much hassle. As you’ll see throughout the rest of the book, this is more than enough to
understand how quantum programs work, and to understand how quantum computers
can be used to solve interesting problems.

DEEP DIVE: Are quantum computers exponentially more powerful?
You may have heard that the number of different numbers we have to keep track of to simulate a
quantum computer using a classical computer is why quantum computers are more powerful, or that a
quantum computer can store that much information. This isn’t exactly true, though. A mathematical
theorem known as Holevo’s theorem tells us that a quantum computer made up of 410 qubits can store

86

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

at most 410 classical bits of information, even if it would take us a classical computer about the size of
the entire universe to write down the state of that quantum computer.

Put differently, just because it’s hard to simulate a quantum computer doesn’t mean that it does
something useful. We’ll see throughout the rest of the book that it takes a bit of art to figure out how to
use a quantum computer to do solve useful problems.

Moreover, we run into exactly the same problem in some classical applications! If we want to keep
track of a classical probability distribution, for instance, we would need to write down a number for each
possible classical state.

4.8 TENSOR PRODUCTS FOR STATE PREPARATION
Describing quantum registers as vectors describing computational basis states is all
well and good, but even if we know the state we want to get to, we need to know how
to prepare it. For example, if one player in a nonlocal game has a qubit in the state
and the other has a qubit in the state, we can combine those two single-qubit states
in a straight-forward way to describe the state of the game as . What does it mean to
"combine" the states of two (or more) qubits? We can do this by adding one more
concept to our mathematics toolbox, called the tensor product.

In the same way that we used the product function in above to combine labels for a
three classical bit register, we can use the concept of a tensor product, written as , to
combine the quantum states for each qubit together to make a state that describes
multiple qubits. The output of product was a list of all possible states of those three
classical bits. The output of a tensor product is similarly, a state that lists all
computational basis states for a quantum register. You can use NumPy to compute
tensor products for you; NumPy provides an implementation of the tensor product as
the function np.kron, as shown in listing 4.6.

Why kron?
The name np.kron may seem odd for a function that implements tensor products, but the name is
short for a related mathematical concept called the "Kronecker product." NumPy’s use of kron as short
for "Kroncker" follows the convention used in MATLAB, R, Julia and other scientific computing platforms.

Listing 4.6. Using NumPy to create a 2 qubit register state by combining |0⟩ and |1⟩
with a tensor product to make |01⟩.

>>> import numpy as np
>>> ket0 = np.array([[1], [0]]) ❶
>>> ket1 = np.array([[0], [1]])
>>> np.kron(ket0, ket1) ❷
array([[0],
 [1], ❸
 [0],
 [0]])

❶We start by defining vectors for the single-qubit states |0⟩ and |1⟩, just as we did in Chapters 2 and 3.

❷We can build the vector for by calling NumPy’s implementation of the tensor product. For
historical reasons, the tensor product is represented in NumPy by the kron function.

87

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❸The vector returned by np.kron has a 1 for the entry corresponding to the computational basis state

and zeroes everywhere else, so we recognize this vector as being the state .

• This example shows us that = . That is, if we have the state of each qubit
individually, we can combine them by using the tensor product to describe the
state of the whole register.

We can combine as many qubits as we want this way; say you had four qubits, all in
the |0⟩ state. The register of all four qubits could be described as |0⟩ |0⟩ |0⟩ |0⟩.

>>> import numpy as np
>>> ket0 = np.array([[1], [0]])
>>> from functools import reduce
>>> reduce(np.kron, [ket0] * 4) ❶
array([[1], ❷
 [0],
 [0],
 [0],
 [0],
 [0],
 [0],
 [0],
 [0],
 [0],
 [0],
 [0],
 [0],
 [0],
 [0],
 [0]])

❶The reduce function provided with the Python standard library lets us apply a two-argument function like
kron between each element in a list. Here, we use reduce instead of np.kron(ket0, np.kron(ket0,
np.kron(ket0, ket0))).

❷We get back a four-qubit state vector representing .

WE CAN’T
ALWAYS GO
THE OTHER

WAY!

The two-qubit state that we saw earlier cannot be written as the tensor product
of two single-qubit states. Multiple-qubit states that can’t be written out as tensor products are
called entangled. We’ll see a lot more about entanglement throughout the rest of this Chapter,
and in the rest of the book.

4.9 TENSOR PRODUCTS FOR QUBIT OPERATIONS ON REGISTERS
Now that we know how to use the tensor product to combine quantum states together,
what is np.kron actually doing? In essence, the tensor product is a table of every
different way of combining its two arguments, as shown in .

88

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 4.3. The tensor product of two matrices shown step by step.

The same tensor product shown in of two matrices in Python is also shown in .

Listing 4.7. Using Python to write out the tensor product of two matrices, 𝐴𝐴 and 𝑍𝑍.

>>> import numpy as np
>>> A = np.array([[1, 3], [5, 7]]) ❶
>>> B = np.array([[2, 4], [6, 8]])
>>> np.kron(A, B) ❷
array([[2, 4, 6, 12],
 [6, 8, 18, 24],
 [10, 20, 14, 28],
 [30, 40, 42, 56]])
>>> np.kron(B, A) ❸
array([[2, 6, 4, 12],
 [10, 14, 20, 28],
 [6, 18, 8, 24],
 [30, 42, 40, 56]])

❶The matrices A and B are just arbitrary 2 × 2 matrices that we are using as examples here.
❷As we saw above, np.kron is NumPy’s implementation of the tensor product.
❸Note that the order of the arguments to the tensor product matters; although both np.kron(A, B) and

np.kron(B, A) contain the same information, the entries in each are ordered quite differently!

Using the tensor product between two matrices, we can find how different quantum
operations transform the state of a quantum register. We can also understand how a

89

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

quantum operation transforms the state of multiple qubits by taking the tensor product
of two matrices instead, letting us understand how your and Eve’s moves in a nonlocal
game affect your shared state.

For example, we know that we can write as (that is, the result of applying
the x instruction to an initialized qubit). This also gives us another way to write out
multiple-qubit states like the state we saw earlier. In this case, we can get by
applying an x instruction only to the second qubit of a two-qubit register. Using the
tensor product, we can find a unitary matrix to represent this:

Listing 4.8. Calculating the tensor product of two matrices.

>>> import numpy as np
>>> I = np.array([[1, 0], [0, 1]]) ❶
>>> X = np.array([[0, 1], [1, 0]]) ❷
>>> IX = np.kron(I, X) ❸
>>> IX
array([[0, 1, 0, 0], ❹
 [1, 0, 0, 0],
 [0, 0, 0, 1],
 [0, 0, 1, 0]])
>>> ket0 = np.array([[1], [0]]) ❺
>>> ket00 = np.kron(ket0, ket0)
>>> ket00
array([[1],
 [0],
 [0],
 [0]])
>>> IX @ ket00
array([[0],
 [1], ❻
 [0],
 [0]])

❶We start by defining a matrix that represents doing nothing to the first qubit, known as the identity
matrix 𝟙𝟙. Since 𝟙𝟙 is hard to write in Python, we use I instead.

❷Next, we define the unitary matrix 𝑋𝑋 that lets us simulate the x instruction.

❸We can combine the two using the tensor product 𝟙𝟙 ⊗ 𝑋𝑋.
❹The matrix 𝟙𝟙 ⊗ 𝑋𝑋 consists of two copies of 𝑋𝑋, representing what happens to the second qubit for each

possible state of the first qubit.
❺Let’s see what happens when we use 𝟙𝟙 ⊗ 𝑋𝑋 to simulate how the x instruction transforms the second

qubit in a two-qubit register. We’ll start with that register in the state.
❻We recognize the state we get back as the |01⟩ state from earlier in this section. As expected, that is

the state we get by flipping the second qubit from |0⟩ to |1⟩.

Exercise 4.2: Hadamard operation on a two qubit register.
How would you prepare a] state? First, what vector would you use to represent the two-qubit

state ? You have an initial two qubit register in the state. What operation should you
apply to get the state you want?

90

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

HINT: try (𝐻𝐻 ⊗ 𝟙𝟙) if you are stuck!

DEEP DIVE: Finally proving the no-cloning theorem
Learning that operations on multiple qubits are also represented by unitary matrices lets us finally

prove the No-cloning Theorem that we’ve seen a few times so far. The key insight is that that cloning a
state isn’t linear, and thus cannot be written as a matrix.

As with many proofs in mathematics, the proof of the No-cloning Theorem works by contradiction.
That is, we assume the opposite of the theorem, and then show that we get something false as a result
of that assumption.

Without further ado, then, we start by assuming that we have some wondrous
instruction clone that can perfectly copy the state of its qubit. For instance, if we have a
qubit q1 whose state starts in |1⟩, and a qubit q2 whose state starts in |0⟩, then after
calling q1.clone(q2), we would have the register |11⟩.

Similarly, if q1 starts in |⟩, then `q1.clone(q2)` should give us a register in the state .
The problem comes in reconciling what q1.clone(q2) should do in these two cases. We know that
any quantum operation other than measurement must be linear, so let’s give the matrix that lets us
simulate clone a name; 𝐶𝐶 seems pretty reasonable.

Using 𝐶𝐶, we can break down the case that we want to clone into the case in which we want to
clone |0⟩ plus the case in which we want to clone |1⟩. We know that , but we also know that

. Since `clone` needs to clone |0⟩ and |1⟩ as well as
|+⟩, we know that and . That gives us that , but we
concluded earlier that .

We thus have a contradiction, and can conclude that we went wrong at the very first step, where we
assumed that clone could exist! Thus, we have shown the No-cloning Theorem.

One important thing to note from this argument is that you can always copy information from one
qubit to another if you know the right basis. The problem came in when we didn’t know if we should copy
information about |0⟩ vs |1⟩ or vs , as we could copy either |0⟩ or , but not both. This isn’t a
problem classically, as we only ever have the computational basis to work with.

4.10 QUTIP OF THE ICEBERG
Up to this point, we’ve used NumPy to write our qubit
simulator, SingleQubitSimulator(). This is very helpful, as without NumPy, we’d
need to write our own matrix analysis functions and methods. It is often convenient,
however, to rely on Python packages with special support for quantum concepts,
building on the excellent numerical support provided by NumPy and SciPy (an
extension to the NumPy numerical capabilities).

4.11 QUANTUM OBJECTS IN QUTIP
One particularly useful package is the QuTiP (Quantum Toolbox in
Python http://www.qutip.org) package, which provides built-in support for
representing states and measurements as bras and kets, respectively, and for building
matrices to represent quantum operations.

Just as np.array is at the core of NumPy, all of our use of QuTiP will center around
the Qobj class (short for "quantum object"). This class encapsulates vectors and
matrices, providing additional metadata and useful methods that will make it easier for

91

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
http://www.qutip.org/

©Manning Publications Co. To comment go to liveBook

us to improve our simulator. You can see in an example of creating a Qobj from a
vector, where it keeps track of some metadata:

4.11.1 Selected metadata that the Qobj class tracks:
• data holds the array representing the Qobj,
• dims the size of our quantum register. You can think of it as a way of keeping

track of how we record the qubits we are dealing with,
• shape keeps the dimension of the original object we used to make the Qobj.

Similar to the np.shape attribute,
• type what the Qobj represents (a state = ket, a measurement = bra, or an

operator = oper).

Figure 4.4. Properties of the Qobj class.

Let’s try importing QuTiP and asking it for the Hadamard operation, see .

NOTE Make sure as you run things that you are in the right conda env, for more information see
Appendix A.

Listing 4.9. Using the QuTiP Python package to load the package’s representation of

the Hadamard operation.

>>> import qutip as qt
>>> H = qt.hadamard_transform()
>>> H
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True ❶
Qobj data =
[[0.70710678 0.70710678]
 [0.70710678 -0.70710678]]

❶Note that QuTiP prints out some diagnostic information about each Qobj instance along with the data
itself. Here, for instance, type = oper tells you that H represents an operator (a more formal term for
the matrices we’ve seen so far), along with some information about the dimensions of the operator

92

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

represented by H. Finally, the isherm = True output tells you that H is an example of a special kind of
matrix called a Hermitian operator. We’ll see more about why Hermitian operators are helpful in
Chapter 9.

We can make new instances of Qobj in much the same way as we made NumPy arrays,
by passing in Python lists to the Qobj initializer, see .

Listing 4.10. Using a vector to initialize a Qobj that represents the state of a qubit.

>>> import qutip as qt
>>> ket0 = qt.Qobj([[1], [0]]) ❶
>>> ket0
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket ❷
Qobj data =
[[1.]
 [0.]]

❶One key difference between creating Qobj instances and arrays is that when we create Qobj instances,
we always need two levels of lists. The outer list is a list of rows in the new Qobj instance.

❷QuTiP prints some metadata about the size and shape of the new quantum object, along with the data
contained in the new object. In this case, the data for the new Qobj that you constructed has two rows,

each with one column. We identify that as the vector or ket that we use to write down the state.

Exercise 4.3: Creating the Qobj for other states
How would you create a Qobj to represent the |1⟩ state? How about the |+⟩ or |-⟩ state? If you need to
check back to Simulating qubits in code section of Chapter 2 for what vectors represent those states.

Where QuTiP really helps out, though, is that it provides us with a lot of nice
shorthand for the kinds of objects we need to work with in quantum computing. For
instance, we could have also made ket0 in the above sample by using the
QuTiP basis function, see .

Listing 4.11. Using built-in features of QuTiP to easily create the |0⟩ and |1⟩ states.

>>> import qutip as qt
>>> ket0 = qt.basis(2, 0) ❶
>>> ket0
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket ❷
Qobj data =
[[1.]
 [0.]]
>>> ket1 = qt.basis(2, 1) ❸
>>> ket1
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.]
 [1.]]

❶The basis function takes two arguments. The first tells QuTiP that we want a qubit state; since a qubit
can be in either of two different states, you can pass a 2 here to indicate a single qubit. It’s 2 for a

93

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

single qubit because the length of a vector that is needed to represent a single qubit is 2. The second

argument tells QuTiP which basis state you want. Since we want , we pass a 0 here.
❷Note that we get exactly the same output here as in the previous example.

❸We can also construct a quantum object for by passing a 1 instead of a 0.

...basis?
As we have seen before, the states and make up the computational basis for a single qubit. The
QuTiP function basis gets its name from this definition, as it makes quantum objects to represent
computational basis states.

There are more things in heaven and earth, than your qubits.
It may seem a little odd that we had to tell QuTiP that we wanted a qubit. After all, what else could we
want? As it turns out, quite a bit (yes, pun very much so intended)!

There are many other ways to represent classical information than bits, such as trits, which have
three possible values. We tend not to see classical information represented using anything other than
bits when we write programs, though, as it’s very useful to pick a convention and stick with it. Things
other than bits still have their uses, though, in specialized domains such as telecommunications
systems.

In the exact same fashion, quantum systems can have any number of different states, so that we can
have qutrits, qu4its, qu5its, qu17its, and so forth, collectively known as qu𝑑𝑑its. While representing
quantum information using qu𝑑𝑑its other than qubits can be useful in some cases, and can have some
very interesting mathematical properties, qubits give us all we need to dive into quantum programming,
so we’ll focus on them until we get to Part III and meet our first fermions.

Exercise 4.4: Using qt.basis for multiple qubits
How could you use the qt.basis function to create a two qubit register in the |10⟩ state? How could
you create the state? Remember that the second argument to qt.basis is an index to the
computational basis states we saw earlier.

QuTiP also provides a number of different functions for making quantum objects to
represent unitary matrices. For instance, we can make a quantum object for the 𝑋𝑋
matrix by using the sigmax function:

>>> import qutip as qt
>>> qt.sigmax()
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0. 1.]
 [1. 0.]]

As we saw in Chapter 2, the matrix for sigmax represents a rotation of 180° ().

94

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 4.5. A visualization of the quantum equivalent of a NOT operation operating on a qubit in
the |0⟩ state, leaving the qubit in the |1⟩ state.

QuTiP also provides a function ry to represent rotating by whatever angle we like
instead of 180° like the x operation. We have actually already seen the operation
that ry represents in Chapter 2, when we considered rotating |0⟩ by an arbitrary angle
𝜃𝜃. See for a refresher on the operation we now know as ry.

Figure 4.6. A visualization of QuTiP function ry which corresponds to a variable rotation of 𝜃𝜃
around the 𝑌𝑌 axis of our qubit (which points directly out of the page).

Now that we have a few more single-qubit operations down, how can we easily
simulate multi-qubit operations in QuTiP? We can use QuTiP’s tensor function to
quickly get up and running with tensor products to make our multi-qubit registers and
operations, as we show in listing 4.12.

95

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 4.12. Tensor products in QuTiP

>>> import qutip as qt
>>> psi = qt.basis(2, 0) ❶
>>> phi = qt.basis(2, 1) ❷
>>> qt.tensor(psi, phi)
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[0.] ❸
 [1.]
 [0.]
 [0.]]
>>> H = qt.hadamard_transform(1) ❹
>>> I = qt.qeye(2) ❺
>>> qt.tensor(H, I) ❻
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[0.70710678 0. 0.70710678 0.]
 [0. 0.70710678 0. 0.70710678]
 [0.70710678 0. -0.70710678 0.]
 [0. 0.70710678 0. -0.70710678]]
>>> (❼
... qt.tensor(H, I) * qt.tensor(psi, phi) -
... qt.tensor(H * psi, I * phi)
...)
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[0.]
 [0.]
 [0.]
 [0.]]

❶Set psi to represent .

❷Set phi to represent .
❸After calling tensor, QuTiP tells us the amplitudes for each classical label in

, using the same order as .
❹Set H to represent the Hadamard operation discussed above.
❺You can use the qeye function provided by QuTiP to get a copy of a Qobj instance representing the

identity matrix that we first saw in . Since identity matrices are often written using the letter "I," many
scientific computing packages use the name eye as a bit of a pun to refer to the identity matrix.

❻The unitary matrices representing quantum operations combine using tensor products in the same way
as states and measurements.

❼If we apply a unitary to a state then take the tensor product, we get the same answer as if we applied
the tensor product and then the unitary. Here we can tell these two approaches are give the same
answer because their difference is 0. In math, we would say that for any unitary operators U and V

and for any states and , .

96

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

NOTE For a list of all of the built-in states and operations QuTiP has, see
http://qutip.org/docs/latest/guide/guide-basics.html#states-and-operators

4.12 UPGRADING THE SIMULATOR
The goal now is to use QuTiP to upgrade our single-qubit simulator to a multi-qubit
simulator with some of the features of QuTiP. We will do this by adding a few features
to our single-qubit simulator from Chapters 2 and 3.

The most significant change we’ll need to make to our simulator from previous
chapters is that we can no longer assign a state to each qubit. Rather, we must assign a
state to the entire register of qubits in our device, since some of the qubits may be
entangled with each other.

Let’s jump into making the modifications necessary to separate the concept of the state
to the device level.

NOTE To see the code we wrote earlier, as well as the samples for this chapter see the GitHub repo
for the book: https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp.

To review, we have two files for our simulator: the interface (interface.py), and the
simulator itself (simulator.py). The device interface (QuantumDevice) defines a
way of interacting with an actual or simulated quantum device, which is represented in
Python as an object that lets us allocate and deallocate qubits.

We won’t need anything new for the QuantumDevice class in the interface in order to
model our CHSH game, since we’ll still need to allocate and deallocate qubits. Where
we can actually add features is in the Qubit class provided along with
our SingleQubitSimulator in simulator.py.

Now we need to consider what, if anything, needs to change in our interface for
a Qubit we allocate from the QuantumDevice. In Chapter 2, we saw that the
Hadamard operation was useful for rotating qubits between different bases to make a
QRNG. Let’s build on this by adding a new method to Qubit to allow quantum
programs to send a new kind of rotation instruction that we will need to use the
quantum strategy for CHSH.

Listing 4.13. The interface we have built in Chapter 3 for our Qubit, but adding a

new ry operation which rotates our state about the 𝑌𝑌-axis.

class Qubit(metaclass=ABCMeta):
 @abstractmethod
 def h(self): pass

 @abstractmethod
 def x(self): pass

 @abstractmethod
 def ry(self, angle: float): pass ❶

97

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 @abstractmethod
 def measure(self) -> bool: pass

 @abstractmethod
 def reset(self): pass

❶This is the abstract method ry which takes an argument angle to specify how far to rotate the qubit
around the 𝑌𝑌-axis.

That should then cover all changes we need to make to
our Qubit and QuantumDevice interface for playing CHSH with Eve. Now we need to
address what changes we need to make to the simulator.py to actually allow it to
allocate, operate, and measure multi-qubit states.

The main changes to our Simulator class which implements a QuantumDevice are
that we now need some attributes to track how many qubits it has and the overall state
of the register. shows these changes as well as an update to allocation and deallocation
methods.

Listing 4.14. The implementation of Simulator, a class that represents a device that

represents a multi-qubit version of a QuantumDevice from our interface.

class Simulator(QuantumDevice): ❶
 capacity: int ❷
 available_qubits: List[SimulatedQubit] ❸
 register_state: qt.Qobj ❹
 def __init__(self, capacity=3):
 self.capacity = capacity
 self.available_qubits = [❺
 SimulatedQubit(self, idx)
 for idx in range(capacity)
]
 self.register_state = qt.tensor(❻
 *[
 qt.basis(2, 0)
 for _ in range(capacity)
]
)
 def allocate_qubit(self) -> SimulatedQubit: ❼
 if self.available_qubits:
 return self.available_qubits.pop()

 def deallocate_qubit(self, qubit: SimulatedQubit):
 self.available_qubits.append(qubit)

❶We have changed the name from SingleQubitSimulator to Simulator to indicate it is more generalized.
Here, that means we can actually simulate multiple qubits with it.

❷The more general Simulator class now needs a few attributes, the first being capacity which represents
the number of qubits it is capable of simulating.

❸available_qubits is a list containing the qubits the Simulator is using.
❹register_state uses the new QuTiP Qobj to represent the state of the entire simulator.

98

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❺A list comprehension allows us to make a list of available qubits by calling SimulatedQubit with the
indices from the range of capacity.

❻register_state is initialized by taking the tensor product of a number of copies of the |0⟩ state equal to
the capacity of the simulator. The *[…] notation will take the generated list and turn it into a sequence
of arguments for qt.tensor.

❼The allocate_qubit and deallocate_qubit methods are the same as our previous simulator from Chapter
3.

PEER NOT
INTO THE

BOX,
MORTAL!

In just the same way that we used NumPy to represent the state of a simulator, the
register_state property of our newly upgraded simulator uses QuTiP to predict how each
instruction has transformed the state of our register. When we write quantum programs,
though, we do so against the interface in , which doesn’t have any way to let us access
register_state.

We can think of the simulator as being a kind of black box that encapsulates the notion of a
state. If our quantum programs were able to look inside that box, then they would be able to
cheat by copying that information in ways forbidden by the no-cloning theorem. This means
that for a quantum program to be correct, we cannot look inside the simulator to see its state.

In this Chapter, we’ll cheat a little bit, but in the next Chapter, we’ll see how to fix that up to
make sure our programs can be run on actual quantum hardware.

We also will add a new private method to our Simulator that allows us to apply
operations to specific qubits in our device. This will let us write methods on our qubits
that send operations back to the simulator to be applied to the state of an entire register
of qubits.

TIP Python is not strict about keeping methods or attributes private, but we will prefix this method
name with an underscore to indicate it is meant for use in the class only.

Listing 4.15. One additional method for the Simulator class that allows us to apply

operations to specific qubits in our simulator.

 def _apply(self, unitary: qt.Qobj, ids: List[int]): ❶
 if len(ids) == 1: ❷
 matrix = qt.circuit.gate_expand_1toN(
 unitary, self.capacity, ids[0]
)
 else:
 raise ValueError("Only single-qubit unitary matrices are supported.")

 self.register_state = matrix * self.register_state ❸

❶The private method _apply takes an input unitary of type Qobj that represents a unitary operation to be
applied, and a list of int to indicate the indices of the available_qubits list where you want to apply the
operation. For now, that list will only ever contain one element, since we’re only implementing single-
qubit gates in our simulator. We’ll relax this in the next Chapter, though.

99

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❷If the operation is only to be applied to one qubit, we can use QuTiP to generate the matrix that we
would need to apply the operation to the right qubit given the representation of the entire register by
applying 𝟙𝟙 everywhere else. This is done for us automatically by the gate_expand_1toN function.

❸Now that we have the right matrix to multiply our entire register_state by, we can update the value of
that register accordingly.

Now let’s get to the implementation of SimulatedQubit, the class that represents how
we simulate a single qubit, given that we know it is part of a device that has multiple
qubits. The main difference between the single and multi-qubit versions
of SimulatedQubit is that we need each qubit to remember their "parent" device and
their location or id in that device so that we can associate the state with the register
and not each qubit. This is important as we will see in the next section when we want
to measure qubits in a multi-qubit device.

Listing 4.16. The start of the class SimulatedQubit which implements a qubit from a

multi-qubit device.

class SimulatedQubit(Qubit):
 qubit_id: int
 parent: "Simulator"

 def __init__(self, parent_simulator: "Simulator", id: int): ❶
 self.qubit_id = id
 self.parent = parent_simulator

 def h(self) -> None:
 self.parent._apply(H, [self.qubit_id]) ❷

 def ry(self, angle: float) -> None:
 self.parent._apply(qt.ry(angle), [self.qubit_id]) ❸

 def x(self) -> None:
 self.parent._apply(qt.sigmax(), [self.qubit_id])

❶Now to initialize a qubit we will need the the name of the parent simulator (so we can easily associate it)
and the index of the qubit in the simulator’s register. __init__ then sets those attributes and resets the

qubit to the |0⟩ state.
❷To implement the h operation now, we ask the parent of our SimulatedQubit (which is an instance

Simulator) to use the _apply method to generate the right matrix that would represent the operation on
the complete register, and then update the register_state.

❸We can also pass the parameterized qt.ry operation from QuTiP to _apply to rotate our qubit about the
𝑌𝑌-axis by an angle angle.

Great! Now we are almost done upgrading our simulator to use QuTiP and support
multiple qubits. We will tackle simulating measurement on multi-qubit states, in the
next section.

100

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

4.13 MEASURING UP: HOW CAN WE MEASURE MULTIPLE QUBITS?
TIP This section is one of the hardest sections in the book, please don’t worry if things don’t make

a lot of sense the first time around.

In some sense, measuring multiple qubits works the same way we’re used to from
measuring single-qubit systems. We can still use Born’s rule to predict the probability
of any particular measurement outcome. For example, let’s return to
the state that we’ve seen a few times now. If we were to measure a pair
of qubits in that state, we would get either "00" or "11" as our classical outcomes with
equal probability, since both have the same amplitude, namely 1 / .

Similarly, we’ll still demand that if we measure the same register twice in a row, we
get the same answer. If we get the "00" outcome, for instance, we know that qubits are
left in the state.

Where this gets a little bit trickier, however, is if we measure part of a quantum
register without measuring the whole thing. Let’s look at a couple examples to see how
that could work. Again taking as an example, if we measure only the
first qubit and we get a "0", we know that we need to get the same answer again the
next time we measure. The only way this can happen is if the state transforms to |00⟩ as
a result of having observed "0" on the first qubit.

On the other hand, what happens if we measure the first qubit out of a pair of qubits in
the state? It's helpful to first refresh our memory as to what looks like when
written as a vector.

>>> import qutip as qt
>>> ket_plus = qt.hadamard_transform() * qt.basis(2, 0) ❶
>>> ket_plus
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket ❷
Qobj data =
[[0.70710678]
 [0.70710678]]
>>> register_state = qt.tensor(ket_plus, ket_plus) ❸
>>> register_state
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data = ❹
[[0.5]
 [0.5]
 [0.5]
 [0.5]]

❶Let’s start again by writing down |+⟩ as H|0⟩. In QuTiP, we’ll use the hadamard_transform function to
get a Qobj instance to represent 𝐻𝐻, and we’ll use basis(2, 0) to get a Qobj representing |0⟩.

❷We can print out ket_plus to get a list of the elements in that vector; as before, we call each of these
elements an amplitude.

❸To represent the state , we use that .

101

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❹This output tells us that has the same amplitude each of the four computational basis states |00⟩,
|01⟩, |10⟩, and |11⟩, just as ket_plus has the same amplitude for each of the computational basis
states |0⟩ and |1⟩.

Suppose that we measure the first qubit and get a "1" outcome. To make sure we get
the same result the next time we measure, the state after measurement can’t have any
amplitude on |00⟩ or |01⟩. If we only keep the amplitudes on |10⟩ and |11⟩ (the third and
four rows of the vector we calculated above), then we get that the state of our two
qubits becomes .

WHERE DID
THE √2
COME

FROM?

We included a above to make sure that all our measurement probabilities still sum to one
when we measure the second qubit. In order for Born’s rule to make any sense, we always need
the sum of the squares of each amplitude to sum to one.

There’s another way to write this state, though, that we can check using QuTiP:

>>> import qutip as qt
>>> ket_0 = qt.basis(2, 0)
>>> ket_1 = qt.basis(2, 1)
>>> ket_plus = qt.hadamard_transform() * ket_0 ❶
>>> qt.tensor(ket_1, ket_plus)
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[0.]
 [0.]
 [0.70710678]
 [0.70710678]]

❶Recall that we can write as .

This tells us that if we only keep the parts of the state that are consistent with
getting a "1" outcome from measuring the first qubit, then we get . That is,
nothing happens at all to the second qubit in this case!

Exercise 4.5: Measuring the other qubit
In the example where our two qubits start off in the state, suppose we measured the second qubit
instead. Check that no matter what result we get, nothing happens to the state of the first qubit.

To work out measuring part of a register more generally, we can use another concept
from linear algebra called projectors. A projector is the product of a state vector (the
"ket" or |⟩ part of a bra-ket) and a measurement (the "bra" or ⟨| part of a bra-ket), and
represents our requirement that if a certain measurement outcome occurs, then we must
transform to a state consistent with that measurement. See for a quick example of a
single-qubit projector; defining projectors on multiple quibts works in exactly the same
way.

102

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 4.7. An example of a projector acting on a single-qubit state.

In QuTiP, we write the bra corresponding to a ket by using the .dag() method (short
for dagger, a call back to mathematical notation we saw in). Thankfully, even if the
math isn’t that straightforward, it winds up not being that bad to write in Python, as we
can see in .

Listing 4.17. A method for the Simulator class that allows us to measure individual

qubits in our register.

 def measure(self) -> bool:
 projectors = [❶
 qt.circuit.gate_expand_1toN(❷
 qt.basis(2, outcome) * qt.basis(2, outcome).dag(),
 self.parent.capacity,
 self.qubit_id
)
 for outcome in (0, 1)
]
 post_measurement_states = [
 projector * self.parent.register_state ❸
 for projector in projectors

103

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

]
 probabilities = [❹
 post_measurement_state.norm() ** 2
 for post_measurement_state in post_measurement_states
]
 sample = np.random.choice([0, 1], p=probabilities) ❺
 self.parent.register_state = post_measurement_states[sample].unit() ❻
 return int(sample)

 def reset(self) -> None: ❼
 if self.measure(): self.x()

❶We start by using QuTiP to make a list of projectors, one for each possible measurement outcome.
Don’t worry too much about this for now, we’ll get more practice with this concept as we go along.

❷Just as you did in , you can use the gate_expand_1toN function provided by QuTiP again here to
expand each single-qubit projector into a projector that acts on the whole register.

❸Next, we use each projector to pick out the parts of a state that are consistent with each measurement
outcome.

❹The length of what each projector picks out (written as the .norm() method in QuTiP) tells us about the
probability of each measurement outcome.

❺Once we have the probabilities for each outcome, we can pick an outcome by using NumPy.
❻Next, you can use the .unit() method built-in to QuTiP to make sure that whatever state we get, its

measurement probabilities still sum up to one so that you’re ready for the next measurement.
❼Finally, you can use the new measurement method to implement the reset method from Chapters 2 and

3. Here, if the result of a measurement is |1⟩, then flipping with an x instruction resets back to |0⟩.

4.14 CHSH: QUANTUM STRATEGY
Now that we have expanded our simulator to handle multiple qubits, let’s see how we
can simulate a quantum based strategy for our players that will result in a win
probability higher than could be possible with any classical strategy! See for a
reminder of how the CHSH game is played.

104

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 4.8. The CHSH game, a nonlocal game with two players and a referee.

You and Eve now have quantum resources, so let’s start with the simplest option: you
each have one qubit allocated from the same device. We’ll use our simulator to
implement this strategy, so this isn’t really a test of quantum mechanics itself so much
as that our simulator agrees with quantum mechanics.

NOTE We can’t simulate the players being truly nonlocal, as the parts of the simulator need to
communicate in order to emulate quantum mechanics. Faithfully simulating quantum games
and quantum networking protocols in this manner is exposes a lot of interesting classical
networking topology questions that are well beyond the scope of this book. If you’re interested
in simulators intended more for use in quantum networking than quantum computing, we
recommend looking at the SimulaQron project (http://www.simulaqron.org/) for more
information.

Let’s see how often you and Eve can win if you each start off with a single qubit, and
if those qubits start off in the state that we’ve seen a few times so far in
this Chapter. Don’t worry about how to prepare this state, we’ll see how to do that in
the next Chapter. For now, let’s just see what you can do with qubits in that state once

105

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

you have them.

Using these qubits, we can form a new quantum strategy for the CHSH game we saw at
the start of the chapter. The trick is that you and Eve can each apply operations to each
of your qubits once you get your respective messages from the referee. As it turns
out, ry is a very useful operation for this strategy. It lets you and Eve trade off slightly
between how often you win when the referee asks for you both to output the same
answers (the 00, 01, and 10 cases), in order to do slightly better when you need to
output different answers (the 11 case), as shown in and in .

Figure 4.9. Rotating qubits to win at CHSH

Table 4.5. Rotations you and Eve will do to your qubits as a function of the input bit you
receive from the referee. Note they are all ry rotations, just by different angles (converted
to radian for ry).

Input from referee Your Rotation Eve’s Rotation

0 ry(90 * np.pi / 180) ry(45 * np.pi / 180)

1 ry(0) ry(135 * np.pi / 180)

• Don’t worry if these angles look random, we can check to see that they work using
our new simulator! In , we’ve used the new features we added to the simulator to
write out a quantum strategy.

Listing 4.18. A new quantum strategy for playing the CHSH game where you and Eve

start with a pair of qubits.

import qutip as qt
def quantum_strategy(initial_state: qt.Qobj) -> Strategy:

106

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 shared_system = Simulator(capacity=2) ❶
 shared_system.register_state = initial_state
 your_qubit = shared_system.allocate_qubit() ❷
 eve_qubit = shared_system.allocate_qubit()

 shared_system.register_state = qt.bell_state() ❸
 your_angles = [90 * np.pi / 180, 0] ❹
 eve_angles = [45 * np.pi / 180, 135 * np.pi / 180]

 def you(your_input: int) -> int:
 your_qubit.ry(your_angles[your_input]) ❺
 return your_qubit.measure() ❻

 def eve(eve_input: int) -> int: ❼
 eve_qubit.ry(eve_angles[eve_input])
 return eve_qubit.measure()

 return you, eve ❶

❶To start the quantum strategy, we need to create a QuantumDevice instance where we will simulate our
qubits.

❷Labels can be assigned to each qubit as we allocate them to the shared_system
❸We will cheat a little here to just set the state of our qubits to the entangled state (|00⟩ + |11⟩) / √2, we

will see in the next chapter how to prepare this state from scratch, and why the function to prepare this
state is called bell_state.

❹The angles for the rotations you and Eve need to do based on your input from the referee.
❺Your strategy for playing the CHSH game starts with you rotating your qubit based on the input

classical bit from the referee.
❻The classical bit value your strategy returns is the bit value you get when you measure your qubit.
❼Eve’s strategy is similar to yours, just uses different angles for her initial rotation.
❽Just like our classical strategy, quantum_strategy returns a tuple of functions that represent your and

Eve’s individual actions.

Now that we have implemented a Python version of the quantum_strategy, let’s see
how often we can win with using our CHSH game est_win_probability function in.

Listing 4.19. We can run our CHSH game win estimator with the new quantum_strategy.

Note that this is is a higher win probability than with the classical strategy!

>>> est_win_probability(quantum_strategy) ❶
0.832

❶Note that you may get slightly more or less than 85% when you try this. This is because the win
probability is estimated under the hood using a binomial distribution. For this example, we’d expect
error bars of about 1.5%.

Awesome, you and Eve can start winning the CHSH game more frequently than any
other classical players! What this strategy shows us, though, is an example of how
states like are an important resource provided by quantum mechanics.

107

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

NOTE States like are called entangled, as they can’t be written as the tensor product of
single-qubit states. We’ll see many more examples of entanglement as we go along, but
entanglement is of the most amazing and fun things that we get to use in writing quantum
programs!

As we saw in this example, entanglement allows us to create correlations in our data
that can be used to our advantage when we want to get useful information out of our
quantum systems.

THE SPEED
OF LIGHT IS

STILL A
THING

If you’ve read about relativity (if you haven’t, no worries!), you may have heard that it’s
impossible to send information faster than the speed of light. It may seem what you’ve seen
about entanglement so far that quantum mechanics violates this, but as it turns out,
entanglement can never be used to communicate a message of your choosing all on its own.
You always need to send something else along with using your entanglement. This means that
the speed of light still constrains how fast information can travel through the universe — phew!

Far from being strange or weird, though, entanglement is a direct result of what we’ve
already learned about quantum computing so far: it is a direct consequence of quantum
mechanics being linear. If we can prepare a two qubit register in the |00⟩ state and in
the |11⟩ state, then we can also prepare a state in a linear combination of the two, such
as (|00⟩ + |11⟩) / √2.

Since entanglement is an direct result of the linearity of quantum mechanics, the CHSH
game also gives us a great way to check that quantum mechanics is really correct (or to
the best our data can show). Let’s go back to that win probability in again. If you do
an experiment, and you see something like an 83.2% win probability, that tells you that
your experiment couldn’t have been purely classical, since we know a classical
strategy can at most win 75% of the time. This experiment has been done many times
throughout history, and is part of how we know that our universe isn’t just classical —
that we need quantum mechanics to describe it.

NOTE In 2015, one experiment even had the two players in the CHSH game separated by over a
kilometer!

Self-testing: An application for nonlocal games
This hints at another application for nonlocal games: if we can play and win a nonlocal game with Eve,
then that means along the way, we must have built something that we can use to send quantum data.
This sort of insight leads to ideas known as quantum self-testing, where we make parts of a device play
nonlocal games with other parts of the device in order to make sure that it works correctly.

The simulator that you wrote in this chapter gives you everything you need to see how
those kinds of experiments work, so that we can plow ahead to use quantum mechanics
and our qubits to do awesome stuff, armed with the knowledge that quantum
mechanics really is how our universe works.

4.15 SUMMARY
• In this chapter you learned:

108

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

• Simulate state preparation, operations, and measurement results for multiple
qubits,

• Program a simulator for multiple qubits leveraging the QuTiP Python package,
• Recognize the proof quantum mechanics is consistent with our observations of the

universe by simulating experimental results.

[1] The name "CHSH" comes from the initials of the researchers who originally created the game, Clauser, Horne, Shimony,
and Holt. You can find the original if you are
interested: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.23.880).

109

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.23.880

©Manning Publications Co. To comment go to liveBook

5
This chapter covers:

• Implement a quantum program to move data around a quantum computer using classical and

quantum control

• Recognize a new way of visualizing single qubit operations called the Bloch sphere

• Predict the output of two-qubit operations, and Pauli operations

Figure 5.1. In this Chapter, we will be covering topics in simulating quantum hardware and
intrinsic operations for the quantum devices.

Teleportation and entanglement:
Moving quantum data around

110

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

5.1 MOVING QUANTUM DATA
Just as with classical computing, sometimes in a quantum computer you have some
data here that you would very much appreciate being somewhere over there.
Classically, this is an easy problem to solve by copying data around, but as we saw in
Chapters 3 and 4, the No-Cloning Theorem means we in general can’t copy data stored
in qubits.

Moving data classically
In some parts of classical computing, we run into the same problem of not being able to copy

information for very different reasons. Copying data in a multi-threaded application can introduce subtle
race conditions, while performance considerations can prompt us to reduce the amount that we copy
data. The solution embraced by many classical languages (e.g.: C++11 and Rust) is to instead focus
on moving data. Thinking in terms of moving data is helpful in quantum computing, though we’ll
implement moves in a very different way.

So what can you do if you want to move data around in a quantum device? Thankfully,
there’s a number of different ways to move quantum data instead of copying it. In this
chapter, we’ll see a few of these approaches and will add the last couple features that
we need to our simulator to implement them. Let’s get to sharing quantum information
then!

Suppose Eve has some qubits that encode some data she’d like to share with you.

Hey player! I have some quantum information I want to share with you, can I
send it over to you?

-- Eve

Here, Eve is referring to the swap instruction — it’s a bit different than the instructions
we’ve seen so far in that it operates on two qubits at once. By contrast, every operation
that you’ve seen so far only operates on one qubit at a time.

Looking at what swap does, the name is pretty descriptive, because it literally swaps
the state of two qubits in the same register. For example, say you had two qubits in the
|01⟩ state. If you use the swap instruction on both qubits, the result would be your
register is now in the |10⟩ state. Let’s look at for an example of using the swap matrix
built-in to QuTiP.

Listing 5.1. Using the built in swap function in QuTiP, and an example of using it on the

|+0⟩ to get the |0\+⟩ state.

>>> import qutip as qt
>>> ket_0 = qt.basis(2, 0)
>>> ket_plus = qt.hadamard_transform() * ket_0
>>> initial_state = qt.tensor(ket_plus, ket_0)
>>> initial_state ❶
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =

111

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

[[0.70710678] ❷
 [0.]
 [0.70710678]
 [0.]]
>>> swap_matrix = qt.swap() ❸
>>> swap_matrix * initial_state ❹
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[0.70710678] ❺
 [0.70710678]
 [0.]
 [0.]]
>>> qt.tensor(ket_0, ket_plus) ❻
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[0.70710678]
 [0.70710678]
 [0.]
 [0.]]

❶We’ll start by using qt.basis, qt.hadamard_transform, and qt.tensor together to define a variable for old

friend from last chapter, the state vector . This state makes a nice example for seeing what the
swap instruction does.

❷As we saw in Chapter 4, this state has equal amplitudes on the |00⟩ and |10⟩ computational basis
states.

❸We can get a copy of the unitary matrix for the swap instruction by calling qt.swap.
❹The same way that we’ve simulated single-qubit operations, we can multiply our state by the unitary

matrix for swap to find the state of our two-qubit register after applying a swap instruction.
❺When we do so, we see that we end up in a superposition between |00⟩ and |01⟩ instead of between

|00⟩ and |10⟩.
❻You can quickly check that the result of using the swap instruction on a register of two qubits that start

off in the state is .

Looking at , you can see that the swap instruction did pretty much what its name
suggests. In particular, swap took two qubits that started off in the state to the

 state. More generally, you can read off what the swap instruction does by looking
at the unitary matrix we used to simulate it above (see listing 5.2).

Listing 5.2. Looking at the unitary matrix for the swap instruction

>>> import qutip as qt
>>> qt.swap()
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
❶
Qobj data =
[[1. 0. 0. 0.]
❷
 [0. 0. 1. 0.]
❸
 [0. 1. 0. 0.]
 [0. 0. 0. 1.]]

112

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❹

❶Note that the unitary matrix we use to simulate the swap instruction is a 4 × 4 matrix. This is because it
acts on two-qubit states, meaning that it has to define what happens to each of the four possible
computational basis states that a two-qubit register can be in.

❷Each column of this unitary matrix tells us what happens to one of the computational basis states; for
instance, the first column tells us that the |00⟩ state is mapped to the vector [[1], [0], [0], [0]], which we
recognize as |00⟩. That is, the swap instruction does nothing to qubits that start off in the |00⟩ state.

❸On the other hand, we can see that that the |01⟩ and |10⟩ states are swapped by the swap instruction.

❹Finally, the swap instruction also leaves |11⟩ alone.

IMPORTANT The unitary matrix for the swap instruction cannot be written as the tensor product of any two
single-qubit unitary matrices. That is, you can’t understand what swap does by considering one
qubit at a time — you need to work out what it does to state of the pair of qubits that the swap
instruction acts on.

As shown in , you can see what swap does in general, no matter what state our two
qubits start off in.

Figure 5.2. The two qubit operation swap exchanges the states of two qubits in a register.

Remember that in Chapter 2, you saw that a unitary matrix is a lot like a truth table.
That is, unitary matrices like what we get back from qt.swap are useful in that they

113

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

help us simulate what the swap instruction does. Just as a classical adder isn’t its truth
table, though, it’s helpful to remember that these unitary matrices aren’t quantum
programs, but tools that we use to simulate how quantum programs work.

Exercise 5.1: swap the second and third qubits in a register.
Say you have a register with 3 qubits, in the state . Using QuTiP, write out this state, and then swap
the second and third qubits so your register is in the state.

HINT: since nothing will happen to the first qubit, make sure to tensor an identity matrix
to qt.swap to build up the correct operation for your register.

At this point, though, Eve is positively dying waiting to send us her qubits. Let’s go on
and add what we need to our simulator, so as to not keep her waiting any longer!

5.2 SWAPPING OUT OUR SIMULATOR
The simulator you worked on in Chapter 4 needs just a couple of tweaks to be able to
use two qubit operations like swap. The changes we will need to make are:

• modify _apply to work with two qubit operations,
• add the swap and other two-qubit instructions, and
• add the rest of the single qubit rotation instructions.

As you saw in Chapter 4, if you have a matrix that acts on a single-qubit register, you
can use QuTiP to apply that to a register with an arbitrary number of qubits by using
the gate_expand_1toN function. This makes sure to tensor in the identity operators
everywhere else but the qubits you’re working with.

In the same way, you can call QuTiP’s gate_expand_2toN function to turn two-qubit
unitary matrices into matrices that you can use to simulate how two-qubit operations
like swap transform the state of a whole register. Let’s go on and add that into our
simulator now:

TIP We’ve made a couple small changes to the code in this Chapter to help make printed outputs
look a little nicer. All of these changes, along with all the samples for this and other chapters,
are on the GitHub repo for this book at https://github.com/crazy4pi314/learn-qc-with-python-
and-qsharp.

Listing 5.3. Using gate_expand_2toN to apply two-qubit unitary matrices to register

states.

 def _apply(self, unitary: qt.Qobj, ids: List[int]):
 if len(ids) == 1:
 matrix = qt.circuit.gate_expand_1toN(unitary,
 self.capacity, ids[0])
 elif len(ids) == 2: ❶
 matrix = qt.circuit.gate_expand_2toN(unitary, ❷
 self.capacity, *ids)
 else:
 raise ValueError("Only one- or two-qubit unitary matrices supported.")

114

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 self.register_state = matrix * self.register_state

❶To simulate two-qubit operations, we need two indices for qubits in the register; one for each qubit that
our instruction acts on.

❷The call to gate_expand_2toN looks very similar to our call to gate_expand_1toN, except that we pass
a 4 × 4 matrix instead of a 2 × matrix.

We saw that QuTiP provides the function swap to give us a copy of the unitary matrix
that simulates the swap instruction. This can be used to pretty quickly add
the swap instruction to your simulator using the changes you made
to Simulator._apply; see .

Listing 5.4. Adding a swap instruction to your simulator.

 def swap(self, target: Qubit) -> None:
 self.parent._apply(
 qt.swap(), ❶
 [self.qubit_id, target.qubit_id] ❷
)

❶To get the 4 × 4 unitary matrix we need to pass to _apply, we just use the qt.swap function we’ve seen
a few times so far in this Chapter.

❷Next, we just need to make sure we pass the indices for both qubits that we want to swap between.
This will make it so that gate_expand_2toN correctly applies the unitary matrix for our new swap
instruction to the state of an entire register.

While we’re working with the simulator anyway, let’s add one more instruction to let
us print out the simulator’s state more easily without having to access its internals, see.

Listing 5.5. Adding a dump instruction to the simulator allows you to more conveniently

print the state of the register.

 def dump(self) -> None:
 print(self.register_state)

This way, you can ask the simulator to help you out in debugging out quantum
programs, but in a way that can be safely stripped out for devices that don’t support
that (e.g.: actual quantum hardware).

TIP Remember that a qubit is not a state, a state is just a convenient way of representing how the
quantum system will behave.

With both these changes in place, you’re now all set to use the swap instruction. Let’s
use it to repeat our experiment before, where we swapped two qubits starting off in
the state to transform them into the state, see .

115

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 5.6. Test out your simulator’s new swap instruction on the |0+⟩ state.

>>> from simulator import Simulator
>>> sim = Simulator(capacity=2)
>>> with sim.using_register(n_qubits=2) as (you, eve): ❶
... eve.h()
... sim.dump()
... you.swap(eve)
... sim.dump()
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket ❷
Qobj data =
[[0.70710678]
 [0.70710678]
 [0.]
 [0.]]
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket ❸
Qobj data =
[[0.70710678]
 [0.]
 [0.70710678]
 [0.]]

❶Since we’ll be working a lot with multiple-qubit registers in this Chapter, we’ve added a new
convenience method that lets us allocate several qubits at once. See the code samples for this book
for details.

❷The first dump comes from our first call to sim.dump, and confirms that eve.h() prepared your qubits in

the state.
❸After calling you.swap(eve), the next dump confirms for us that we ended up with the information Eve

had prepared on her qubit, so that your qubit ends up in the |+⟩ state, with Eve’s qubit ending the way
yours started: in the |0⟩ state.

Great, you now have a way to share quantum data with Eve! Well, at least as long as
you’re sharing a single quantum device, so that you can apply the swap instruction to
both your qubits at the same time.

What happens if we want to share quantum information between devices? Thankfully,
quantum computing gives us a way for you to send each other your qubits by only
communicating classical data, so long as you both start with some entanglement
between your qubits. Like much in quantum computing, this technique is given a
whimsical name, in this case, "quantum teleportation." Don’t let the name fool you,
however. When you get right down to it, teleportation uses what we learned in Chapter
4 to let you share quantum data in a useful way. shows a list of the steps in a
teleportation program.

116

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 5.3. The steps to the teleportation program.

What’s really neat about teleportation is that, while you and Eve still need to do some
two-qubit operations between your respective qubits, Eve can decide what data she
wants to send you after you’ve done those operations. This means you could prepare
the entangled qubits before you needed to exchange quantum data, and just use them as
needed.

Using the simulator that you’ve developed throughout the past several chapters, you
might write up teleportation with a quantum program like that shown in .

Listing 5.7. A teleportation program in Python.

def teleport(msg : Qubit, here : Qubit, there : Qubit) -> None:
 here.h()
 here.cnot(there)

 msg.cnot(here)
 msg.h()

 if msg.measure(): there.z()
 if here.measure(): there.x()

 msg.reset()
 here.reset()

You may notice a few new instructions in this program, though. In the rest of this
Chapter, you’ll see the other pieces you need to get up and running with quantum
teleportation using your simulator.

5.3 WHAT OTHER TWO-QUBIT GATES ARE THERE?
As you may guess, swap is not the only two-qubit operation. Indeed, as you can see

117

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

from , in order to get teleportation working, we need to add another two-qubit
instruction to your simulator, called cnot. The cnot instruction does something similar
to swap, except that it switches the |10⟩ and the |11⟩ computational basis states instead
of the |01⟩ and |10⟩ states. Another way to think of this is that cnot flips the second
qubit controlled on the state of the first qubit being |1⟩. Indeed, this is where the
name cnot comes from: it’s shorthand for "controlled-NOT."

TIP We often call the first qubit passed to a cnot instruction the control qubit, and the second qubit
the target qubit. As we will see in Chapter 7, though, there is a bit of subtlety to these names.

Let’s jump right in and see how the cnot instruction works by applying it to that
lovely example, the state.

>>> import qutip as qt
>>> ket_0 = qt.basis(2, 0)
>>> ket_plus = qt.hadamard_transform() * ket_0
>>> initial_state = qt.tensor(ket_plus, ket_0)
>>> qt.cnot() * initial_state ❶
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket ❷
Qobj data =
[[0.70710678]
 [0.]
 [0.]
 [0.70710678]]
>>> qt.cnot()
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
❸
Qobj data =
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 0. 1.]
 [0. 0. 1. 0.]]

❶QuTiP provides the unitary matrix for the cnot instruction as the qt.cnot function.

❷Applying the cnot instruction to two qubits that start off in the , we see that cnot
transformed the |10⟩ part of our input state to |11⟩ and did nothing to the first qubit in the |1⟩ state,

leaving our qubits in the state .
❸Looking at the matrix for cnot, we can see that it maps the |10⟩ computational basis state to |11⟩ and

vice versa, just as we expected from the description.

IMPORTANT The cnot instruction is not the same as if statements in classical programming languages, in
that a cnot instruction preserves superposition. If we wanted to use an if statement, we’d have
to measure the control qubit, such that it would collapse any superposition on the control qubit.
We’ll actually use both cnot instructions and if statements conditioned on measurement results
when we write out our teleportation program at the end of this Chapter --- both can be useful!

In Chapters 8 and 9, we’ll see more about how controlled operations differ from if statements.

In , we can see how the cnot instruction acts on two-qubit states in general. For now,
though, we recognize the output state that we got in by acting cnot on two qubits in

118

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

the state as the _entangled_ state we needed to play the CHSH game in Chapter 4,
(|00⟩|11⟩)/√2.

Figure 5.4. The two qubit operation cnot exchanges the states of two qubits in a register.

This means we have everything we need to write a quantum program that entangles
two qubits that start off in the |00⟩ state. All we need to do is add the cnot instruction
to our simulator, the same way as we added swap above.

 def cnot(self, target: Qubit) -> None:
 self.parent._apply(
 qt.cnot(),
 [self.qubit_id, target.qubit_id]
)

Now we can write a program to prepare two qubits in an entangled pair.

>>> from simulator import Simulator
>>> sim = Simulator(capacity=2)
>>> with sim.using_register(2) as (you, eve):
... eve.h()
... eve.cnot(you)
... sim.dump()
...
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =

119

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

[[0.70710678]
 [0.]
 [0.]
 [0.70710678]]

At this point, it’s helpful to pause a moment (sorry, Eve!) and reflect on what you just
did. In Chapter 4, when you simulated playing the CHSH game with Eve, you had to
"cheat" by assuming that you and Eve could have access to two qubits that magically
start off in the entangled state . Now, though, we see exactly how you
and Eve can prepare that entanglement by running another quantum program before
playing CHSH. The h instruction prepares the superposition that you need, while the
new cnot instruction allows you to prepare entanglement with Eve. This entanglement
"shares" that superposition across your two qubits. (Sharing is caring, after all.)

Just like preparing entanglement between you and Eve was how you needed to get
ready for the CHSH game in Chapter 4, it will be the first step you need for Eve to
teleport her quantum data to you. This makes cnot a very important instruction for us
going forward.

Getting back to Eve, though, the next step that you’ll need in order for her to teleport
her data to you is that you’ll need to do one of four different single-qubit operations
to decode the quantum data that she sends you (recall), so let’s look at those next.

5.4 ALL THE SINGLE (QUBIT) ROTATIONS
The last thing you will need to program quantum teleportation is to apply a correction
based on some classical data that Eve sends you. To do so, you’ll need couple of new
single-qubit instructions. For that, it’s helpful to revisit the pictures we’ve been using
to depict quantum instructions as rotations, because we may have been cheating a little.
We have depicted our qubits so far as any position on a circle, but in reality we are
missing a dimension for our model of a qubit. The state of a single qubit is represented
any point on the surface of a sphere.

SINGLE
QUBITS

ONLY!

This (and the previous) way of visualizing the state of a qubit only works if that qubit is not
entangled with any other qubits. Another way of saying this is we cannot easily visualize a
multi-qubit state. Even trying to visualize the state of a two-qubit register with entanglement
would take drawing pictures in 7 dimensions. While "7D" might be nice for advertising your ride
at Niagara Falls, it is much harder draw useful pictures that way.

The circle you are familiar with was really just a slice through the sphere, and all the
rotations we were doing resulted in states still on that circle. See to see how our
previous model for the qubit compares to the Bloch sphere.

120

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 5.5. Comparison of our previous model for a qubit and the Bloch sphere, a better general
model for a single qubit.

You might have inferred from the fact that we had shown the 𝑍𝑍-axis and the 𝑋𝑋-axis that
the 𝑌𝑌-axis was probably hiding somewhere!

You may recall that when we first introduced the vector representation of a qubit state
in Chapter 2, that the amplitudes in each vector were complex numbers. In the rest of
this Chapter, we’ll see that when you use rotation instructions to transform the state of
a single qubit, we’ll get complex numbers in general. Complex numbers are an
incredibly useful tool for keeping track of rotations, and thus play a large role in
quantum computing. Primarily, they help us understand the angles and phases between
different quantum states. Don’t worry if you’re a little rusty with complex numbers, as
you’ll get plenty of chance practice with them throughout the rest of the book.

5.5 RELATING ROTATIONS TO COORDINATES: THE PAULI
OPERATIONS
Let’s do a quick review of a couple of the single qubit operations we have seen so
far, x and ry.

121

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 5.6. Illustrations of what x and ry do to a qubit, both operations you have seen in
previous chapters.

Now that we know the state of our qubit actually can be rotated on the surface of a
sphere, what other rotations can help us rotate the state out of the plane? We can add a
rotation about the line between the and states. This line is conventionally called
the 𝑋𝑋-axis to distinguish it from the Z-axis that connects the and states.
The rx function in QuTiP gives us a Qobj encapsulating the rotation matrix for a 𝑋𝑋-
axis rotation:

Listing 5.8. Using the QuTiP built-in function qt.sigmaz.

>>> qt.rx(np.pi).tidyup() ❶
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = False
Qobj data =
[[0.+0.j 0.-1.j] ❷
 [0.-1.j 0.+0.j]]

❶Due to how floating-point numbers work in classical computers, sometimes simulations of rotations can
result in very small numbers like 10-17 where we would expect 0. QuTiP Qobj instances have a method
tidyup to help make matrices more readable when this happens.

❷Up to a coefficient of -i (written in Python as -1j), rotating by 180° about the 𝑋𝑋-axis results in the x
(NOT) instruction that we first saw in Chapter 2.

This snippet illustrates something very important: the X operation is precisely what we
get by rotating around the 𝑋𝑋 axis by an angle of 180° (\pi).

GLOBAL
PHASE

As noted in the callouts for the above snippet, you can check that qt.rx(np.pi) is actually off by a
factor of -i from qt.sigmax(). That factor is an example of something called a global phase. As
we will see shortly, global phases cannot affect the results of measurement. Thus, qt.rx(np.pi)
and qt.sigmax() are different unitary matrices that represent the same operation. We’ll get
more practice with global and local phases in Chapters 7 and 8.

By analogy, we call rotating by 180° about the Z-axis a Z operation. In chapter 3,

122

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

QuTiP provided you with the qt.sigmax function which allow you to simulate
the x instruction. Similarly, qt.sigmaz provides us with the unitary matrices we need
to simulate the z instructions. See for an example of using qt.sigmaz.

Listing 5.9. Using the QuTiP built-in functions qt.rz and qt.sigmaz.

>>> 1j * qt.rz(np.pi).tidyup() ❶
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]
 [0. -1.]]
>>> qt.sigmaz() ❷
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[1. 0.]
 [0. -1.]]

❶Note that we’ve just included the coefficient (that is, the global phase) of -i by multiplying by i right
away; this works since -i x i = -(-1) = 1. Cancelling out the global phase in this way will make it easier
to read the output below.

❷As promised, up to the coefficient of -i, the z instruction applies a 180° rotation about the 𝑍𝑍-axis.

In the same way that the X operation flips between and while leaving and
alone, the `Z` operation flips between and while leaving and alone.

shows a truth table like the ones we have made before for the Hadamard operation in
Chapter 2. By looking at the truth table, you can confirm that, for any input state if you
do a 𝑍𝑍 operation twice on it you will be back to where you started. Another way to say
that is, 𝑍𝑍 squares to the identity operation 𝟙𝟙, in the same way that 𝑋𝑋² = 𝟙𝟙.

Table 5.1. Table Representing the z instruction as a table.

Input state Output state

|0⟩ |0⟩

|1⟩ −|1⟩

|+⟩ |−⟩

|−⟩ |+⟩

123

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

NOTE We listed four rows in , but we only need two rows to completely specify how 𝑍𝑍 acts for any
input. The other two rows serve to emphasize that we can choose between defining 𝑍𝑍 by its
action on and or by its action on and .

Exercise 5.2: Practice using rz and z
Suppose you prepare a qubit in the |−⟩ state and apply a z rotation. If you measure along the 𝑋𝑋 axis,

what would you get? What would you measure if you apply two z rotations? If you had to implement
those same two rotations with rz, what angles would you use?

We can define one more rotation in the same way, namely the rotation about an axis
coming "out of the page." This axis connects the
states and , and is conventionally
called the Y-axis. A 180° rotation about the Y-axis both flips bit labels (↔) and
phases (↔), but leaves alone the two states along the Y-axis.

Exercise 5.3: Truth table for sigmay.
Use the qt.sigmay() function to make a table similar to , but for the y instruction.

PAULI
MATRICES

Together, the three matrices 𝑋𝑋, 𝑌𝑌, and 𝑍𝑍 representing the x, y, and z operations are called the
Pauli matrices in honor of physicist Wolfgang Pauli. The identity matrix 𝟙𝟙 is sometimes included
as well, representing the "do nothing" or identity operation.

Playing rock–paper–scissors with the Pauli matrices
The Pauli matrices have a number of useful properties that we’ll make use of throughout the rest of the
book. Many of these properties make it easy to work out different equations involving the Pauli
operators.

For example, if you multiply 𝑋𝑋 and 𝑌𝑌 together, you get iZ, but if you multiply YX instead, you get -
iZ back:
>>> qt.sigmax() * qt.sigmay()
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = False
Qobj data =
[[0.+1.j 0.+0.j]
 [0.+0.j 0.-1.j]]
>>> qt.sigmay() * qt.sigmax()
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = False
Qobj data =
[[0.-1.j 0.+0.j]
 [0.+0.j 0.+1.j]]

Similarly, YZ = iX and ZX = iY, but ZY = -iX and XZ = -iY. One way to remember this is as thinking of 𝑋𝑋,
𝑌𝑌, and 𝑍𝑍 as playing a little game of rock–paper–scissors: 𝑋𝑋 "beats" 𝑌𝑌, 𝑌𝑌 "beats" 𝑍𝑍, and 𝑍𝑍 "beats" 𝑋𝑋 in
turn.

We can think of these matrices as establishing a kind of coordinate system for qubit
states, called the Bloch sphere. As shown in , the 𝑋𝑋- and 𝑍𝑍-axes form the circle that
you’ve seen in the book thus far, while the 𝑌𝑌-axis comes out of the page.

124

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

DESCRIBING
STATES WITH

PAULI
MEASUREMENTS

Any single-qubit state can be entirely specified up to a global phase by the measurement
probabilities for 𝑋𝑋, 𝑌𝑌, and 𝑍𝑍 measurements. That is, if I tell you the probability of getting a
"1" outcome for each of the three Pauli measurements that I could perform, then you can
use that information to write down a state vector that is identical to mine, up to global
phase. This makes the analogy to points in three dimensions a very good analogy for
thinking about single-qubit states.

Figure 5.7. The Bloch sphere, in all its spherical glory.

THE IS
HAVE IT

The states at the ends of the 𝑌𝑌-axis are usually labeled |𝑖𝑖⟩ and |−𝑖𝑖⟩, but are not often used on
their own. We will just stick to the labeled states we were using before: |0⟩, |1⟩, |+⟩, and |−⟩.

With this picture in mind, it’s easier to see why some rotations don’t affect the results
of measurements. For instance, as we illustrate in , the Bloch sphere picture helps us
understand what happens if we rotate |0⟩ about the 𝑍𝑍 axis.

125

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 5.8. The Bloch sphere illustrating how an rz rotation leaves the |0⟩ state unchanged.

In the same way that the North Pole on a globe stays in the same spot no matter how
much we spin the globe, if we rotate a state about an axis parallel to that state, there is
no observable effect on our qubit. We can also see this effect come out of the math as
well, see .

Listing 5.10. An example showing how the |0⟩ state is unaffected by rz rotations.

>>> ket0 = qt.basis(2, 0) ❶
>>> ket_psi = qt.rz(np.pi / 3) * ket0 ❷
>>> ket_psi ❸
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[0.8660254-0.5j] ❹
 [0.0000000+0.j]]
>>> bra0 = ket0.dag() ❺
>>> bra0
Quantum object: dims = [[1], [2]], shape = (1, 2), type = bra
Qobj data = ❻
[[1. 0.]]
>>> np.abs((bra0 * ket_psi)[0, 0]) ** 2 ❼
1.0

❶We start by defining a variable to represent the state |0⟩.
❷Next, we introduce a new state |ψ⟩ that’s a 60° (π / 3 in radians) rotation of |0⟩ about the 𝑍𝑍 axis.
❸The resulting state is |ψ⟩ = [cos(60° / 2) − 𝑖𝑖 sin(60° / 2)] |0⟩ = [√3 / 2 − 𝑖𝑖 / 2] |0⟩.
❹To check that this rotation doesn’t do anything to our measurement results, we can check what we get

from Born’s rule. Let’s start by writing down a measurement ⟨0| = |0⟩⁺. Recall that in QuTiP, we write

out the "dagger" operator ⁺ by calling the .dag method of Qobj instances.

126

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❺Since |0⟩ is represented by a column vector, taking the conjugate transpose to get ⟨0| gives us a row
vector.

❻Taking the inner product ⟨0 | ψ⟩, we can compute Born’s rule Pr(0 | ψ) = |⟨0 | ψ⟩|². Note that we need to
index by [0, 0], since QuTiP represents the inner product of |0⟩ with |ψ⟩ as a 1 × 1 matrix.

❼As before, we note that the probability of observing a "0" when measuring along the 𝑍𝑍 axis hasn’t
changed.

TIP When writing down states, |ψ⟩ is often used as just an arbitrary name, similar to how 𝑥𝑥 is often
used to represent an arbitrary variable in algebra.

Exercise 5.4: verify that applying rz doesn’t change |0⟩.
We’ve only checked that one measurement probability is still the same, but maybe the probabilities

have changed for 𝑋𝑋 or 𝑌𝑌 measurements. To fully check that the global phase doesn’t change anything,
prepare the same state and rotation as in and check that the probabilities of measuring the state along
the 𝑋𝑋 or 𝑌𝑌 axis aren’t changed by applying an rz instruction.

In general, you can always multiply a state by a complex number whose absolute value
is 1 without changing the probabilities of any measurement. Any complex number 𝑧𝑧 =
𝑎𝑎 + 𝑏𝑏𝑖𝑖 can be written as for real numbers 𝑟𝑟 and θ, where 𝑟𝑟 is the absolute value
of 𝑧𝑧 and where θ is an angle. When 𝑟𝑟 = 1, we have a number of the form , which we
call a phase. We then say that multiplying the state by a phase applies a global
phase to that state.

IMPORTANT No global phase can ever be detected by any measurement.

The states |ψ⟩ and are in every conceivable way two different ways of describing
the exact same state. There is no measurement that one can do even in principle to
learn about global phases. On the other hand, we’ve seen that we can tell apart states
like and that differ only in the local phase of the
|1⟩ computational basis state.

Taking a step back, let’s summarize what you’ve learned about the x, y,
and z instructions so far, and about the Pauli matrices we use to simulate those
instructions. We’ve seen that the x instruction flips us between and , while
the z instruction flips us between the and states. Put differently, the x instruction
flips bits, while the z instruction flips phases.

Looking at the the Bloch sphere, you can see that rotating about the 𝑌𝑌-axis should do
both of these. You can also see this by using that Y = -iXZ, as is straightforward to
check with QuTiP. We summarize what each Pauli instruction does in .

127

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Table 5.2. Table Pauli matrices as bit and phase flips.

Instruction Pauli
matrix Flips bits (|0⟩ ↔ |1⟩)? Flips phases (|+⟩ ↔ |−⟩)?

(no instruction) 𝟙𝟙 No No

x 𝑋𝑋 Yes No

y 𝑌𝑌 Yes Yes

z 𝑍𝑍 No Yes

Exercise 5.5: Hmm, that rings a Bell…
The state that we’ve seen a few times now isn’t the only example of an entangled

state. In fact, if you pick a two-qubit state at random, it is almost certainly going to be entangled. Just as
the computational basis is a particularly useful set of unentangled states, there’s a set of
four particular entangled states known as the Bell basis after physicist John Stewart Bell.

Table 5.3. The four Bell states

Name Expansion in computational basis

|β₀₀⟩ (|00⟩ + |11⟩) / √2

|β₀₁⟩ (|00⟩ − |11⟩) / √2

|β₁₀⟩ (|01⟩ + |10⟩) / √2

|β₁₁⟩ (|01⟩ − |10⟩) / √2

Using what you’ve learned about the cnot instruction and the Pauli instructions (x, y, and z), write
programs to prepare each of the four Bell states in the table above.

HINT: Table 5.2 should be very helpful in this exercise.

We finish our discussion of single-qubit operations by adding instructions to
our Qubit interface and simulator for the X, Y and Z operations.

Listing 5.11. simulator.py

 def rx(self, theta: float) -> None:
 self.parent._apply(qt.rx(theta), [self.qubit_id]) ❶

 def ry(self, theta: float) -> None:
 self.parent._apply(qt.ry(theta), [self.qubit_id])

 def rz(self, theta: float) -> None:
 self.parent._apply(qt.rz(theta), [self.qubit_id])

 def x(self) -> None:
 self.parent._apply(qt.sigmax(), [self.qubit_id]) ❷

 def y(self) -> None:
 self.parent._apply(qt.sigmay(), [self.qubit_id])

128

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 def z(self) -> None:
 self.parent._apply(qt.sigmaz(), [self.qubit_id])

❶We can implement the rotation instructions rx, ry, and rz using the corresponding QuTiP functions qt.rx,
qt.ry, and qt.rz to get copies of the unitary matrices we need to simulate each instruction.

❷QuTiP uses the notation \sigma_x instead of 𝑋𝑋 for the Pauli matrices. Using this notation, the function

sigmax() returns a new Qobj representing the Pauli matrix 𝑋𝑋. This way, we can implement the x, y,
and z instructions corresponding to each Pauli matrix.

No one can be told what the matrix is. You have to see it for yourself.
We’ve talked a lot about matrices thus far in Part I. A lot. It’s tempting to say that quantum

programming is all about matrices, and that qubits are really just vectors. In reality, though, matrices are
how we simulate what a quantum device does. We’ll see more in Part II, but quantum programs don’t
manipulate matrices and vectors at all — they manipulate classical data such as what instructions to
send to a quantum device, and what to do with the data we get back from devices. For instance, if we
have an instruction that we run on a device, there’s no simple way to see what matrix we should use to
simulate that instruction — rather, you have to reconstruct that matrix from many repeated
measurements using a technique called process tomography.

When you write down a matrix, whether in code or on a piece of paper, you’re implicitly simulating a
quantum system. If that really bakes your noodle, don’t worry, this will make a lot more sense as you go
through the rest of the book.

5.6 TELEPORTATION
OK, now we have everything we need to write out what teleportation looks like as a
quantum program. As a quick review, is what we want this program to do.

Figure 5.9. Recall the steps to the teleportation program.

We will assume you can prepare some entangled qubits while they are in the same

129

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

device, and that you and Eve have a means of classical communication that you can
use to signal the correct correction to use.

We can now use the features we added to our simulator in this chapter to implement
the teleportation program, see .

Listing 5.12. Quantum teleportation, all in just a few lines of Python.

from interface import QuantumDevice, Qubit
from simulator import Simulator

def teleport(msg: Qubit, here: Qubit, there: Qubit) -> None: ❶
 here.h() ❷
 here.cnot(there) ❸

 # ... ❹
 msg.cnot(here) ❺
 msg.h()

 if msg.measure(): there.z() ❻
 if here.measure(): there.x()

 msg.reset() ❼
 here.reset()

❶Your teleport function will take two qubits as input: the qubit that you want to move (msg), and where
you want it to be moved to (there). You’ll also need one temporary qubit, which we call here. We’ll

presume by convention that both here and there start in the state.
❷We need to start off with some entanglement between here and there. We can use our old friend, the h

instruction, together with our new friend, the cnot instruction.
❸This is the only instruction that we’ll use in this program that needs to act on both here and there; after

running this, you can send Eve your qubit, and both of you can run the rest of the program with only
classical communication.

❹At this point in the program, here and there are in the state that we first saw in Chapter
4.

❺The next step is to run the program we used to prepare the state backwards, but on the
msg and here qubits that live entirely on your device instead. We can think of running a preparation
backwards as a kind of measurement, such that these steps set us up to measure the quantum
message you’re trying to send Eve in an entangled basis.

❻When we actually do that measurement, we get classical data back out that we can use to send Eve.
Once she has that data, she can use the x and z instructions to decode the quantum message.

❼Now that you’re done with your qubits, it’s good to put each of them back into so that they’re ready
to be used again. This doesn’t affect the state of there, though, as you’ve only reset your qubits, not
the one you gave to Eve!

130

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

C WHAT WE
DID THERE?

If we didn’t need to send Eve our classical measurement results as a part of teleportation, then
we could use teleportation to send both classical and quantum data faster than the speed of
light. Just like you couldn’t communicate with Eve when you played the CHSH game in the
previous chapter, the speed of light means that you need to communicate with Eve classically
in order to use entanglement to send quantum data. In both cases, entanglement can help us
communicate, but it doesn’t let you communicate all on its own: you always need some other
kind of communication as well.

To see that this actually works, You can prepare something on your qubit, send it to
Eve, and then she can undo your preparation on her qubit. Thus far, the messages you
and Eve have been sending have been classical, but here the message is quantum. You
can and will measure the quantum message to get a classical bit out, but you can also
use the quantum message you get from Eve like any other quantum data, for example,
you can apply whatever rotations and other instructions you like.

What is this good for?
Sending quantum data may not seem that much more useful than sending classical data; after all,
sending classical data has gotten us a lot of neat things thus far. By contrast, applications for sending
quantum data tend to be a bit more niche at the moment.

That said, that we can move quantum data around is a really useful example to help us understand
how quantum computers work. The ideas that you developed in this Chapter aren’t often
that directly useful, but will help you build up really great stuff going forward.

Let’s say you prepare a quantum message to you by using the
operation msg.ry(0.123), see for how you can teleport this message to Eve.

Listing 5.13. A sample program that uses teleportation to move quantum data around,

sending the message 0.123 to Eve.

if __name__ == "__main__":
 sim = Simulator(capacity=3)
 with sim.using_register(3) as (msg, here, there): ❶

 msg.ry(0.123) ❷
 teleport(msg, here, there) ❸

 there.ry(-0.123) ❹
 sim.dump()

❶As before, you’ll allocate a register of qubits, and give each qubit a name.
❷Next, you prepare a message to send to Even. Here, we’ve shown using a particular angle as the

message, but it really could be anything.
❸You can then call the teleportation program that you wrote earlier to move the message you prepared

onto Eve’s qubit.
❹If Eve then undoes your rotation by rotating by the opposite angle, you can check that the output of the

dump instruction that we added above tells us that the register we allocated is back in the |000⟩ state.
This shows that your teleportation worked!

When you run this program, you’ll get output similar to that in .

131

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

To verify that the teleportation worked, if Eve undoes the instruction that you did on
her qubit (there.ry(0.123)), she should get back the state that you started with.
With teleportation, you and Eve were able to send the quantum information, using
entanglement and classical communication.

Quantum object: dims = [[2, 2, 2], [1, 1, 1]], shape = (8, 1), type = ket
Qobj data =
[[1.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]]

Exercise 5.6: What if it just didn’t do anything?
Try changing your operation or Eve’s operation to convince yourself that you only get a |000⟩ state at the
end if you undo the same operation that Eve applied to her qubit.

Now you can brag to all your friends (and make whatever sci-fi references you want)
that you can do teleportation. Hopefully you see why this is not the same as getting
beamed down to a planet from orbit, and that when you teleport a message it does not
communicate faster than the speed of light.

In this chapter you learned:

• Implement a quantum program to move data around a quantum computer using
classical and quantum control

• Recognize a new way of visualizing single qubit operations called the Bloch
sphere

• Predict the output of two-qubit operations, and Pauli operations

5.7 PART I: CONCLUSION
You have made it to the end of Part I, but sadly our qubits are in another castle �����.
Getting through this Part is no mean feat, as we were refreshing a number of topics
such as linear algebra and complex numbers, all while introducing a whole host of new
quantum concepts. Certainly there will probably still be some questions or parts you
are a bit shakey on, and that’s ok. We will be using and practicing these skills to start
developing more complicated quantum programs for cool applications like chemistry
and cryptography.

Before we move onto that, though, give yourself a pat on the back, you’ve done a lot so
far! Let’s summarize some of what you’ve already accomplished:

• Refreshed your linear algebra and complex number skills
• Learned about what a qubit is as well as what you can do with one
• Built up a multiple-qubit simulator in Python

132

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

• Wrote a number of quantum programs for tasks like quantum key distribution
(QKD), playing nonlocal games, and even quantum teleportation

• Learned braket notation for the states of quantum systems

Your Python simulator will continue to be a useful tool when trying to understand what
is happening when we get to some of the larger applications. For Part II, we will switch
to primarily using Q# as our tool of choice to write our quantum programs. There are a
number of reasons we will talk about in the next chapter for why we will choose to
write these more advanced quantum programs in Q# over Python, but the main reasons
are speed and extensibility. Plus, you can even use Q# from Python or with a Q# kernel
for Jupyter, so you can use whatever development environment you like best!

See you in Part II!

133

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

6
This chapter covers:

• Using the Quantum Development Kit to write quantum programs in Q#,

• How to use Jupyter Notebook to work with Q#,

• How to run Q# programs using a classical simulator.

Up to this point, we’ve used Python to implement our own software stack to simulate
quantum programs. Moving forward, though, we’ll be writing more intricate quantum
programs that will benefit from specialized language features that are hard to
implement by embedding our software stack inside Python. Especially as we explore
quantum algorithms, it’s helpful to have a language tailor-made for quantum
programming at our disposal. In this chapter, we’ll get started with Q#, Microsoft’s
domain-specific language for quantum programming, included with the Quantum
Development Kit.

Figure 6.1. In this Chapter, we will be covering topics in both the Q# language and intrinsic
operations for quantum devices.

Changing the odds: An introduction
to Q#

134

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

6.1 INTRODUCING THE QUANTUM DEVELOPMENT KIT
The Quantum Development Kit provides a new language, Q#, for writing quantum
programs and simulating them using classical resources. Quantum programs written in
Q# are run by thinking of quantum devices as a kind of accelerator, similar to how you
might run code on a graphics card.

TIP If you’ve ever used a graphics card programming framework like CUDA or OpenCL, this is a very
similar model.

Figure 6.2. Q# software stack on a classical computer.

135

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Let’s take a look at this software stack for Q#.

Our Q# program itself consists of operations and functions that instruct quantum and
classical hardware to do certain things. There are also a number of libraries that are
provided with Q# that have helpful, pre-made operations and functions to use in our
programs.

Once the Q# program is written, we need a way for it to pass instructions to the
hardware. A classical program, sometimes called a "driver" or a "host program," is
responsible for allocating a target machine and running a Q# operation on that
machine.

The Quantum Development Kit provides a plugin for Jupyter Notebook called IQ# that
makes it easy to get started with Q# by providing host programs automatically for us.
In Chapter 8, we’ll see how to write host programs using Python and C#, but for now
we’ll focus on Q# itself. See Appendix A for instructions on setting up your Q#
environment to work with Jupyter Notebook.

Using the IQ# plugin for Jupyter Notebook, we can use one of two different target
machines to run Q# code. The first is the QuantumSimulator target machine, which is
very similar to the Python simulator that we have been developing. It will be a lot
faster than our Python code at simulating our qubits.

The second is the ResourcesEstimator target machine which will allow us to
estimate how many qubits and quantum instructions we would need to run it, without
having to fully simulate it. This is especially useful for getting an idea of the resources
you would need to run a Q# program for your application, as we’ll see when we look at
larger Q# programs later on in the book.

Figure 6.3. Getting started with IQ# and Jupyter Notebook

To get a sense for how everything works, let’s start by writing out a purely classical Q#
"hello, world" application. First, start Jupyter Notebook by running the following in a

136

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

terminal:

jupyter notebook

This will automatically open a new tab in your browser with the home page for your
Jupyter Notebook session. From the New ↓ menu, select "Q#" to make a new Q#
notebook. Type the following into the first empty cell in the notebook and press
Control + Enter or ⌘ + Enter to run it.

function HelloWorld() : Unit { ❶
 Message("Hello, classical world!"); ❷
}

❶This line defines a new function which takes no arguments, and returns the empty tuple, whose type is
written as Unit.

❷The Message function tells the target machine to collect a diagnostic message. The QuantumSimulator
target machine prints all diagnostics to the screen, so we can use Message in the same way as print
in Python.

WATCH OUT
FOR

SEMICOLONS!

Unlike Python, Q# uses semicolons rather than newlines to end statements. If you get a lot of
compiler errors, make sure you remembered your semicolons.

You should get a response back listing that the HelloWorld function was successfully
compiled. To run our new function, we can use the %simulate command in a new cell.

%simulate HelloWorld

A BIT OF
CLASSICAL

MAGIC

The %simulate command we used above is an example of a magic command, in that it’s not
actually a part of Q# itself, but is an instruction to the Jupyter Notebook environment. If you’re
familiar with the IPython plugin for Jupyter, you may have used similar magic commands to tell
Jupyter how to handle Python plotting functionality. The magic commands we use in this book
all start with % to make them easy to tell apart from Q# code.

In this example, %simulate allocates a target machine for us and sends a Q# function or
operation to that new target machine. In Chapter 8, we’ll see how to accomplish something
similar using Python and C# host programs, instead of using Jupyter Notebook.

The Q# program is sent to the simulator, but in this case, the simulator just runs the
classical logic, since there’s no quantum instructions to worry about yet.

Exercise 6.1
Change the definition of HelloWorld to say your name instead of "classical world," and then
run %simulate again using your new definition.

6.2 FUNCTIONS AND OPERATIONS IN Q#
Now that we have the Quantum Development Kit up and running with Jupyter
Notebook, let’s use Q# to write some quantum programs. Back in Chapter 2, we saw

137

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

that one useful thing to do with a qubit is to generate random numbers one classical bit
at a time. Revisiting that application makes a great place to start with Q#, especially
since random numbers are useful if you want to play games.

Long ago in Camelot, Morgana le Fay shared our love for playing games. Being a
clever mathematician with skills well beyond her own day, Morgana was even known
to use qubits from time to time as a part of her games. One day, as Sir Lancelot lay
sleeping under a tree, Morgana trapped him and challenged him to a little game: each
of them must try to guess the outcome of measuring one of Morgana’s qubits.

Two sides of the same… qubit?
In Chapter 2, we saw how we can generate random numbers one bit at a time by preparing and
measuring qubits. That is, qubits can be used to implement coins. We’ll use the same kind of idea in this
Chapter as well, thinking of a coin as a kind of interface that allows its user to "flip" it and get out a
random bit. That is, we can implement the coin interface by preparing and measuring qubits.

If the result of measuring along the 𝑍𝑍 axis is a 0, then Lancelot wins their game and
gets to return to Genevieve. If the result is a 1, though, Morgana wins and Lancelot has
to stay and play again. Notice the similarity to our QRNG program from before. Just as
in chapter 2, we’ll measure a qubit to generate random numbers, this time for the
purpose of playing a game. Of course, Morgana and Lancelot could have also flipped a
more traditional coin, but where is the fun in that?

6.2.1 MORGANA’S SIDE GAME

Prepare a qubit in the |0⟩ state

Apply the Hadamard operation (recall that the unitary operator H takes |0⟩ to |+⟩ and
vice versa)

Measure the qubit in the 𝑍𝑍 axis. If the measurement result is a 0, then Lancelot can go
home. Otherwise, he has to stay and play again!

Sitting at a coffee shop watching the world go by, we can use our laptops to predict
will happen in Morgana’s game with Lancelot by writing a quantum program in Q#.
Unlike the ClassicalHello function that we wrote above, our new program will need
to work with qubits, so let’s take a moment to see how to do so with the Quantum
Development Kit.

The primary way that we interact with qubits in Q# is by calling operations that
represent quantum instructions. For instance, the H operation in Q# represents the
Hadamard instruction we saw in Chapter 2. To understand how these operations work,
it’s helpful to understand the difference between Q# operations and the functions that
we saw in the ClassicalHello example above.

Functions in Q# represent predictable classical logic, things like mathematical
functions (Sin, Log). Functions always return the same output when given the same
input.

Operations in Q# represent code that can have side effects, such as sampling random

138

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

numbers, or issuing quantum instructions which modify the state of one or more qubits.

This separation helps the compiler figure out how to automatically transform your code
as a part of larger quantum programs; we’ll see more about this later.

Another perspective on functions versus operations
Another way of thinking of the difference between functions and operations is that functions compute
things, but cannot cause anything to happen. No matter how many times we call the square root
function Sqrt, nothing about our Q# program has changed. By contrast, if we run the X operation, then
an X instruction is sent to our quantum device, which causes a change in the state of the device.
Depending on the initial state of the qubit that the X instruction was applied to, we can then tell that
the X instruction has been applied by measuring the qubit. Because functions don’t do anything in this
sense, we can always predict their output exactly given the same input.

One important consequence is that functions cannot call operations, but operations can call
functions. This is because you can have an operation which is not necessarily predictable call a
predictable function and you still have something that may or may not be predictable. However, a
predictable function cannot call a potentially unpredictable operation and still be predictable.

We’ll see more about the difference between Q# functions and operations as we use them
throughout the rest of the book.

Since we want quantum instructions to have an effect on our quantum devices (and on
Lancelot’s fate), all quantum operations in Q# are defined as operations (hence the
name). For instance, suppose that Morgana and Lancelot prepare their qubit in the |+⟩
state using the Hadamard instruction. Then we can predict the outcome of their game
by writing out the quantum random number generator (QRNG) example from Chapter
2 as a Q# operation.

THERE MAY
BE SIDE

EFFECTS TO
THIS

OPERATION…

When we want to send instructions to our target machine to do something with our qubits, we
need to do so from an operation, since sending an instruction is a kind of side effect. That is,
when we run an operation, we aren’t just computing something, we’re doing something.
Running an operation twice isn’t the same as running it once, even if we get the same output
both times. Side effects aren’t deterministic or predictable, and so we can’t use functions to
send instructions on how to manipulate our qubits.

In , we’ll do just that, starting by writing an operation called NextRandomBit to
simulate each round of Morgana’s game. Note that since NextRandomBit needs to
work with qubits, it has to be an operation and not a function. We can ask the target
machine for one or more fresh qubits with the using block.

139

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

ALLOCATING
QUBITS IN

Q#

The using statement is one of the only two ways we can ask the target machine for qubits.
There’s no limit to the number of using statements that we can have in our Q# programs, other
than the number of qubits that each target machine can allocate. At the end of each using
block, the qubits then go back to the target machine, so that one way to think of using blocks
is to make sure that each qubit that is allocated is "owned" by a particular operation. This
makes it impossible to "leak" qubits within a Q# program, which is very helpful given that
qubits are likely to be very expensive resources on actual quantum hardware.

Q# offers one other way to allocate qubits, known as borrowing. Unlike when we allocate
qubits with using statements, the borrowing statement lets us borrow qubits that are owned by
different operations without knowing what state they start in. We won’t see much of borrowing
in this book, but the borrowing statement works very similarly to the using statement in that it
makes it impossible for us to forget that we’ve borrowed a qubit.

By convention, all qubits start off in the |0⟩ state right after we get them, and we
promise the target machine that we’ll put them back into the |0⟩ state at the end of the
block so that they’re ready for the target machine to give to the next operation that
needs them.

Listing 6.1. Simulating one round of Morgana’s game using Q#

operation NextRandomBit() : Result { ❶
 using (qubit = Qubit()) { ❷
 H(qubit); ❸
 let result = M(qubit); ❹
 Reset(qubit); ❺
 return result; ❻
 }
}

❶This time, because we want to use a qubit, we declare an operation instead of a function. Since our
operation needs to return a result to its caller, we denote by changing the return type to the Q# type
Result.

❷The using keyword in Q# asks the target machine for one or more qubits. Here, we ask for a single
value of type Qubit, which we store in the new variable qubit.

❸Quantum operations such as the Hadamard operation can be found in the Microsoft.Quantum.Intrinsic
namespace. For instance, we can call Hadamard using the Microsoft.Quantum.Intrinsic.H operation.

After calling H, qubit is in the state.
❹Next, we use the M operation to measure our qubit in the Z basis, saving the result to the result variable

we declared earlier. Since we are in an equal superposition of and , result will be either Zero or
One with equal probability.

❺Before returning our qubit to the target machine, we use the Microsoft.Quantum.Intrinsic.Reset

operation to return it to the state. Since we’ve already stored the classical data we got from our
measurement into the result variable, we can safely reset the qubit without losing any information that
we care about.

❻We finish our operation by returning the measurement result back to to the caller.

140

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Exercise 6.2
Use the %simulate magic command to run the NextRandomBit operation a few times; do you get
the results you’d expect?

Next, we need to see how many rounds it takes for Lancelot to get the Zero he needs to
go home. Let’s write an operation to play rounds until we get a Zero. Since this
operation simulates playing Morgana’s game, we’ll call it PlayMorganasGame.

Listing 6.2. Simulating many rounds of Morgana’s game using Q#

operation PlayMorganasGame() : Unit {
 mutable nRounds = 0; ❶
 mutable done = false;
 repeat { ❷
 set nRounds = nRounds + 1;
 set done = (NextRandomBit() == Zero); ❸
 }
 until (done) ❹
 fixup {}

 Message($"It took Lancelot {nRounds} turns to get home."); ❺
}

❶All Q# variables are immutable by default — we can use the mutable keyword to declare a variable that
we can change later with the set keyword. Here, we start by initializing a mutable variable indicating
how many rounds have already passed, and a mutable variable we’ll use to exit the loop.

❷Q# allows operations to use a kind of loop called a "repeat-until-success" (RUS) loop. Unlike a while-
loop, RUS loops also allow us to specify a "fixup" that runs if the condition to exit the loop isn’t met.
Though we’ve included the fixup {} block here to illustrate the concept, you can also omit fixup blocks
when they’re empty.

❸Inside our loop, we call the QRNG that we wrote above as the NextRandomBit operation. We check to
see if the result is a Zero (that is, if Lancelot wins and can leave), and if so, set done to be true.

❹If we got a Zero, then we can stop the loop.
❺Finally, we use Message again to print the number of rounds to the screen. To do so, we use $"" strings

which, similar to $"" strings in C# and f"" strings in Python, let us include variables in the diagnostic
message by using {} placeholders inside the string.

Why Do We Need to Reset Qubits?
In Q#, when we allocate a new qubit with using, we promise the target machine that we will put it back
in the |0⟩ state before we deallocate it. At first glance, this seems rather unnecessary, as the target
machine could just reset the state of qubits when they are deallocated  — after all, we will often simply
call the Reset operation at the end of a using block.

It is important to note, though, that the Reset operation works by making a measurement in
the Z basis and flipping the qubit with an X operation if the measurement returns One. In many quantum
devices, measurement is much more expensive than other operations, such that if we can avoid
calling Reset we can reduce the cost of our quantum programs. Especially given the limitations of
medium-term devices, this kind of optimization can be critical in making a quantum program practically
useful.

141

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Later in the chapter, we will see examples of where we know the state of a qubit when it needs to be
deallocated, such that we can "unprepare" the qubit instead of measuring it.

We can run this new operation with the %simulate command in a very similar fashion
as the ClassicalHello example. When we do so, we can see how long Lancelot has
to stay:

Listing 6.3. Output from running the Qrng application

In []: %simulate PlayMorganasGame
It took Lancelot 1 turns to get home.
Out[]: ()

Looks like Lancelot got lucky that time! Or perhaps unlucky, if he was bored of
hanging 'round the table in Camelot.

6.3 PASSING OPERATIONS AS ARGUMENTS
Suppose in Morgana’s game above, we were interested in sampling random bits with
non-uniform probability. After all, Morgana didn’t promise Lancelot how she prepared
the qubit that they measure; she can keep him playing longer if she makes a biased coin
with their qubit instead of a fair coin.

The easiest way to modify Morgana’s game is to, instead of calling H directly, take as
an input an operation representing what Morgana does to prepare for their game. To
take an operation as input, you need to write down the type of the input, just as you can
write down qubit : Qubit to declare an input qubit of type Qubit. Operation types
are indicated by thick arrows (=>) from their input type to their output type. For
instance, H has type Qubit => Unit since H takes a single qubit as input and returns
an empty tuple as its output.

TIP In Q#, functions are denoted by thin arrows (->), while operations are denoted by thick arrows
(=>).

Listing 6.4. Using operations as inputs in order to predict Morgana’s game.

operation PrepareFairCoin(qubit : Qubit) : Unit {
 H(qubit);
}

operation NextRandomBit(
 statePreparation : (Qubit => Unit) ❶
) : Result {
 using (qubit = Qubit()) {
 statePreparation(qubit); ❷
 return Microsoft.Quantum.Measurement.MResetZ(qubit); ❸
 }
}

142

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❶This time, we’ve added a new input called statePreparation to NextRandomBit that represents the
operation we want to use to prepare the state we use as a coin. In this case, Qubit => Unit is the type
of any operation which takes a single qubit and returns the empty tuple type Unit.

❷Within NextRandomBit, the operation passed as statePreparation can be called in the same way as any
other operation.

❸The Q# standard libraries provide the Microsoft.Quantum.Measurement.MResetZ as a convenience for
measuring and resetting a qubit in one step. This is equivalent to the set result = M(qubit);
Reset(qubit); return result; statements we saw in the previous example, but requires one less
measurement to perform. You’ll see more about this operation later on the chapter, as well as how to
use a shorter name when calling this operation.

Exercise 6.3
What’s the type of your new definition of NextRandomBit?

Tuple-In Tuple-Out
All functions and operations in Q# take a single tuple as an input and return a single tuple as an output.
For instance, a function declared as function Pow(x : Double, y : Double) : Double
{…} takes as input a tuple (Double, Double), and returns a tuple (Double) as its output. This
works because of a property known as singleton–tuple equivalence. For any type 'T, the
tuple ('T) containing a single 'T is equivalent to 'T itself. In the example of Pow, this means that we
can think of the output as a tuple (Double) that is equivalent to Double.
Figure 6.4. Representing operations with a single input and a single output

With this in mind, a function or operation that returns no outputs can be thought of as returning a
tuple with no elements, (). The type of such tuples is called Unit, similar to other tuple-based
languages such as F#. If we think of a tuple as a kind of box, then this is distinct from void as used in C,
C++, or C# because there still is something there, namely a box with nothing in it.

143

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

NOTE In Q#, we always return a box, even if that box is empty.

There’s no meaning in Q# to a function or operation that returns "nothing." For more details, see
Section 7.2 of Get Programming with F#.
Figure 6.5. Unit versus void

In this example, we see that NextRandomBit treats its input statePreparation as a
"black box." The only way to learn anything about Morgana’s preparation strategy is
to run it.

Put differently, we don’t want to do anything with with statePreparation that
implies we know what it does or what it is. The only way that NextRandomBit can
interact with statePreparation is by calling it, passing it a Qubit to act on.

This allows us to reuse the logic in NextRandomBit for many different kinds of state
preparation procedures that Morgana might use to cause Lancelot a bit of trouble. For
example, suppose she wants a biased coin that returns a One ¾ of the time and
a Zero ¼ of the time. Then, we might run something like the following to predict this
new strategy:

Listing 6.5. Passing different state preparation strategies to

144

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

the PlayMorganasGame example.

open Microsoft.Quantum.Math; ❶

operation PrepareQuarterCoin(qubit : Qubit) : Unit {
 Ry(2.0 * PI() / 3.0, qubit); ❷
}

❶Classical math functions such as Sin, Cos, Sqrt, and ArcCos, as well as constants like PI() are provided
by the Microsoft.Quantum.Math namespace, so we open it as well as the intrinsics.

❷The Ry operation implements the 𝑌𝑌-axis rotation that we saw in Chapter 2. Q# uses radians rather than
degrees to express rotations, so this is a rotation of 120° about the 𝑌𝑌-axis. Thus, if qubit starts in |0⟩,

this prepares qubit in the state , such that the probability

of observing 1 when we measure is .

We can make this example even more general, allowing Morgana to specify an
arbitrary bias for her coin (which is implemented by their shared qubit):

Listing 6.6. Passing operations to implement PlayMorganasGame with arbitrary coin

biases.

operation PrepareBiasedCoin(morganaWinProbability : Double, qubit : Qubit) : Unit {
 let rotationAngle = -2.0 * ArcCos(Sqrt(morganaWinProbability)); ❶
 Ry(rotationAngle, qubit);
}

operation PrepareMorganasCoin(qubit : Qubit) : Unit { ❷
 PrepareBiasedCoin(0.62, qubit);
}

❶We need to find out what angle we rotate the input qubit by in order to get the right probability of seeing
a Zero as our result. This takes a little bit of trigonometry, see the sidebar below for the details.

❷This operation has the right type signature (Qubit => Unit) and we can see that the probability Morgana
will win each round is 62%.

Working out the trigonometry
As we’ve seen a number of times, quantum computing deals extensively with rotations. To figure out
what angles we need for our rotations, we need to rely on a little bit on a branch of mathematics for
describing rotation angles, known as trigonometry (literally, the study of triangles). For instance, as we
saw in Chapter 2, rotating |0⟩ by an angle θ about the 𝑌𝑌 axis results in a state . We
know we want to choose θ such that , so that we get a 62% probability of getting
a Zero result. That means we need to "undo" the cosine function to figure out what θ needs to be. In
trigonometry, the inverse of the cosine function is called the arccosine function, and is written \arccos.
Taking the arccosine of both sides of gives us. We can cancel out the arccos and cos to
find a rotation angle that gives us what we need, . Finally, we multiply both sides by -2 to get
the equation we used in line ① of .

145

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 6.6. How Morgana can choose θ to control how her game plays out

This is somewhat unsatisfying, though, in that the
operation PrepareMorganasCoin introduces a lot of boilerplate just to lock down the
value of 0.62 for the input argument headsProbability to PrepareBiasedCoin. If
Morgana changes her strategy to have a different bias, then using this approach, we’ll
need another new boilerplate operation to represent it. Taking a step back, let’s look at
what PrepareMorganasCoin actually does. It starts with an
operation PrepareBiasedCoin : (Double, Qubit) => Unit, and wraps it into an
operation of type Qubit => Unit by locking down the Double argument to 0.62. That
is, it removes one of the arguments to PrepareBiasedCoin by fixing the value of that
input to 0.62.

Thankfully, Q# provides a convenient shorthand for making new functions and
operations by locking down some (but not all!) of the inputs. Using this shorthand,
known as partial application, we can rewrite the above in a more readable form:

Listing 6.7. Using partial application to make it easier to vary Morgana’s strategy.

let flip = NextRandomBit(PrepareBiasedCoin(0.62, _));

The _ here indicates that a part of the input to PrepareBiasedCoin is missing. We
say that PrepareBiasedCoin has been partially applied.
Whereas PrepareBiasedCoin had type (Double, Qubit) => Unit, because we
filled in the Double part of the input, PrepareBiasedCoin(0.62, _) has type Qubit
=> Unit, making it compatible with our modifications to NextRandomBit.

TIP Partial application in Q# is similar to functools.partial in Python and the _ keyword in Scala.

Another way to think of partial application is as a way to make new functions and
operations by specializing existing functions and operations:

146

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

function BiasedPreparation(headsProbability : Double) : (Qubit => Unit) { ❶
 return PrepareBiasedCoin(headsProbability, _); ❷
}

❶Here, the output type of BiasedPreparation is an operation that takes a Qubit and returns the empty
tuple. That is, BiasedPreparation is a function that makes new operations!

❷We make the new operation by passing along headsProbability, but leaving a blank (_) for the target
qubit. This gives us an operation that takes a single Qubit and substitutes in the blank.

It may seem a bit confusing that BiasedPreparation returns an operation from a
function, but this is completely consistent with the split between functions and
operations described above, since BiasedPreparation is still predictable. In
particular, BiasedPreparation(p) always returns the same operation for a given p,
no matter how many times you call the function. We can assure ourselves that this is
the case by noticing that BiasedPreparation only partially applies operations, but
never calls them.

Exercise 6.4
Partial application works for functions as well as operations! Try it out by writing a function Plus that
adds two integers, n and m, and another function PartialPlus that takes an input n and returns a
function that adds n to its input.

HINT: You can get started using the following code snippet as a template.
function Plus(n : Int, m : Int) : Int {
 // fill in this part
}

function PartialPlus(n : Int) : (Int -> Int) {
 // fill in this part
}

6.4 PLAYING MORGANA’S GAME IN Q#
With first-class operations and partial application at the ready, we can now make a
more complete version of Morgana’s game.

EXAMPLE 6.8. THE Q# STANDARD LIBRARIES

The Quantum Development Kit comes with a variety of different standard libraries that
we’ll see throughout the rest of the book. In , for example, we make use of an
operation MResetZ that both measures a qubit (similar to M) and resets it (similar
to Reset). This operation is offered by
the Microsoft.Quantum.Measurement namespace, one of the main standard libraries
that comes with the Quantum Development Kit. A full list of the operations and
functions available in that namespace can be found
at https://docs.microsoft.com/qsharp/api/qsharp/microsoft.quantum.measurement. For
now, though, don’t worry too much about it; we’ll see more of the Q# standard
libraries as we go.

147

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://docs.microsoft.com/qsharp/api/qsharp/microsoft.quantum.measurement

©Manning Publications Co. To comment go to liveBook

Listing 6.9. Complete listing of Q# operations for the

biased PlayMorganasGame example

open Microsoft.Quantum.Math; ❶
open Microsoft.Quantum.Measurement;

operation PrepareBiasedCoin(winProbability : Double, qubit : Qubit) : Unit {
 let rotationAngle = 2.0 * ArcCos(Sqrt(1.0 - winProbability)); ❷
 Ry(rotationAngle, qubit);
}

operation NextRandomBit(statePreparation : (Qubit => Unit)) : Result {
 using (qubit = Qubit()) {
 statePreparation(qubit); ❸
 return MResetZ(qubit); ❹
 }
}

operation PlayMorganasGame(winProbability : Double) : Unit {
 mutable nRounds = 0;
 mutable done = false;
 let prep = PrepareBiasedCoin(winProbability, _); ❺
 repeat {
 set nRounds = nRounds + 1;
 set done = (NextRandomBit(prep) == Zero);
 }
 until (done)
 fixup {}

 Message($"It took Lancelot {nRounds} turns to get home.");
}

❶We start by opening namespaces from the Q# standard library to help with classical math, and to help
with measuring qubits.

❷The rotation angle chooses the bias the coin has.
❸Here we use the operation we passed in as statePreparation and apply it to the qubit.
❹The MResetZ operation is defined in the Microsoft.Quantum.Measurement namespace that we open at

the beginning of the sample. It measures the qubit in the 𝑍𝑍 basis and then applies what operations are
needed to return the qubit to the |0⟩ state.

❺We use partial application to specify the bias for our state preparation procedure, but not the target
qubit. While PrepareBiasedCoin has type (Double, Qubit) => Unit, PrepareBiasedCoin(0.2, _) "fills in"
one of the two inputs, leaving an operation with type Qubit => Unit, as expected by EstimateBias.

Providing documentation for Q# functions and operations
Documentation can be provided for Q# functions and operations by writing small specially formatted text
documents in triple-slash (///) comments before a function or operation declaration. These documents
are written in Markdown, a simple text formatting language used on sites like GitHub, Azure DevOps,
Reddit, and Stack Exchange, and by site generators like Jekyll. The information in /// comments is
shown when hovering over calls to that function or operation, and can be used to make API references
similar to those at https://docs.microsoft.com/quantum/.

148

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://docs.microsoft.com/quantum/

©Manning Publications Co. To comment go to liveBook

Different parts of /// comments are indicated with section headers, for example /// #
Summary. For example, we may document the PrepareBiasedCoin operation from with the
following:
/// # Summary
/// Prepares a state representing a coin with a given bias.
///
/// # Description

/// Given a qubit initially in the |0⟩ state, applies operations
/// to that qubit such that it has the state √p |0⟩ + √(1 - p) |1⟩,
/// where p is provided as an input.
/// Measurement of this state returns a One Result with probability p.
///
/// # Input
/// ## winProbability
/// The probability with which a measurement of the qubit should return One.
/// ## qubit

/// The qubit on which to prepare the state √p |0⟩ + √(1 - p) |1⟩.
operation PrepareBiasedCoin(
 winProbability : Double, qubit : Qubit
) : Unit {
 let rotationAngle = 2.0 * ArcCos(Sqrt(1.0 - winProbability));
 Ry(rotationAngle, qubit);
}

When using IQ#, you can look up documentation comments by using the ? command. For instance,
you can look up the documentation for the X operation by running X? in an input cell.

For a full reference,
see https://docs.microsoft.com/quantum/language/statements#documentation-comments.

To estimate the bias of a particular state preparation operation, we can run
the PlayMorganasGame operation repeatedly and count how many times we get
a Zero.

Let’s pick a value for winProbability and run the PlayMorganasGame operation
with that value to see how long it Lancelot will be stuck.

Listing 6.10. Running PlayMorganasGame to see how long Lancelot is stuck.

In []: operation Main() : Unit {
 PlayMorganasGame(0.9);
 }
In []: %simulate Main
It took Lancelot 5 turns to get home.

Try playing around with different values of winProbability! Note that if Morgana
really tips the scales, we can confirm that it will take Lancelot quite a long time to
make it back to Genevieve.

149

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://docs.microsoft.com/quantum/language/statements#documentation-comments

©Manning Publications Co. To comment go to liveBook

Listing 6.11. Output of varying Morgana’s strategy.

In []: operation Main() : Unit {
 PlayMorganasGame(0.999);
 }
In []: %simulate Main
It took Lancelot 3255 turns to get home.

6.5 SUMMARY
In this chapter you learned:

• how to use the Quantum Development Kit to write quantum programs in Q#, and
• how to use Jupyter Notebook to run your quantum programs with a quantum

simulator.

In the next chapter, we’ll build on these skills by going back to Camelot to find our
first example of a quantum algorithm, the Deutsch–Jozsa algorithm.

150

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

7
This chapter covers:
 • What is a quantum algorithm?

 • How to design oracles to represent classical functions in quantum programs

 • A first example of a quantum algorithm

 • Several useful quantum programming techniques

One important application for quantum algorithms is in obtaining speedups for solving
problems where we need to search over inputs to a function that we’re trying to learn
about. Such functions could be obfuscated (such as hash functions), or could be
computationally difficult to evaluate (common in studying mathematical problems). In
either case, applying quantum computers to such problems requires us to understand
how we program and provide input to quantum algorithms. To learn how to do so,
we’ll program up and run an implementation of an algorithm known as the Deutsch–
Jozsa algorithm, which will let us learn properties of unknown functions quickly using
quantum devices.

What is a Quantum Algorithm?

151

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 7.1. In this Chapter, we will be covering topics in both the Q# language and intrinsic
operations for quantum devices.

7.1 CLASSICAL AND QUANTUM ALGORITHMS
ALGORITHM noun: a step-by-step procedure for solving a problem or accomplishing some end. —Merriam–

Webster Dictionary

When we talk about classical programming, we sometimes say that a program
implements an algorithm; that is, a sequence of steps that can be used to solve some
problem. If we want to sort a list, for example, we can talk about the quicksort
algorithm independently of what language or operating system we are using. We often
specify these steps at a high level. In the quicksort example, we might list the steps as
something like the following.

7.1.1 Quicksort algorithm
• If the list to be sorted is empty or only has one element, return it as-is.
• Pick an element of the list to be sorted, called the pivot.
• Separate all other elements of the list into those that are smaller than the pivot, and

those that are larger.
• Quicksort each new list recursively.
• Return the first list, then the pivot, and finally the second list.

These steps then serve as a guide for writing an implementation in a particular
language of interest. Say we want to write the quicksort algorithm in Python:

Listing 7.1. An example implementation of the quicksort algorithm.

def quicksort(xs):
 if len(xs) > 1: ❶
 pivot = xs[0] ❷
 left = [x in xs[1:] if x <= pivot] ❸
 right = [x in xs[1:] if x > pivot]
 return quicksort(left) + [pivot] + quicksort(right) ❹
 else:

152

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 return xs

❶We check for the base case by checking if there’s at least two elements in the list.
❷We pick the first element to be our pivot for step 2.
❸Next, we write out Python code that builds two new lists as described in step 3.
❹Finally, we concatenate everything back together as described in steps 4 and 5.

A well-written algorithm can help guide how to write implementations by making the
steps that must be executed clear. Quantum algorithms are the same in this respect:
they list the steps that we need to perform in any implementation.

QUANTUM
PROGRAM

A quantum program is an implementation of a quantum algorithm, consisting of a classical
program that sends instructions to a quantum device in order to prepare a particular state or
measurement result.

As we saw in Chapter 6, when we write a Q# program, we are writing a classical
program which sends instructions to one of several different target machines on our
behalf, as illustrated as , returning measurements back to our classical program.

The art of quantum programming
We cannot copy quantum states, but if they resulted from running a program, we can tell someone else
what steps they need to take to prepare the same states. As we saw above, quantum programs are a
special kind of classical program, so we can copy them with reckless abandon. As we will see throughout
the rest of the book, any quantum state can either be approximated or written out exactly by the output
of a quantum program that starts with only copies of the |0⟩ state. For example, in Chapter 2, we
prepared the initial state |+⟩ of a QRNG by a program consisting of a single H instruction.

Put differently, we can think of a program as being a recipe for how to prepare a qubit. Given a qubit,
we cannot determine what recipe was used to prepare it, but we can copy the recipe itself as much as we
like.

Whereas the steps in executing quicksort instruct the Python interpreter to compare
values and to move values around in memory, the steps in a Q# program instruct our
target machines to apply rotations and measurements to qubits in a device. As shown in
, we can use a host program to send Q# applications to each different target machine to
run. For now, we’ll keep using the IQ# plugin for Jupyter Notebook as our host
program; in the next chapter, we’ll see how to use C# to write our own host programs
as well.

153

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 7.2. The Quantum Development Kit software stack.

Most of the time in this book, we’ll be interested in simulating our quantum programs,
so we’ll use the QuantumSimulator target machine. This simulator works very
similarly to the ones we developed in Chapters 2 and 4, as it executes instructions such
as the Hadamard instruction H by multiplying quantum states with unitary operators
like 𝐻𝐻.

TIP As in previous chapters, we can use fonts to distinguish instructions like H from the unitary
matrices like 𝐻𝐻 that we use to simulate those instructions.

The ResourcesEstimator target machine allows you to not run a quantum program,
but to get estimates on how many qubits it would take to run it. This is useful for larger
programs that cannot be classically simulated or run on available hardware, to help you
learn how many qubits it will take; we’ll see more about this target machine later.

Since Q# applications send instructions to the target machines that we use to run them,
it’s easy to reuse Q# code later across different target machines that share the same
instruction set. The QuantumSimulator target machine, for instance, uses the same
instructions that we expect actual quantum hardware to take once it becomes available,
so that we can test Q# programs on simulators now using small instances of problems,
and can then run the same programs on quantum hardware later.

What remains in common across these different target machines and applications is
that we need to write the program that sends instructions to the target machine in order
to accomplish some goal. Our task as quantum programmers is thus to make sure that
these instructions have the effect of solving some useful problem.

154

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

TIP The way that we use simulators to test Q# programs is a bit similar to the way we use
simulators to test programs for other specialized hardware like field-programmable gate arrays
(FPGAs), or the way we use emulators to test applications for mobile devices from our desktops
and laptops. The main difference is that we can only a classical computer to simulate a
quantum computer for a very small numbers of qubits, or for restricted kinds of programs.

This is much easier to do when we have an algorithm guiding us to organize the steps
that need to happen in both the classical and quantum devices. In developing new
quantum algorithms, we can make use of the quantum effects, such as entanglement,
which we saw in Chapter 4.

TIP In fact, to get any advantage from our quantum hardware we must use the unique quantum
properties of the hardware, or else we just have a more expensive and slower classical
computer.

7.2 DEUTSCH–JOZSA ALGORITHM: MODERATE IMPROVEMENTS
FOR SEARCHING
So what might make a good example of a quantum algorithm that takes advantage of
our shiny new quantum hardware? We learned in Chapters 4 and 6 that thinking about
games can often help, and this is no exception. To find our game for this chapter, let’s
take a trip back to Camelot, where Merlin finds himself facing a test…

7.3 LADY OF THE (QUANTUM) LAKE
Merlin, the famous and wise wizard, has just encountered Nimue, the lady of the lake.
Nimue, seeking a capable mentor for the next King of England, has decided to test
Merlin to see if he is up to the task. Two bitter rivals, Arthur and Mordred, are vying
for the throne, such that if Merlin is to accept Nimue’s task, he must choose whom to
mentor as king.

For her part, Nimue does not care who becomes king, so long as Merlin can give them
sage council. What Nimue is concerned about is whether Merlin, the appointed
instructor for the new king, will be reliable and consistent in his leadership.

Since Nimue shares our love of games, she has decided to play a game with Merlin to
test if he will be a good mentor or not. Nimue’s game, Kingmaker, tests to see if
Merlin is consistent in his role as advisor to the king. To play Kingmaker, Nimue gives
Merlin the name of one of the two bitter rivals for the throne, to which Merlin must
respond with whether Nimue’s candidate should be the true heir to the throne or not.

7.3.1 Kingmaker game rules
• In each round, Nimue asks Merlin a single question of the form "Should potential

heir be the king?"
• Merlin must answer either "yes" or "no," giving no additional information.

Each round gives Nimue more information about the realm of mortals, so her objective

155

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

is to ask as few questions as is needed to catch Merlin out if he is not trustworthy.

7.3.2 Nimue’s objectives
• Verify that Merlin will be a good mentor to the new King of England.
• Ask as few questions as possible to verify.
• Avoid learning who Merlin will say yes to mentoring.

At this point, Merlin has 4 possible strategies:

7.3.3 Merlin’s strategies:
• Say "yes" when asked if Arthur should be king, and "no" otherwise (good mentor)
• Say "yes" when asked if Mordred should be king, and "no" otherwise (good

mentor)
• Say "yes" regardless of who Nimue asks about (bad mentor)
• Say "no" regardless of who Nimue asks about (bad mentor)

One way to think of Merlin’s strategies is by using the concept of a truth table once
again. Suppose, for instance, Merlin has decided to be singularly unhelpful and deny
any candidates to the throne. Then we might write this down using the truth table in .

Table 7.1. Truth table for one possible strategy of Kingmaker: Merlin always says no.

Input (Nimue) Output (Merlin)

"Should Morded be king?" "No."

"Should Arthur be king?" "No."

At this point, Nimue would be right to complain about Merlin’s wisdom as a mentor!
Merlin has not been consistent with his charge to choose between Arthur and Mordred.
While Nimue may not care whom Merlin picks, he surely must pick someone to mentor
and prepare for the throne.

Nimue needs a strategy to determine if Merlin has either strategy 1 or 2 (good mentor)
or if Merlin is playing according to 3 or 4 (bad mentor) in as few rounds of the game as
possible. She could just ask both questions: "Should Mordred be king?" and "Should
Arthur be king?" and then compare his answers, but this would result in Nimue
knowing for sure who he chose to be king. After all, with each question Nimue learns
more about the mortal affairs of the kingdom — how distasteful!

While it would seem Nimue’s game is doomed to force her to learn his choice of heir,
she is in luck. This being a quantum lake, we’ll see throughout the rest of this chapter
that Nimue can ask a single question that will tell her only if Merlin is committed to his
role as mentor, and not whom he has chosen.

Since we don’t have a quantum lake at our disposal, let’s try to model what Nimue is
doing with quantum instructions in Q# on our classical computer and then simulate it.
Let’s represent Merlin’s strategy by a classical function 𝑓𝑓, which takes Nimue’s

156

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

question as an input 𝑥𝑥. That is, we’ll write 𝑓𝑓(Arthur) to mean "what Merlin answers
when asked if Arthur should be king." Note that since Nimue will only ask one of two
questions, which question she asks is an example of a bit. Sometimes it’s convenient to
write out that bit using the labels "0" and "1", while sometimes it’s helpful to label
Nimue’s input bit using the Boolean values "False" and "True." After all, "1" would be
a pretty strange answer to a question like "should Mordred be king?"

Table 7.2. Encoding Nimue’s question as a bit

Nimue’s question Representation as a bit Representation as a Boolean

"Should Mordred be king?" 0 False

"Should Arthur be king?" 1 True

Using bits, we write 𝑓𝑓(0) = 0 to mean that Nimue if asks Merlin "should Mordred be
king," his answer will be no.

If she didn’t have any quantum resources, to be sure of what Merlin’s strategy is,
Nimue would have to try both inputs to 𝑓𝑓; that is, she’d have to ask both questions to
Merlin. Trying all the inputs would give us Merlin’s full strategy, which as noted,
Nimue is not really interested in.

To solve this, instead of having to ask Merlin about both Mordred and Arthur, we can
implement a quantum algorithm in Q# that uses quantum effects to learn whether
Merlin is a good mentor or not by asking him only one question. Using the simulators
provided with the Quantum Development Kit, we can even run our new Q# program on
our laptops or desktops!

In the rest of this chapter, we’ll learn an example of how to write this quantum
algorithm, called the Deutsch–Jozsa algorithm (see).

Figure 7.3. Where we will be working in the Q# software stack for this chapter.

157

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Let’s try and sketch out what our quantum program will look like.

The possible inputs and outputs for 𝑓𝑓 (Merlin’s strategy) are True and False. We can
write down a truth table for 𝑓𝑓 using the inputs and outputs we get when we call 𝑓𝑓. For
instance, if 𝑓𝑓 is the classical NOT operation (often denoted ¬), then we will observe
that 𝑓𝑓(True) is False and vice versa. As shown in , using a classical NOT operation as a
strategy in our game corresponds to picking Mordred to be king.

Table 7.3. Truth table for the classical NOT operation

Input Output

True ("Should Arthur be king?") False ("No.")

False ("Should Mordred be king?") True ("Yes.")

There are four possible options for the definition of our function 𝑓𝑓, each of which
represents one of the four strategies available to Merlin, as summarized in .

Figure 7.4. Four different functions from one bit to one bit.

Two of these functions, labeled id and not for convenience, send each of
the 0 and 1 inputs to different outputs; we call these functions balanced. In our little
game, they represent the cases in which Merlin picked exactly one person to be king.

158

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Table 7.4. Classifying Merlin’s strategies as either constant or balanced.

Merlin’s strategy Function Type Passes Nimue’s challenge?

Choose Arthur id Balanced (𝑓𝑓(0) ≠ 𝑓𝑓(1)) Yes

Choose Mordred not Balanced (𝑓𝑓(0) ≠ 𝑓𝑓(1)) Yes

Choose neither zero Constant (𝑓𝑓(0) = 𝑓𝑓(1)) No

Choose both one Constant (𝑓𝑓(0) = 𝑓𝑓(1)) No

On the other hand, the functions that we label as zero and one are
each constant functions, since they send both inputs to the same output. Constant
functions then represent strategies in which Merlin is being decidedly useless, as he’s
either picked both to be king (a good way to start a bad war), or because he’s picked
neither.

Classically, if we want to know if a function is constant or balanced (whether Merlin is
a bad or good mentor, respectively), we have to learn the entire function by building up
its truth table. Remember, Nimue wants to ensure Merlin is a reliable mentor. If Merlin
is following a strategy represented by a constant function, then he will not be a good
mentor. Looking at the truth tables for the id and one functions, and respectively, we
can see how these describe when Merlin is following a strategy that will let him be
either a good or bad mentor.

Table 7.5. Truth table for the id function, an example of a balanced function.

Input Output

True ("Should Arthur be king?") True ("Yes")

False ("Should Mordred be king?") False ("No")

Table 7.6. Truth table for the one function, an example of a constant function.

Input Output

True ("Should Arthur be king?") True ("Yes")

False ("Should Mordred be king?") True ("Yes")

The difficulty that Nimue faces in trying to learn whether Merlin is a good or bad
mentor (that is, whether 𝑓𝑓 is balanced or constant) is that the quality of Merlin’s
mentorship is a kind of global property of his strategy. There’s no way to look at a
single output of 𝑓𝑓 and conclude anything about what 𝑓𝑓 would output for different
inputs. If we only have access to 𝑓𝑓, then Nimue is stuck: she must reconstruct the entire
truth table to decide whether Merlin’s strategy is constant or balanced.

159

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

On the other hand, if we can represent Merlin’s strategy as a part of a quantum
program, then we can use the quantum effects we’ve learned about so far in the book.
Using quantum computing, Nimue can learn only if his strategy is constant or
balanced, without having to learn exactly which strategy he’s using.

Since we are not interested in all the additional info the truth table provides beyond
whether Merlin is a good or bad mentor, using quantum effects can help us learn what
we care about more directly. With our quantum algorithm we can do this with one call
of the function, and without needing to learn any additional information we are not
interested in. By not asking for all of the details of the truth table, but only looking for
more general properties of our function, we can best utilize our quantum resources.

The power of quantum computing
If we want to use a classical computer to learn whether a function is constant or balanced, we have to
solve a harder problem first, namely of identifying exactly which function we have. By contrast, quantum
mechanics lets us solve only the problem we care about (constant vs balanced) without solving the
harder problem a classical computer has to solve.

This is an example of a pattern we’ll see throughout the book, in which quantum mechanics lets us
specify less powerful algorithms than we can express classically.

To do so, we will use the Deutsch–Jozsa algorithm, which uses a single query to our
quantum representation of Merlin’s strategy to learn he is a good or bad mentor. The
advantage here isn’t terribly practical (a savings of only one question) but that’s OK,
we’ll see more practical algorithms later on in the book. For now, the Deutsch–Jozsa
algorithm is a great place to start learning how to implement quantum algorithms, and
even more importantly, to start learning what tools we can use to understand what
quantum algorithms do.

7.4 ORACLES: REPRESENTING CLASSICAL FUNCTIONS IN
QUANTUM ALGORITHMS
Let’s see what things look like from Nimue’s quantum lake. As we plunge in for a
swim, we face a somewhat immediate question: how can we implement the function 𝑓𝑓
that represents Merlin’s strategy with qubits? From the previous section, we saw that
the classical function 𝑓𝑓 is our description of a strategy that Merlin uses to play each
round of Kingmaker. Since 𝑓𝑓 is classical, it’s easy to translate this back into a set of
actions that Merlin will take: Nimue gives Merlin a single classical bit (her question),
and Merlin gives Nimue a classical bit back (his answer).

To avoid meddling in the affairs of mortals, Nimue now wants to use the Deutsch–
Jozsa algorithm instead. Since she lives in a quantum lake, Nimue can easily allocate a
qubits to give Merlin instead. Lucky for us, Merlin knows how to communicate with
qubits, but we still need to figure out what Merlin will do with Nimue’s qubits in order
to act on his strategy.

The trouble is that we can’t pass qubits to the function 𝑓𝑓 that we use to represent
Merlin’s strategy up above, but 𝑓𝑓 takes and returns classical bits, not qubits. For Merlin
to use his strategy to guide what he does with Nimue’s qubits, we want to turn Merlin’s

160

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

strategy 𝑓𝑓 into a kind of quantum program known as an oracle.

Conveniently for us, Merlin plays the role of an oracle pretty well.

MERLIN AND
REVERSIBILITY

From the T. H. White treatment of Merlin, we learn he lives life backwards in time. We’ll
represent that by making sure that everything Merlin does is unitary. As we saw in Chapter
2, one consequence of this is that the transformations Merlin applies are reversible. In
particular, Merlin won’t be able to measure Nimue’s qubits, since measurement is not
reversible. That privilege is Nimue’s alone.

To understand what we need to do to model Merlin’s actions as an oracle we have to
figure out two things:

• What transformation should Merlin apply to Nimue’s qubits based on his strategy?
• What quantum operations will Merlin need to apply to implement that

transformation?

Unitary matrices and truth tables
Another way of saying what we need to do in step ① is that we need to find a unitary matrix that
represents what Merlin does, similarly to how we used classical functions like 𝑓𝑓 to represent what Merlin
did when Nimue gave him classical bits. As we saw in Chapter 2, unitary matrices are to quantum
computing as truth tables are to classical computing: they tell us what the effect of a quantum operation
is for every possible input. Once we found the right unitary, step ② is where we’ll figure out what
sequence of quantum operations we can do that will be described by that unitary.

To complete step ①, we need to turn functions like 𝑓𝑓 into unitary matrices, so let’s
start by recapping what 𝑓𝑓 can be. The possible strategies Merlin could use are
represented by each of the functions id, not, zero, and one (see).

Figure 7.5. Four different functions from one bit to one bit.

161

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

For the two balanced functions, id and not in figure 7.5, we can answer the first
question easily. Quantum programs for id and not can be implemented as rotation
operations, so it is easy to turn them into quantum operations. The quantum NOT
operation, for instance, is a rotation of 180° around the 𝑋𝑋 axis, exchanging the
and states with each other.

TIP Recall from Chapter 4 that the quantum operation X, represented by the unitary matrix 𝑋𝑋 = (⁰₁
¹₀), is used to apply a rotation of 180° around the 𝑋𝑋 axis. This operation implements a
quantum NOT: since 𝑋𝑋|0⟩ = |1⟩ and 𝑋𝑋|1⟩ = |0⟩, we can write using the ¬ (NOT) operator from
Chapter 2 as 𝑋𝑋|𝑥𝑥⟩ = |¬𝑥𝑥⟩.

While any rotation can be undone by rotating the same amount in the opposite
direction, we run into more problems with the constant functions zero and one.
Neither zero nor one can be implemented directly as rotations, so we have a bit more
work to do. For instance, if 𝑓𝑓 is zero, then the outputs 𝑓𝑓(0) and 𝑓𝑓(1) are both 0. If we
only have the output 0, we cannot tell whether we got that output from giving 𝑓𝑓 a 0 or a
1 as input (see).

NOTE Once we apply zero or one, we have lost any information about the input.

Figure 7.6. Why can’t we reverse the constant zero or one functions?

162

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Since one and zero are both irreversible, and valid operations on qubits are reversible,
Merlin will need another way of representing functions like 𝑓𝑓 in quantum algorithms
such as the one for Nimue’s challenge. On the other hand, if we can represent Merlin’s
strategy by a reversible classical function instead of 𝑓𝑓, it will be much easier to write
down a quantum representation of his strategy.

7.4.1 Our strategy for representing classical functions as quantum oracles
• Find a way to represent our irreversible classical function by a reversible classical

function
• Write down a transformation on quantum states using our reversible classical

function
• Figure out what quantum operations we can do that result in that transformation

Let’s use the tried and true approach of guessing and checking to see if we can design a
valid reversible classical function! The easiest way to figure out whether we were
given a 0 or a 1 as an input is to just record it somewhere, so let’s make a new function
that returns two bits instead of one:

First attempt: Record and keep the input
𝑔𝑔(𝑥𝑥) = (𝑥𝑥, 𝑓𝑓(𝑥𝑥))
For example, if Merlin uses the strategy one (that is, says "yes" to Nimue no matter what she asks),

then 𝑓𝑓(𝑥𝑥) = 1, and 𝑔𝑔(𝑥𝑥) = (𝑥𝑥, 𝑓𝑓(𝑥𝑥)) = (𝑥𝑥, 1).

This gets a lot closer, since we can now tell whether we started with a 0 or 1 input, but
we’re not quite there, since 𝑔𝑔 has two outputs and one input (see).

Figure 7.7. First attempt: keeping input and output with 𝑔𝑔(𝑥𝑥).

To use 𝑔𝑔 as a strategy, Merlin would have to give back Nimue more qubits than she
gave him, but she is the keeper of both swords and qubits. More technically, reversing

163

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

𝑔𝑔 would thus destroy information, as it would take two inputs and return one output!

Trying one more time, let’s define a new classical function ℎ that takes two inputs and
returns two outputs, ℎ(𝑥𝑥, 𝑦𝑦). Let’s again consider the example where we describe
Merlin’s strategy by the function 𝑓𝑓(𝑥𝑥) = 1. Since 𝑔𝑔 got us nearly there, we’ll choose ℎ
such that ℎ(𝑥𝑥, 0) = 𝑔𝑔(x). We saw from the our first attempt that when Merlin uses the
strategy 𝑓𝑓(𝑥𝑥) = 1, then 𝑔𝑔(𝑥𝑥) = (𝑥𝑥, 1), so we have that ℎ(𝑥𝑥, 0) = (𝑥𝑥, 1). Now we just need
to define what happens when we pass 𝑦𝑦 = 1 to ℎ. If we want ℎ to be reversible, we need
that ℎ(𝑥𝑥, 1) is assigned to something other than (𝑥𝑥, 1). One way to do this is to let ℎ(𝑥𝑥,
𝑦𝑦) = (𝑥𝑥, ¬𝑦𝑦), so that ℎ(𝑥𝑥, 1) = (𝑥𝑥, 0) ≠ (𝑥𝑥, 1).

This choice is especially convenient since applying ℎ twice gets us back our original
input, ℎ(ℎ(𝑥𝑥, 𝑦𝑦)) = ℎ(𝑥𝑥, ¬𝑦𝑦) = (𝑥𝑥, ¬¬𝑦𝑦) = (𝑥𝑥, 𝑦𝑦).

Figure 7.8. Second attempt: ℎ(𝑥𝑥, 𝑦𝑦) which is reversible and has the same number of inputs and

outputs!

Now that we know how to make a reversible classical function from each strategy,
let’s finish by making a quantum program from our reversible function. In the case
of one, we saw that ℎ flips its second input, ℎ(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥, ¬𝑦𝑦). Thus, we can write a
quantum program that does the same thing as our reversible classical function simply
by flipping the second of two input qubits. As we saw in Chapter 4, we can do this
using the X instruction, since 𝑋𝑋|𝑥𝑥⟩ = |¬𝑥𝑥⟩.

Example 7.2. Generalizing our results

More generally, we can make a reversible quantum operation, in precisely the same
way we made reversible classical functions ℎ by flipping an output bit based on the
output of the irreversible function 𝑓𝑓. We can define the unitary matrix (that is, the
quantum analogue of a truth table) U𝑓𝑓 for 𝑓𝑓 for each input state in exactly the same
way.

164

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 7.9. Constructing reversible classical functions and unitary matrices from irreversible
classical functions

Defining U𝑓𝑓 in this way makes it easy to undo the call to 𝑓𝑓, since applying U𝑓𝑓 twice
gives us the identity 𝟙𝟙 (that is, the unitary matrix for the "do nothing" instruction).
When we define a unitary in this way by applying a function 𝑓𝑓 conditionally to the
labels for qubit states, we call this new operation an oracle.

ORACLE An oracle is a quantum operation represented by a unitary matrix U𝑓𝑓 that transforms its input
state as

The symbol represents the exclusive or operator from regular boolean logic.

Now all that’s left is to figure out what sequence of instructions we need to send to
implement each unitary Uf. We’ve seen above how what instructions we need to
implement an oracle for one, namely an X instruction on the second qubit. Now let’s
look at how to write oracles for other possible functions 𝑓𝑓. That way, Merlin will know
what he should do no matter what his strategy is.

DEEP DIVE: Why is it called an oracle?
So far, we’ve seen a few different examples of the kind of whimsical naming that quantum computing
owes to its physics history, like "bra," "ket," and "teleportation." It’s not just physicists who like to have a
bit of fun, though! One branch of theoretical computer science called complexity theory explores what is
possible to do efficiently even in principle given different kinds of computing machines. You may have
heard, for instance, of the P versus NP problem, a classic conundrum in complexity theory that asks
whether problems in P are as difficult to solve as those NP or not. The complexity class P is the group of
questions for which there exists a way to answer them with an algorithm that takes polynomial time. By
contrast, NP is the group of questions for which we can check a potential answer in polynomial time, but
we don’t know if we could come up with an answer from scratch in polynomial time.

Many other problems in complexity theory are posed by introducing small games or stories to help
researchers remember what definitions to use where. Our own little story about Merlin and Nimue is a
nod to this tradition. In fact, one of the most celebrated stories in quantum computing is called MA for
"Merlin–Arthur." Problems in the class MA are thought of using a story in which Arthur gets to ask an
Merlin, an all-powerful but untrustworthy wizard, some set of questions. A yes/no decision problem is
in MA if, whenever the answer is "yes," there exists a proof that Merlin can give Arthur and that Arthur can
easily check using a P machine and a random number generator.

165

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

The name "oracle" fits into this kind of storytelling, in that any complexity class A can be turned into a
new complexity class AB by allowing A machines to solve a B problem in a single step, as though they
were consulting an oracle. Much of the history of problems like the Deutsch–Jozsa problem stems from
trying to understand how quantum computing affects computational complexity, so many of the naming
conventions and much of the terminology has been adopted into quantum computing itself.

For more on complexity theory and how it relates to quantum computing, black holes, free will, and
Greek philosophy, check out Quantum Computing Since Democritus (ISBN: 978-0521199568).

In general, finding a sequence of instructions by starting from a unitary matrix is a
mathematically difficult problem known as unitary synthesis. That said, in this case,
we can figure it out by substituting each of Merlin’s strategies 𝑓𝑓 into our definition
for U𝑓𝑓 and identifying what instructions will have that effect — we can guess and
check in the same way that we did to turn the one function into an oracle.

Let’s try this out for the zero function:

Exercise 7.1: Try out writing an oracle!
What would the oracle operation U𝑓𝑓 be for 𝑓𝑓 if 𝑓𝑓 was zero?

Solution: Let’s work it out one step at a time.
From the definition for U𝑓𝑓, we know that .

Substituting in zero for 𝑓𝑓, 𝑓𝑓(𝑥𝑥) = 0, we get that .
We can use that 𝑦𝑦 ⊕ 0 = 𝑦𝑦 to simplify this a little bit further, getting that .

At this point, we notice U𝑓𝑓 does nothing to its input state, so we can implement it by… doing nothing.

The function 𝑓𝑓 = id is slightly more subtle than the zero and one cases because 𝑦𝑦 ⊕
𝑓𝑓(𝑥𝑥) cannot be simplified to not depend on 𝑥𝑥. As summarized in , we
need . That is to say, we need the action of the oracle on
the input state () to leave 𝑥𝑥 alone and replace y with the exclusive or of 𝑥𝑥 and 𝑦𝑦.

Another way to think of this output is to is recall that 𝑦𝑦 ⊕ 1 = ¬𝑦𝑦, so that that when 𝑥𝑥 =
1, we need to flip 𝑦𝑦. This is precisely how we defined the controlled-NOT (CNOT)
instruction in Chapter 5, so we recognize that when 𝑓𝑓 is id, U𝑓𝑓 can be implemented by
applying a CNOT.

This leaves us with how to define the oracle for 𝑓𝑓 = not. Just as the oracle for id flips
the output (target) qubit when the input (control) qubit is in the |1⟩ state, the same
argument gives us that we need our oracle for not to flip the second qubit when the
input qubit is in |0⟩. The easiest way to do this is to first flip the input qubit with
an X instruction, apply a CNOT instruction, and then undo the first flip with another X.

To review all of the oracles we have learned who to define, we collected all our work
in the above section in .

Table 7.7. Table Oracle outputs for each one-bit function 𝑓𝑓

Function Name Function Output of Oracle

zero 𝑓𝑓(𝑥𝑥) = 0 |𝑥𝑥⟩|𝑦𝑦 ⊕ 0⟩ = |𝑥𝑥⟩|𝑦𝑦⟩

166

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Function Name Function Output of Oracle

one 𝑓𝑓(𝑥𝑥) = 1 |𝑥𝑥⟩|𝑦𝑦 ⊕ 1⟩ = |𝑥𝑥⟩|¬𝑦𝑦⟩

id 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 |𝑥𝑥⟩|𝑦𝑦 ⊕ 𝑥𝑥⟩

not 𝑓𝑓(𝑥𝑥) = ¬𝑥𝑥 |𝑥𝑥⟩|𝑦𝑦 ⊕ ¬𝑥𝑥⟩

The uncompute trick: Turning functions into quantum oracles
As it stands, it may seem as though it takes a lot of work to design U𝑓𝑓 for each function f. Thankfully,
there’s a nice trick that lets us build an oracle, starting with a somewhat simpler requirement.

Recall that above, we attempted to define a reversible version of f by returning (x, 𝑓𝑓(x)) as output
when given (x, 0) as input. Similarly, suppose that we are given a quantum operation V𝑓𝑓 that correctly
transforms to . Then, we can always make an oracle U𝑓𝑓 by using one additional qubit, and by
calling V𝑓𝑓 twice using a technique called the "uncompute trick," as shown in .
Figure 7.10. Using the "uncompute trick" to turn an operation that only works when you add an extra |0⟩ input
qubit to an operation that can be used as an oracle.

While this doesn’t especially help in the case of Deutsch–Jozsa, it shows us that the concept of an
oracle is a very general one, as it’s often much easier to start with an operation of the form V𝑓𝑓.

NOTE The oracle construction also works for multiple qubit functions. As a thought exercise, if we
have a function 𝑓𝑓(𝑥𝑥₀, 𝑥𝑥₁) = 𝑥𝑥₀ AND 𝑥𝑥₁, how would the oracle U𝑓𝑓 transform an input state ?
We’ll see in later chapters how to code up this oracle.

We’ve thus used the oracle representation to solve the problem that functions
like zero and one cannot be represented as rotations. With that dealt with, we can
continue on to actually write the rest of the algorithm that Nimue uses to challenge
Merlin.

167

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

DEEP DIVE: Other ways to represent functions as oracles
This isn’t the only way we could have defined U𝑓𝑓. Merlin could have also flipped the sign of Nimue’s input
𝑥𝑥 when 𝑓𝑓(𝑥𝑥) is one,

.

This turns out to be a more useful representation in some cases, such as in gradient descent
algorithms. These algorithms are common in machine learning, and minimize functions by searching
along directions in which a function changes the fastest. For more information, see Chapter 4.10
of Grokking Deep Learning.

Picking the right way for a particular application to represent classical information such as subroutine
calls within a quantum algorithm is a part of the art of quantum programming. For now, we will use the
definition of "oracle" introduced above.

With the oracle representation of 𝑓𝑓 in hand, the first few steps of the Deutsch–Jozsa
algorithm can be written out in the same sort of pseudocode that we used to
write quicksort earlier:

7.4.2 Deutsch–Jozsa Algorithm
• Prepare two qubits labeled control and target in the state.
• Apply operations to the control and target qubits to prepare the following

state: .
• Apply the oracle U𝑓𝑓 to the input state . Recall that .
• Measure the control qubit in the X basis; if we observe a 0, then the function is

constant, otherwise the function is balanced.
TIP Measuring a qubit in the X basis always returns a 0 or 1 just like if we measured in the Z basis.

Recall from Chapter 3 that if the state of the qubit is , we always get a 0 when we measure
in the 𝑋𝑋 basis, while we always get a 1 if the qubit is in .

Let’s look at a figure illustrating these steps:

168

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 7.11. Steps to the Deutsch–Jozsa Algorithm.

We’ll see at the end of the chapter why this algorithm works, but let’s jump right in
start programming it up. To do so, we’ll use the Q# language provided by the Quantum
Development Kit, since this will make it much easier for us to see the structure of a
quantum algorithm from its source code.

7.5 SIMULATING THE DEUTSCH–JOZSA ALGORITHM IN Q#
We tried out in chapter 6 passing operations as arguments in Q# programs. We can use
the same approach of passing operations as inputs to pass oracles to help us predict
how Nimue’s challenge will turn out. To do so, recall that there are four possible
functions that we can consider for this problem, each representing a possible strategy
that Merlin could use, as shown in .

Table 7.8. Representing one-bit functions as two-qubit oracles.

Function
Name Function Output of

Oracle Q# Operation

zero 𝑓𝑓(𝑥𝑥) = 0 |𝑥𝑥⟩|𝑦𝑦 ⊕ 0⟩ =
|𝑥𝑥⟩|𝑦𝑦⟩ NoOp(control, target);

one 𝑓𝑓(𝑥𝑥) = 1 |𝑥𝑥⟩|𝑦𝑦 ⊕ 1⟩ =
|𝑥𝑥⟩|¬𝑦𝑦⟩ X(target);

169

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Function
Name Function Output of

Oracle Q# Operation

id 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 |𝑥𝑥⟩|𝑦𝑦 ⊕ 𝑥𝑥⟩ CNOT(control, target)

not 𝑓𝑓(𝑥𝑥) =
¬𝑥𝑥 |𝑥𝑥⟩|𝑦𝑦 ⊕ ¬𝑥𝑥⟩

X(control); CNOT(control,
target); X(control);

If we represent each function 𝑓𝑓(x) by an oracle (quantum operation) that
maps to , then we can identify each of the functions zero, one, id,
and not from .

Each of the four oracles above translates immediately into Q#:

Listing 7.3. Oracles.qs: Q# operations for each Deutsch–Jozsa oracle

namespace DeutschJozsa {
 open Microsoft.Quantum.Intrinsic;

 operation ApplyZeroOracle(control : Qubit, target : Qubit) : Unit {
 }

 operation ApplyOneOracle(control : Qubit, target : Qubit) : Unit {
 X(target);
 }

 operation ApplyIdOracle(control : Qubit, target : Qubit) : Unit {
 CNOT(control, target);
 }

 operation ApplyNotOracle(control : Qubit, target : Qubit) : Unit {
 X(control);
 CNOT(control, target);
 X(control);
 }
}

Can’t We Just Look at the Source Code?
In Oracles.qs, we wrote the source code out for each of the four single-qubit
oracles ApplyZeroOracle, ApplyOneOracle, ApplyIdOracle, and ApplyNotOracle.
Looking at that source code, we can tell whether each is constant or balanced without having to call it at
all, so why should we worry with the Deutsch–Jozsa algorithm? Thinking from Nimue’s perspective, she
doesn’t necessarily have the source code that Merlin uses to apply operations to her qubits. Even if she
does, Merlin’s ways are inscrutable, such that she may not be able to easily predict what Merlin does
even given the source code that he uses.

Practically speaking, while it’s hard to obfuscate a two-qubit oracle all that much, the Deutsch–Jozsa
algorithm demonstrates a technique that is useful more generally. For example, we might have access to
the source code for some operation, but it is a mathematically or computationally difficult problem to
extract the answer to a question about that operation. All cryptographic hash functions have this property
by design, whether they’re used to ensure that a file has been downloaded correctly, an application has
been signed by a developer, or as a part of growing a blockchain through mining for collisions.

170

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

We’ll see an example in Chapter 10 where we can use techniques such as those developed in the
Deutsch–Jozsa algorithm to more quickly ask questions about such functions.

With these oracles now implemented in Q#, we can write the entirety of the Deutsch–
Jozsa algorithm (as well Nimue’s strategy for Kingmaker)!

Figure 7.12. Steps to the Deutsch–Jozsa Algorithm.

Listing 7.4. Algorithm.qs: Q# operation implementing the Deutsch–Jozsa algorithm

operation CheckIfOracleIsBalanced(
 oracle : ((Qubit, Qubit) => Unit)
) : Bool {
 using ((control, target) = (Qubit(), Qubit())) { ❶
 H(control); ❷
 X(target);
 H(target);

 oracle(control, target); ❸

 H(target); ❹
 X(target);

 return MResetX(control) == One; ❺
 }
}

171

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❶This using statement asks the target machine to give us two qubits, control and target, each starting in
the |0⟩ state.

❷These lines prepare the input state |+−⟩ = (|00⟩ − |01⟩ + |10⟩ − |11⟩) / 2 on control and target, as shown

in Step ① of .
❸Here, we call the oracle that we were given as the input argument oracle. Note that the oracle is only

called once!
❹We know that the target qubit is still in |−⟩, so we can undo the X(target); H(target); sequence of

operations above to reset the target qubit.
❺Finally, we can measure whether the control qubit is in |+⟩ or |−⟩, corresponding to Zero or One results

in the 𝑋𝑋 basis. Similarly to the MResetZ operation provided by the Q# standard libraries, the MResetX
operation performs the desired 𝑋𝑋-basis measurement and resets the measured qubit to |0⟩.

Now as we want to make sure our implementation is good, so let’s test it!

Measurement results in Q#
We’ve now seen both the MResetX and MResetZ operations in Q#, which measure and reset a qubit
in the 𝑋𝑋 and 𝑍𝑍 bases, respectively. Both of these operations return a Result value, which seems a little
bit confusing at first. After all, an 𝑋𝑋 basis measurement tells us whether we were in the |+⟩ or the |−⟩
state, so why does Q# use the labels Zero and One?
Table 7.9. Conventions used for 𝑋𝑋- and 𝑍𝑍-basis measurement results in Q#.

Result value 𝑋𝑋 basis 𝑍𝑍 basis

Zero ⟨+| ⟨0|

One ⟨−| ⟨1|

We’ll see in more detail on this later, but the short version is that a value of type Result tells us
how many about how many phases of (-1) are applied to a state by different instructions. For example,
𝑍𝑍|1⟩ = −|1⟩ = (−1)¹ |1⟩, while 𝑋𝑋|−⟩ = (−1)¹ |−⟩. Since in both cases, we raise (−1) to the power of 1, |1⟩
and |−⟩ are assigned to the One result when we measure in the 𝑍𝑍 and 𝑋𝑋 bases, respectively. Similarly,
since 𝑍𝑍|0⟩ = (−1)⁰|0⟩, we assign |0⟩ to the Zero result when we measure 𝑍𝑍.

We said earlier that Nimue would like to learn as little as she can about the affairs of
humankind. Thankfully, she only asks Merlin to do something with her qubits once,
where we call oracle(control, target). Nimue only gets one classical bit of
information out, from the call to MResetX, which isn’t enough for her to tell the
difference between the id strategy (Merlin selects Arthur to mentor as king) and
the not strategy (Merlin selects Mordred to mentor).

To make sure that she can still learn what she actually cares about, whether Merlin’s
strategy is constant or balanced, we can use the Fact function provided with the Q#
standard libraries to test that our implementation works. Fact takes two boolean
variables as the first two arguments, checks to see if they are equal, and if not issues a
message.

172

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

TIP Later, we’ll see how to use these assertions to write unit tests for quantum libraries.

Listing 7.5. Algorithm.qs: Q# operation testing that the Deutsch–Jozsa algorithm works

as intended

operation RunDeutschJozsaAlgorithm() : Unit {
 Fact(not CheckIfOracleIsBalanced(ApplyZeroOracle), "Test failed for zero
oracle."); ❶
 Fact(not CheckIfOracleIsBalanced(ApplyOneOracle), "Test failed for one
oracle."); ❷
 Fact(CheckIfOracleIsBalanced(ApplyIdOracle), "Test failed for id oracle.");
 Fact(CheckIfOracleIsBalanced(ApplyNotOracle), "Test failed for not oracle.");

 Message("All tests passed!"); ❸
}

❶This line runs the Deutsch–Jozsa algorithm for the case in which Merlin uses the zero strategy. We
pass the oracle for zero as the ApplyZeroOracle operation that we wrote above. Since zero isn’t a
balanced function, we expect CheckIfOracleIsBalanced(ApplyZeroOracle) to return false as its output;
this expectation can be checked using the Fact function.

❷We can do exactly the same thing for the one strategy, this time calling
CheckIfOracleIsBalanced(ApplyOneOracle) instead.

❸If all four assertions passed, then we can be sure that our program for the Deutsch–Jozsa algorithm
works regardless of which strategy Merlin uses.

If we run this using the %simulate magic command, we can confirm that by using the
Deutsch–Jozsa algorithm, Nimue is able to learn exactly what she wanted to learn
about Merlin’s strategy.

In []: %simulate RunDeutschJozsaAlgorithm
All tests passed!

7.6 EXPLORING THE DEUTSCH–JOZSA ALGORITHM BY EXAMPLE
Now that we’ve implemented the Deutsch–Jozsa algorithm for ourselves, it’s helpful to
take a step back and see how it works, as we’ll learn some valuable quantum
programming techniques along the way.

Trying things out!
In Chapters 2 and 4, we learned to use NumPy and QuTiP to simulate how the states of qubits are
transformed when we send instructions to a quantum computer. We effectively used these packages to
do math for us to find out what would happen to our quantum states. This is like the "make the computer
do the math" approach in .
Figure 7.13. Three different approaches of learning how a quantum program or algorithm works.

173

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Now that we’re programming larger algorithms in Q#, we can use both the what we learned before
and a bit of the right box (push all the buttons!) to help us predict what a particular operation will do.

These three approaches when used together are powerful problem solving tools when learning
quantum programing! If you get stuck using one approach you can always try another to see if that helps.

Recall the four steps to Deutsch–Jozsa algorithm in as we just programmed in the
previous section.

Listing 7.6. The four steps in the Deutsch–Jozsa algorithm.

// 1. Prepare the input state |+-⟩.
H(control);
X(target);
H(target);

// 2. Apply the oracle.
oracle(control, target);

// 3. Undo the preparation on the target qubit.
H(target);
X(target);

// 4. Finally, we measure in the X basis.
set result = MResetX(control);

The key to understanding how the Deutsch–Jozsa algorithm works is understanding the
step where we call the oracle, oracle(control, target). Before we can get to that,
though, we need to understand step 1, where we prepare our input to oracle.

7.7 STEP 1. PREPARING THE INPUT STATE FOR DEUTSCH–JOZSA
Let’s use Python to try and understand what is happening when we prepare our |+−⟩
state. The operations we used to prep the input state in Q# were:

174

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 7.7. State prep for the Deutsch–Jozsa algorithm.

H(control);
X(target);
H(target);

Each of the operations applied above are single qubit gates, so we can consider what
happens to each qubit independently. Let’s look at what happens to the control qubit
after the Hadamard operation.

Listing 7.8. Using QuTiP to model the control qubit state preparation.

>>> import qutip as qt
>>> H = qt.hadamard_transform() ❶
>>> H
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =
[[0.70710678 0.70710678] ❷
 [0.70710678 -0.70710678]]
>>> control_state = H * qt.basis(2, 0) ❸
>>> control_state
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket ❹
Qobj data =
[[0.70710678]
 [0.70710678]]

❶While H in Q# is an instruction, hadamard_transform in QuTiP gives us a unitary matrix that we can use
to simulate how the H instruction transforms states.

❷1 / √2 ≈ 0.707, so this output tells us that 𝐻𝐻 = (¹₁ ¹₋₁) / √2.

❸In QuTiP, we can get the vector for the |0⟩ state by calling basis(2, 0). The 2 tells QuTiP we want a

qubit (necessary dimension of |0⟩), while the 0 tells us we want the state to have the value |0⟩. Since
|+⟩ = 𝐻𝐻|0⟩, this sets control_state to be |+⟩.

❹Using that 1 / √2 ≈ 0.707, we read this as telling us that |+⟩ = (|0⟩ + |1⟩) / √2.

So that’s a pretty easy one, the control qubit is now in the |+⟩ state. Now let’s look at
preparing the target qubit in .

Listing 7.9. Using QuTiP to model the target qubit state preparation.

>>> target_state = H * (qt.sigmax() * qt.basis(2, 0)) ❶
>>> target_state
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket ❷
Qobj data =
[[0.70710678]
 [-0.70710678]]

❶We repeat the same H operation as before, but this time on 𝑋𝑋|0⟩ = |1⟩.
❷QuTiP tells us that |−⟩ = (|0⟩ − |1⟩) / √2. That is, the same as |+⟩, but with the sign of |1⟩ flipped.

Now that we have see how we prepare each qubit, let’s have QuTiP help us write the

175

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

state of our input register.

Listing 7.10. Using QuTiP to model the combined input state.

>>> register_state = qt.tensor(control_state, target_state) ❶
>>> register_state
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket ❷
Qobj data =
[[0.5]
 [-0.5]
 [0.5]
 [-0.5]]

❶As we saw in Chapter 5, we combine the states of different qubits to get the state of an entire register of
qubits using the tensor function.

❷QuTiP tells us that |+⟩ ⊗ |−⟩ = |+−⟩ = (|00⟩ − |01⟩ + |10⟩ − |11⟩) / 2. That is, we have an equal
superposition over all four possible computational basis states, with a minus sign in front of
computational basis states where the target qubit is in the |1⟩ state.

NOTE As we saw in Chapter 5, when writing down the state of a multi-qubit system, tensor products
can get a little bit verbose. Thus, we’ll often write down multi-qubit states like |0⟩ ⊗ |1⟩ by
concatenating their labels inside a single ket, as in . Similarly, |+−⟩ is the same as

.

7.8 STEP 2. APPLYING THE ORACLE
Having prepared our input, let’s get back to the core of the Deutsch–Jozsa algorithm,
where we call into our oracle .

Listing 7.11. Applying the oracle in the Deutsch–Jozsa algorithm.

oracle(control, target);

In the same way that we can understand operations like H(control) by writing down
the state of the control qubit and applying the unitary operator H to that state, we can
understand what the oracle U𝑓𝑓 does by analyzing its action on the state we pass to it.

Our quantum oracle operates on two qubits, which raises a question of how we should
interpret each of those qubits. In the original classical case, the interpretation of the
input and output classical bits from f was clear: Nimue asked a one-bit question and
got a one-bit answer. To understand what each qubit does for us, recall that we saw
that when we went to a reversible classical function that we also needed two inputs: the
first input acted like the question we asked in the irreversible case, while the second
input gave us somewhere to put the answer (see for a reminder).

176

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 7.14. Constructing reversible classical functions and unitary matrices from irreversible
classical functions

We can roughly think of the oracle in the same way: the first qubit (control in the
snippet above) represents our question, while the second qubit (target) gives us
somewhere for Merlin to apply his answer. This interpretation makes sense
when control starts off in either the |0⟩ or |1⟩ state, but how can we interpret the case
above where we pass qubits in the |+−⟩ state to the oracle? In this case, our control
qubit starts off in the |\+⟩ state, but 𝑓𝑓(+) doesn’t make any sense. Since 𝑓𝑓 is a classical
function, its input has to be either 0 or 1… we can’t pass + to the classical function 𝑓𝑓. It
may seem like we would be at a dead end, but thankfully there’s a way to figure it out.

Quantum mechanics is linear, which means we can always understand what a quantum
operation does by breaking it down into its action on a representative set of states.

TIP As we saw in Chapter 2, a set of states that can be used this way is called a basis.

To understand what our oracle does when the control qubit is in the |+⟩ state, we can
use the fact that to break the oracle’s action down into what it does to
|0⟩ plus its action on |1⟩, then sum both parts back together (making sure to divide by
√2 at the end). This helps because instead being confused trying to understand what
"𝑓𝑓(+)" means, we can reduce the action of U𝑓𝑓 to cases we do know how to compute like
𝑓𝑓(0) and 𝑓𝑓(1)!

177

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

COMPUTATIONAL
BASIS STATES

Expanding the action of a quantum operation in terms of how it acts on |0⟩ and |1⟩ is
very common in quantum programming. Given how useful this is, we often give a special
name to these two input states, and call |0⟩ and |1⟩ the computational basis to set it
apart from other bases we might use, like |+⟩ and |−⟩.

Using linearity to understand quantum operations isn’t limited to a single qubit, as we’ll
see in the rest of the chapter. For two qubits, for instance, the computational basis for two
qubits then consists of the states |00⟩, |01⟩, |10⟩, and |11⟩.

If we have even more (say, five) qubits, we can write out states like |1⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗
|1⟩ ⊗ |0⟩ as strings in the same way, getting |10010⟩. We can write down the
computational basis for five qubits in the same way as {|00000⟩, |00001⟩, |00010⟩, …,
|11110⟩, |11111⟩}.

More generally, if we have 𝑛𝑛 qubits, then the computational basis consists of all strings of
𝑛𝑛 classical bits, each as the label of a ket. Put differently, the computational basis for a
multiple qubit system is made up of all tensor products of |0⟩ and |1⟩; that is, all states
labelled by a string of classical bits.

With this approach of breaking down how the oracle works, let’s look at some
examples of the oracles we have implemented earlier.

EXAMPLE 1: ID ORACLE

Suppose we were given an oracle that implemented the strategy where Merlin chooses
Arthur as king. Recall the classical one bit function that represents this strategy is id.

Table 7.10. Representing one-bit functions as two-qubit oracles

Function Name Function Output of Oracle Q# Operation

id 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 |𝑥𝑥⟩|𝑦𝑦 ⊕ 𝑥𝑥⟩ CNOT(control, target)

From , we know that this means that U𝑓𝑓 is implemented by the CNOT instruction, so
let’s see what that does to register_state.

TIP Recall that the controlled NOT instruction flips its second qubit if the first qubit is in |1⟩.

Listing 7.12. Using QuTiP to compute how the id oracle transforms its input state.

>>> cnot = qt.cnot(2, 0, 1) ❶
>>> cnot
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data = ❷
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 0. 1.] ❸
 [0. 0. 1. 0.]]
>>> register_state = cnot * register_state
>>> register_state
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket ❹
Qobj data =

178

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

[[0.5]
 [-0.5]
 [-0.5]
 [0.5]]

❶We can ask QuTiP for a matrix that will let us simulate the CNOT instruction by using the cnot function.
Here, the 2 indicates that we want to simulate CNOT on a two-qubit register, the 0 indicates that the
0th qubit is our control, and the 1 indicates that the 1st qubit is our target.

❷Remember that unitary operators are for quantum computing what truth tables are for classical logic.
Each row in this table tells us what happens to a computational basis state.

❸For example, this row 2 (zero-indexed), which we write as 10 in binary. Thus, this row is the vector that
we’ll get out if our input is |10⟩, and tells us that the CNOT instruction leave our qubits in |11⟩ (3 in
decimal, hence there’s a 1 in the third column).

❹QuTiP tells us that the register with our control and target qubits is now in the state (|00⟩ − |01⟩ − |10⟩ +

|11⟩) / 2.

Now that we have worked out the action of the id oracle, let’s look at what
the not oracle does to our input state.

EXAMPLE 2: THE NOT ORACLE

Let’s repeat the analysis using the not oracle, the other balanced function. The oracle
representing Merlin choosing Mordred is implemented with a series
of X and CNOT operations as in .

Table 7.11. Representing the one-bit function not as a two-qubit oracle.

Function
Name Function Output of

Oracle Q# Operation

not 𝑓𝑓(𝑥𝑥) =
¬𝑥𝑥 |𝑥𝑥⟩|𝑦𝑦 ⊕ ¬𝑥𝑥⟩

X(control); CNOT(control,
target); X(control);

Let’s now jump to Python to see how to break down the operation of the not oracle.

Listing 7.13. Using QuTiP again, now with the not oracle.

>>> control_state = H * qt.basis(2, 0) ❶
>>> target_state = H * qt.basis(2, 1)
>>> register_state = qt.tensor(control_state, target_state)
>>> I = qt.qeye(2) ❷
>>> X = qt.sigmax()
>>> oracle = qt.tensor(X, I) * qt.cnot(2, 0, 1) * qt.tensor(X, I) ❸
>>> oracle
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data = ❹
[[0. 1. 0. 0.] ❺
 [1. 0. 0. 0.]
 [0. 0. 1. 0.] ❻
 [0. 0. 0. 1.]]

179

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

>>> register_state = oracle * register_state
>>> register_state
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket ❼
Qobj data =
[[-0.5]
 [0.5]
 [0.5]
 [-0.5]]

❶We prepare the control and target qubits in the |+−⟩ state in exactly the same way as we did before.
❷As in Chapter 4, it’s helpful to define some variables I and X as shorthand for the identity matrix

(qt.qeye) and the matrix representing the X operation, respectively.
❸This time our oracle is the not oracle, which we implement with the sequence of instructions X(control);

CNOT(control, target); X(control); as per .
❹The unitary operator for the oracle operation looks a bit different this time: it flips the target qubit when

the control qubit is a |0⟩.
❺For instance, row 0 (00 in binary) tells us that |00⟩ is transformed to |01⟩.
❻Similarly, row 2 (10 in binary) tells us that |10⟩ is transformed to |10⟩; the oracle leaves that input alone.
❼The state after applying the oracle is (−|00⟩ + |01⟩ + |10⟩ – |11⟩) / 2 = (-1)|+−⟩, precisely the same as

before, aside from a global phase of −1.

Looking at these two examples, we got the exact same output state, except the signs are
all flipped. This means that if we multiplied on of the state vectors by a -1, they would
both be the same. Multiplying an entire vector by a constant can be referred to as
adding a global phase. Since global phases cannot be observed through any
measurements, this means that we got exactly the same information out from applying
the id and not oracles. We learned nothing about whether we applied id or not, and if
we were able to compare the vectors right here we would only know that we applied a
balanced oracle.

Now let’s see for comparison what the register looks like after we apply an oracle
representing a constant function.

EXAMPLE 3: THE ZERO ORACLE

Once more with feeling, let’s use Python to break down how an oracle representing the
constant function zero works. We want to to this with the zero oracle here so that we
can show what goes differently when we apply an oracle representing a constant
function. This oracle is especially easy to apply, since it consists of applying no
instructions at all.

Table 7.12. Representing the one-bit function zero as two-qubit oracles

Function Name Function Output of Oracle Q# Operation

zero 𝑓𝑓(𝑥𝑥) = 0 |𝑥𝑥⟩|𝑦𝑦 ⊕ 0⟩ = |𝑥𝑥⟩|𝑦𝑦⟩ (empty)

180

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 7.14. Computing how the zero oracle transforms its input state.

>>> control_state = H * qt.basis(2, 0)
>>> target_state = H * qt.basis(2, 1)
>>> register_state = qt.tensor(control_state, target_state)
>>> X = qt.sigmax()
>>> oracle = qt.tensor(I, I)
>>> oracle
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[1. 0. 0. 0.] ❶
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]]
>>> register_state = oracle * register_state
>>> register_state
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket ❷
Qobj data =
[[0.5]
 [-0.5]
 [0.5]
 [-0.5]]

❶Doing nothing on the control qubit and nothing on the target qubit can be simulated by doing nothing on
the entire register; thus, we get out the two-qubit identity matrix 𝟙𝟙 ⊗ 𝟙𝟙 for the zero oracle.

❷Here, we see our first difference from the previous listing. Before, we used the id oracle and got that the
output state was (|00⟩ − |01⟩ − |10⟩ + |11⟩) / 2. Using the zero oracle, we see that the output state is

(|00⟩ − |01⟩ + |10⟩ − |11⟩) / 2. These two states differ by more than a global phase, as there’s no
scalar that we can multiply by to turn the id output into the zero output.

Here now where the minus signs are on our state vector are different. There is no
number we can multiply the entire vector by to change it into either [[0.5],[-
0.5],[-0.5],[0.5]] or [[-0.5],[0.5],[0.5],[-0.5]]. To see how this
difference leads to us being able to tell for sure whether we had a balanced or constant
oracle, let’s continue to the next step of the Deutsch–Jozsa algorithm.

Exercise: Try out the one oracle
See if you can use the python tricks we have used above to work out how the state of
the target and control qubits change when the one oracle is applied.

7.9 STEPS 3 AND 4. UNDO THE PREPARATION ON THE TARGET
QUBIT AND MEASURE.
At this point, it is much easier to make sense of the output if we undo the steps we used
to prepare |+−⟩, so that everything is back in the computational basis (|00⟩ … |11⟩). To
review, has the state vectors for all four oracles (three of which we worked out above).

181

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Table 7.13. The vectors representing the register after applying the various oracles

Function Name State of the register after applying the oracle

zero [[0.5], [−0.5], [0.5], [−0.5]]

one [[−0.5], [0.5], [−0.5], [0.5]]

id [[0.5], [−0.5], [−0.5], [0.5]]

not [[−0.5], [0.5], [0.5], [−0.5]]

Now we want to undo our preparation steps on the target qubit.

Why do we do "unprepare" the target qubit?
Recall from Chapter 6 that we need to reset our qubits to the |0⟩ state before returning them to the

target machine. At this point, our target qubit is always in the |−⟩ state, no matter which oracle we use.
This means that after applying the oracle, we know exactly how to put it back to |0⟩. As we saw in
Chapter 6, this helps us avoid an additional measurement, which can be expensive on some quantum
devices.

Note that we can safely return the target qubit to |−⟩ without affecting the results when we measure
the control qubit, as the oracle call is the only two-qubit operation in the Deutsch–Jozsa algorithm. As we
saw in Chapter 4, doing single-qubit operations on one qubit can’t on their own affect results on another
qubit; otherwise, we would be able to send information faster than light!

Let’s try this out by undoing the preparation on the register from the oracle
representing the id function.

Listing 7.15. Putting the oracle output back in the computational basis for the oracle

representing id.

>>> I = qt.qeye(2) ❶
>>> register_state_id = qt.cnot(2,0,1) * ❷
... (qt.tensor(H * qt.basis(2, 0), H * (qt.sigmax() * qt.basis(2, 0))))
...
>>> register_state_id = qt.tensor(I, H) * register_state_id ❸
>>> register_state_id
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket ❹
Qobj data =
[[0.]
 [0.70710678]
 [0.]
 [-0.70710678]]
>>> register_state_id = qt.tensor(I, qt.sigmax()) * register_state_id ❺
>>> register_state_id
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket ❻
Qobj data =
[[0.70710678]
 [0.]
 [-0.70710678]
 [0.]]
>>> qt.tensor(H * qt.basis(2, 1), qt.basis(2, 0)) == register_state_id ❼
True

182

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

>>> register_state_id = qt.tensor(H, I) * register_state_id ❽
>>> register_state_id
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket ❾
Qobj data =
[[0.]
 [0.]
 [1.]
 [0.]]

❶It’s helpful to define a shorthand for the identity matrix 𝟙𝟙, which we use to represent what happens to a
qubit when we don’t apply any instruction to it. In QuTiP, we can get the identity matrix with the qeye
function (the name stems from that the identity matrix is often written 𝐼𝐼, which is then pronounced as
"eye").

❷Here we reproduce the register for the oracle representing the id function, just after the oracle was
applied.

❸Since we’re transforming a two-qubit state now, we need to say what happens to each qubit to get our
matrix out. We can do this using the tensor function again.

❹The output’s now much easier to read: the register is in the state (|01⟩ − |11⟩) / √2.

❺In our Q# program, we used the X instruction to return the target qubit to |0⟩ before releasing it. We can
simulate that by using the 𝑋𝑋 operator, implemented by the QuTiP function sigmax().

❻Since the X instruction flips its argument, applying the 𝑋𝑋 matrix gives us the state (|00⟩ − |10⟩) / √2.

❼We can use QuTiP to confirm that another way of writing (|00⟩ − |10⟩) / √2 is (𝐻𝐻|1⟩) ⊗ |0⟩ = |−0⟩.
❽In our Q# program, we used the MResetX operation from the Q# standard libraries to measure in the 𝑋𝑋

basis. An 𝑋𝑋-basis measurement returns Zero when its argument is in |+⟩ and returns a One result
when its argument is in |−⟩. Thus, we can simulate the MResetX operation by applying 𝐻𝐻 and then

measuring in the 𝑍𝑍-basis.
❾Doing so, we read that the state of our register immediately before measuring has a 1 in row 2 (10 in

binary), so we conclude that the state of our register is |10⟩. Measuring the first qubit thus will give us
a One with certainty.

Looking at the final vector in , we can see that that represents the state |10⟩. If we were
to measure the control qubit from that state, we would get the classical bit One 100% of
the time. In Algorithm.qs, we returned to the user that an oracle is balanced if we
measured One on the control qubit, so we correctly conclude that id is a balanced
oracle! The fact that we will measure One on the control bit every time is really cool.

QUANTUM
ALGORITHMS

NEED NOT
BE RANDOM

Though some quantum algorithms can be random, like the QRNG example from Chapter 2 or
Morgana’s and Lancelot’s game from Chapter 6, they don’t need to be. In fact, the Deutsch–
Jozsa algorithm is deterministic: we get the same answer every time we run it.

Table 7.14. The vectors representing the state of the register after applying the various oracles.

Function
Name

Register state just before
measurement

Result of measuring control qubit along
𝑍𝑍

183

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Function
Name

Register state just before
measurement

Result of measuring control qubit along
𝑍𝑍

zero [[1], [0], [0], [0]] Zero

one [[-1], [0], [0], [0]] Zero

id [[0], [0], [1], [0]] One

not [[0], [0], [-1], [0]] One

From these examples, we have made some important observations:

• Applying an oracle to a control and target qubit can affect the state of the control
qubit.

7.10 REFLECTING BACK
Phew, we’ve taken a couple pretty big steps here!

• We’ve used classical reversible functions to model Merlin’s strategy in a way that
we can write it down as a quantum oracle.

• We’ve used Q# and the Quantum Development Kit to implement the Deutsch–
Jozsa algorithm and test that we can learn Merlin’s strategy with a single oracle
call, and

• We’ve used Python and QuTiP to model the Deutsch–Jozsa algorithm and see
what happens to Nimue’s qubits when she gives them to Merlin.

At this point, it’s helpful to reflect back on what we learned from taking a splash in
Nimue’s quantum lake, as the techniques we used in this Chapter will be helpful
throughout the rest of the book.

7.11 SHOES AND SOCKS: APPLYING AND UNDOING QUANTUM
OPERATIONS
The first pattern that’s helpful to reflect on is one that you might have noticed
in Algorithm.qs. Let’s take another look at the order in which operations were
applied to the target qubit:

Listing 7.16. A sequence of instructions from the Deutsch–Jozsa algorithm for

the target qubit.

// ...
X(target);
H(target);
oracle(control, target);
H(target);
X(target);
// ...

184

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

One way to think of this sequence is that the X(target); H(target); instructions
prepare target in the |−⟩ state, while the H(target); X(target); instructions
"unprepare" |−⟩, returning target back to the |0⟩ state. We have to reverse the order
due to what’s often called the "shoes and socks" principle. If you want to put on shoes
and socks, you’ll have better results if you put on your socks first, but if you want to
take them off, you need to take your shoes off first.

Figure 7.15. You can’t take your socks off before your shoes.

The Q# language makes it easier to do shoes-and-socks kind of transformations of your
code, using a feature called functors. Functors allow us to easily describe new variants
of an operation that we have already defined. Let’s jump right into an example and
introduce a new operation, PrepareTargetQubit, that encapsulates the X(target);
H(target); sequence:

Listing 7.17. Separating out the state preparation from .

operation PrepareTargetQubit(target : Qubit) : Unit is Adj { ❶
 X(target);
 H(target);
}

❶By writing is Adj as a part of the signature, we tell the Q# compiler to automatically compute the inverse
operation — that is, the adjoint — of this operation.

We can then call the inverse operation generated by the compiler using Adjoint, one
of the two functors provided by Q# (we’ll see the other one in Chapter 8):

Listing 7.18. Using the Adjoint keyword to apply instructions following shoes-and-socks.

PrepareTargetQubit(target);
oracle(control, target);
Adjoint PrepareTargetQubit(target); ❶

185

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❶Adjoint PrepareTargetQubit applies the Adjoint functor to PrepareTargetQubit, giving back an operation
that "undoes" PrepareTargetQubit. Following shoes-and-socks sorts of thinking, this new operation
works by first calling Adjoint H(target); and then Adjoint X(target);.

SELF-
ADJOINT

OPERATIONS

In this case, X and Adjoint X are the same operation, since flipping a bit and then flipping it
again always gets you back to where you started. Put differently, X undoes X. Similarly, Adjoint
H is the same as H, so the above snippet gives us the sequence H(target); X(target);. We say
that the instructions X and H are self-adjoint.

Not all operations are their own adjoints, though! For instance, Adjoint Rz(theta, _) is the
same operation as Rz(-theta, _).

In more practical terms, the Adjoint functor on the operation 𝑈𝑈 is the same as the
operation that reverses or undoes the effects of 𝑈𝑈. The name "adjoint" refers to that the
conjugate transpose 𝑈𝑈⁺ of a unitary matrix 𝑈𝑈 is called the adjoint of 𝑈𝑈.
The Adjoint keyword in Q# guarantees that if an operation U is described by the
unitary 𝑈𝑈, then if Adjoint U exists, it is described by 𝑈𝑈⁺.

The pattern of performing an instruction is so commonly used that the Q# standard
libraries provides the ApplyWith operation to express this pattern of doing and then
undoing an operation.

THE Q#
STANDARD

LIBRARY

The ApplyWith operation is provided by the Microsoft.Quantum.Canon namespace in the Q#
standard library. Much like the standard library in other languages, the Q# standard library
provides many of the basic tools you’ll need for writing programs in Q#. As you go through the
rest of the book, you’ll see lots of ways that the Q# standard library can help make your life as
a quantum developer easier.

Using ApplyWith and partial application, we can rewrite the using block
of CheckIfOracleIsBalanced in a compact way:

Listing 7.19. Using ApplyWith and partial application to help with shoes-and-socks

ordering.

H(control);
ApplyWith(PrepareTargetQubit, oracle(control, _), target);
set result = MResetX(control);

The ApplyWith operation in the sample above will automatically apply the adjoint
of PrepareTargetQubit after oracle(control, _) is done. Note that the _ is used
for partially applying the oracle to the control qubit.

Let’s expand step by step to see how it all works. The call to ApplyWith applies its
first argument, then applies its second argument, then the adjoint of its first argument
all to the qubit supplied in the last argument:

186

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 7.20. Expanding ApplyWith in .

H(control);
PrepareTargetQubit(target);
(oracle(control, _))(target);
Adjoint PrepareTargetQubit(target);
set result = MResetX(control);

The partial application on line 3 can then be replaced by substituting target in for
the _:

Listing 7.21. Resolving partial application in .

H(control);
PrepareTargetQubit(target);
oracle(control, target);
Adjoint PrepareTargetQubit(target);
set result = MResetX(control);

Using operations like ApplyWith is helpful for reusing common patterns in quantum
programming, and in particular for making sure we don’t forget to take an Adjoint in
a large quantum program.

Q# also provides another way of representing the shoes-and-socks pattern using blocks
of statements instead of passing around operations. For example, you could also write
using the within and apply keywords instead, as we’ve done in .

Listing 7.22. Using within and apply to help with shoes-and-socks ordering.

H(control);
within {
 PrepareTargetQubit(target);
} apply {
 oracle(control, target);
}
set result = MResetX(control);

Both forms can be useful in different contexts, so feel free to use whichever works best
for you!

7.12 USING HADAMARD INSTRUCTIONS TO FLIP CONTROL AND
TARGET
One way that we can use the "shoes-and-socks" kinds of thinking from the previous
section is to change which qubits play the role of a control and a target in instructions
like CNOT.

In understanding how this works, it’s important to keep in mind with quantum
computing is that quantum instructions transform the entire state of the registers that
they act upon. In cases like the Deutsch–Jozsa algorithm, this means that the control
qubit can be affected by applying gates to the control and target qubits together — not

187

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

just the target qubit. This is an example of a more general pattern, that the control and
target of a CNOT operation swap roles when we apply a CNOT instruction in the 𝑋𝑋 basis
instead of the 𝑍𝑍 (computational) basis.

To see this, let’s look at the unitary operator (the quantum analogue to classical truth
tables) for what happens if we use H instructions to transform to the 𝑋𝑋 basis, apply
a CNOT instruction, and then use more H instructions to go back to the 𝑍𝑍 basis:

Listing 7.23. Using QuTiP to check that H flips between the control and target of

a CNOT.

>>> import qutip as qt
>>> H = qt.hadamard_transform()
>>> HH = qt.tensor(H, H)
>>> HH ❶
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data = ❷
[[0.5 0.5 0.5 0.5]
 [0.5 -0.5 0.5 -0.5]
 [0.5 0.5 -0.5 -0.5]
 [0.5 -0.5 -0.5 0.5]]
>>> HH * qt.cnot(2, 0, 1) * HH ❸
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data = ❹
[[1. 0. 0. 0.]
 [0. 0. 0. 1.]
 [0. 0. 1. 0.]
 [0. 1. 0. 0.]]
>>> qt.cnot(2, 1, 0) ❺
Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True
Qobj data =
[[1. 0. 0. 0.]
 [0. 0. 0. 1.] ❻
 [0. 0. 1. 0.]
 [0. 1. 0. 0.]]

❶It’s helpful to define a shorthand for the unitary operator 𝐻𝐻 ⊗ 𝐻𝐻 that simulates the sequence of
instructions H(control); H(target);.

❷Looking at the unitary operator 𝐻𝐻 ⊗ 𝐻𝐻, we see that |00⟩ is transformed to (|00⟩ + |01⟩ + |10⟩ + |11⟩) / 2,
a uniform superposition over all four computational basis states.

❸This line gives us the unitary operator representing H(control); H(target); CNOT(control, target);
H(control); H(target);. We can think of this sequence of instructions as applying a CNOT in the 𝑋𝑋 basis

instead of the 𝑍𝑍 basis.
❹The unitary operator for this sequence looks a bit like CNOT, but with some of the rows flipped

around… what happened?
❺To try and figure out what applying H instructions to each qubit did to the CNOT instruction, let’s look at

the unitary operator for CNOT(target, control).
❻Reversing the role of the control and target qubits in a call to the CNOT instruction gives us exactly the

same unitary operator as using H instructions to apply a CNOT instruction in the 𝑋𝑋

188

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

basis.Figure 7.16. Changing which qubits are the "control" and "target" of a CNOT instruction using
Hadamard instructions.

From the above calculation, we can conclude that CNOT(target, control) does
precisely the same thing as H(control); H(target); CNOT(control, target);
H(control); H(target);. In the same way that the H flips the role of the 𝑋𝑋 and 𝑍𝑍
bases, H instructions can flip between using a qubit as a control and as a target.

7.13 PHASE KICKBACK
With these techniques in mind, we’re now equipped to explore what makes the
Deutsch–Jozsa algorithm do its thing, namely a quantum programming technique
called phase kickback. This technique is what let us write
the CheckIfOracleIsBalanced operation so that it works for several different
oracles, while revealing only the one bit we wanted to know (whether Merlin was
acting as a good mentor or not).

To see how the the Deutsch–Jozsa algorithm uses phase kickback to work in general,
let’s go back to our three ways of thinking, and use math to predict what happens when
we call any oracle. Recall that we defined the oracle U𝑓𝑓 that we constructed from each
classical function 𝑓𝑓 such that, for all classical bits 𝑥𝑥 and 𝑦𝑦, .

TIP Above, we used 𝑥𝑥 and 𝑦𝑦 to represent classical bits that label two-qubit states; this is another
example of using the computational basis to reason about how quantum programs behave.

Let’s start the same way as we did in our QuTiP programs above, by expanding the
input state in the computational basis. Starting by expanding the state of the
control qubit, we have that |+−⟩ = |+⟩ ⊗ |−⟩ = (|0⟩ + |1⟩) / √2 ⊗ |−⟩ = (|0−⟩ + |1−⟩) / √2.
As before, we can check our math using QuTiP (see).

189

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 7.24. Using QuTiP to check that (|0−⟩ + |1−⟩) / √2 = |+−⟩.

>>> import qutip as qt
>>> from numpy import sqrt
>>> H = qt.hadamard_transform()
>>> ket_0 = qt.basis(2, 0) ❶
>>> ket_1 = qt.basis(2, 1)
>>> ket_plus = H * ket_0
>>> ket_minus = H * ket_1
>>> qt.tensor(ket_plus, ket_minus)
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[0.5]
 [-0.5]
 [0.5]
 [-0.5]]
>>> (
... qt.tensor(ket_0, ket_minus) +
... qt.tensor(ket_1, ket_minus)
...) / sqrt(2)
Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket
Qobj data =
[[0.5] ❷
 [-0.5]
 [0.5]
 [-0.5]]

❶We’ll start by writing out some useful shorthand notation.

❷Both vectors are the same, telling us that (|0−⟩ + |1−⟩) / √2 is another way of writing out |+−⟩.

Next, as we saw in Chapter 2, we can use linearity to predict how U𝑓𝑓 transforms this
input state.

THE
MATRIX

REVISITED

We’ve also implicitly used linearity earlier in this section as well, when we used matrices to
model how the Deutsch–Jozsa algorithm works. As described in Chapter 2, matrices are one
way of writing down linear functions.

Since U𝑓𝑓 is a unitary matrix, we know that for any states |ψ⟩ and |φ⟩, and
for any numbers α and β, . Using this property with
the computational basis, we have that in the same way that |−⟩ and (|0−⟩ + |1−⟩) / √2 are
the same state, and are the also same state.

190

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

TIP Using our shorthand for multi-qubit states, |+−⟩ = |+⟩ ⊗ |−⟩, |0−⟩ = |0⟩ ⊗ |−⟩, and |1−⟩ = |1⟩
⊗ |−⟩.

Figure 7.17. Applying linearity to understand how our oracle transforms the input state.

Written like this, it’s not immediately clear what advantage we’ve obtained by
applying U𝑓𝑓 to |0−⟩ and |1−⟩. Let’s look at how the oracle operation applies to the first
term by factoring out the control (first) qubit, so that we can consider the effect on the
target qubit.

Doing so, we’ll once again make use of linearity to understand how U𝑓𝑓 works by
passing one state at a time to our oracle. As we learned in Chapter 2, linearity is a very
powerful tool that lets us break down even quite complicated quantum algorithms into
pieces that we can understand and analyze more easily. In this case, we can understand
how U𝑓𝑓 acts on |0−⟩ by using linearity (that is, by breaking |0−⟩ down into a
superposition between |00⟩ and |01⟩):

For instance, if we’re considering the zero function, then 𝑓𝑓(0) = 0.

191

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Thus, and , so .

On the other hand, if f(0) = 1, then . That
is, U𝑓𝑓 flips the sign of |0−⟩.

TIP
 can also be written as −|−⟩, or as 𝑋𝑋|−⟩.

We can note then that U𝑓𝑓 either rotates the target qubit by X or not depending on the
value of f(0):

We can use the exact same argument that we used above to understand what U𝑓𝑓 does to
|0−⟩ to understand what U𝑓𝑓 does in the case the that the control qubit is in the |1⟩ state
instead. Doing so, we get a phase of instead of , so
that .

Using linearity again to combine the terms for the two states of the control qubit, we
now know how U𝑓𝑓 transforms the state of both qubits when the control qubit is in :

The last step is to note that, as we saw in Chapter 4, we cannot observe global phases.
Thus, we can factor out to express the output state in terms of , the
question we were interested in to start, as shown in .

Figure 7.18. Working out the last couple steps to the Deutsch–Jozsa algorithm

If (constant), then the output state is |+−⟩, but

192

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

if (balanced), then the output state is |−−⟩. With one call to U𝑓𝑓, we learn
whether f was constant or balanced even though we do not learn what f(x) is for any
particular input x.

One way to think of what happened when we applied U𝑓𝑓 with the input qubit in the |+⟩
state is that the state of the input qubit represents the question we are asking about f. If
we ask the question , we get the answer f (0), while if we ask , we get the answer f
(1). The question |+⟩ then tells us about without telling us about either f
(0) or f (1) alone.

When we ask questions in superposition like this, however, the role of "input" and
"output" isn’t as immediately clear as it is classically. In particular,
the and inputs both cause the output qubit to flip, while the input causes
the input qubit to flip, provided we start the output qubit in state. In general, two-
qubit operations like U𝑓𝑓 transform the entire space of the qubits that it acts upon — our
division into inputs and outputs is one of how we interpret the action of U𝑓𝑓.

PHASE
KICKBACK

The fact that the state of the input qubit changed based on transformations defined on the
output qubit is an example of a quantum effect known as phase kickback. In the next two
chapters, we’ll leverage phase kickback in order to explore new algorithms, such as those used
in quantum sensing and quantum chemistry simulations.

Deep Dive: Extending Deutsch–Jozsa
While we only considered functions with one bit inputs here, the Deutsch–Jozsa algorithm will only ever
need one query for any sized input/output of our function!

To encode a two-qubit function 𝑓𝑓(𝑥𝑥₀, 𝑥𝑥₁), we can introduce a three-qubit oracle U𝑓𝑓| 𝑥𝑥₀ 𝑥𝑥₁y⟩= | 𝑥𝑥₀
𝑥𝑥₁⟩⊗𝑓𝑓(𝑥𝑥₀, 𝑥𝑥₁)⊕y. For example, consider 𝑓𝑓(𝑥𝑥₀, 𝑥𝑥₁) = 𝑥𝑥₀ ⊕ 𝑥𝑥₁. This function is balanced since 𝑓𝑓(0, 0) =
𝑓𝑓(1, 1) = 0 but 𝑓𝑓(0, 1) = 𝑓𝑓(1, 0) = 1. When we apply U𝑓𝑓 to the three-qubit state |+−⟩ = (|00⟩ + |01⟩ +
|10⟩ + |11⟩) ⊗ |−⟩, we get (|00⟩ – |01⟩ – |10⟩ + |11⟩) ⊗ |−⟩ = |−−−⟩. Using an 𝑋𝑋-basis
measurement, we can tell this apart from a constant function like 𝑓𝑓(𝑥𝑥₀, 𝑥𝑥₁) = 0, which will give us an
output of |+−⟩.

As long as we’re promised that 𝑓𝑓 is either constant or balanced, the same pattern holds no matter
how many bits 𝑓𝑓 takes as input: we can learn a single bit of data about how 𝑓𝑓 behaves with a single call
to U𝑓𝑓. Talk about O(1)! If you are not familiar with Big O notation, see Grokking Algorithms by Aditya
Bhargava.

7.14 SUMMARY
In this chapter you learned:

• to recognize quantum algorithms,
• to design oracles to represent classical functions within quantum algorithms,
• to predict the output of quantum programs by using QuTiP and linearity, and
• to recognize quantum programming techniques like phase kickback.

In the next chapter, we’ll build on these skills by looking at how the phase estimation
algorithm enables spin-off technologies like quantum sensors.

193

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

8
This chapter covers:
 • Predict how quantum operations can be used to learn useful information about unknown operations

with the quantum algorithm for phase kickback.

 • Create new types in Q#

 • Run Q# code from a Python host program

 • Recognize important properties and behaviors of eigenstates and phase

 • Program controlled quantum operations in Q#

Figure 8.1. In this Chapter, we will be covering topics in both the Q# language and techniques
for developing quantum algorithms.

Quantum Sensing: It’s Not Just A
Phase

194

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

8.1 PHASE ESTIMATION: LEVERAGING USEFUL PROPERTIES OF
QUBITS FOR MEASUREMENT
Throughout the book so far, you’ve seen that games can be a really helpful way to
learn quantum computing concepts. In the previous Chapter, for instance, Lady
Nimue’s game with Merlin let you explore your first quantum algorithm, the Deutsch–
Jozsa algorithm. In this Chapter you’ll use another game to explore how to learn the
phases of quantum states using phase kickback, the quantum development technique
used by Deutsch–Jozsa and many other quantum algorithms.

For this Chapter’s game, let’s go back and see what Lancelot has been up to. While
Nimue and Merlin were deciding the fate of kings, you find Lancelot and the court
jester Dagonet playing a guessing game where he has "borrowed" some of Nimue’s
quantum tools. Since they’ve had a while to play, however, Dagonet has gotten a bit
bored and wants to start incorporating quantum computing to make their game a bit
more interesting.

8.2 PART AND PARTIAL APPLICATION
For Dagonet’s new game, rather than having Lancelot guess a number, Dagonet has
Lancelot guess what a quantum operation does to a single qubit by letting Lancelot call
it with different inputs. Given all single qubit operations are rotations, this work really
well for the game. Dagonet can pick a rotation angle about a particular axis, then
Lancelot gets to input a number to Dagonet’s operation which will change how to scale
the rotation that Dagonet applies. What axis Dagonet picks doesn’t really matter, as the
game is to guess the rotation angle. For convenience here, Dagonet’s rotations will
always be around the 𝑍𝑍 axis. Finally, Lancelot can measure the qubit and use his
measurement to try and guess what Dagonet’s original rotation angle was. See for a
flowchart of these steps.

195

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 8.2. Playing Dagonet’s guessing game

8.2.1 Steps for Dagonet and Lancelot’s game
1. Dagonet picks a secret angle for a single qubit rotation operation
2. Dagonet prepares an operation for Lancelot to use that hides their secret angle, and

allows Lancelot one additional input of a number (we’ll call it a scale) that will get
multiplied with the secret angle to give the total rotation angle of the operation.

3. Lancelot’s best strategy for the game will be to select many scale values and
estimate the probability of measuring One for each value. To do this, he will need
to do steps a. and b. many times for each of the many scale values.

o Prepare the |+⟩ state and input the scale value in Dagonet's rotation. He uses the
|+⟩ state because he knows Dagonet is rotating around the 𝑍𝑍 axis, and for this
state these rotations will result in a local phase change he can measure.

o After preparing each |+⟩ state, Lancelot can rotate it with the secret operation,
measure the qubit, and record the measurement.

4. Lancelot will then have data relating his scale factor and the probability he
measured a 1 for that scale factor. He can then fit this data in his head, and get
Dagonet’s angle from the fitted parameters (he is the greatest knight in the land).
We can use Python to help us do the same!

Note that this is a game, as there is no way for Lancelot to directly measure this
rotation with just a single measurement. If he could, it would violate the No-Cloning
theorem, and he would transcend the laws of physics himself. As a Knight of the
Round Table, Lancelot is bound not only by duty and honor, but also by the laws of
physics, so he will have to play Dagonet’s game by the rules.

196

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

DEEP DIVE: Learning the axis with Hamiltonian learning
In this book, we’ve focused on the case where Dagonet’s rotation axis is known but we need to learn his
angle. This case corresponds to a common problem in physics, where one is tasked with learning the
Larmor precession of a qubit in a magnetic field. Learning Larmor precessions isn’t just useful in building
qubits, but allows for detecting very small magnetic fields and for building very precise sensors.

More generally, though, you can learn much more than a single rotation angle. The case in which the
axis is unknown as well is an example of a general kind of problem called Hamiltonian learning, a rich
area of research in quantum computing. In Hamiltonian learning, one reconstructs a physical model for a
qubit or register of qubits using a game very similar to the one you’ll explore throughout the rest of this
Chapter.

Let’s jump into prototyping this game in Q#! It will be helpful to have access to
different parts of the Q# standard libraries, so you can start by adding
the open statements below to the top of your Q# file, operations.qs. We show
the open statements used in this example in .

Listing 8.1. Opening Q# namespaces needed for Lancelot’s and Dagonet’s game.

namespace PhaseEstimation { ❶
 open Microsoft.Quantum.Intrinsic; ❷
 open Microsoft.Quantum.Convert as Convert; ❸
 open Microsoft.Quantum.Measurement as Meas; ❹
 open Microsoft.Quantum.Arrays as Arrays; ❺
 // ...

❶All open statements in a Q# file come right after your namespace declaration.
❷As before, opening Microsoft.Quantum.Intrinsic gives you access to all the fundamental instructions

(e.g.: R1, Rz, X, and so forth) that you can send to a quantum device.
❸You can also give an alias to namespaces when you open them, similar to how you can alias Python

packages and modules when you import them. Here, for instance, we’ve abbreviated
Microsoft.Quantum.Convert so that we can later use type conversion functions in that namespace by
prefixing them with Convert..

❹Similarly, you can make the MResetZ operation that you saw in previous Chapters available as
Meas.MResetZ to document where the operation came from.

❺The last namespace you’ll need to open in this Chapter is the Microsoft.Quantum.Arrays namespace,
which provides a number of useful functions and operations for working with arrays.

In , you can see an example of the quantum operation Dagonet would need to
implement the rotation he and Lancelot will play with.

Listing 8.2. A quantum operation Dagonet could use to setup his part of the game.

operation ApplyScaledRotation(angle : Double, ❶
 scale : Double,
 target : Qubit)
: Unit is Adj + Ctl { ❷
 R1(angle * scale, target); ❸
}

197

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❶To play the guessing game, we’ll need a quantum operation that takes two classical arguments; one
that Dagonet gets to pass, and one that Lancelot gets to pass.

❷Like other rotations, our new rotation operation returns Unit (the type of the empty tuple ()), indicating
that there’s no meaningful output from the operation. The is Adj + Ctl part of the signature
indicates that this operation supports the Adjoint functor that you first saw in Chapter 6, as well as
the Controlled functor that you’ll see later in this chapter. Don’t worry too much about this part for
now, though.

❸For the actual body of the operation, you can find the angle to rotate by by multiplying Dagonet’s
hidden angle angle with Lancelot’s scale factor scale. The rotation operation R1 here is almost
identical to the Rz operation that you’ve seen a few times so far now. The difference between R1 and
Rz will become important later, when you add the Controlled functor.

IMPORTANT When writing Q# in its own file (that is, not from a Jupyter Notebook), all operations and
functions must be defined inside of a namespace. This helps keep your code organized, and
makes it harder to conflict with what code may be written in the various libraries that you use
in your quantum application. For brevity, we often won’t show the namespace declarations, but
the full code can always be found in the samples repository for this book:
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp

Figure 8.3. Playing Dagonet’s guessing game with partial application

DEEP DIVE: Why not just measure the angle?
It may seem like Lancelot has to go through a lot of hoops to guess Dagonet’s hidden angle. After all,
what besides duty and honor is there stopping Lancelot from passing a scale of 1.0 and then just
reading out the angle from the phase applied to his qubit? It turns out that the No-Cloning Theorem
strikes again in this case, telling us that Lancelot can never learn a phase from a single measurement.

The easiest way to see this is to pretend for a moment that Lancelot could do that, then see what
goes wrong. Suppose that Dagonet hides an angle of , and that Lancelot prepares his qubit in

198

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

the state. If Lancelot then passes 1.0 as his scale, his qubit ends up in

the state. If Lancelot could directly measure the phase in order to guess Dagonet’s

angle from a single measurement, he could use that to prepare another copy of state, even
though Lancelot didn’t know the right basis to measure in. Indeed, Lancelot’s magic measurement
device should also work if Dagonet hides the angle π, in which case Lancelot winds up with a qubit in

the state.
Put differently, if Lancelot could figure out Dagonet’s angle by measuring phases directly, he could

make copies of arbitrary states of the form for any angle Φ, without having to know Φ ahead
of time. That rather badly violates the No-Cloning Theorem, so you can safely conclude that Lancelot will
need to do a bit more work to win Dagonet’s game.

Once you’ve defined an operation in this way, Dagonet can use the partial application
feature of Q# that you first saw in the previous chapter to hide his input. Then Lancelot
gets an operation that he can apply to his qubits, but not in a way he can directly see
the angle he is trying to guess.

Using ApplyScaledRotation, Dagonet can easily make an operation for Lancelot to
call. For instance, if Dagonet picks the angle 0.123, he can 'hide' it by giving Lancelot
the operation ApplyScaledRotation(0.123, _, _). As with the examples of partial
application that you’ve seen in Chapter 7, the _ indicates a slot for future inputs.

Figure 8.4. Partially applying ApplyScaledRotation to make an operation for Lancelot.

As shown in , since ApplyScaledRotation has type (Double, Double, Qubit) =>
Unit is Adj + Ctl, providing only the first input results in an operation of
type (Double, Qubit) => Unit is Adj + Ctl. This means that Lancelot can
provide an input of type Double, a qubit he wants to apply his operation to, and can
use the Adjoint and functor that you saw in Chapter 6.

Now, the fact that we can see the value of the angle in the syntax above does not mean
Lancelot can. Indeed, the only things that Lancelot can do with a partially-applied

199

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

operation or function are to call it, partially apply it further, or pass it to another
function or operation. From Lancelot’s perspective, ApplyScaledRotation(0.123,
_, _) is a complete black box. Thanks to this partial application trick, he will just
have an operation that takes his scale value and can be used to rotate a qubit.

We can make our lives as Q# developers a bit easier, though, by giving a name to the
type of Lancelot’s operation that’s a bit easier to read than (Double, Qubit) =>
Unit is Adj + Ctl. In the next section, you can see how Q# lets us annotate the type
signatures that you use to play Dagonet and Lancelot’s guessing game.

8.3 USER-DEFINED TYPES
You have seen a bit already on how types play a role in Q#, particularly in the
signatures for our functions and operations. You have also seen that both functions and
operations are tuple-in, tuple-out. In this section you will see how you can build up
your own types in Q# and why that might be handy.

In Q# (as well as many other languages) there are a number of types that are defined as
a part of the language itself; types like Int, Qubit, and Result that we have seen
already.

TIP
For a complete list of these basic types see the Q# language docs here:
https://docs.microsoft.com/quantum/language/type-model#primitive-types

Building up from these basic types, you can make array types by adding a [] after the
type. For example, in the game for this chapter you will likely need to input an array of
doubles to represent Lancelot’s multiple inputs to Dagonet’s operation. You can
use Double[] to indicate an array of Double values, see .

Listing 8.3. An example of defining an array type, here an array of Double`s of length

10.

let scales = new Double[10];

You can also define your own types in Q# with the newtype statement. This statement
allows you to declare new user-defined types (often abbreviated "UDTs"). There are
two main reasons why you may want to use UDTs.

8.3.1 Reasons you might define UDTs in Q#:
• convenience
• communicate intent

The first reason is a matter of convenience. Sometimes the type signature for your
function or operation could get pretty long, so you can define your own type as a kind
of shorthand. Another reason you may want to name your own type is so you can
communicate intent. Say your operation takes a tuple of two Double values that
represents a complex number. Defining a new type Complex could be useful to help

200

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

remind you and your teammates what that tuple represents.

Listing 8.4. How complex numbers are defined in the Q# runtime.

namespace Microsoft.Quantum.Math { ❶

 newtype Complex = (Real: Double, Imag: Double); ❷

}

❶The Quantum Development Kit provides a number of different functions, operations, and UDT to the
various namespaces that make up the Q# libraries. For instance, complex numbers are implemented
as a user-defined type in the Microsoft.Quantum.Math namespace; this lets you use this type
by including the statement open Microsoft.Quantum.Math; in your quantum application.

❷The Complex type is defined as a tuple of two Double values, where the first item is named Real
and the second is named Imag.

BACK TO
THE

SOURCE

The Quantum Development Kit is open source, so if you’re curious you can always look up how
various parts of the Q# language, runtime, compiler, and standard libraries all work. For
example, the definition of the Complex user-defined type can be found in the
src/Simulation/Intrinsic/Math/Types.qs file in Q# runtime repository at

https://github.com/microsoft/qsharp-runtime/

As shown in , there’s two ways to get the different items back out of a user-defined
type.

201

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 8.5. Using the :: and the ! operator with UDTs.

You can either use named items together with the :: operator, or you can "unwrap" the
user-defined type with the ! operator to get back to the original type wrapped by the
UDT.

function TakesComplex(complex : Complex) : Unit {
 let realFromNamedItem = complex::Real; ❶
 let (real, imag) = complex!; ❷
}

❶Since the Complex UDT is defined with a named item called Real, you can access that item as
::Real to get back the real part of our input.

❷Alternatively, since Complex was defined as wrapping a tuple of type (Double, Double), the
unwrap operator ! takes you back to the real and imaginary parts of complex without the UDT
wrapper.

TIP Both ways of working with UDTs are useful in different cases, but most of the time we’ll stick
with using named items and the :: operator in this book.

Once a new UDT has been defined, it can also act as a way to instantiate a new
instance of that type. For example, the Complex type will act as a function that will

202

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

create a new complex number with the input of a tuple of two Double values (see an
example of this in). This is similar to Python where types are also functions that create
instances of that type.

Listing 8.5. Creating a complex number with the user defined type Complex.

let imaginaryUnit = Complex(0.0, 1.0); ❶

❶Defining a user-defined type with newtype also defines a new function with the same name as that
type that returns values of your new user-defined type. For instance, we can call Complex as a
function with two Double inputs representing the real and imaginary parts of the new Complex
value. Here, we’ve defined a Complex value representing 0 + 1.0 i (0+1j in Python notation), also
known as the imaginary unit.

Exercise 8.1
In Chapter 4, you used Python type annotations to represent the concept of a strategy in the CHSH game.
User-defined types in Q# can be used in a similar fashion. Give it a go by defining a new UDT for CHSH
strategies and then use your new UDT to wrap the constant strategy from Chapter 4.

HINT: Your and Eve’s parts of the strategy can each be represented as operations that take
a Result and output a Result. That is, as operations of type Result ⇒ Result.

For the game in this chapter, we have defined a new UDT both so that we can label
how we intend to use it, and as a convenient shorthand for the operation type that
Lancelot gets as his part of the guessing game. In , you can see the definition of this
new type, called ScalableOperation, as a tuple with one named input called Apply.

Listing 8.6. Setting up the quantum guessing game

newtype ScalableOperation = (❶
 Apply: ((Double, Qubit) => Unit is Adj + Ctl) ❷
);

function HiddenRotation(hiddenAngle : Double) : ScalableOperation { ❸
 return ScalableOperation(ApplyScaledRotation(hiddenAngle, _, _)); ❹
}

❶You can declare a new user-defined type with the newtype statement by giving a name for your new
type, and defining the underlying type that your new type is based on.

❷You can give names to the various items in a user-defined type using the same syntax as to declare the
signature for an operation or a function. Here, for example, your new UDT has a single item named
Apply that allows for calling the operation wrapped by ScalableOperation.

❸Once defined, you can use your new UDT just like any other type. Here, you’ve defined a function that
outputs values of type ScalableOperation.

❹You can easily make output values by calling ScalableOperation with the operation to be
wrapped in your new UDT. In this example, you can create new instances of
ScalableOperation by using the same partial application of ApplyScaledRotation that
you saw earlier in the Chapter.

203

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

WHAT A
CAPITAL

IDEA!

When you define inputs to functions and operations in Q#, those inputs have names that start
with lowercase letters. In , however, the named item Apply in ScalableOperation starts
with an initial upper-case letter. This is because the inputs to a function or operation only have
meaning within that callable, while named items mean something more broadly; you can use
the capitalization of inputs and named items to make it obvious where to look for the
definitions of each.

The function HiddenRotation defined in helps us in implementing Lancelot and
Dagonet’s game, by giving us a way for Dagonet to hide his angle.
Calling HiddenRotation with Dagonet’s angle will return a
new ScalableOperation that Lancelot can then call to gather the data he needs to
make a guess at the hidden angle.

Figure 8.6. Playing Dagonet’s guessing game with partial application and user-defined types

With some new types and a way for Dagonet to hide his angle, let’s continue
implementing the rest of the game! You have everything you need to go on to the next
step: estimating the probability for each measurement that you make during Lancelot’s
and Dagonet’s game. This is very similar to how you would estimate the probability of
flipping a coin, see .

204

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 8.7. Lancelot’s estimation is similar to esimating the outcome of a coin flip.

Listing 8.7. Estimating the probability of measuring |1⟩

operation EstimateProbabilityAtScale(scale : Double, ❶
 nMeasurements : Int, ❷
 op : ScalableOperation) ❸
: Double { ❹
 mutable nOnes = 0; ❺
 for (idx in 0..nMeasurements - 1) {
 using (target = Qubit()) { ❻
 within { ❼
 H(target); ❽
 } apply {

205

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 op::Apply(scale, target); ❾
 }
 set nOnes += Meas.MResetZ(target) == One ❿
 ? 1
 | 0;
 }
 }
 return Convert.IntAsDouble(nOnes) / ⓫
 Convert.IntAsDouble(nMeasurements);
}

❶To play the game, Lancelot needs to estimate the probability of measuring a |1⟩ at each given scale that
he picks. Thus, his operation needs to take in a Double value representing what scale he picks to
run the operation given to him by Dagonet.

❷Next, Lancelot needs to pick a number of times to measure his qubit to get his estimate of the
probability.

❸The last input Lancelot needs to take is a value of the ScalableOperation user-defined type that
you declared earlier in the chapter. This input represents the operation that Dagonet gives Lancelot.

❹As output, Lancelot will want to return an estimated probability, so you can declare that as a Double
output.

❺To keep track of the number of |1⟩ outcomes that have been observed so far, you can define a mutable
variable. As before, initializing the variable with the Integer value 0 sets the type of the mutable
variable as well as its initial value.

❻For each measurement, you’ll need to allocate a qubit that’s the target for Dagonet’s operation.
❼Next, you can use the within and apply keywords to use the shoes-and-socks kind of pattern that

you first learned about in Chapter 7.
❽Since Lancelot and Dagonet agreed that the 𝑍𝑍-axis should be the rotation axis for their game, Lancelot

can prepare his target qubit in the |+⟩ state so that Dagonet's rotation does something. Here, you can
implement Lancelot's strategy by using the `H` operation to prepare a qubit in the |+⟩ state.

❾Once you have prepared the input to Dagonet’s operation, you can call it by using ::Apply to unwrap
the ScalableOperation UDT.

❿At this point, the within/apply block has made sure that Lancelot’s qubit is back in the right axis.
You can count how many times the final measurement returns a One result by adding either 1 or 0 to
nOnes. Here, the ?| ternary operator (much like the if … else operator in Python or the ?:
operator in C, C++, and C#) provides a convenient way to increment nOnes.

⓫To get your final estimate as to the probability of measuring |1⟩, you can take the fraction of how many
times you got a one over how many times you measured. Here, Convert.IntAsDouble helps
you to get the types right returning a floating-point number out.

AN
OPERATION

BY ANY
OTHER
NAME

You may have noticed that operations tend to be named using verbs, while functions tend to be
named as nouns. This helps you to remember the distinction that you saw in Chapter 6, namely
that a function is something while an operation does something. Being consistent with names
can help you make sense of how a quantum program works, so Q# uses conventions like this
throughout the language and libraries.

With this in place, you can now write out an operation that runs the whole game, and

206

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

returns everything Lancelot needs to guess Dagonet’s hidden angle.

Listing 8.8. Running the complete game.

operation RunGame(hiddenAngle : Double,
 scales : Double[],
 nMeasurementsPerScale : Int)
: Double[] {
 let hiddenRotation = HiddenRotation(hiddenAngle); ❶
 return Arrays.ForEach(❷
 EstimateProbabilityAtScale(❸
 _,
 nMeasurementsPerScale,
 hiddenRotation
),
 scales ❹
);
}

❶Dagonet can start off by making a new ScalableOperation value that hides his angle using the
HiddenRotation function that you wrote earlier.

❷The ForEach operation in Microsoft.Quantum.Arrays (which you gave the shorthand name
Arrays above) takes an operation and applies it to every element of the scales array.

❸To get the operation we pass to ForEach, we use partial application lock down how many
measurements Lancelot does at each different scale, and what the hidden operation he was given by
Dagonet. This leaves an operation that only takes the scale as an input.

❹When you pass scales as the second input to ForEach, each element of scales will be
substituted into the partial application slot _ above.

FUNCTIONS
AND

OPERATIONS
REDUX

It may seem funny that ForEach acts like map in Python and other languages, when Q# also
has Microsoft.Quantum.Arrays.Mapped. The critical difference is that ForEach takes
an operation, while Mapped takes a function.

For Lancelot to actually make sense of all the data he gets out of his Q# program,
though, it might help to use some good old classical data science techniques. Since
Python is great at that, running your new RunGame operation from a Python host
program can be a great way for you to help Lancelot out.

8.4 RUN, SNAKE, RUN: RUNNING Q# FROM PYTHON
In previous Chapters, you ran your Q# code in a Jupyter Notebook with a Q# kernel. In
this Chapter we want to look at a different way to run Q# code: from Python. Calling
Q# from Python can be helpful in different scenarios, especially if you want to pre-
process data before using it in Q#, or if you want to visualize your resulting output
from your quantum program.

Let’s start actually writing the files that will implement Dagonet and Lancelot’s game.
To try out the Q# and Python interop, we will use a Python host program to run the Q#

207

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

program. This means we will have two files for our game, our operations.qs file and
a host.py file that we will directly use to run the game. Let’s dive into
the host.py file to see how we can interact with Q# from Python.

Figure 8.8. Using host programs written in Python

All of the interoperable functionality we will need between Python and Q# is provided
by the qsharp Python package.

TIP Reminder that there are full installation instructions for the qsharp Python package in
Appendix A.

Once you have the qsharp package, you can import it just like any other Python
package. Let’s look at a small sample Python file where we can see this in action.

Listing 8.9. An example of a Python file were we use Q# code directly in the Python file.

import qsharp ❶

prepare_qubit = qsharp.compile(""" ❷
 open Microsoft.Quantum.Diagnostics; ❸

 operation PrepareQubit(): Unit { ❹
 using (qubit = Qubit()) {
 DumpMachine();
 }
 }
 """)

if __name__ == "__main__":
 prepare_qubit.simulate() ❺

❶The qsharp Python package needs to be imported just like any other Python package.
❷You can use the qsharp.compile Python function to take a string containing Q# code and compile

it for use in the Python file, the callable result of the compilation here being called prepare_qubit.
❸Just like a regular Q# file, you need to include open statements to use the different parts of the Q#

standard library.

208

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❹The operation this string of Q# code describes simply prepares a qubit in the |0⟩ state, and uses
DumpMachine to show what the target machine knows about that qubit. Given you are using the
simulator, DumpMachine shows the values the simulator is using to record the state of the qubit.

❺When this Python script is run, we want to also use the callable defined as prepare_qubit. To do
so, you can use the simulate method from the qsharp package which will run previously
compiled Q# code snippets.

Let’s try running the qsharp-interop.py script we just looked at in .

Listing 8.10. Running the previous example of a Python script containing Q# code.

$ python qsharp-interop.py
Preparing Q# environment...
wave function for qubits with ids (least to most significant): 0
∣0❭: 1.000000 + 0.000000 i == ******************** [1.000000] --- [
0.00000 rad]
∣1❭: 0.000000 + 0.000000 i == [0.000000]

TIP If you are running code from a Q# Jupyter Notebook the output of the Q# snippet will look
different, see for an example.

From the output in , you can see that it did indeed prepare a |0⟩ state, as the only term
in the output that has a coefficient of 1.0 is the |0⟩ state.

The qsharp Python package will also look for Q# operations or functions defined
in *.qs files in the same directory as your Python program. In your case, as you
proceed through the rest of this chapter, you’ll be adding things to a Q# file
called operations.qs. This is a pretty convenient way for you to start
your host.py file for the game.

Listing 8.11. The beginning of our host.py file for simulating the phase estimation

game.

import qsharp ❶
from PhaseEstimation import RunGame, RunGameUsingControlledRotations ❷

from typing import Any ❸
import scipy.optimize as optimization
import numpy as np

BIGGEST_ANGLE = 2 * np.pi

❶First, you need to import the Q# Python package.
❷The loaded qsharp package then allows you to import operations and functions from namespaces in

Q# files in the same directory as host.py. Here, you import RunGame and
RunGameUsingControlledRotations operations from operations.qs; this
automatically creates Python objects representing each Q# operation that you import. You saw
RunGame above, and will see RunGameUsingControlledRotations shortly.

209

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❸The rest of the imports will help us with type hinting in Python, visualizing the results of your Q#
simulation, and fitting measurement data to get Lancelot’s final guess.

Now that we have imported and setup our Python file, let’s
write run_game_at_scales: the function that will actually call the Q# operations.

Listing 8.12. The Python function that will call our Q# operations.

def run_game_at_scales(scales: np.ndarray,
 n_measurements_per_scale: int = 100,
 control: bool = False
) -> Any: ❶
 hidden_angle = np.random.random() * BIGGEST_ANGLE ❷
 print(f"Pssst the hidden angle is {hidden_angle}, good luck!")
 return (❸
 RunGameUsingControlledRotations
 if control else RunGame
).simulate(❹
 hiddenAngle=hidden_angle,
 nMeasurementsPerScale=n_measurements_per_scale,
 scales=list(scales)
)

❶Here the return type hint is set to Any which tells Python to not worry about type checking the return
value of this function.

❷Here, Dagonet chooses the hidden angle that he wants Lancelot to guess.
❸The return for run_game_at_scales is conditioned on control, which allows you to choose

between two simulations you will develop for this game. Don’t worry about the control = True
case for now, you’ll see more about that later in the Chapter.

❹The Python objects created when qsharp importing these operations from Q# have a method called
simulate, which takes the required arguments to the Q# operations and pass them along to the Q#
target machine (here the simulator). When results are finished, they are returned by the Python
function run_game_at_scales.

This Python file should be runnable as a script, so we also need to define __main__ as
well. This is where we can do what Lancelot does in his head by using our host
program in Python to take the measurements and scales and fit them to a model for
Dagonet’s rotation. The best model for how the rotation angle changes the
measurement results is given by where Θ is Dagonet’s hidden angle and
where \mathrm{scale} is Dagonet’s scale factor:

Exercise 8.2
This model can be found if you use Born’s rule! We have put the definition from Chapter 2 below, see if
you can plot the resulting value as a function of Lancelot’s scale using Python. Does your plot look like a
trigonometric function?

210

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Equation 8.1. Born’s rule

HINT: For Lancelot’s measurements, the part of Born’s rule is given by . Immediately

before measuring, his qubit will be in the state . You can simulate the R1 operation in
QuTiP by using the matrix form in the Q# reference
at https://docs.microsoft.com/qsharp/api/qsharp/microsoft.quantum.intrinsic.r1.

Once you have that model and data, you can use the scipy.optimize function from
the SciPy Python package to fit your data to the model. The value it finds for
the Θ parameter is Dagonet’s hidden angle! Check out for an example of how to pull
this all together.

Listing 8.13. The code that will run when we run host.py as a script.

if __name__ == "__main__":
 import matplotlib.pyplot as plt ❶
 scales = np.linspace(0, 2, 101) ❷
 for control in (False, True): ❸
 data = run_game_at_scales(scales, control=control) ❹

 def rotation_model(scale, angle): ❺
 return np.sin(angle * scale / 2) ** 2
 angle_guess, est_error = optimization.curve_fit(❻
 rotation_model, scales, data, BIGGEST_ANGLE / 2,
 bounds=[0, BIGGEST_ANGLE]
)
 print(f"The hidden angle you think was {angle_guess}!")

 plt.figure() ❼
 plt.plot(scales, data, 'o')
 plt.title("Probability of Lancelot measuring One at each scale")
 plt.xlabel("Lancelot's input scale value")
 plt.ylabel("Lancelot's probability of measuring a One")
 plt.plot(scales, rotation_model(scales, angle_guess))

 plt.show() ❽

❶This script will plot the data and fitted results so you will need to import the friendly matplotlib.
❷Lancelot’s list of inputs to the game (that is, his scales) are generated as just a regularly spaced,

sequential list of numbers from np.linspace.
❸This script will run both versions of the game simulation so they can be compared; don’t worry about

the control = True case for now, we’ll come back to that shortly.
❹data stores the result from the Q# simulation that runs from Python in run_game_at_scales.
❺This model represents the operation that is done on the qubit, i.e. its a rotation of an unknown angle

where the angle can be multiplied by scale which is Lancelot’s input to the game. Lancelot will take
that data he gets back from his measurements and fit it to a model, with the goal of fitting the angle
parameter from the data.

211

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://docs.microsoft.com/qsharp/api/qsharp/microsoft.quantum.intrinsic.r1

©Manning Publications Co. To comment go to liveBook

❻You can use a standard scipy function called optimization.curve_fit that takes a model of
a function, inputs, measured data, and an initial guess to try and fit all the parameters of the model.
This is what Lancelot needs to do to convert the data he collected into an actual angle to guess.

❼Validating the fit found by optimization.curve_fit is important so you can plot both the data
and the fitted model to see if it looks right.

❽This displays the plots with the data and fit in new window.

Now that you have a host program you can use to run the whole game, you can see that
Lancelot does a pretty reasonable job at figuring out what angle Dagonet hid in his Q#
operation. By taking different measurements and using classical data science
techniques, Lancelot can estimate the phase that Dagonet’s operation applies to his
qubits. Running host.py should generate 2 pop up windows that show plots of the
measurement probabilities as a function of Lancelot’s scale for two strategies he can
use. The first is the approach we have already outlined above, the latter you will
implement in the last section of the chapter. See for an example for what you should
see.

Figure 8.9. An example of one of the two plots that should pop up when you run host.py

TIP Since the SciPy fitting packages are not perfect, sometimes the fitted parameter it finds won’t
be right. Just try running it a few times and hopefully the fitting algorithm will do better the next
time. If you have any questions about the plotting package matplotlib check out these other
titles from Manning: Data Science Bootcamp Chapter 2, and Data Science with Python and
Dask Chapters 7 and 8.

You can see from these plots, that you were able to fit Lancelot’s data fairly well. That

212

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

means that the fitted value that you find in angle_guess is a pretty good
approximation to Dagonet’s hidden angle!

There’s still one more nagging problem with Lancelot’s strategy, though: every time he
performs a measurement, he needs to prepare the right input to pass to Dagonet’s
operation. In this particular game, that may not be much of a problem, but as you
explore bigger applications of this game in the next chapter, it can be expensive to
prepare the input register in the right state every time. Thankfully, you can
use controlled operations to reuse the same inputs over and over again, as you’ll see in
the rest of the chapter.

You have seen examples of controlled operations already (like CNOT), but it turns out
many other quantum operations can also be applied conditionally which can be very
useful. Controlled operations along with the last new quantum computing concept you
will need (eigenstates) will help you to implement a technique you have already seen at
the end of the last chapter, called phase kickback.

TIP There will be a lot of discussion about local and global phases in next few sections. Recall that
global phase is a complex coefficient that can be factored out of all of the terms of your state,
and cannot be observed. If you need a refresher on phase, check out Chapters 4 and 5.

8.5 EIGENSTATES AND LOCAL PHASES
By now, you’ve seen that the X quantum operation allows us to flip bits) and
that the Z operation allows us to flip phases). Both of these operations, though,
only apply global phases to some input states. As you saw in previous Chapters, we
can’t actually learn anything about global phases, so understanding what states each
operation leaves alone is important to understanding what we can learn by applying
that operation.

For example, let’s revisit the Z operation. In , you can see what happens when we try to
use Z not to flip a qubit between the |+⟩ and |-⟩ states, but on an input qubit in
the |0⟩ state.

Listing 8.14. Applying the Z instruction to a qubit in the |0⟩ state.

using (qubit = Qubit()) { ❶
 Z(qubit); ❷
 DumpRegister((), [qubit]); ❸
 Reset(qubit); ❹
}

❶As usual in Q#, we start by allocating a Qubit with a using block. This will provide us with a fresh

qubit in the |0⟩ state.

❷We then apply a Z operation, such that the state of qubit is transformed to Z|0⟩ = |0⟩.
❸To confirm that the Z operation didn’t do anything, we can use the DumpRegister function to instruct

the simulator to print out all of its diagnostic information--- in this case, the full state vector. If we run

213

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

this on a target machine other than a simulator, we won’t get a state vector, but whatever other
diagnostics that machine offers (e.g.: hardware IDs).

❹Finally, we reset the qubit before releasing it. This isn’t strictly needed, since we know beforehand that
that qubit is still in the |0⟩ state.

Figure 8.10. Output of running

Note that in the listing above, Z didn’t do anything to qubit since Z|0⟩ = |0⟩. If we
modify the above listing to prepare |1⟩ instead by using X before Z, we’ll see something
very similar.

Listing 8.15. Applying the Z instruction to a qubit in the |1⟩ state.

using (qubit = Qubit()) {
 X(qubit); ❶
 Z(qubit); ❷
 DumpRegister("1.txt", [qubit]); ❸
 Reset(qubit);
}

❶As before, if you want to prepare a |1⟩ state, you can use that |1⟩=X |0⟩.
❷We next repeat our experiment from above, but with a different input.
❸As before, we can write out the state of qubit to a text file, using that we’re running on a simulator that

keeps the state internally.

Listing 8.16. Output

wave function for qubits with ids (least to most significant): 0
∣0❭: 0.000000 + 0.000000 i == [0.000000]
∣1❭: -1.000000 + 0.000000 i == ******************** [1.000000] --- [
3.14159 rad] ❶

❶This file represents the vector [[0], [−1]], or -|1⟩ in Dirac notation.

The effect of applying the Z operation to a |1⟩ state was to flip the sign of the state
of qubit. This is another example of a global phase, as you saw in Chapters 5 and 7.

GLOBAL
PHASE

Whenever two states |Ψ⟩ and |Φ⟩ are only different by a complex number eiΦ, |Φ⟩= eiΦ|Ψ⟩ ,
we say that |Ψ⟩ and |Φ⟩ vary by a global phase. For example, |0⟩ and -|0⟩ differ by a global
phase of -1 = eiπ.

The global phase of a state doesn’t affect any measurement probabilities, so we cannot
ever detect whether we applied a Z operation when its input is in either
the |0⟩ or |1⟩ state. We can confirm this by using the AssertQubit operation, which

214

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

checks the probability of a particular measurement result.

using (qubit = Qubit()) {
 AssertQubit(Zero, qubit); ❶
 Z(qubit); ❷
 AssertQubit(Zero, qubit); ❸

 Message("Passed test!"); ❹

 Reset(qubit);
}

❶This call to AssertQubit checks that measuring qubit will return the result Zero, and terminates
the program if that’s not the case.

❷After this, qubit is in the -|0⟩ state as opposed to the |0⟩ state. That is, the Z operation applies a
global phase to the state of qubit.

❸Calling AssertQubit again, we can check that the probability of obtaining a Zero result is still 1.
❹Printing a message lets us check that the quantum program proceeds past both assertions.

Running this snippet will simply print out Passed test!, since the calls
to AssertQubit don’t do anything in the case that the assertion succeeds. Using
assertions like this lets us write unit tests that use simulators to confirm our
understanding of how particular quantum programs will behave. On actual quantum
hardware, since we can’t actually do this kind of check due to the No-Cloning
Theorem, assertions can be safely stripped out.

DON’T
DEPEND ON

ASSERTIONS!

Assertions can be really useful tools for writing unit tests and for checking the correctness of
your quantum programs. That said, it’s important to remember that they will be stripped out
when running your program on actual quantum hardware, so don’t use assertions to make
your program run correctly.

Of course, this is also just good programming practice; assertions in clasical languages like
Python can often be disabled for performance reasons, such that you can’t rely on assertions
always being there for you.

Identifying which quantum states are assigned global phases by an operation U gives us
a way of understanding the behavior of that quantum operation. We call such
states eigenstates of the operation U. If two operations have the same eigenstates and
apply the same global phases to each of those eigenstates, there is no way to tell those
two operations apart. Just like if two classical functions have the same truth table, you
can’t tell which one is which, no matter what state your qubits are in when you apply
each operation. This means that we can understand operations not only by a matrix
representation of them, but also by understanding what their eigenstates are and what
global phase the operation applies to each. As you have seen, we cannot directly learn
about the global phase of a qubit, so in the next section you will learn how you can use
controlled versions of an operation to turn that global phase into a local one you can
actually measure. For now though, let’s summarize this with a more formal definition
of what an eigenstate is.

215

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

EIGENSTATE If after applying an operation U, the state of a register of qubits qs is only modified by a global
phase, then we say that the state of that register is an eigenstate of U. For example, |0⟩ and
|1⟩ are both eigenstates of the Z operation. Similarly, |+⟩ and |-⟩ are both eigenstates of X.

Try out an exercise to practice working with eigenstates.

Exercise 8.3
Try writing Q# programs that use AssertQubit and DumpMachine to verify that:
• |+⟩ and |-⟩ are both eigenstates of the X operation.
• |0⟩ and |1⟩ are both eigenstates of the Rz operation, regardless of what angle you choose to

rotate by.
For even more practice, try figuring out what the eigenstates of the Y and CNOT operations and writing a
Q# program to verify your guesses!
HINT: You can find the vector form of the eigenstates of a unitary operation using QuTiP. For instance,
the eigenstates of the Y operation are given by qt.sigmay().eigenstates(). From there, you
can use what you learned about rotations in Chapters 4 and 5 to figure out which Q# operations prepare
those states.

Don’t forget you can always test if a particular state is an eigenstate of an operation by just writing a
quick test in Q#!

Eigenstates are a very useful concept and can be leveraged in a variety of quantum
computing algorithms. You will use them in the next section along with controlled
operations to implement a quantum development technique called phase
kickback which you saw a bit of at the end of Chapter 7.

DEEP DIVE: It’s only proper
Eigenstates get their name from a concept used throughout linear algebra, known as eigenvectors. Just
as an eigenstate is a state that is left alone by a quantum operation, an eigenvector is a vector that is

preserved up to a scaling factor when multiplied by a matrix. That is, if for a matrix A, for some

number Λ, then is an eigenvector of A. We say that Λ is the corresponding eigenvalue.
The prefix "eigen-", German for "proper" or "characteristic," points to that eigenvectors and

eigenvalues help us to understand the properties or characteristics of matrices. In particular, if a
matrix A commutes with its conjugate transpose (that is, if), then it can be decomposed into
projectors onto eigenvectors, each scaled by their eigenvalues,

.
Since this condition always holds for unitary matrices, this means that we can always understand
quantum operations by decomposing them into their eigenstates and the phases applied to each

eigenstate. For example, and .
This way of thinking about states and operations can often help us make sense of different quantum

computing concepts. In fact, another way of thinking about the phase estimation game you’re working on
playing in this chapter is as an algorithm for learning the phases associated with each eigenstate! You’ll

216

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

see in the next chapter that this connects especially well to some applications, such as to learning
properties of chemical systems.

8.6 CONTROLLED APPLICATION: TURNING GLOBAL PHASES INTO
LOCAL PHASES
From what you have seen and can test, global phases of states are unobservable,
while local phases of states can be measured. For example, consider the

state . There is no measurement you could do to
differentiate that state from (). However, you could distinguish either of

those two states from as it differs by a _local_ phase; that is, one of the
states has a stem:[in front of the |1⟩ and the other has a -.

TIP If you want a refresher on phases and how to think of them as rotations, see Chapters 4 and 5.
When you are using the simulator as your target machine, the output of DumpMachine and
DumpRegister can also be used to help learn about the phases of states.

From the last section, you played around with eigenstates and saw the global phases of
eigenstates can carry information about an operation, let’s call it U. If you want to learn
this global phase information about the eigenstates, then it seems like you’re stuck. If
Lancelot were to only prepare eigenstates of Dagonet’s operation, he’d never be able to
learn what angle Dagonet had hidden.

Quantum algorithms to the rescue! There’s a very useful trick that you can apply to
turn global phases applied by an operation U into local phases applied by a closely
related operation. To see how this works, let’s return to the CNOT operation. Recall
from Chapter 5 that you can simulate CNOT using a unitary matrix,

EQUATION 8.2.
SIMULATING THE

CNOT OPERATION
WITH A UNITARY

MATRIX.

.

When you first encountered this matrix in Chapter 5, you used the analogy between
unitary matrices and classical truth tables to work out that the CNOT operation swaps
the |10⟩ and |11⟩ states, but leaves qubits in the |00⟩ and |01⟩ states alone. That
is, CNOT flips the state of its second qubit, controlled on the state of the first qubit. As
show in , you can read the unitary matrix for the CNOT operation as describing a kind of
"quantum if" statement: "if the control qubit is in the |1⟩ state, then apply
the X operation to the target qubit."

To use the CNOT operation in Q# you can try out the following snippet:

217

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

using (control = Qubit(), target = Qubit()) {
 H(control); ❶
 X(target); ❷

 CNOT(control, target); ❸
 DumpMachine();

 Reset(control);
 Reset(target);
}

❶Prepare the control qubit in |+⟩.
❷Prepare the target qubit in |1⟩.
❸Apply CNOT and print out the state of the simulator.

By thinking about CNOT as a quantum analogue to a conditional statement, you can
write out its unitary matrix a bit more directly. In particular, you can look at the unitary
matrix for the CNOT operation as a kind of "block matrix" that you can build up using
the tensor product that you saw in Chapter 4.

Exercise 8.4
Verify that is the same as the equation above.

HINT: You can verify this by hand, by using NumPy’s np.kron function, or
QuTiP’s qt.tensor function. If you need a refresher, check out how you simulated teleportation in
Chapter 5, or check out the derivation of the Deutsch–Jozsa algorithm in Chapter 7.

You can construct other operations following this pattern, such as the CZ (controlled-Z)
operation:

Much like the CNOT operation did the same thing as an X operation (namely, applied a
bit flip), but controlled on the state of another qubit, when its control qubit is in
the |1⟩ state, the CZ operation flips a phase in the same way as the Z operation.

218

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 8.11. Writing out unitary matrices for controlled operations

You can see an example of how this works in , let’s see how controlling Z works in
practice by writing out some Q# to give CZ a try:

Listing 8.17. Snippet showing how to test out the Q# operation CZ.

using ((control, target) = (Qubit(), Qubit())) {
 H(control); ❶
 X(target); ❷

 CZ(control, target); ❸
 DumpRegister("cz-output.txt", [control, target]);

 Reset(control);
 Reset(target);
}

❶Prepare the control qubit in |+⟩.
❷Prepare the target qubit in |1⟩.
❸Apply CZ and save out the resulting state.

Listing 8.18. Output

wave function for qubits with ids (least to most significant): 0;1
∣0❭: 0.000000 + 0.000000 i == [0.000000]
∣1❭: 0.000000 + 0.000000 i == [0.000000]
∣2❭: 0.707107 + 0.000000 i == *********** [0.500000] --- [
0.00000 rad]
∣3❭: -0.707107 + 0.000000 i == *********** [0.500000] --- [
3.14159 rad]

If you run this, the contents of cz-output.txt will show you that the final state of

219

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

the [control, target] register is .

Exercise 8.5
Either by hand or using QuTiP, verify that the above output is the same as .

NOTE: If you seem to get the right answer other than that the order of the qubits are swapped, note
that DumpMachine uses a little-endian representation to order states. In little-endian, |2⟩ is short-hand
for |01⟩, not |10⟩. If this seems confusing, blame the x86 processor architecture…

That is, based on the state of the target, the state of the control changed as a result,
just as you saw in Chapter 6 with the Deutsch–Jozsa algorithm! This is because the
phase applied by Z in the case where control was in the |0⟩ state is not the same as
when control was in the |1⟩ state, an effect known as phase kickback. In Chapter 6,
you used phase kickback with a pair of qubits in the |+-⟩ state to tell if
the CNOT operation had been applied or not. Here, you’ve seen that you can use
the CZ operation (also known as the Controlled Z operation) to learn about the global
phase applied by the Z operation.

IMPORTANT Even though |1⟩ is an eigenstate of the Z operation, |+1⟩ is not an eigenstate of the CZ
operation. This means that calling CZ on a register in the |+1⟩ state has an observable effect!

Phase kickback is a common quantum programming technique, as it allows us to turn
what would otherwise be global phases into a phase between the |0⟩ and |1⟩ branches of
the control qubit. In the CZ example above, both the input state |+⟩|1⟩ and the output
state |-⟩|1⟩ are product states, allowing us to measure the control qubit without affecting
the target qubit.

THINK
GLOBALLY,

LEARN
PHASES

LOCALLY.

Note that a global phase difference between |1⟩ and Z|1⟩ = -|1⟩ became a local phase
difference between |1⟩ and UCZ|+1⟩=|-1⟩. That is, by controlling the `Z` instruction on a qubit
in the |+⟩ state, we were able to learn what would have been a global phase without control.

using ((control, target) = (Qubit(), Qubit())) {
 H(control); ❶
 X(target);

 CZ(control, target); ❷
 if (M(control) == One) { X(control); } ❸

 // Now let's dump only the state of the target.
 DumpRegister("cz-target-only.txt", [target]);

 Reset(target); ❹
}

❶Prepare the control qubit in |+⟩, and the target qubit in |1⟩.
❷Apply CZ and save out the resulting state. Before you dump the state of the target qubit, though, let’s

measure and reset the control qubit.
❸Fun fact: this is actually how the Reset operation is implemented in Q#.

220

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❹You already reset control above, so we don’t need to reset it again here.

Listing 8.19. Output

wave function for qubits with ids (least to most significant): 1
∣0❭: 0.000000 + 0.000000 i == [0.000000]
∣1❭: -1.000000 + 0.000000 i == ******************** [1.000000] --- [
3.14159 rad] ❶

❶As expected, we get that the target qubit stays in the |1⟩ state, ready to feed into another CZ operation.

8.7 CONTROLLING ANY OPERATION
Thinking back to Lancelot’s and Dagonet’s game, it’d be really helpful if you could
help Lancelot reuse the qubit that he passes into Dagonet’s operation, so that he
doesn’t have to re-prepare it every time. Thankfully, using controlled operations to
implement phase kickback gives a hint as to how you could do it. In particular, when
you used phase kickback in Chapters 6 to 7 to implement the Deutsch–Jozsa algorithm,
the target qubit was in the |-⟩ state both at the start and end of the algorithm. That
means that Lancelot could re-use the same qubit for each round of his game, and not
need to re-prepare each time. That didn’t matter for Deutsch–Jozsa, since you only ran
one round of Nimue’s and Merlin’s game, but it’s exactly the right trick for Lancelot to
win his game with Dagonet, so let’s look at how you can help him use phase kickback.

The trouble is that, while phase kickback is a very helpful tool to have in your toolbox
as a quantum developer, so far you have only seen how to use it with
the X and Z operations. We know for our game, Dagonet told Lancelot that he will use
the R1 operation; is there a way you can use phase kickback to help here? The pattern
you used to implement phase kickback in the previous section only required you to be
able to control an operation, so what you will need is a way to control
the op::Apply operation that Dagonet gives Lancelot. In Q#, this is as simple as
writing Controlled op::Apply instead of op::Apply, thanks to
the Controlled functor. Much like the Adjoint functor that you saw in Chapter
6, Controlled is a Q# keyword that modifies how an operation behaves, in this case
to turn it into its controlled version.

TIP Just like is Adj indicates that an operation can be used with Adjoint, is Ctl in the type
of an operation indicates that it can be used with the Controlled functor. If you want to
denote that an operation supports both, you can write is Adj + Ctl. For example, the type
of the X operation is (Qubit ⇒ Unit is Adj + Ctl), letting you know that X is both
adjointable and controllable.

Thus, to help Lancelot out, you can take the op::Apply(scale, target) line and
make it Controlled op::Apply([control], (scale, target)) and you have the
controlled version of R1.

While that does solve Lancelot’s problem, it can be helpful to unpack what’s

221

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

happening under the hood just a little bit more. Any unitary operation (that is, a
quantum operation that doesn’t allocate, deallocate, or measure qubits) can be
controlled, the same way you controlled the Z operation to get CZ, and as you
controlled X to get CNOT. For instance, we can define a controlled-controlled-NOT
(CCNOT, also known as Toffoli) operation as an operation that takes two control qubits
and flips its target if both controls are in the |1⟩ state. Mathematically, we write that
the CCNOT operation transforms an input state |x⟩|y⟩|z⟩ to the
output |x⟩|y⟩|zXOR(yANDz)⟩. We can also write down a matrix that lets us simulate
the CCNOT operation:

Similarly, the controlled-SWAP operation (also known as the Fredkin operation)
transforms its input states from |1⟩|y⟩|z⟩ to |1⟩|z⟩|y⟩, and leaves its input the same when
the first qubit is in the state |0⟩.

TIP We can make a controlled-SWAP out of three CCNOT operations: CCNOT(a, b, c);
CCNOT(a, c, b); CCNOT(a, b, c); is equivalent to Controlled SWAP([a], (b,
c));. To see this, note that we can also make the uncontrolled SWAP operation from three
CNOT operations for the same reason that we can swap two classical registers in-place using a
sequence of three classical XOR operations.

We can generalize this pattern for any unitary operation U (that is, any operation which
neither allocates, deallocates, nor measures its qubits). In Q#, the transformation
performed by using the Controlled functor adds a new input to an operation
representing which qubits should be used as controls.

TIP This is where the fact that Q# is a tuple-in tuple-out language comes in very handy. Since every
operation takes exactly one input, for any operation U, Controlled U takes the original input
to U as its second input.

In fact, the CNOT and CZ operations are simply shorthand for appropriate calls
to Controlled. In , you can see more examples of this pattern.

222

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

TIP Just like Adjoint works on any operation that has is Adj in its type (as you saw in Chapter
6), the Controlled functor works on any operation that has is Ctl in its type.

Table 8.1. Some examples of controlled operations in Q#

Description Shorthand Definition

Controlled-NOT
CNOT(control,
target)

Controlled X([control],
target)

Controlled-
Controlled-NOT
(Toffoli)

CCNOT(control0,
control1, target)

Controlled X([control0,
control1], target)

Controlled-SWAP
(Fredkin) n/a

Controlled
SWAP([control], (target1,
target2))

Controlled Y CY(control, target)
Controlled Y([control],
target)

Controlled-PHASE CZ(control, target)
Controlled Z([control],
target)

As you saw with the CZ example, controlling operations in this way lets you turn global
phases such as those applied to eigenstates into relative phases that we can learn
through measurements.

More than that, by using controlled rotations to kickback phase onto the control
register, you can also reuse the same target qubit over and over. When you
applied CZ to a target register that was in an eigenstate of Z, that target register stayed
in the same state, even though the control register changed. In the rest of this Chapter,
you’ll see how you can use that to finish Lancelot’s strategy for his little game with
Dagonet.

8.8 IMPLEMENTING LANCELOT’S BEST STRATEGY FOR THE PHASE
ESTIMATION GAME
You now have everything you need to write out a slightly different strategy for
Lancelot that will allow him to use controlled operations to re-use the same qubits. As
noted before, this may not make a huge impact for Dagonet’s game, but does for other
applications of quantum computing.

For example, in the next Chapter, you’ll see how problems in quantum chemistry can
be solved using a very similar game to the one that Dagonet and Lancelot are playing.
There, however, preparing the right input state can require calling a lot of different
quantum operations, such that if you can preserve the target qubit for later use, you can
gain quite a lot of performance.

Let’s review briefly what Lancelot’s previous steps were before.

223

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

8.8.1 Steps for Dagonet and Lancelot’s game
1. Dagonet picks a secret angle for a single qubit rotation operation
2. Dagonet prepares an operation for Lancelot to use that hides their secret angle, and

allows Lancelot one additional input of a number (we’ll call it a scale) that will get
multiplied with the secret angle to give the total rotation angle of the operation.

3. Lancelot’s best strategy for the game will be to select many scale values and
estimate the probability of measuring One for each value. To do this, he will need
to do steps a. and b. many times for each of the many scale values.

o Prepare the |+⟩ state and input the scale value in Dagonet's rotation. He uses the
|+⟩ state because he knows Dagonet is rotating around the 𝑍𝑍 axis, and for this
state these rotations will result in a local phase change he can measure.

o After preparing each |+⟩ state, Lancelot can rotate it with the secret operation,
measure the qubit, and record the measurement.

4. Lancelot will then have data relating his scale factor and the probability he
measured a 1 for that scale factor. He can then fit this data in his head, and get
Dagonet’s angle from the fitted parameters (he is the greatest knight in the land).
We can use Python to help us do the same!

The step that will need to change to leverage your newfound skills
with controlled rotations is step 3. For step 3a, what will change is the allocation of the
qubits. Rather than allocating, preparing and measuring one qubit per measurement, he
can allocate one target qubit to rotate with Dagonet’s black box, and instead allocate
and measure control qubits. He still can repeat the measurements, but won’t have to
measure or re-prepare the target each time.

You could summarize these changes by re-writing step 3 like this:

1. Lancelot’s best strategy for the game will be to select many scale values and
estimate the probability of measuring One for each value. To do this, he will need
to do steps a. and b. many times for each of the many scale values. He prepares
one qubit the |1⟩ state to use as the target for all of his measurements as it’s an
eigenstate of the hidden rotation.

o Prepare a second control qubit in the |+⟩ state,
o Apply the new controlled version of the secret rotation with Lancelot’s scale

value, unprepare the control qubit and measure it, then record the
measurement.

In your code, these changes can be accomplished by modifying the
previous EstimateProbabilityAtScale operation. Since the rotation axis could be
anything Dagonet chooses (here it’s just 𝑍𝑍 axis for convience), Lancelot needs to know
how to control an arbitrary rotation. You can do this with the Controlled functor
before calling the ScalableOperation that is passed from Dagonet.
The Controlled functor is very similar to the Adjoint functor, in that it takes an
operation and returns a new operation. Controlled U(control, target) is an

224

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

example of the syntax that would allow you to apply U to your target qubit,
controlled on one or more control qubits. Take a look at for how you can
modify EstimateProbabilityAtScale to use the Controlled functor.

Listing 8.20. Operation EstimateProbabilityAtScaleUsingControlledRotation

s

operation EstimateProbabilityAtScaleUsingControlledRotations(
 target : Qubit,
 scale : Double,
 nMeasurements : Int,
 op : ScalableOperation)
: Double {
 mutable nOnes = 0;
 for (idx in 0..nMeasurements - 1) {
 using (control = Qubit()) {
 within {
 H(control); ❶
 } apply {
 Controlled op::Apply(❷
 [control],
 (scale, target)
);
 }
 set nOnes += Meas.MResetZ(control) == One
 ? 1
 | 0;
 }
 }
 return Convert.IntAsDouble(nOnes) /
 Convert.IntAsDouble(nMeasurements);
}

❶Now instead of allocating and preparing the target register, our guessing operation takes the target
register as an input and reuses it. Thus, we only need to allocate and prepare the control register; we
can do so with an H operation, regardless of what rotation Dagonet is hiding.

❷The only other change we need to make is to call Controlled op::Apply instead of
op::Apply, passing our new control qubit along with the original inputs.

The other modification you will have to make (step five) is the operation that actually
runs the game. Since using the controlled operation actually allows Lancelot to reuse
the target qubit, it only needs to be allocated once at the beginning of the game. See for
how you can implement this.

Listing 8.21. Implementing the operation RunGameUsingControlledRotations.

operation RunGameUsingControlledRotations(hiddenAngle : Double,
 scales : Double[],
 nMeasurementsPerScale : Int)
: Double[] {
 let hiddenRotation = HiddenRotation(hiddenAngle);
 using (target = Qubit()) { ❶

225

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 X(target); ❷
 let measurements = Arrays.ForEach(
 EstimateProbabilityAtScaleUsingControlledRotations(
 target,
 _,
 nMeasurementsPerScale,
 hiddenRotation
),
 scales
);
 X(target);
 return measurements;
 }
}

❶Using EstimateProbabilityAtScaleUsingControlledRotations, you can now
allocate the target qubit once, since you’ll be using it over and over again through each guess.

❷Using the X operation, you can prepare the target in the |1⟩ state, an eigenstate of the (uncontrolled)
R1 operation that Dagonet hid his angle in. Since each measurement uses phase kickback to affect
only the control register, this preparation can be done once before playing the game.

8.9 SUMMARY
In this Part of the book, you’ve had a lot of fun using Q# and quantum computing to
help the various denizens of Camelot. Using a quantum random number generator
written in Q#, you were able to help Morgana pull one over on poor Lancelot. At the
same time, you were able to help Merlin and Nimue each play their respective roles in
deciding the fate of kings, learning about the Deutsch–Jozsa algorithm and phase
kickback all the while. With the land at peace and the fires in Castle Camelot burning
down for the night, you saw how to use everything you learned to help Lancelot play
another game, winning this time by guessing a quantum operation hidden by Dagonet.

Throughout your Camelot escapades, you picked up quite a few new tricks to help you
on your way as a quantum developer:

You have learned as a quantum developer:

• What is a quantum algorithm, and how to implement it with the Quantum
Development Kit and Q#,

• How to use Q# from Python and Jupyter Notebook,
• How to design oracles to represent classical functions in quantum programs,
• User defined types,
• Controlled operations, and
• Phase kickback.

Going forward, it’s time to bring what you’ve learned from Camelot back home, and
apply these new techniques to something a bit more practical. In the next Chapter,
you’ll see how quantum computing can help in understanding chemistry problems.
Don’t worry if you don’t remember the periodic table, you’ll will be working with

226

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

some collegues who know the chemistry side of things, and are looking for your help
in using everything that you learned in this Part to upgrade their workflow with
quantum technology.

In this chapter you learned:

• Predict how quantum operations can be used to learn useful information about
unknown operations with the quantum algorithm for phase kickback.

• Create new types in Q#
• Run Q# code from a Python host program
• Recognize important properties and behaviors of eigenstates and phase
• Program controlled quantum operations in Q#

227

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

9
This chapter covers:
 • Recognize how quantum computers can be used to solve difficult chemistry simulation problems

 • Implement qubit rotation operations about arbitrary Pauli axes using Exp. operation,

 • Implement time-dependent operations on qubits using the Trotter–Suzuki method, and

 • Create programs using Q# standard library features for phase estimation, decomposition, etc.

Figure 9.1. In this Chapter, we will be covering topics in both techniques for developing
quantum algorithms and applications for quantum programs.

Solving Chemistry Problems With
Quantum Computers

228

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

9.1 REAL CHEMISTRY APPLICATIONS FOR QUANTUM COMPUTING
So far in this book, you’ve learned how to use quantum devices to do everything from
chat with your friend Eve, to help decide the fate of kings. In this Chapter, though,
you’ll get the chance to do something a bit more practical.

As it turns out, your quantum chemist friend Marie has hit the limit of what her
classical computer can do to help her model different chemical systems. The problems
that Marie solves with computational chemistry techniques can help to combat climate
change, understand new materials, and to improve energy usage across industries; if
you can help her out by using Q#, that could have quite a lot of practical applications
indeed. Thankfully, by using what you learned about estimating phases in Chapter 8,
you can do just that, so let’s jump in!

Better tasting through chemistry
Any candymaker can tell you the difference that temperature makes: cook sugar to the "soft crack" stage
and you get taffy, but if you add in a bit more energy, you can make any number of other delightful
confections ranging from toffee to caramels. Everything about sugar, its taste, how it looks, and how it
pulls, all changes depending on the energy that we pour into it with our saucepan. To no small degree, if
we understand how the shape of sugar molecules changes as we add energy into a sweet melting pot,
we understand sugar itself.

We see this effect not just with candy, but throughout our lives. Water, steam and ice are
differentiated by understanding what shapes H₂O can take, what shapes it can arrange itself in, as a
function of energy. In many cases, we want to understand how the molecule arranges itself as a function
of energy based on simulations rather than experiments. In this Chapter, we build on the techniques in
the previous several chapters, showing how we can simulate the energy of chemical systems so that we
can understand them as keenly as a candymaker understands their craft, and use these chemical
systems to make our lives better— maybe even a little sweeter.

To get a feel for how this all works, you and Marie agree to start off looking
at molecular hydrogen, or H₂, as this is a simple enough chemical system that you can
compare what you learn from your quantum program back to what classical modeling
tools are able to simulate. That way, as you use the same techniques to study larger
molecules than what can be simulated classically, you have a great test case you can
fall back on to make sure everything is correct.

The simulation within the simulation
In this Chapter, your work with Marie involves two different kinds of simulation: using a classical
computer to simulate a quantum computer, and using a quantum computer to simulate a different kind
of quantum system. You’ll often even want to do both, in that it’s helpful in building quantum chemistry
applications to use a classical computer to simulate how a quantum computer simulates a quantum
chemical system. That way, when you run your quantum simulation on actual quantum hardware, you
can be assured that it works correctly.

As shown in figure 9.2, Marie will start things off by using her expertise in quantum
chemistry to describe a problem that she’s interested in solving with a quantum
computer; in this case, understanding the structure of H₂. For the most part, these
problems consist of learning properties of a special kind of matrix called

229

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

a Hamiltonian. Once you get a Hamiltonian from Marie, you can then write a quantum
operation much like the one shown in to simulate it and learn things about it that Marie
can then use to understand how different chemicals behave. Throughout the rest of this
Chapter, you’ll develop the concepts and understanding that you need to implement the
steps in .

Figure 9.2. Overview of the steps you will develop in this chapter to help Marie learn the ground
state energy of her molecule.

The following steps are what you will implement in this chapter for your Hamiltonian
simulation algorithm.

230

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

9.1.1 Steps to simulate another quantum system, Marie’s H₂ molecule, with your
quantum computer:

1. Collaborate with Marie to figure out what Hamiltonian describes the energy levels
in the system she is interested in, as well as an approximation of the ground (or
lowest energy) state.

2. Prepare that approximation of the ground state, and use the Exp operation in Q# to
implement evolution of the quantum system for each term of the Hamiltonian.

3. Using the Trotter–Suzuki decomposition implemented in the Q#
function DecomposedIntoTimeStepsCA, simulate evolving your system under
the action of all of the terms of the Hamiltonian at once by breaking the evolution
into small steps.

4. Now that you have simulated the evolution of the system under the Hamiltonian,
you can use phase estimation to learn about the change in phase of your quantum
device.

5. You then make a final correction to the phase you estimate for the system and you
then have the energy of the ground state for H₂.

Listing 9.1. Final Q# operation that can estimate the ground state energy of the H₂
molecule.

operation EstimateH2Energy(idxBondLength : Int) : Double {
 let nQubits = 2;
 let trotterStepSize = 1.0;
 let trotterStep = EvolveUnderHamiltonian(idxBondLength, trotterStepSize, _);
 let estPhase = EstimateEnergy(nQubits,
 PrepareInitalState,
 trotterStep,
 RobustPhaseEstimation(6, _, _));
 return estPhase / trotterStepSize + H2IdentityCoeff(idxBondLength);
}

Without further ado, then, let’s dive in to the first quantum concept you’ll need to help
Marie out: energy.

9.2 MANY PATHS LEAD TO QUANTUM MECHANICS
Thus far, you’ve learned about quantum mechanics using the language of computing:
bits, qubits, instructions, devices, functions, and operations. Marie’s way of thinking
about quantum mechanics is very different, though. For her, quantum mechanics is a
physical theory that tells her how subatomic particles like electrons behave. Thinking
in terms of physics and chemistry, quantum mechanics is a theory about the stuff that
everything around us is made out of.

231

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 9.3. Thinking about quantum mechanics in two very different ways.

The two ways of thinking meet when it comes time to simulate how physical systems
like molecules behave. You can use quantum computers to simulate how other
quantum systems evolve and change in time. That is, quantum computing isn’t about
only physics or chemistry, but it can help you understand scientific problems like the
ones Marie runs into.

Information is core to how you might think about quantum computation, but to the
physics and chemistry way of thinking, quantum mechanics relies heavily on the
concept of energy. Energy tells us how physical systems as varied as balls and
compasses are affected by the world around them, giving us a consistent way to
understand each of these different systems. In , you can see how the state of a ball on a
hill and the state of a compass can both be described in the same way using the concept
of energy.

As it turns out, energy doesn’t just apply to classical systems like balls and compasses.
Indeed, you can understand how quantum systems like electrons and nuclei will do by
understanding the energy of different configurations. In quantum mechanics, energy is
described by a special kind of matrix called a Hamiltonian. Any matrix which is its
own adjoint can be used as a Hamiltonian, and Hamiltonians are not operations

232

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

themselves.

ADJOINT Recall from Chapters 7 and 8 that the adjoint of a matrix A is its conjugate transpose, . This
concept is closely related to the Adjoint keyword in Q#: if an operation op can be simulated

by the unitary matrix U, then the operation Adjoint op can be simulated by .

In this chapter, you will be learning all the tools and techniques to figure our the
energies of quantum systems that you have a Hamiltonian for. Often the process to get
the Hamiltonians for systems will be a collaboration, but once you have it and a few
more pieces of information you can estimate the energy of that system. This process is
called Hamiltonian simulation and is critical to many different applications of quantum
computing, including chemistry.

TIP In fact, you’ve already seen a few examples of Hamiltonians in previous Chapters, actually: all
of the Pauli matrices (𝑋𝑋, 𝑌𝑌, and 𝑍𝑍) are examples of Hamiltonians as well as being unitary
matrices. Not all unitary matrices can be used as Hamiltonians, though! Most of the examples
you’ll see in this Chapter take some more work before we can apply them as quantum
operations.

Marie is interested in understanding the energy of the bonds in her chemicals. So it
makes sense if you both could come up with a Hamiltonian that could describe her
molecule, then you can help estimate the energy she is interested in. In chemistry, this
energy is often called the ground state energy, and the corresponding state is known as
the ground state (or minimum energy state).

Once you have a Hamiltonian, the next step is to figure out how to construct the
operations that will simulate how the quantum system changes in time as described by
the Hamiltonian. In the next section, , you will learn how to describe the evolution of a
quantum system under a Hamiltonian.

Then, with operators in hand that represent that Hamiltonian, the next challenge is to
figure out how to simulate them on your quantum device. There won’t likely just be a
single operation built into the physical device that will exactly what you need, so you
will need a way to decompose your operations for your Hamiltonian in terms of what
your device can provide. In section 9.4, we will cover how you can take any operations
and express them in terms of Pauli operations, which are commonly available as
hardware instructions.

Now that you have your Hamiltonian expressed in as a sum of Pauli matrices, how do
you simulate all of them on your system? Likely, you will have multiple terms that all
sum together to represent the action of the Hamiltonian which don’t necessarily
commute. In , you will learn how to use the Trotter–Suzuki method to apply a little bit
of each term in the operation to simulate evolving under the entire thing at once.
Finally then you will have evolved your quantum system in a way that represents
Marie’s Hamiltonian!

Lastly, to work out the energy of the system described by the Hamiltonian you both
found, you can use phase estimation to help Marie out! In section 9.6, you get to

233

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

leverage the algorithm you learned in the last Chapter to learn about the phase applied
to your qubits by simulating the Hamiltonian.

Let’s get to it!

Figure 9.4. Using energy to understand how different physical systems are affected by their
environments.

9.3 HAMILTONIANS DESCRIBE HOW QUANTUM SYSTEMS EVOLVE
IN TIME.

To use a Hamiltonian to describe the energy of a physical or chemical system, you
need to look at its eigenstates and their eigenvalues.

234

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

EIGENSTATES
AND

EIGENPHASES

Remember from Chapter 8 that, if a state |Ψ⟩ is an eigenstate of an operation op, then
applying op to a register in the state |Ψ⟩ at most applies a global phase to |Ψ⟩. This phase
is called the eigenvalue or the eigenphase corresponding to that eigenstate. Like all other
global phases, this eigenphase cannot be directly observed, but you can use the
Controlled functor that you learned about in Chapter 8 to turn that phase into a local
phase.

Each eigenstate of a Hamiltonian is a state of constant energy; just like quantum
operations don’t do anything to eigenstates, a system that is in an eigenstate of its
Hamiltonian will stay at that energy over time. The other property of eigenstates that
you saw from the previous Chapter still holds here as well: the phase of each eigenstate
still evolves in time.

The observation that the phases of eigenstates evolve in time is in fact the content of
Schrödinger’s equation, one of the most important equation in all of quantum physics.
Schrödinger’s equation tells us that as a quantum system evolves, each eigenstate of a
Hamiltonian accumulates a phase proportional to its energy. Using math, you can write
out Schrödinger’s equation as shown in figure 9.5.

235

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 9.5. Schrödinger’s equation, written out in mathematical notation.

The real experts were the friends we made along the way
How can it be that this is Chapter 9, and you’re seeing the most important equation in quantum physics
for the first time? Developing quantum applications may be closely connected to quantum physics, but
it’s not the same thing, and you don’t need to be a physics expert to write quantum applications — you
can be, if you’re interested, but you don’t have to be. In fact, Schrödinger’s equation only even enters the
picture here because you need it to understand how quantum computers may be used for practical
impact.

Just like your friend Marie is an expert in quantum chemistry and not quantum computing, you don’t
need to know everything to do something awesome. That’s what friends are for!

TIP Schrödinger’s equation relates how phases of different states evolve in time to the energy of
those states. Since global phases are unobservable, and since eigenstates of Hamiltonians only
acquire global phases as they evolve, Schrödinger’s equation tells us that eigenstates of
Hamiltonians don’t evolve in time.

Schrödinger’s equation is most critical for us in this chapter here because it relates the

236

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

energy of a system to phase, a very helpful connection given that in the last Chapter,
you learned how to do phase estimation! There are other ways Schrödinger’s equation
is useful, one such being another way to look at implementing operations on our
quantum systems.

One way to implement the rotations that you’ve seen so far in the book is to set up the
right Hamiltonian and then… just wait. The time derivative () in Scrödinger’s
equation tells you that the way the state of your qubits rotate is entirely described by
the energy associated with each state. For example, Scrödinger’s equation tells us that
if your Hamiltonian is H = ωZ for some number ω, and if you want to rotate by an
angle Θ about the 𝑍𝑍-axis, then you can let your qubit evolve for time t = Θ / ω.

Exercisee
Try writing other rotations that you’ve seen earlier in the book (e.g.: Rx and Ry) as Hamiltonians.

In listing 9.2, you can see a simple Q# operation that simulates evolving under the
Hamiltonian H = ω Z.

NOTE In practice, a large part of the challenge of building a quantum computer is ensuring that
qubits don’t evolve except as instructed by a quantum program. It wouldn’t be very useful if
walking away from your quantum device for a moment meant that all your qubits were in
totally different states when you got back. This is part of why as quantum developers, we tend
to think at the level of instructions sent to a device — that is, quantum operations — and not
directly in terms of Hamiltonians.

Switching gears for a moment and temporarily thinking in terms of Hamiltonians gives
you a bit of what you need to start making progress on the problem that Marie asked
for help with. After all, the problems that Marie works with are much easier to describe
in that language. For example, in the previous Chapter you saw how you can learn
about the phase applied by rotations like the one that Dagonet hid from Lancelot. You
can also express that Dagonet’s and Lancelot’s game in terms of Hamiltonians, though.
Suppose that Dagonet was hiding the rotation angle 2.1 π; then, since his rotation was
about the 𝑍𝑍-axis, you could also describe that hidden rotation as a hidden
Hamiltonian H = -2.1πZ.

NOTE You need the - sign due to the - sign in Schrödinger’s equation. Getting this wrong is about as
common in quantum programming as off-by-one errors in other languages, so don’t stress out
if you forget once or twice, or even if you forget that pesky minus sign almost every time. You’re
still doing great.

Using this kind of a description, Lanceot’s scale corresponds to how long he lets his
qubits evolve under Dagonet’s hidden Hamiltonian. While thinking in terms of a game
makes it easier to write out quantum programs to learn Dagonet’s hidden rotation,
thinking in terms of a Hamiltonian makes it easier to map to the kinds of physical
concepts that Marie is concerned with, such as field strengths and time.

237

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 9.2. Evolving under the Hamiltonian 𝐻𝐻 = 𝑍𝑍.

operation EvolveUnderZ(❶
 strength : Double, ❷
 time : Double, ❸
 target : Qubit
)
: Unit is Adj + Ctl {
 Rz(2.0 * strength * time, target); ❹
}

❶You can write out an operation that simulates evolution under H = ωZ using Q#.
❷Here, ω says how large energies described the Hamiltonian are. For instance, if the Hamiltonian comes

from a magnetic field, then ω tells us how strong that field is. This plays the role of Dagonet’s hidden
angle in the previous Chapter!

❸You can also choose how long a time you want to simulate the Hamiltonian for. This is analogous to
Lancelot’s scale from Chapter 8.

❹The actual simulation here is just the one line, since rotations about the Z-axis are built into Q#. The
only tricky part is that we need to multiply by 2.0, as Rz multiplies its angle by -1/2 by convention.
Since Schrödinger’s equation tells us that we need a minus sign, 2.0 gives us the angle we need to
match figure 9.5.

Since Schrödinger’s equation tells us that evolving Hamiltonians rotates quantum
systems according to their energy, if you can simulate the Hamiltonian that Marie
gives us, then you can play exactly the same phase estimation game as in Chapter 8 to
learn the energy levels of that Hamiltonian.

Suppose that instead of H = ωZ, Marie asks if you can simulate H = ωX. Thankfully,
Q# provides rotations about the X axis as well, so that you can modify the call to Rz in
with a call to Rx. Unfortunately, though not every Hamiltonian Marie is interested in is
as simple as H = ωZ or H = ωX, so let’s look at what quantum development techniques
you can use to simulate Hamiltonians that are a bit more difficult.

These aren’t the Hamiltonians you are looking for
It is likely that when you start talking to Marie, that she will also be working on describing Hamiltonians
for her system in her simulation and modeling software. However these are likely fermionic
Hamiltonians which are different from the kind we are using here to describe how quantum devices
change in time. As a part of the workflow for your collaboration you and Marie will likely need to use
some tools like NWChem (http://www.nwchem-sw.org/) to actually convert between a Hamiltonian that
describes how a chemical changes in time and how qubits change in time. It’s out of scope for this book
to look at these methods in detail, but there are great software tools that can help with this, check out
the Quantum Development Kit documentation for detail if you’re interested
(https://docs.microsoft.com/quantum/libraries/chemistry/). This isn’t a big deal for now, just a handy tip
for when you are talking to your collaborators!

238

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
http://www.nwchem-sw.org/
https://docs.microsoft.com/quantum/libraries/chemistry/

©Manning Publications Co. To comment go to liveBook

9.4 ROTATING AROUND ARBITRARY AXES WITH PAULI
OPERATIONS

Moving up in complexity, perhaps Marie is interested in something that takes more
than a single-qubit Hamiltonian to describe. If she gives you a Hamiltonian like H =
ωX⊗X, what can you do to simulate it? Thankfully, what you learned about rotations
in Part I is still useful for that kind of two-qubit Hamiltonian, as you can think of it as
describing another kind of rotation.

UNSEEN
DIMENSIONS

In the previous section, you saw that rotations like Rx, Ry, and Rz correspond to Hamiltonians
like X, Y, and Z, respectively. You can think of two-qubit Hamiltonians like X⊗X as specifying
an axis in much the same way; it turns out that there are 15 possible such orthogonal rotation
axes for a two-qubit register, as opposed to the three dimensions that you get for a single-
qubit register, so to draw things out as a picture, you’d need 13 more dimensions than paper
normally comes with, making it somewhat difficult to draw out!

This rotation doesn’t look like any of the built-in (that is, intrinsic) instructions that
you’ve seen so far, though, so it might seem like you’re stuck. As it turns out, though,
you can still simulate this Hamiltonian using single qubit rotations like Rx, as long as
you use some two-qubit operations on either side. In this section, you’ll see how that
works, and how Q# makes it easy to automate applying multiple-qubit rotations.

By way of getting started, let’s look at some of the ways we can change what quantum
operations do by surrounding them with other operations. You can always use math to
reason about things, the way you saw in Chapter 7, but thankfully Q# also provides
some nice testing functions and operations that can help you out. For example, in
Chapter 7, you saw that surrounding a CNOT operation with H operations gives you
a CNOT going the other direction; let’s see how you can check that using Q#!

DON’T
FORGET

YOUR
SHOES!

Recall that the within/apply block in applies the shoes-and-socks principle that you first
learned about in Chapter 7. Most of the code examples in this section will make use of
within/apply blocks to help keep track of our shoes-and-socks thinking.

Listing 9.3. Changing the control and target of a CNOT operation by using H operations

open Microsoft.Quantum.Diagnostics; ❶

operation ApplyCNOT(register : Qubit[]) ❷
: Unit is Adj + Ctl {
 CNOT(register[0], register[1]);

239

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

}

operation ApplyCNOTTheOtherWay(register : Qubit[]) ❸
: Unit is Adj + Ctl {
 within {
 ApplyToEachCA(H, register);
 } apply {
 CNOT(register[1], register[0]);
 }
}

operation CheckThatThisWorks() : Unit {
 AssertOperationsEqualReferenced(2, ApplyCNOT, ApplyCNOTTheOtherWay); ❹
 Message("Woohoo!"); ❺
}

❶Since we’ll use the AssertOperationsEqualReferenced operation in this snippet, you’ll
need to start by opening the Microsoft.Quantum.Diagnostics namespace. The
operations and functons in this namespace help with testing and debugging quantum programs, and
can be very useful in helping to make sure your programs work as intended.

❷To compare the two ways of writing out a CNOT operation, we’ll need each to be callable as an
operation that takes an array of qubits representing a quantum register, so you can start off by writing
an operation that just applies a CNOT operation whose control is the first qubit of a register and
whose target is the second qubit.

❸To check the equivalence that you first saw in Chapter 7, you can write a second operation that
reverses the control and target of a CNOT operation, but that uses a within/apply block to
surround the call to CNOT with calls to the H operation.

❹Finally, you can call the AssertOperationsEqualReferenced operation to check that both of
the operations above do exactly the same thing. The first input to
AssertOperationsEqualReferenced specifies how large a register each operation acts on,
while the second and third inputs represent the operations being compared. If the operations do
anything different whatsoever, the assertion will fail and the quantum program ends.

❺If we get to this Message call, we know that the assertion in the previous line didn’t fail, and thus that
the operations ApplyCNOT and ApplyCNOTTheOtherWay do exactly the same thing to their
input qubits. Put differently, if we see the message "Woohoo!", you can safely conclude that the
two operations cannot be distinguished from each other by looking at what they do to the states of
quantum registers.

240

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

IMPORTANT Assertions like AssertOperationsEqualReferenced only make sense when run on a
simulator, as they require violating the No-Cloning Theorem to run. On actual hardware, these
kinds of assertions would be stripped out, just as running Python with the -O command line
argument disables the assert keyword. That means that Q# assertions give us a way of
cheating safely, since quantum programs using assertions do the same thing regardless of
whether or not we cheat.

Exercise
Use QuTiP to verify that the two operations ApplyCNOT and ApplyCNOTTheOtherWay can be
simulated by the same unitary matrix, and thus do the exact same thing.

Exercise
Just as you can use three classical XOR instructions to implement an in-place classical swap, you can
use three CNOT operations to do the same thing as a single SWAP operation. In fact, the following Q#
snippet does the same thing as SWAP(left, right):

CNOT(left, right);
CNOT(right, left);
CNOT(left, right);

Double-check that this is the same as SWAP(left, right), both by
using AssertOperationsEqualReferenced, and by using QuTiP.

Extra credit: SWAP(left, right) is the same as SWAP(right, left), so the snippet above
should work even if you start with CNOT(right, left) instead. Double-check that!

DEEP DIVE: The Choi–Jamiłkowski Isomorphism
The AssertOperationsEqualReferenced operaton in works using a neat piece of mathematics
called the Choi–Jamiłkowski isomorphism, which says that any operation that can be simulated using a
unitary matrix is perfectly equivalent to a particular state called its Choi state. This means that a
simulator can effectively find the entire truth table for any adjointable operation (that is, any operation
that has is Adj in its signature) by finding its Choi state.
The AssertOperationsEqualReferenced operation uses this concept to prepare a register of
qubits in the Choi state for each of the operations passed as inputs. On a simulator, it’s easy to cheat
and check if two states are the same, even though the No-Cloning Theorem tells us we can’t do that on
an actual device.

When writing unit tests and other checks that quantum programs are correct, this can be a powerful
technique for making use of classical simulators while still preventing cheating on actual hardware.

When you run CheckThatThisWorks, either in Jupyter Notebook (as you saw in
Chapter 6), or at the command-line, you should see the message "Woohoo!" printed
out, telling you that your Q# program ran past the call
to AssertOperationsEqualReferenced. Since that assertion only passes if the two

241

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

operations that you give it do exactly the same thing for all possible inputs, that tells
you that the equivalence you learned about in Chapter 7 works.

You can use the same logic to check how two-qubit operations like CNOT transform
other operations. For example, transforming a call to X with calls to CNOT does the
same thing as calling X multiple times, as demonstrated in .

Listing 9.4. Turning the X operation on a single qubit into an X operation on each qubit

of a register.

open Microsoft.Quantum.Diagnostics;

operation ApplyXUsingCNOTs(register : Qubit[]) ❶
: Unit is Adj + Ctl {
 within {
 ApplyToEachCA(❷
 CNOT(register[0], _), ❸
 register[1...] ❹
);
 } apply {
 X(register[0]); ❺
 }
}

operation CheckThatThisWorks() : Unit {
 AssertOperationsEqualReferenced(2,
 ApplyXUsingCNOTs,
 ApplyToEachCA(X, _) ❻
);
 Message("Woohoo!");
}

❶Just as in the previous listing, you’ll need two operations to pass as inputs to
AssertOperationsEqualReferenced. Here, you can start by writing out a single call to the
X operation, using a within/apply block to transform that with a sequence of calls to the CNOT
operation.

❷For the "socks" part of your within/apply block, you can write out the sequence of CNOT calls you
need by using ApplyToEachCA together with the partial application technique that you learned
about in Chapter 6.

❸This part of your call to ApplyToEachCA says to apply a CNOT operation controlled on the first qubit
of a register to each element of an array of qubits.

❹Next, you can specify the array whose elements you want to apply CNOT(register[0], _) on;
that is, the array of targets that you’d like to use. Here, you can write out register[1...] to pick
out all but the first (that is, the 0`th) element of the register `array. In Q#,
register[1...] is shorthand for the array slice register[1..Length(register) -
1]. Using this shorthand gives you a sequence of operations like CNOT(register[0],
register[1]), CNOT(register[0], register[2]), and so forth.

❺The "shoes" part of your within/apply block is a bit simpler, as it consists of just an X operation on
the same qubit that you used as a control for your sequence of CNOT calls.

242

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❻This time, instead of writing your own operation to compare to, you can compare instead to an X
operation on each qubit in a register by using partial application again.

Exercise
Using QuTiP, check that when run on two-qubit registers, the two programs in can be simulated by the
same unitary matrix and thus do the same thing to their input registers.

Exercise
Try modifying to see if both programs are equivalent when applied to more than two qubits.

NOTE: It can be pretty expensive to use AssertOperationsEqualReferenced for more than a
few qubits.

You can also build up other interesting kinds of operations by using
the within/apply concept. In particular, transforming a rotation by CNOT operations in
the same way as lets you implement the kinds of multiple qubit rotations that Marie
asked for at the beginning of this section. Using
the DumpMachine and DumpRegister features that you learned about in Chapter 8, you
can see that, in the same way that Rx applies an X-axis rotation between |0⟩ and |1⟩, you
can implement a (X⊗X)-axis rotation between |00⟩ and |11⟩.

Listing 9.5. Turning the Rx operation on a single qubit into a multi-qubit rotation.

open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Math;

operation ApplyRotationAboutXX(angle : Double, register : Qubit[])
: Unit is Adj + Ctl {
 within {
 CNOT(register[0], register[1]); ❶
 } apply {
 Rx(angle, register[0]); ❷
 }
}

operation DumpXXRotation() : Unit {
 let angle = PI() / 2.0;
 using (register = Qubit[2]) { ❸
 ApplyRotationAboutXX(angle, register); ❹
 DumpMachine(); ❺
 ResetAll(register); ❻
 }
}

❶Just as with , you’ll use a call to CNOT as the "socks" part of a within/apply block. For simplicity,
we’ve specialized to the two-qubit case in this listing, but you can use an ApplyToEachCA call in
the same way again to work with registers of more than two qubits.

❷This time, instead of applying an X operation to the control qubit, you’ll want to apply an X rotation
about an arbitrary angle to the control qubit.

243

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❸To check what your new ApplyRotationAboutXX operation does, you can start by asking your
target machine for a two-qubit register with a using statement.

❹You can then apply your new rotation about the (X⊗X)-axis to your new register to see what it does.
❺As in Chapter 8, when run on a simulator, DumpMachine will print out the full state of the simulator,

letting you check how your new rotation operation transformed the state of your register.
❻As usual, before releasing your register back to the target machine, you’ll need to reset all of your

qubits back into the |0⟩ state.

Exercise
Try preparing your register in states other than |00⟩ before calling ApplyRotationAboutXX. Does
your operation do what you expected?

HINT: Recall from Part I that you can prepare a copy of the |1⟩ state by applying an X operation, and that
you can prepare |+⟩ by applying an H operation.

TIP Your output from may look slightly different, as the IQ# kernel for Jupyter Notebook supports
multiple different ways to label qubit states. By default, IQ# uses the "little-endian" convention,
useful for arithmetic problems like the ones that you’ll see in Chapter 11. To label qubit states
using bitstrings like the ones you’ve seen so far in the book, run %config
dump.basisStateLabelingConvention = "Bitstring" from a new Jupyter Notebook
cell.

Figure 9.6. Output from running in a Jupyter Notebook.

Exercise
Try using DumpMachine to explore how the Rx operation acts on a single qubit, and compare to the
two-qubit rotation about the X ⊗ X axis that you implemented in . How are the two rotation operations
similar, and how do they differ? Compare rotating about the X ⊗ X axis with applying an Rx operation to
each qubit in a two-qubit register.

In general, any rotation about an axis given by a tensor product of Pauli matrices (such
as X⊗X, Y⊗Z or Z⊗Z⊗Z) can be implemented by applying a single-qubit rotation
transformed by a sequence of operations like CNOT and H. Finding what the right
transformation is, however, can be a bit annoying, so Q# provides a nice built-in
operation called Exp to help you out.

open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Math;

244

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

operation ApplyRotationAboutXX(angle : Double, register : Qubit[])
: Unit is Adj + Ctl {
 within {
 CNOT(register[0], register[1]);
 } apply {
 Rx(angle, register[0]);
 }
}

operation CheckThatThisWorks() : Unit {
 let angle = PI() / 3.0;
 AssertOperationsEqualReferenced(2,
 ApplyRotationAboutXX(angle, _),
 Exp([PauliX, PauliX], -angle / 2.0, _)
);
 Message("Woohoo!");
}

WARNING The convention used by Exp and Rx to denote angles differ by a factor of -1 / 2. When using
the Exp operation and single-qubit rotation operations in the same program, make sure to
double-check all of your angles!

Using Exp, it’s easy to simulate the Hamiltonian H = ωX⊗X, or even any other
Hamiltonian made up of tensor products of Pauli matrices.

Listing 9.6. Using Exp to simulate evolving under 𝑋𝑋 ⊗ 𝑋𝑋.

operation EvolveUnderXX(❶
 strength : Double, ❷
 time : Double, ❸
 target : Qubit
)
: Unit is Adj + Ctl {
 Exp([PauliX, PauliX], strength * time, target); ❹
}

❶Using what you’ve learned so far, you can now write out an operation to simulate evolving under a
Hamiltonian proportional to (X⊗X), just as the operation that you wrote in simulated evolving under a
Hamiltonian proportional to Z.

❷As before, you’ll need a parameter to represent the strength of the Hamiltonian; that is, how large the
energies described by your Hamiltonian are.

❸Next, you’ll need a parameter that describes how long to simulate evolution for (analogous to Lancelot’s
scale parameter from Chapter 8).

245

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❹Finally, you can ask for a rotation about the (X⊗X)-axis using the Exp operation provided by the
Microsoft.Quantum.Intrinsic namespace. Here, you can specify (X⊗X) by the Q# value
[PauliX, PauliX].

WARNING It may be tempting to think that you can implement a two-qubit rotation about Z⊗Z by rotating
the first qubit about Z, then rotating the second qubit about Z. These turn out to be very
different operations, however.

One way to think of it is that a rotation about Z⊗Z is only sensitive to the parity of each
computational basis state, so that |00⟩ and |11⟩ are each rotated by the same phase.

In any case, now that you have the Exp operation at your disposal, it’s pretty easy to
use it to write an operation that simulates each term in the Hamiltonian that Marie
gives you, as shown in .

Listing 9.7. A Q# operation to simulate evolution under a single Hamiltonian term

operation EvolveUnderHamiltonianTerm(
 idxBondLength : Int, ❶
 idxTerm : Int, ❷
 stepSize : Double, ❸
 qubits : Qubit[]
)
: Unit is Adj + Ctl {
 let (pauliString, idxQubits) = H2Terms(idxTerm); ❹
 let coeff = (H2Coeff(idxBondLength))[idxTerm]; ❺
 let op = Exp(pauliString, stepSize * coeff, _); ❻
 (RestrictedToSubregisterCA(op, idxQubits))(qubits); ❼
}

❶The first input you’ll need is an index to use to look up which of the Hamiltonians Marie gave you;
remember, she wants to understand how the energy of an H₂ molecule changes with its bond length,
so she’ll give you a different Hamiltonian from each bond length.

❷Next, you’ll need an input saying which term of Marie’s Hamiltonian you want to simulate evolution
under.

❸You’ll also need an input saying how long to simulate evolution for; that is, how long of a simulation step
to take.

❹Once you have all of that, you can get out the term from the Hamiltonian by using idxTerm together
with the H2Terms function provided in the code repository for this book.

❺Next, you can get the coefficient of that term by using the H2Coeff function, also provided in the
samples repository for this book.

❻To actually simulate evolution under that term, you can use Exp to do a rotation scaled by the
simulation step size, just as you did with the EvolveUnderXX operation from .

246

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❼Since not all terms affect all qubits, you can use the RestrictedToSubregisterCA operation
provided with the Q# standard libraries to apply your call to Exp only to a subset of the qubits input.

In the next Section, you’ll see how you can use this to simulate evolution under
Marie’s entire Hamiltonian.

9.5 MAKING THE CHANGE YOU WANT TO SEE IN THE SYSTEM
Now that you have seen how you can describe how a quantum device can change in
time, using the concept of a Hamiltonian, a very natural question is how do you
implement the particular Hamiltonian you want to simulate. Most quantum devices will
have some operations that are easy for them to do. For instance, you saw in the
previous section that it’s straightforward to simulate evolution under any Hamiltonian
that is given by a tensor product of Pauli matrices. That said, the Hamiltonian that you
and Marie are interested in is likely not a built-in operation, but something that isn’t
directly available on your quantum computer.

TIP Usually it will be easy for devices to implement some of the Pauli operators, and maybe a few
other operations; the game then becomes figuring out how to transform the operation
you want into ones operations that the device can easily do.

If there is no easy button that will simulate evolution under your Hamiltonian, how can
you implement a simulation of a particular Hamiltonian that you can apply to the
qubits in your device?

Let’s break it down. Literally. You learned all the way back in Chapter 2, you can
describe a vector as a linear combination of basis vectors or directions. It turns out that
you can do the same thing with matrices, and a really convenient basis for such is the
Pauli operators.

TIP If you need a refresher as to what the Pauli matrices are, no worries, we’ve got you covered:

Just like you could describe any direction on the map with North and West, you can
describe any matrix as a linear combination of Pauli matrices. For example,

Similarly,

The same holds for matrices acting on multiple qubits as well,

247

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Exercisee
Use QuTiP to verify the above equations.

HINT: You can use qt.qeye(2) to get a copy of , qt.sigmax() to get a copy of X, and so forth.
To compute tensor products like X⊗X, you can use qt.tensor.

This is good news, because you can then write the Hamiltonian you and Marie want to
simulate as a linear combination of Pauli matrices; in the previous section, you saw
that you can use Exp to easily simulate Hamiltonians that are made up only of tensor
products of Pauli matrices. This makes the Pauli basis a very convenient one, such that
it’s likely that the workflow from Marie’s chemistry tools will output the Hamiltonian
for your quantum device in the Pauli basis already.

Let’s look at the representation of the Hamiltonian that Marie wants you to simulate,
using the Pauli basis to expand it out. Using her chemistry modeling skills, Marie can
helpfully tell you that Hamiltonian is need you to simulate with your qubits is given by
below, where each of a, b_0, …, and b_4 is a real number that depends on what bond
length she wants to simulate H₂ at.

Equation 9.1. Equation 9.1: Marie’s Hamiltonian, given as a function of six real numbers.

TIP All the terms and coefficients Marie is using for the from the paper "Scalable Quantum
Simulation of Molecular Energies," by O’Malley et. al. https://arxiv.org/abs/1512.06860. The
exact coefficients depend on length of the bond between the hydrogen atoms, but all of these
constants are helpfully typed in for you in the code repo for the
book: https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp.

With this representation of Marie’s Hamiltonian in hand, it’s time to figure out how to
actually use it. There are six terms to this Hamiltonian, so which term should you apply
first? Does the order matter? It unfortunately does often matter when simulating
evolution of a system under a Hamiltonian what order the terms are used. In the next
section, you will learn about a method that allows you to break up the evolution of the
system into little steps to simulate evolution under all of the terms at once.

248

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://arxiv.org/abs/1512.06860
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp

©Manning Publications Co. To comment go to liveBook

9.6 GOING THROUGH (VERY SMALL) CHANGES

At this point, it’s helpful to take a step back and assess where you’re at with helping
Marie out. You’ve seen how to break arbitrary Hamiltonians down into sums of Pauli
matrices, and how to use the Exp operation to simulate evolution under each term in
that sum. In order to simulate arbitrary Hamiltonians, all that’s left is to combine those
simulations together to simulate the entire Hamiltonian. For that, you can use one more
quantum computing trick called the Trotter–Suzuki decomposition.

Before getting into the details of the Trotter–Suzuki decomposition, though, let’s go
back to the map analogy that you’ve used throughout the book to break down linear
algebra concepts. Suppose that you’re exploring downtown Phoenix and decide to see
what it feels like to go Northeast throughout the city. If you start out by going North
several blocks, then go several blocks East, the route you trace out on a map won’t
look much like a diagonal line at all. On the other hand, if you switch going North and
East each block, you’ll trace out something much closer to a path that looks like it
came out of the map of Minneapolis that you saw in Chapter 2. That is, you can
simulate the way you might walk through Minneapolis even if you’re stuck in Phoenix
by quickly switching which way you walk.

Figure 9.7. If you’re in downtown Phoenix, you can still simulate how you might walk through
downtown Minneapolis by rapidly alternating directions.

In the previous section, you saw that just like states, the different terms in a
Hamiltonian can be thought of as directions on a high-dimensional map. Tensor

products of Pauli matrices, such as Z⊗ and X⊗Z, play a similar role to the
cardinal directions or axes of a map. When you try to simulate Marie’s Hamiltonian,
though, that doesn’t point along a single axis, but along a kind of diagonal in that

249

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

higher-dimensional space. That’s where the Trotter–Suzuki decomposition comes in.

Just as when you quickly switch which direction you walk, your path looks more
diagonal, you can rapidly switch between simulating different Hamiltonian terms. As
illustrated in figure 9.8, the Trotter–Suzuki decomposition tells you that when you
rapidly switch in this way, you approximately evolve under the sum of the different
terms that you’re simulating.

Figure 9.8. Using the Trotter–Suzuki decomposition to approximate evolving under two
Hamiltonian terms at once.

You could in principle write this out in Q# as a for-loop. In pseudocode, you might

250

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

have something like this:

Listing 9.8. Pseudocode for simulating a Hamiltonian term-by-term, using the Trotter–

Suzuki decomposition.

operation EvolveUnderHamiltonian(time, hamiltonian, register) { ❶
 for (idx in 0..nTimeSteps - 1) { ❷
 for (term in hamiltonian) { ❸
 evolve under term for time / nTimeSteps
 }
 }
}

❶Since this is pseudocode, let’s not worry too much about types for a moment. This operation won’t
compile without types, but that’s fine for now.

❷For each step that you want to divide your simulation into (think of city blocks in Phoenix, or pixels on a
screen), you’ll need to do a bit of each Hamiltonian term.

❸Within each timestep, then, you can loop over every term that you need to simulate, and simulate each
for one step.

Thankfully, Q# provides a standard library function that does precisely this for
you: DecomposedIntoTimeStepsCA. In listing 9.9, we show how
calling DecomposedIntoTimeStepsCA makes it easy to use the Trotter–Suzuki
decomposition to simulate evolution under Marie’s Hamiltonian.

Listing 9.9. Using DecomposedIntoTimeStepsCA to simulate Marie’s entire

Hamiltonian.

operation EvolveUnderHamiltonian(
 idxBondLength : Int, ❶
 trotterStepSize : Double, ❷
 qubits : Qubit[]
)
: Unit is Adj + Ctl {
 let trotterOrder = 1; ❸
 let op = EvolveUnderHamiltonianTerm(idxBondLength, _, _, _); ❹
 (DecomposedIntoTimeStepsCA ((5, op), trotterOrder))(trotterStepSize, qubits);
❺
}

❶Just like EvolveUnderHamiltonianTerm, EvolveUnderHamiltonian will apply the
appropriate Hamiltonian based on the coefficients for the desired bond length of the H₂ molecule that
Marie asked for your help with.

❷Again, you also will have a step size that represents how long you want to simulate Hamiltonian
evolution for.

❸The DecomposedIntoTimeStepsCA function supports higher-order Trotter–Suzuki
decompositions than the first-order approximation that you’ve explored so far in this Chapter
(represented by a trotterOrder of 1). In some cases, this feature can be useful in helping
increase the accuracy of your simulation, but a trotterOrder of 1 works fine for our purposes.

251

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❹This line uses partial application to fix the idxBondLength input to
EvolveUnderHamiltonianTerm, but that leaves the idxTerm, stepSize, and qubits
arguments blank. This will be useful as an input for DecomposedIntoTimeStepsCA in the next
line.

❺Here, you can setup the argument you will pass to the DecomposedIntoTimeStepsCA function.
The first input to this function is a tuple of the number of terms to be simulated and an operation that
can simulate evolution under each term in turn. The second input is the approximation order that you
defined above. This function outputs an operation that can be used to automatically simulate evolution
under the entire Hamiltonian, using the operation that simulates each term one-by-one, so you can go
on and apply it to your qubits.

9.7 PUTTING IT ALL TOGETHER

Now that you have a better idea about what Hamiltonians are and how we can simulate
evolution under them to understand how quantum systems change in time, you’re ready
to put together a program that will help Marie solve her question. As a reminder, Marie
is a chemist who studies the ground state energies (a.k.a. lowest possible energies) of
different chemicals. She has asked us for help trying to figure out what the ground state
energies for the H₂ molecule with our quantum device. Because the hydrogen atoms
that make up H₂ molecules are also quantum systems, it is much easier to simulate the
behavior of H₂ with qubits than a classical computer.

TIP Quantum computers are so well suited to simulating the behavior of other quantum systems,
this was arguably the first application ever proposed for quantum computing!

is a reminder of all of the steps or techniques you have learned in this Chapter to
simulate the evolution of Marie’s H₂ molecule in your quantum device.

252

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 9.9. Overview of the steps you will develop in this chapter to help Marie learn the ground
state energy of her molecule.

So, you being a quantum developer, can collaborate with Marie to simulate the
evolution of the H₂ molecule in time and calculate what the ground state energy is
thanks to Schrödinger’s equation. The key point to remember is that the energy levels
that the H₂ molecule can be is correspond to the different eigenstates of the
Hamiltonian.

Suppose that your qubits are in an eigenstate of the Hamiltonian. Then, simulating

253

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

evolution under that Hamiltonian won’t change the state of your qubit
register, except to apply a global phase that is proportional to the energy of that state.
That energy tells you exactly what you need to solve Marie’s problem, but global
phases are unobservable. Thankfully, in the previous Chapter, you learned from
Lancelot’s and Dagonet’s game all about how to turn global phases into something that
you can learn with phase estimation — here is a great place to apply it! Summarizing,
then, the steps that you need to do to collaborate with Marie and solve her problem are
as follows:

9.7.1 Steps to find the ground state energy of H₂.

1. Prepare the initial state that Marie gives you; in this case, she helpfully tells you to
prepare |10⟩.

2. Take the Hamiltonian representing the system and break it up into little steps that
can be simulated sequentially to represent the entire operation.

3. Apply each step representing the Hamiltonian to your initial state.
4. Use a phase estimation algorithm to learn about the accumulated global phase on

your quantum state, which will be proportional to the energy.

You now have the skills and code from the previous sections in this chapter to pull this
all together, so let’s give it a go.

Starting with the Q# file (here called operations.qs to match what you’ve seen in
previous Chapters), you can open some namespaces to utilize some pre-made functions
and operations.

Listing 9.10. Namespaces needed from the QDK for helping Marie find the ground state

energy of H₂.

namespace HamiltonianSimulation {
 open Microsoft.Quantum.Intrinsic;
 open Microsoft.Quantum.Canon; ❶
 open Microsoft.Quantum.Simulation; ❷
 open Microsoft.Quantum.Characterization; ❸

❶We have seen Microsoft.Quantum.Intrinsic and Microsoft.Quantum.Canon
before, they have the basic utilities/helper functions and operations we will need.

❷Microsoft.Quantum.Simulation is a namespace for the QDK that has, as you might expect,
utilities for simulating systems.

❸Microsoft.Quantum.Characterization has easy to use implementations of the phase
estimation algorithms that you developed in the previous chapter.

Next, you need to add the data Marie has about her molecule. You will find all of this
typed out for you already in the sample file in the GitHub repo for this
book: https://github.com/crazy4pi314/learn-qc-with-python-and-
qsharp/blob/master/ch09/operations.qs. The functions H2BondLengths, H2Coeff,
and H2IdentityCoeff will be what you need (they are kinda long to reproduce here in

254

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp/blob/master/ch09/operations.qs
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp/blob/master/ch09/operations.qs

©Manning Publications Co. To comment go to liveBook

the text).

Once you have all of the coefficient data from Marie in your file, next you will need
the actual terms/structure for the Hamiltonian that you will use with those coefficients
you just added. In listing 9.11, you can see an outline of a function that returns terms of
Marie’s Hamiltonian expressed as Pauli operators, as well as an operation that will
prepare your two-qubit register in the right state for this algorithm.

Listing 9.11. Function that returns terms from the Hamiltonian for H₂.

function H2Terms(idxHamiltonian : Int) : (Pauli[], Int[]) { ❶
 return [
 ([PauliZ], [0]), ❷
 ([PauliZ], [1]),
 ([PauliZ, PauliZ], [0, 1]), ❸
 ([PauliY, PauliY], [0, 1]),
 ([PauliX, PauliX], [0, 1])
][idxHamiltonian];
}

operation PrepareInitalState(q : Qubit[]) : Unit { ❹
 X(q[0]);
}

❶The H2Terms function makes it easy to construct the terms of Marie’s Hamiltonian.
❷This function is really just a hard-coded list of tuples that describe the terms of the Hamiltonian. This

first tuple says that the first term of the Hamiltonian is the PauliZ operation on the zeroth qubit.
❸This term of the Hamiltonian applies PauliZ to both the zeroth and the first qubit.
❹You will also need a way to prepare your qubits for the algorithm. Following Marie’s advice, you put the

first qubit in the |1⟩ state, leaving the rest of the input qubits in the |0⟩ state.

To take care of steps 2 and 3 of your quantum algorithm, you will need the operations
you defined earlier EvolveUnderHamiltonianTerm and EvolveUnderHamiltonian.

Lastly, you can use the EstimateEnergy operation provided with the Quantum
Development Kit to take the Trotter–Suzuki steps and automate their application as
well as the phase estimation step. You can also use a built-in phase estimation
operation that implements a better version of the phase estimation algorithm you
learned about in the last Chapter.

255

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

GLOBAL
PHASES AND

THE
CONTROLLED

FUNCTOR

Just as you saw in the previous Chapter, applying EvolveUnderHamiltonian doesn’t do
anything to qubits prepared in an eigenstate of Marie’s Hamiltonian — indeed, that’s the
whole point! In Chapter 8, you were able to solve this by the using the Controlled functor
to turn the global phase resulting from applying Dagonet’s operation on a qubit prepared in
an eigenstate into a local phase that can be observed, and by then using phase kickback to
apply that phase to a control qubit. The EstimateEnergy operation provided by the
Quantum Development Kit uses the exact same trick to learn what would otherwise be a
global phase of your EvolveUnderHamiltonian operation. This means that
it’s critical that your operation supports the Controlled functor by adding is Ctl to the
signature for each operation that you pass to EstimateEnergy as a part of helping out
Marie.

Listing 9.12. Final Q# operation that can estimate the ground state energy of the H₂
molecule.

operation EstimateH2Energy(idxBondLength : Int) : Double { ❶
 let nQubits = 2; ❷
 let trotterStepSize = 1.0; ❸
 let trotterStep = EvolveUnderHamiltonian(idxBondLength, trotterStepSize, _); ❹
 let estPhase = EstimateEnergy(nQubits, ❺
 PrepareInitalState,
 trotterStep,
 RobustPhaseEstimation(6, _, _));
 return estPhase / trotterStepSize + H2IdentityCoeff(idxBondLength); ❻
}

❶This is it! The operation EstimateH2Energy takes the index of the molecule bond length and
returns the energy of its ground state or lowest energy state.

❷You define that you will need two qubits to simulate this system.
❸Here you can set a scale parameter for the Trotter–Suzuki steps that will apply the terms of your

Hamiltonian to your qubits.
❹The trotterStep variable builds off of the operation you defined in the previous section,

ApplyHamiltonian and gives a convenient name for the operation that will apply the terms of
your Hamiltonian with your parameters for the Trotter–Suzuki steps.

❺You have built into the Microsoft.Quantum.Simulation library an operation that will take a
specification for then number of qubits (nQubits), an operation to prepare your desired initial state
(PrepareInitialState), how to apply your Hamiltonian (trotterStep), and what algorithm
you want to use to estimate the phase resulting from applying your Hamiltonian (here you can
leverage a built-in option provided by the Microsoft.Quantum.Characterization library
RobustPhaseEstimation).

❻To make sure the units are right for the returned energy you have to divide by the trotter step size and
add the energy from the identity term in the Hamiltonian.

Now, to actually run the algorithm! Since the ground state energy is a function of the
molecule bond length, you can use a Python host to run the Q# algorithm and then plot
the results as a function of the bond length.

256

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 9.13. Setting up the Python file for running your Hamiltonian simulation.

import qsharp ❶
import HamiltonianSimulation as H2Simulation

bond_lengths = H2Simulation.H2BondLengths.simulate() ❷

def estimate_energy(bond_index: float, ❸
 n_measurements_per_scale: int = 3
) -> float:
 print(f"Estimating energy for bond length of {bond_lengths[bond_index]} Å.")
 return min([H2Simulation.EstimateH2Energy.simulate(idxBondLength=bond_index)
 for _ in range(n_measurements_per_scale)])

❶First, you need to import the Python package for Q# and then import the Q# namespace
(HamiltonianSimulation) from your operations.qs file.

❷Just to make things easier, you can pull the list of bond lengths we can simulate for H₂ from the Q#
function H2BondLengths.

❸The estimate_energy function is basically a Python wrapper for the EstimateH2Energy Q#
operation, but that runs EstimateH2Energy a few times to make sure the energy estimated is
actually the minimum.

Why do we need to run EstimateH2Energy multiple times?
The state |01⟩ that Marie gave you isn’t actually an eigenstate of any H₂ Hamiltonian, but something that
she computed using an quantum chemistry approximation known as Hartree–Fock theory. Since
quantum chemistry is her area of expertise, she’s able to help out by providing you with approximations
like that.

In practice, this means that when you run phase estimation using the tools provided by
the Microsoft.Quantum.Characterization namespace, you aren’t learning the energy of a
particular eigenstate, but rather you’re randomly projecting onto an eigenstate and learning its energy.
Since your initial state is a pretty good approximation, most of the time you’ll actually project onto the
lowest energy state of Marie’s Hamiltonian (that is, the ground state), but you can get unlucky and
correctly learn the energy of the wrong eigenstate. Since you’re looking for the smallest energy, running
multiple times and taking the minimum makes it much more probable that you’ll learn the energy that
you want.

With everything setup in the Python host, all that’s left is to write and run the main
function.

Listing 9.14. The main program for your Hamiltonian simulation algorithm.

if __name__ == "__main__":
 import matplotlib.pyplot as plt ❶

 print(f"Number of bond lengths: {len(bond_lengths)}.\n")
 energies = [estimate_energy(i) for i in range(len(bond_lengths))] ❷
 plt.figure() ❸
 plt.plot(bond_lengths, energies, 'o')
 plt.title('Energy levels of H₂ as a function of bond length')
 plt.xlabel('Bond length (Å)')
 plt.ylabel('Ground state energy (Hartree)')

257

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 plt.show() ❹

❶Running host.py as a script will plot the estimated ground state energies from the quantum algorithm
in Q#.

❷Here you are directly generating the list of estimated energies for each H₂ molecule bond length.
❸This and the next four lines setup the data and style for the plot.
❹Calling plt.show() should pop-up or return an image of the plot!

Figure 9.10. A sample of the plot that running your host.py should produce.

You can see in a sample of what running python host.py should output. This plot
shows the results of your simulations for a variety of Hamiltonians for different bond
lengths of the H₂ molecule. You can see that the energy of the lowest state is much
higher when the bond length is short, and kind of levels off as the bonds get longer.
The lowest energy possible should occur around a bond length of approximately 0.75
Å. If you look up, the stable (that is, equilibrium) bond length for hydrogen is 0.74 Å!
So yeah, it turns out Marie’s molecule is a pretty well known one, but you can see how
you could follow this process not only for other chemicals, but also for simulating
other quantum systems.

Congratulations, you have now implemented your first, practical application for a
quantum computer! Of course, the actual chemical we were using here is fairly simple,

258

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

but this process holds for most other quantum systems you might want to simulate. In
the next two chapters we will explore two other applications of quantum computers,
unstructured searching with Grover’s algorithm, and factoring numbers with Shor’s
algorithm.

9.8 SUMMARY
In this chapter you learned:

• Recognize how quantum computers can be used to solve difficult chemistry
simulation problems

• Implement qubit rotation operations about arbitrary Pauli axes using Exp.
operation,

• Implement time-dependent operations on qubits using the Trotter–Suzuki method,
and

• Create programs using Q# standard library features for phase estimation,
decomposition, etc.

259

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

10
This chapter covers:
 • Implement a quantum algorithm for searching unstructured data.

 • Recognize how the resource estimator for the QDK can help understand the costs for running

particular algorithms.

 • Implement reflections of quantum registers about states.

Figure 10.1. In this Chapter, we will be covering topics in both techniques for developing
quantum algorithms and applications for quantum programs.

Searching With Quantum
Computers

260

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

10.1 SEARCHING UNSTRUCTURED DATA
Suppose you want to search through some data, such as to find a contact’s phone
number. If that list of contacts is sorted by name, then it’s pretty easy to find the phone
number associated with a particular name by using a binary search:

Algorithm 10.1: Pseudocode for binary search

1. Pick a name/phone number pair in the middle of your list, call this pair your pivot.
2. If the pivot’s name is the name you’re looking for, return the pivot’s phone

number.
3. If the name you’re looking for comes before the pivot’s name, repeat the search on

the first half of the list.
4. Else, if the name you’re looking for comes after the pivot’s name, repeat the

search on the second half of the list.

Not just a character on Star Trek.
In this Chapter, we talk a lot about searching through data. That data can come in a lot of different forms.

Kinds of data
• Phone numbers
• Names of dogs
• Weather measurements
• Types of doorbells

What all of these have in common is that we can represent them on classical computers as strings of
bits, using a variety of different conventions about how that representation should work.

Searching this way can all be done pretty quickly, and is key to how you can search
databases full of information quickly. The problem is that in binary search, you
critically depend on your list of names and phone numbers being sorted. If it’s not
sorted, binary searching simply doesn’t work.

Put differently, to search your data quickly, you need some kind of structure to apply to
your data, whether that structure is that your data is sorted, or some other kind of
assumption that lets you avoid having to look at every single item. If you don’t have
any structure, the best thing you can do is to randomly look through your data until you
find what you want. The steps listed in show pseudo code for how you would search a
list without structure. You might get lucky, but on average, random searching is only
ever twice as fast as looking at every single item.

Algorithm 10.2: Pseudocode for searching unstructured lists

1. Pick a random element of your list.
2. If it’s the right element, return it. Otherwise, pick a new element and repeat.

The fact that searching unstructured lists is hard is the basis of much of cryptography
as well. In that case, rather than writing down the list explicitly, your task in trying to

261

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

break an encryption algorithm is to try different keys until one works. We can think of
the decryption function as implicitly defining a list, where there’s one special "marked
item" that corresponds to the correct secret key.

Figure 10.2. Structured and unstructured searches

The pseudocode in could represent this decryption task. The random input you are
picking is the key, which you use with the decryption "function" or algorithm to see if
it decrypts the message.

Algorithm 10.3: Pseudocode for searching unstructured inputs to a function

1. Pick a random input.
2. Call your function with that input. If it worked, return your input.
3. Otherwise, pick a new random input and repeat.

If you could search unstructured lists more quickly, that would let you sort through
databases, solve mathematical problems, or — yes — even break some kinds of
classical encryption.

Perhaps surprisingly, if the function that defines your list can be written out as a
quantum operation (using what you learned about oracles in Chapter 7), then you can
use a quantum algorithm known as Grover’s algorithm to find an input much faster
than with .

NEED A
REFRESHER?

You’re getting towards the end of the book now, meaning you have the opportunity to put
what you’ve learned throughout the book so far together. In particular, in this Chapter, you’ll
use what you learned about oracles from Nimue’s and Merlin’s game in Chapter 7 to
represent the input to Grover’s algorithm. If you need a refresher on what oracles are, no
worries, Chapter 7 is there to help.

When you run Grover’s algorithm, you’re searching for one or more particular values
of a function over all possible inputs to a function. If you want to search an
unstructured list of data, you could consider defining a function that is responsible for
looking up a particular entry in the list as the function that you want to search the

262

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

inputs to.

Consider the scenario where you need to decrypt a message in 1 minute. There are 2.5
million different keys you need to try, but only one works to decrypt the message, and
trying each key at a time will take too long. You can use Grover’s algorithm, and a
function representing the problem like "does this cryptographic key decrypt a particular
message?" to find the right key much quicker and without having to test each key
individually! This is a lot like the padlock example from , where we think of the
different possible keys as inputs.

We’ll make the function you need for Grover’s algorithm to represent this problem
more precise when we revisit oracles later on the chapter, but it’s really helpful to
remember that when you search with Grover’s algorithm, you’re searching over inputs
to a function, not a list of data. With that in mind, you can see the pseudocode for
Grover’s Algorithm in algorithm 10.4.

Algorithm 10.4: Pseudocode for performing unstructured search (Grover’s Algorithm)

1. Allocate a register of qubits that is large enough to represent all of inputs to the
function you are searching over.

2. Prepare the register in a uniform superposition state, i.e. all possible states have
the same amplitude. This is because due to the type of problem, you don’t have
any additional information about which input might be the "correct" input, so this
represents a uniform probability distribution or prior on the data.

3. Reflect the register about the marked state, or the state you are searching for. Here,
a reflection just means picking out a particular state and flipping the sign on it, but
you’ll see more detail in the next Section, as well as how to implement reflections
in Q#.

4. Reflect the register about the initial state (uniform superposition).
5. Repeat steps 3 and 4 enough times until the probability of measuring the item you

are searching for is sufficiently high. Then measure the register. You can
mathematically work out the optimal number of times you need to do this so that
you maximize the correct answer.

You can see a figure representing these steps in figure 10.3.

263

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 10.3. The steps to the Grover’s Algorithm that searches over inputs to a function.

IMPORTANT As you go through this Chapter, you’ll see that one way to think of Grover’s algorithm is as a
kind of rotation between the states representing whether or not you’ve found the right marked
item, a.k.a. the decryption key for our scenario. If you apply steps 3 and 4 above too many
times, you’ll rotate right past the state that you’re looking for, so choosing the number of
iterations is an important part of the algorithm!

In , we show an example of how the cost of classically searching an unstructured list
might compare to using Grover’s algorithm.

264

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 10.4. An example of how the time taken for searching unstructured lists might scale for
classical and quantum computers

TIP One way to describe what’s shown in figure 10.4 is to use a concept called asymptotic
complexity. In particular, we say that a classical unstructured search requires O(N) function

calls to search through N inputs, while Grover’s algorithm requires calls. Don’t worry if
this isn’t familiar to you, but if you’re curious to learn more about how to understand
algorithms this way, check out Chapter 1 of Grokking Algorithms from Manning Publications.

As before, let’s jump in and see what that code looks like. In listing 10.1, you can see
an example of a Q# operation that uses Grover’s algorithm to search an unstructured
list for a marked item. Here, rather than the 2.5 million keys to try we will reduce the
scope to 8 keys, and the marked item or correct key is indicated by an integer in the
range 0 to 7. Yes, that would mean that maybe you could solve this just as fast on a
classical computer. However, you will see at the end of the chapter how as the number
of keys you need to search through grows, the number of steps or computations that are
needed to find the key are much lower when using Grover’s algorithm. Also, for our
sample code here the function representing the decryption algorithm won’t really do
any decrypting, it will just act like it is playing a guessing game and return a boolean if
it is given the right key. Implementing a particular decryption algorithm for this
chapter is out of scope, and would likely need a bit of research to pull off. The goal
here is to show how using Grover’s to search through the inputs to a function allows
for speedups to particular problems.

Listing 10.1. Operation that runs a specific example of Grover’s Algorithm.

operation RunGroverSearch() : Unit {
 let idxMarkedItem = 6; ❶
 let markItem = ApplyOracle(idxMarkedItem, _, _); ❷
 let foundItem = SearchForMarkedItem(3, markItem); ❸
 Message($"marked {idxMarkedItem} and found {foundItem}."); ❹

265

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

}

❶For this example, the item we are searching for is represented by the index 6.
❷You can use partial application to include the index of the marked item in the oracle that you will provide

to the search algorithm.
❸Here you are actually running Grover’s search algorithm on a register of three qubits and providing the

oracle markItem that you defined above.
❹The last line here just issues a message to verify it found the right item.

If you run the sample in listing 10.1, you should get the output below ().

Listing 10.2. Output from running RunGroverSearch.

In [1]: %simulate RunGroverSearch
Out[1]: Marked 6 and found 6.

You can see from running the above sample of Grover’s algorithm, that the decryption
key you were looking for was the one indexed or marked by the number 6 and the
algorithm found the key as number 6 as well.

Now, since the SearchForMarkedItem operation is really the meat of this example,
let’s look at it’s implementation (see listing 10.3).

Listing 10.3. Writing out Grover’s Algorithm as a Q# operation

operation SearchForMarkedItem(❶
 nQubits : Int, ❷
 markItem : ((Qubit[], Qubit) => Unit is Adj) ❸
)
: Int { ❹
 using (qubits = Qubit[nQubits]) { ❺
 PrepareInitialState(qubits); ❻

 for (idxIteration in 0..NIterations(nQubits) - 1) { ❼
 ReflectAboutMarkedState(markItem, qubits);
 ReflectAboutInitialState(PrepareInitialState, qubits);
 }

 return MeasureInteger(LittleEndian(qubits)); ❽
 }
}

❶As usual, you’ll want to start by defining a new operation, using the operation keyword.
❷The first input that your operation needs to take is the number of qubits that your list is defined on. Your

quantum register needs to be big enough to index into that list. For example, if your list has 16 items,
you need 4 qubits to get the 24 = 16 indices that you need to refer to each item in your list.

❸The next input is a representation of your search problem. Just as with the cryptography example
above, you can implicitly define your search problem by an oracle that marks whether an item in your
list is the right one or not.

266

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❹When you’re done with your search, you’ll have an index for where the marked item was. Defining your
output as an Int lets you return that index back out.

❺To start the search, you’ll need to allocate a big enough register to hold an index into your list.
❻Since you’re searching an unstructured list, when you first start the search, all items are equally good

places to look. You can represent this by preparing a uniform superposition over all indices into your
list. You’ll see more about how to do this below.

❼The actual heart of Grover’s algorithm comes down to repeatedly reflecting about your start state, and
about the index for the item that you’re looking for.

❽Once you’re done, measuring your qubit register tells you the index of the item that Grover’s algorithm
found. The Q# standard library provides a useful operation, MeasureInteger, that interprets
measurement results as a classical integer. To use MeasureInteger, you can mark your register
as encoding an integer in a little-endian register by using the
Microsoft.Quantum.Arithmetic.LittleEndian user-defined type.

USER-
DEFINED

TYPES

If you need a reminder about what user-defined types (UDTs) are and how to use them, check
out Chapter 8, where you used them to help Lancelot and Dagonet play their angle-guessing
game.

By this point in the book, you have almost all of the quantum concepts you need to
make sense of listing 10.3. In the rest of this Chapter, you’ll see how to use what
you’ve learned to implement an example oracle that can be used to define a simple
search problem, and how you can implement the two reflections that make up Grover’s
algorithm to solve that problem.

10.2 REFLECTING ABOUT STATES
You saw in and that there were two operations that you used repeatedly in
the for loop, ReflectAboutInitialState and ReflectAboutMarkedState. Let’s
dig into how these operations helps us search the input of the function representing our
decryption scenario.

Each of these operations is an example of a reflection about a particular state. This is
an example of a new kind of quantum operation, but we can still simulate it with a
unitary matrix as before. The term "reflecting about a state" means that when you have
a register of qubits, you are picking out a particular state it could be in, and if it
happens to be in that state, you flip the sign on it (a.k.a change the phase of that state).
If you think this sounds like some of the controlled operations we looked at before, you
are correct as you will be making use of controlled operations to implement these
reflections.

10.3 REFLECTION ABOUT THE ALL-ONES STATE
Let’s start by looking at a particularly useful example: a reflection about the all-ones
state, . You can implement this reflection using the Controlled Z operation
that you first saw in Chapter 9.

267

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

CONTROLLED ISN’T
JUST

AN IF STATEMENT!

Remember that the Controlled functor isn’t just a fancy if block, but rather can be
used in superposition. For a review of how the Controlled functor works, check out
Chapter 8, where you used it to help Lancelot and Dagonet play their game.

Listing 10.4. An operation that reflects about the |11⋯1⟩ state.

operation ReflectAboutAllOnes(register : Qubit[]) : Unit is Adj + Ctl {
 Controlled Z(Most(register), Tail(register)); ❶
}

❶Here, the Controlled functor allows you to use the Z operation in a controlled fashion. Like other
Controlled operations, Controlled Z takes two inputs: the first being the register that should
be used as control qubits, and the second, the qubit that the Z operation will be applied to if all the
qubits in the control register are in the |1⟩ state. You can use the Most function from
Microsoft.Quantum.Arrays to get all but the last qubit and Tail to get only the last qubit.

TIP By using Controlled Z together with Most and a Tail, your implementation works no
matter how many qubits are in your register. This will be useful later, as you might need to
different numbers of qubits to represent the data in your list.

Recall from Chapter 9 that the Controlled Z operation applies a phase of -1 to
the state and does nothing to every other computational basis state. Thinking
back to Chapter 2, where each computational basis state is a kind of direction, that
means there’s a single direction that gets flipped by Controlled Z, while all other
input states are left alone. That kind of picture is why we call operations that behave in
this way reflections, though an actual graphical representation is tricky due to the
number of dimensions that can be involved.

268

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

TIP One way to see that the Controlled Z operation flips the sign of a single input state, as
described above, is to write down a unitary matrix that simulates Controlled Z. For
example, with a single control qubit:

For two control qubits:

Using what you’ve learned about unitary matrices throughout the rest of the book, these
matrices make it clear that the input states |11⟩ and |111⟩, respectively, get flipped by -
1 while all other input states are left alone (get a phase of +1). The same pattern continues no
matter how many control qubits you use with Controlled Z.

Exercise
Use DumpMachine to see how Controlled Z acts on the uniform superposition state |++ ∙ ∙ ∙ +⟩.

HINT: Recall that |+⟩=H|0⟩, so you can use the program `ApplyToEachCA(H, register)` to prepare |+ ∙ ∙ ∙
+⟩on a register that starts off in the |00 ∙ ∙ ∙ 0⟩ state.

DEEP DIVE: Reflections are rotations?
Given our geometrical understanding of reflections, it would be natural to think of them as a kind of
rotation by 180° degrees. That turns out to only be true because quantum states are vectors of complex
numbers; if you only had access to real numbers, then you wouldn’t be able to get a reflection by using
rotations! You can see this by thinking back to how you described states and rotations in Chapters 2 and
3, namely as rotations of a 2D circle. If you pick up a two-dimensional object, flip it over, and put it back
down, there’s no way to transform it back to the way it was without picking it back up again. On the other
hand, three-dimensional space gives you enough extra room that you can combine different rotations
together to make a reflection. Since complex numbers give you your third axis when describing the states
of qubits (namely, the Y-axis), that’s what lets you do the reflections you need in Grover’s algorithm as
well!

269

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

10.4 REFLECTION ABOUT AN ARBITRARY STATE
Once you have a reflection about |11 ∙ ∙ ∙ 1⟩ under your belt, you can use that to reflect
about other states as well. This is important as likely you will not be able to setup your
oracle function representing the decryption algorithm so that the input or key you want
is represented by the all ones input. Also recall for your sample code here, the oracle
only implements a guessing game sort of decryption, and not any sort of real
decryption algorithm.

The trick to reflecting about states other than all ones, is to turn whatever state you
want to reflect about into the all-ones state, call ReflectAboutAllOnes, then undo the
operation you used to map your reflection onto the all-ones state. You can describe any
state by starting from the all-zeros state, so what you will need then is a way to go from
the all-zeros to all-ones state where you can use the reflection you just learned. Check
out for an example of how to prepare a register in the all-ones state from the all-zero
state.

Listing 10.5. Preparing the all-ones state in a register.

operation PrepareAllOnes(register : Qubit[]) : Unit is Adj + Ctl {
 ApplyToEachCA(X, register); ❶
}

❶The ApplyToEachCA operation allows you to apply the first input (an operation) to each qubit in a
register (the second input). Since registers are initially allocated in the |00 ∙ ∙ ∙ 0⟩ state, applying X to
every one should turn it into the |11 ∙ ∙ ∙ 1⟩ state.

270

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 10.5. Reflections on reflecting about states with Dirac (a.k.a. bra–ket) notation.

For the next step, you need to consider the operation that prepares the state you want to
reflect around. If you have an adjointable operation (is Adj) that prepares a particular
state that you want to reflect about, then all you have to do is unprepare the state,
prepare the all-ones state, reflect about the all-ones state (|11 ∙ ∙ ∙ 1⟩), unprepare the all-
ones state, and then reprepare the state you are trying to reflect about.

Why we love Dirac notation
In understanding the steps for , it is really helpful to think of what each operation in that sequence of
steps does to its input state. Thankfully, Dirac notation (as you first encountered way back in Chapter 2)
can be really helpful in writing out how unitary matrices transform different states, so that you can
understand and predict what the corresponding Q# operations will do to your qubits.

For example, consider the Hadamard operation H. As you’ve seen throughout the book, H can be
simulated by the unitary matrix

.

271

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

This unitary matrix acts as a kind of truth table, telling you that H transforms the |0⟩ into

the state. Using Dirac notation, you can make this more clear by

writing . By thinking of kets (|∙⟩]) as denoting inputs and bras (), you can read this
as saying "the `H` operation transforms |0⟩ into |+⟩ and |1⟩."

In figure 10.5, you can see how Dirac notation acts as a sort of visual language that tells you about
the inputs and outputs for different unitary matrices, making it easier to understand how sequences of
Q# operations work together.

Algorithm 10.5: How to reflect about an arbitrary state

1. Using the Adjoint functor, "un-prepare" your arbitrary state, mapping it to the
all-zeros |00 ∙ ∙ ∙ 0⟩ state.

2. Prepare the all-ones state |11∙ ∙ ∙ 1⟩ state from the all-zeros state.
3. Use Controlled Z to reflect about |11∙ ∙ ∙ 1⟩.
4. Un-prepare the all-ones state, mapping it back to the all-zeros state.
5. Prepare your state again, mapping the all-zeros state to your arbitrary state.

TIP In , steps 1 and 5 cancel adjoints of each other, as are steps 2 and 4. Using what you learned
about "shoes-and-socks" thinking, this makes the procedure of ideal for implementing using
the within/apply feature of Q#! For a reminder of how this feature works, check out
Chapter 7 where you used within/apply blocks to implement the Deutsch–Jozsa algorithm
for Nimue and Merlin.

Since you don’t have any prior notion as to what the right input to your oracle is, when
you actually run Grover’s algorithm, you’ll want to start your search from the uniform
superposition |++ ∙ ∙ ∙ +⟩ in order to represent that any input could be the right one. This
gives you a chance to practice what you learned from to practice implementing
reflections in Q#! Following the steps above to reflect about the initial state, you can
implement the ReflectAboutInitialState operation that you used above in listing
10.3. In listing 10.6, we show how you can follow in a Q# operation.

Listing 10.6. Reflecting about an arbitrary state, given a state preparation operation.

operation PrepareInitialState(register : Qubit[]) : Unit is Adj + Ctl {
 ApplyToEachCA(H, register); ❶
}

operation ReflectAboutInitialState(
 prepareInitialState : (Qubit[] => Unit is Adj), ❷
 register : Qubit[] ❸
)
: Unit {
 within { ❹
 Adjoint prepareInitialState(register); ❺
 PrepareAllOnes(register);
 } apply {
 ReflectAboutAllOnes(register); ❻
 }

272

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

}

❶Here, the uniform superposition state represents that you have no prior information for your search
(after all, it is an unstructured search problem).

❷Following , to reflect about the initial state, you will need to provide an operation that prepares it.
❸Of course, you’ll also need a register of qubits to apply your reflection to!
❹The within part of your within/apply block here does steps one and two from .
❺The Adjoint functor here indicates you want to do the "reverse" or opposite of the operation that

prepares the initial state. Another way to say that is if you started with the initial state, applying the
Adjoint prepareInitialState operation would take you back to the |00 ∙ ∙ ∙ 0⟩ state.

You now have the code you need to reflect about that initial state, so how could you
check to see if it did what you expect? When running the simulator target machine, you
can use commands like DumpRegister that will then show you all of the information
that it is using to simulate your register of qubits. You can see what the output
of DumpRegister looks like after preparing a uniform superposition in .

Figure 10.6. Using DumpRegister to view the initial state prepared by
your PrepareInitialState operation.

For reflecting about the marked state, the other reflection you’ll need for Grover’s
algorithm, you’ll need a slightly different approach. After all, you don’t know how to
prepare the marked state — that’s the whole problem that you’re using Grover’s
algorithm to solve! Thankfully, thinking back to Chapter 7, you can use what you
learned from Nimue’s and Merlin’s game to implement a reflection about a state even
when you don’t know what that state is.

273

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

IMPORTANT This is really the crux of Grover’s algorithm: you can use your oracle to reflect about the marked
state by calling it once with the right superposition of inputs. As you’ll see in the next section,
each of these reflections gives you some information about what the marked item is. By
contrast, each classical function call can at most eliminate one possible input.

To see how that works in this case, let’s first take a step back and look at what your
marked state is. Since your list is defined by an oracle, you can write down a unitary
operator O that lets you simulate that oracle. In Dirac notation:

In Chapter 7, you saw that applying an X operation to a qubit in the |-⟩ applied a phase
of -1, since |-⟩ is an eigenstate of the X operation. Using the same trick here, we can
write out what your oracle does when the flag qubit (the |y⟩ register) is in the |-⟩ state:

This is precisely the operation you need to implement the reflection! Thus, following
what you learned in Chapter 7, you can implement it in the same way: simply apply
your oracle to a qubit that starts off in the |-⟩ state. This oracle then represents the
decryption algorithm for the scenario, here simplified to basically a function that takes
possible keys as input and just returns a bool indicating wether it is the correct key or
not. We’ve shown an example Q# operation that uses this approach in listing 10.7.

Listing 10.7. Reflecting about a marked state.

operation ReflectAboutMarkedState(
 markedItemOracle : ((Qubit[], Qubit) => Unit is Adj), ❶
 inputQubits : Qubit[]) ❷
: Unit is Adj {
 using (flag = Qubit()) { ❸
 within {
 X(flag); ❹
 H(flag);
 } apply{
 markedItemOracle(inputQubits, flag); ❺
 }
 }
}

❶Recall that in Q#, you can pass an operation as an input to another function or operation. Here, we’ve
written out the operation for your item-marking oracle as having type ((Qubit[], Qubit) =>
Unit is Adj), indicating that it takes a register of qubits plus one additional qubit, and is
adjointable.

❷The second input you’ll need to reflect about the marked state is a register that you want to apply your
reflection to.

274

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❸Once you have all your inputs, you’ll need to allocate one additional qubit in order to apply your oracle.
This qubit corresponds to the y register in the equations above. Often, a qubit that is used this way is
called a "flag" qubit.

❹In the same way that you used the H and X in Chapter 7 to prepare Nimue’s qubit in the |-⟩ state, you
can use that |-⟩ = HX|0⟩ here to prepare your flag qubit. Since this preparation is in a
within/apply block, Q# will automatically put your qubit back into the |0⟩ for you by undoing the X
and H operations. After all, as you saw in Chapter 7, applying your oracle leaves its target in the |-⟩
state.

❺Finally, you can apply your oracle to use the Deutsch–Jozsa trick and apply a phase of -1 to the state
marked by your oracle.

EXERCISE In the above snippet, you can also write out H(flag); Z(flag);. Using either or both of
QuTiP and AssertOperationsEqualReferenced, prove that these two ways of preparing
your flag qubit give you the same reflection.

What’s really amazing about this is that you were able to use the Deutsch–Jozsa trick
to reflect about a state that was implicitly defined by your oracle! You didn’t need to
explicitly know what the marked state was in order to apply the reflection, perfect for
use in an unstructured search.

In the next Section, you’ll see how we combine the initial and marked state reflections
to bring everything together and fully implement Grover’s Algorithm, and find your
key!

10.5 IMPLEMENTING GROVER’S SEARCH
Now that you have learned about rotating about states and revisited oracles it’s time to
put it all together to do some unstructured searching!

Let’s start by reviewing all the steps we need to implement Grover’s Algorithm in .

Steps for performing unstructured search (Grover’s algorithm)

1. Allocate a register of qubits that is large enough to index the data set you are
searching over.

2. Prepare the register in a uniform superposition state, i.e. all possible states have
the same amplitude. This is because due to the type of problem, you don’t have
any additional information about the data set, so this represents a uniform
probability distribution or prior on the data.

3. Reflect the register about the marked state, or the state you are searching for.
4. Reflect the register about the initial state (uniform superposition).
5. Repeat steps 3 and 4 enough times until the probability of measuring the item you

are searching for is sufficiently high. Then measure the register. You can
mathematically work out the optimal number of times you need to do this so that
you maximize the probability of getting the marked item back.

You can see a figure representing these steps in

275

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 10.7. Recall the steps to the Grover’s Algorithm that searches over inputs to a function.

IMPORTANT If you go apply too many iterations of Grover’s algorithm, then the amplitude of the state you
want to measure will decrease. This is because each iteration is effectively a rotation; the trick
is to stop that rotation at the right point. The trick to working out the trigonometry for the
stopping criteria is to write the state of the register used in Grover’s algorithm as a
superposition of the unmarked and marked states. We won’t cover the details of this derivation
here, but please check
out https://docs.microsoft.com/quantum/libraries/standard/algorithms or Section 6.1.3
of Quantum Computation and Quantum Information by Nielsen and Chuang if you’re interested
in learning more about the math behind the scenes. It is already implemented for you in the
samples repo for this book, but the formula is below if you want to try and program it in Q#
yourself!

You have already implemented some of the operations you need for the full
implementation in previous section. For example, you have implemented step 2 with
the PrepareInitialState operation, and you’ve implemented the reflections in steps
3 and 4 as
the ReflectAboutMarkedState and ReflectAboutInitialState operations,
respectively. What you will still need is a function to help you figure out how many
times to loop over steps 3 and 4, as well as an implementation of the oracle that
identifies if the item you are looking for.

Let’s start with the function that helps define the stopping criteria for Grover’s
Algorithm, see listing 10.8.

Listing 10.8. Function that defines the stopping criteria for Grover’s Algorithm.

function NIterations(nQubits : Int) : Int {

276

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://docs.microsoft.com/quantum/libraries/standard/algorithms

©Manning Publications Co. To comment go to liveBook

 let nItems = 1 <<< nQubits; ❶
 let angle = ArcSin(1. / Sqrt(IntAsDouble(nItems))); ❷
 let nIterations = Round(0.25 * PI() / angle - 0.5); ❸
 return nIterations;
}

❶The <<< operator here is the left-bitshift operator, used to compute 2nQubits, which represents the
maximum number of items that can be indexed by a quantum register of length nQubits.

❷The next line figures out the effective rotation angle applied by each iteration of Grover’s algorithm.
❸Using the effective rotation angle together with some trigonometry, you can figure out how many

iterations you need to maximize the probability that you’ll observe the marked item.

Now that you are able to calculate when to stop the loop in your implementation of
Grover’s Algorithm, the last thing you need is an oracle that can given the item you are
looking for and a potential item from the data set, flip the phase on part of your register
if the potential item is the item you are looking for.

For the purpose of an example, let’s think of the oracle as representing a kind of
guessing game. If someone is thinking of the number 4 and asks you to guess their
number, that’s an example of a kind of classical function:

Classically, you’d have no better strategy than to try different inputs to f until you
tried x = 3. If you want to try using Grover’s algorithm instead, using what you learned
in Chapter 7, you know you’ll need an operation that represents f:

It’s pretty easy to implement an operation that can be simulated by U_f using the Q#
function ControlledOnInt, provided as a part of the Q# standard libraries. Like
the Controlled functor, the ControlledOnInt function allows you to control an
operation on the state of another register. The difference is that
while Controlled always controls on the all-ones state |11 ∙ ∙ ∙ 1⟩,
the ControlledOnInt function allows you to control on a different state, specified by
an integer. For example, if Length(register) is 3, then (ControlledOnInt(4,
X))(register, flag) flips the state of flag whenever register is in the
state |100⟩, since 4 is written as 100 in little-endian notation.

277

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

EXERCISE Try writing out what (ControlledOnInt(4, X))(register, flag) does to the state of
register + [flag], using either Dirac notation (check out Chapters 2 and 4 if you need a
refresher) or by writing down a unitary matrix that can be used to simulate
(ControlledOnInt(4, X)) acting on a three-qubit register and a flag qubit.

HINT: since (ControlledOnInt(4, X)) acts on four qubits in this example (three control
qubits and a target qubit), your unitary matrix should be a 16x16 matrix.

Try doing the same, but for (ControlledOnInt(4, Z)).

Using the ControlledOnInt function, you can quickly write an oracle that flips the
state of a flag qubit based on an input to that oracle, as shown in .

Listing 10.9. Operation that represents an oracle that marks the state you are looking

for.

operation ApplyOracle(
 idxMarkedItem : Int, ❶
 register : Qubit[],
 flag : Qubit)
: Unit is Adj + Ctl {
 (ControlledOnInt(idxMarkedItem, X))(register, flag); ❷
}

❶You can indicate the index of the item you are looking for as an integer with idxMarkedItem. Since
your sample here will use three qubits, you can input any integer in the range 0 to 23-1= 7.

❷Your oracle should flip its flag qubit whenever the input to the oracle is in the marked state, so you can
use the ControlledOnInt function that you learned about above to apply an X controlled on the
input register being in the right marked item.

With these two code snippets to add, you can return to the sample code you saw at the
beginning, .

Listing 10.10. Writing out Grover’s Algorithm as a Q# operation

operation SearchForMarkedItem(❶
 nQubits : Int, ❷
 markItem : ((Qubit[], Qubit) => Unit is Adj) ❸
)
: Int { ❹
 using (qubits = Qubit[nQubits]) { ❺
 PrepareInitialState(qubits); ❻

 for (idxIteration in 0..NIterations(nQubits) - 1) { ❼
 ReflectAboutMarkedState(markItem, qubits);
 ReflectAboutInitialState(PrepareInitialState, qubits);
 }

 return MeasureInteger(LittleEndian(qubits)); ❽
 }
}

278

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❶As usual, you’ll want to start by defining a new operation, using the operation keyword.
❷The first input that your operation needs to take is the number of qubits that your list is defined on. Your

quantum register needs to be big enough to index into that list. For example, if your list has 16 items,
you need 4 qubits to get the 24 = 16 indices that you need to refer to each item in your list.

❸The next input is the list you want to search. Just as with the cryptography example above, you can
implicitly define your list by an oracle that marks whether an item in your list is the right one or not.
You’ll see more about this oracle in the rest of the Chapter.

❹When you’re done with your search, you’ll have an index for where the marked item was. Defining your
output as an Int lets you return that index back out.

❺To start the search, you’ll need to allocate a big enough register to hold an index into your list.
❻Since you’re searching an unstructured list, when you first start the search, all items are equally good

places to look. You can represent this by preparing a uniform superposition over all indices into your
list. You’ll see more about how to do this below.

❼The actual heart of Grover’s algorithm comes down to repeatedly reflecting about your start state, and
about the index for the item that you’re looking for. In the next Section, you’ll see more about what this
means, and how you can implement each of the reflections you need.

❽Once you’re done, measuring your qubit register tells you the index of the item that Grover’s algorithm
found. The Q# standard library provides a useful operation, MeasureInteger, that interprets
measurement results as a classical integer. To use MeasureInteger, you can mark your register
as encoding an integer in a little-endian register by using the
Microsoft.Quantum.Arithmetic.LittleEndian user-defined type.

You have all the code you need now, so let’s run an example, see listing 10.11.

Listing 10.11. Operation that runs a specific example of Grover’s Algorithm.

operation RunGroverSearch() : Unit {
 let idxMarkedItem = 6; ❶
 let markItem = ApplyOracle(idxMarkedItem, _, _); ❷
 let foundItem = SearchForMarkedItem(3, markItem); ❸
 Message($"marked {idxMarkedItem} and found {foundItem}."); ❹
}

❶For this example, the item we are searching for is represented by the index 6.
❷You can use partial application to include the index of the marked item in the oracle that you will provide

to the search algorithm.
❸Here you are actually running Grover’s search algorithm on a register of three qubits and providing the

oracle markItem that you defined above.
❹The last line here just issues a message to verify it found the right item.

If you run the sample then in you should get the output below ().

Listing 10.12. Output from running RunGroverSearch.

In [1]: %simulate RunGroverSearch
Out[1]: Marked 6 and found 6.

279

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

EXERCISE Try changing the definition of the oracle to control on a different integer. Does this change the
output when you run Grover’s algorithm?

Congratulations, you can now use a quantum program to do unstructured searches! But
what’s actually going on here? The key insight from geometry that makes Grover’s
algorithm works is that when you reflect about two different axes, you get a rotation. In
figure 10.8, you can see an example of how that works for maps.

Figure 10.8. How pairs of reflections can make a rotation

The same exact idea also works for quantum states. In Grover’s algorithm, the initial

280

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

and marked state reflections combine into a single rotation from the unmarked states
into the marked state. To understand how that works, you can use the techniques
you’ve learned throughout the rest of the book to look at what’s happening to the
amplitudes of each state of the register as you go through the steps of the algorithm.

Figure 10.9. An schematic showing how the state you are searching over changes as you step
through Grover’s Algorithm.

What you can see from is that each round of reflections seems to amplify the the
amplitude of the state that corresponds to the index you are looking for. By rotating
between the unmarked and marked states, you can make the state of your qubits line up
with the marked state that you want to find.

You can use the same kinds of ideas in other applications as well, as it turns out.
Grover’s algorithm is really an example of a more broad class of quantum algorithms
that do what is called amplitude amplification.

EXERCISE You’ve learned a lot about rotations so far in this book, so that can help a lot in understanding
the rotation applied by each iteration of Grover’s algorithm. Try modifying your implementation
of Grover’s algorithm to apply twice as many iterations, and use DumpMachine to look at the
state that results. Does that seem like what you’d expect from applying a rotation twice?

More general amplitude amplification examples
Along with phase estimation, amplitude amplification is one of the most fundamental techniques used
throughout quantum algorithms. In the 24 years since Grover’s algorithm first introduced the concept of

281

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

amplitude amplification, a huge number of different variants have been developed to cover a wide range
of different problems, such as when there are multiple marked items, when you want to optimize a
function rather than find a marked item, or even for when you can only sometimes correctly prepare the
initial state. A wide variety of these techniques are available under
the Microsoft.Quantum.AmplitudeAmplification namespace in the Q# standard libraries,
go take a look!

Before we close out this chapter, it will be helpful to have a short discussion on how
doing searches like the one you just implemented on quantum hardware scales
compared to using your classical hardware.

10.6 RESOURCE ESTIMATION
So how long does it take to run Grover’s algorithm in practice? We mentioned before
when we simplified our scenario from 2.5 million keys to 8 that there would be an
advantage to using Grover’s algorithm as the number of keys you needed to search
through grew. That turns out to be a pretty complicated question — one could write
several books on just that. In part, this is a complicated question as estimating resource
requirements necessarily depends on a lot of different parts of your quantum
computing stack.

For example, errors are common in quantum devices, so you need to use error
correction to protect your computation as it runs. Which error correction method is
used to protect your computation has a massive effect on what’s required to run your
program. There are entire conferences dedicated exclusively to finding better and better
error correcting codes for just this reason.

Thankfully, Q# and the Quantum Development Kit provide us some of the tools we
need to start getting a handle on what’s required to actually run different quantum
programs. Instead of running your program on a simulator that models how a real
quantum computer would work, you can instead run your program on the resources
estimator, which tells you how many of each kind of intrinsic operation you need to
call, how many qubits your program needs, and how many of the quantum operations
in your program can be called in parallel. Let’s look at a small example, using what
you learned about the Deutsch–Jozsa algorithm in Chapter 7.

Listing 10.13. Defining the Deutsch–Jozsa algorithm again

In [1]: operation ApplyNotOracle(control : Qubit, target : Qubit) : Unit { ❶
 within {
 X(control);
 } apply {
 CNOT(control, target);
 }
 }
Out[1]: - ApplyNotOracle
In [2]: open Microsoft.Quantum.Measurement; ❷

 operation CheckIfOracleIsBalanced(❸
 oracle : ((Qubit, Qubit) => Unit)
) : Bool {

282

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 using ((control, target) = (Qubit(), Qubit())) {
 H(control);

 within {
 X(target);
 H(target);
 } apply {
 oracle(control, target);
 }

 return MResetX(control) == One;
 }
 }
Out[2]: - CheckIfOracleIsBalanced
In [3]: operation RunDeutschJozsaAlgorithm() : Bool { ❹
 return CheckIfOracleIsBalanced(ApplyNotOracle);
 }
Out[3]: - RunDeutschJozsaAlgorithm

❶This is the same ApplyNotOracle that you saw before, except that now it is using a
within/apply flow instead.

❷Remember when using Q# Jupyter notebooks, you have to open namespaces in each cell you want to
use them in.

❸The operation CheckIfOracleIsBalanced is the same as before, except that again a
within/apply block has been used to replace the repeated H and X operations.

❹In Q# notebooks, you will need an operation with no arguments to use with the %simulate or
%estimate commands.

Figure 10.10. Output from running %estimate RunDeutschJozsaAlgorithm on the
program in .

When you run the %estimate magic command in an IQ# Notebook, you’ll get back a
table much like the one shown above in . This table reports what the kinds of resources
that the Quantum Development Kit estimated your program will take to run.

283

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Table 10.1. Kinds of resources tracked by the %estimate magic command.

Resource kind Description

CNOT How many times the CNOT operation is called.

QubitCliffo
rd

How many times the X, Y, Z, H, and S operations are called.

R How many times single-qubit rotation operations are called.

Measure How many measurement operations are called.

T How many times the T operation is called.

Depth How many T operations need to be called in a row on a single qubit.

Width How many qubits your program needs.

Borrowed
Width

How many qubits your program needs to be able to borrow; this is a more
advanced technique than we’ll cover in this book.

TIP You can also estimate resources from Python as well! Just use
the estimate_resources method instead of the simulate method that you learned
about in previous Chapters.

As you can see from running %estimate in the notebook and , there are probably some
categories that make sense like the width, how many measurements are made, and R
for the number of single-qubit rotations are used. There are some others that are new,
like counting T operations and depth. You have not seen T operations before, but they
are just another kind of single qubit operation.

MEET MR.
𝑇𝑇

Like most other operations you’ve seen so far in this book, the T operation can be simulated
by a unitary matrix,

.

That is, T is a 45° (π/4) rotation about the Z-axis.

Another way of thinking of the T operation is as the fourth root of the Z operation that you’ve
seen quite a bit of so far. Since 45°x4 = 180°, if you apply T four times in a row, that’s an
expensive way of applying the Z operation once.

In Q#, the T operation is made available as Microsoft.Quantum.Intrinsic.T, and has
type Qubit ⇒ Unit is Adj + Ctl.

284

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

EXERCISE Use AssertOperationsEqualReferenced to prove that applying the T operation four
times does the same thing as applying Z once. There’s another operation S that can be thought
of as the square root of Z (a 90° rotation about the Z-axis); check that applying T twice is the
same as applying S once.

What makes T operations somewhat special and thus worthy of focusing on so heavily
when estimating resources is that they are expensive to use with error correcting
methods that are needed when running on larger quantum devices. Most of the
operations you’ve used so far are part of a group of operations called the Clifford
group; operations in the Clifford group are easier to use with error correction. As noted
before, getting into the details on error correction here is out of scope for this book, but
in short, the more operations you have that are not Clifford operations, the harder it
will be to implement your program on error-corrected hardware. Thus, it is important
to count up the number of these "expensive" operations (like T) for running on our
currently available hardware.

TIP At a high level, the number of T operations that have to be applied in sequence (that is, that can’t
be run in parallel) is a pretty good approximation for how long a quantum program takes to run on
error-corrected quantum computers. This is reported by the resources estimator as the "Depth"
metric.

So what are typical or exceptional values for the resources you can count with the
resource estimator in Q#? For a simple program like RunDeutschJozsaAlgorithm,
the resources required are very modest. Looking at , though, there’s a lot of focus on
the T operation, so let’s delve in a little bit to see what that operation is and why it’s so
important to resource estimation. In , you can see the output from estimating the
resources required to call the CCNOT operation that you learned about in Chapter 9.

EXERCISE Why don’t we need to reset the register of qubits allocated in EstimateCcnotResources as
shown in ?

This output is a bit surprising, in that your tiny program required 10 CNOT operations, 5
single-qubit operations, and 7 T operations, even though you didn’t call any of them
directly. As it turns out, it’s very difficult to apply operations like CCNOT directly in an
error-corrected quantum program, so the Q# resources estimator first turns your
program into some thing closer to what would actually be run on hardware, using calls
to more basic operations like CNOT and T.

285

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 10.11. Output from estimating the resources required to call CCNOT.

EXERCISE How does the number of T operation calls change as you increase the number of control qubits? A
rough trend is fine.

HINT: As you saw above, a controlled-NOT operation with an arbitrary number of qubits can be
written as Controlled X(Most(qs), Tail(qs));, using functions provided by the
Microsoft.Quantum.Arrays namespace.

Where this comes in very handy is when you want to estimate what it would take for a
program that is too large for you to simulate on a classical computer. In figure 10.12,
you can see the output from running Grover’s algorithm on a 20-qubit list (about 1
million items).

Figure 10.12. The result of running the resources estimator on Grover’s algorithm.

If you run this for a variety of different list sizes, you get a curve like the one shown in
figure 10.13. You can see that for our scenario with 2.5 million keys, the quantum
number of steps is much much lower than the classical step cost. That’s not the whole
story, of course, since each step on a quantum computer will probably be much slower
than a corresponding step on a classical computer, but it’s a really good step towards

286

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

understanding what it would take to run different quantum programs in practice.

Figure 10.13. Output from estimating the resources required to run Grover’s algorithm for a
variety of different size lists.

10.7 SUMMARY
You have now learned how to combine the oracles you learned in chapter 7 and a new
flavour of quantum operation (reflections) to be able to search over the inputs to
functions. This was helpful in the scenario to help find decryption keys more quickly
when there was a tight time constraint.

In the next Chapter, you’ll use the skills you learned in this Chapter to answer one of
the most important questions posed by quantum computing: how long would it take a
quantum computer to break modern encryption?

In this chapter you learned:

• Implement a quantum algorithm for searching unstructured data.
• Recognize how the resource estimator for the QDK can help understand the costs

for running particular algorithms.
• Implement reflections of quantum registers about states.

287

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

11
This chapter covers:

• Program with the Numerics library for Q#.

• Implement Shor’s algorithm for factoring integers.

• Recognize the implications of quantum computing to security infrastructure.

Figure 11.1. In this Chapter, we will be covering an application for quantum computers, namely
factoring numbers.

Arithmetic With Quantum
Computers

288

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

11.1 FACTORING IN QUANTUM COMPUTING TO SECURITY
In Part I, you saw how quantum concepts can be applied to send data securely, using
techniques such as quantum key distribution. Even without QKD, though, important
data is shared secretly over the internet all the time. The internet is used to share
payment data, personal health data, dating preferences, and even to organize political
movements. In this Chapter, you’ll take a look at how classical computers can protect
your privacy, and how quantum computing changes how we make decisions about
what tools we use to protect our data.

Starting off, let’s take a look at the state of the art for securing data with classical
computers. As it turns out, there’s a lot of different problems in classical mathematics,
some of which are really easy to solve (e.g.: "what’s 2 + 2?"), while others are really
hard to solve (e.g. "is P equal to NP?"). Between those two extremes, you get problems
that are hard to solve unless someone gives you a hint, in which case they become
easy. These problems tend to look more like puzzles, and can give us a great way to
hide data: either you have to know the secret hint to solve them, or use huge amounts
of computing time.

TIP In Chapter 3, you saw quantum key distribution, a great way to share information securely that
relies on quantum mechanics rather than on puzzles. You may not always be able to send
qubits to your friends, though, so understanding how to use puzzles to communicate securely
and privately still matters.

As you will see more later in the chapter, factoring numbers can be one of these
puzzles that cryptographic algorithms can rely on for security. There are a number of
very important algorithms/cryptographic protocols that are currently in use which rely
on the seeming fact that it is hard for computers to solve puzzles that involve factoring
large numbers. If you guessed quantum computers could help you factor large
numbers, you’re on the right track.

Enter Shor’s algorithm. Using a classical computer, you can reduce the problem or
puzzle of finding factors of integers to solving a kind of puzzle about how quickly
functions repeat themselves when using a kind of arithmetic known as modular
arithmetic (also known as "clock arithmetic," as we’ll see more of later in the Chapter).
If you use Shor’s algorithm, estimating how quickly functions repeat themselves is
precisely the kind of puzzle that you can solve easily on a quantum computer. Let’s dig
into the steps of Shor’s and then look at an example of using it.

Example 11.1. Scenario: Factoring an integer 𝑁𝑁
Suppose that you’re trying to factor the integer N, and that you know in advance that N has exactly two
prime factors. Using Q#, implement Shor’s algorithm to factor N.

289

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

COPRIME
AND

SEMIPRIME

As a helpful bit of terminology, we will say that two numbers which share no common factors
other than 1 are coprime. For example, neither 15 nor 16 are prime, but 15 and 16 are
coprime with respect to each other.

Similarly, we’ll say that a number with exactly two prime factors is semiprime. For
example, 15 is semiprime since it 15 = 3 x 5 and since both 3 and 5 are prime. On the other
hand, 28 isn’t semiprime since 28 = 4 x 7 = 2 x 2 x 7. Semiprime numbers come up often when
considering cryptography, so it’s often useful to make that assumption in your scenarios.

You can perform the steps in algorithm 11.1 (shown as a flowchart in figure 11.2) to
use what you’ve learned about phase estimation in Chapters 8 and 9 together with
some classical math to find the factors of N.

THE MOD
SQUAD

In algorithm 11.1, you’ll need one more bit of classical math, the mod operator. If you’ve not
seen that operator before, don’t worry, we’ll go through that in a bit more detail later on in the
Chapter.

Figure 11.2. Shor’s algorithm represented as a flowchart.

290

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Algorithm 11.1: Pseudocode for factoring an integer with Shor’s algorithm.

1. Pick a random integer g, which we’ll call the generator.
2. Check to see if the generator is accidentally a factor by checking if g and N are

coprime. If they share a common factor, then you have a new factor of N, else
continue with the rest of the algorithm.

3. Use iterative phase estimation to find the frequency of the classical function f(x) =
gx mod N. The frequency tells you about how quickly f returns to the same value
as x increases.

4. Use a classical algorithm known as the continued fractions expansion to convert
the frequency from the previous step into a period (r). The period r should then
have the property that f(x) = f(x + r) for all inputs x.

5. If the period r that you find is odd, go back to step one and make a new guess.
If r is even, go to the next step.

6. Either or shares a factor with N.

NOT ALL
STEPS ARE
QUANTUM

In algorithm 11.1, it is important to note that only step 3 involves any quantum computation.
Most of the steps for Shor’s algorithm are best suited for classical hardware, and are a good
demonstration of how quantum hardware will likely be used. That is to say, quantum hardware
and algorithms work well as subroutines for combined quantum–classical algorithms.

Now that you have seen the steps for Shor’s algorithm, take a look at what the final
implementation might look like in listing 11.2. The
operation FactorSemiprimeInteger is the entry point to the algorithm and takes as
input the integer that you want to factor, and returns it’s two factors.

Listing 11.2. Operation that runs Shor’s Algorithm on numbers that have only 2 prime

factors (other than 1 and itself).

operation FactorSemiprimeInteger(number : Int) : (Int, Int) {
 if (number % 2 == 0) { ❶
 Message("An even number has been given; 2 is a factor.");
 return (number / 2, 2);
 }
 mutable factors = (1, 1);
 mutable foundFactors = false;

 repeat {
 let generator = RandomInt(number - 2) + 1; ❷

 if (IsCoprimeI(generator, number)) {
 Message($"Estimating period of {generator}...");
 let period = EstimatePeriod(generator, number); ❸
 set (foundFactors, factors) = MaybeFactorsFromPeriod(❹
 generator, period, number
);
 } else {
 let gcd = GreatestCommonDivisorI(number, generator);
 Message(
 $"We have guessed a divisor of {number} to be " +

291

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 $"{gcd} by accident. Nothing left to do."
);
 set foundFactors = true;
 set factors = (gcd, number / gcd);
 }
 }
 until (foundFactors) ❺
 fixup {
 Message(
 "The estimated period did not yield a valid factor, " +
 "trying again."
);
 }
 return factors; ❻
}

❶Before anything else, you’ll want to check if you were asked to factor an even number, since then two
must be a factor.

❷Following step 1 of algorithm 11.1, you start by picking a random number to define the periodic function
that we’ll use to factor number. If you got really lucky, then generator is already a factor, and we
won’t need a quantum computer to help us factor.

❸In this Chapter, you’ll learn how to write an EstimatePeriod operation to handle steps 3 and 4 of
using what you learned about phase estimation.

❹Once you have the period of your generator, you can use steps 5 and 6 of to turn that period into
guesses as to the factors of number. You’ll see how to write the MaybeFactorsFromPeriod
function later in this Chapter.

❺If something went wrong (e.g.: your generator had an odd period), you can use a repeat/until
loop to try again.

❻At the end, you can return out the two factors of number that you found using your quantum program!

Since this is the last Chapter of the book, you actually have all of the quantum concepts
you need to know to understand what’s happening in listing 11.2; all that’s missing are
the classical parts that connect what you’ve learned so far in the book to the problem of
factoring semiprime numbers, as well as a few useful parts of the Q# libraries that can
help you out. As mentioned before, there is only one step here that leverages the
quantum technology and it does so by creating an oracle that implements the classical
function that you want to learn about. Then by using a superposition state, applying the
oracle and doing phase estimation then you can learn properties about the classical
function, here the period. In the rest of the Chapter, you’ll go through in detail, as well
covering the last pieces that you need to run Shor’s algorithm. The first piece that
you’ll need to work through is a bit of classical math known as modular arithmetic, so
let’s jump on in!

11.2 CONNECTING MODULAR MATH TO FACTORING
One place to find puzzles that can be used in security contexts is by looking
how modular arithmetic works. Unlike normal arithmetic, in modular arithmetic,
everything wraps back around like hours on a clock. For instance, if someone asks you
what’s two hours after 11 o’clock, you would get a very odd look if you responded

292

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

with "13 o’clock." Much more likely, this person was hoping to get an answer like "1
o’clock" instead! That is, if they don’t do 24 hour time.

Using modular arithmetic, you can capture this idea by saying that 11 + 2 = 1 mod 12.
In that equation, the mod 12 indicates that you want anything which goes past 12 to
wrap around.

Figure 11.3. Using clocks to understand modular arithmetic.

When arithmetic is allowed to wrap around like this, it can make it hard to figure out
where different arithmetic calculations started out. If you’re working with ordinary real
numbers, for example, it’s easy to calculate b if you’re given a and a^b; you can take
the logarithm of a^b to find b. If you try to solve the same problem in modular
arithmetic, it can quickly get tricky. For instance, when computed \mod 21, the powers
of 5 are 1, 5, 4, 20, 16, 17, 1, ∙∙∙. On the face of it, 5, 4 and 16 don’t seem like powers
of the same number, much less in increasing order, such that you have to check a lot
more of a 21-hour clockface to work backwards from having taken an exponent.

Exercise 11.1
What are the powers of 11 when computed mod 21? How long does it take to loop back around to 110 =
1?

Does it matter if you take the modulus by 21 at the end, or whether you compute the modulus at each
step?

293

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

HINT: Either Python or Q# works great for this, as both define the modulus operator %.

EXERCISE
SOLUTIONS

All solutions for exercises in this book can be found in the companion code
repo: https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp

The observation that finding the power b given ab mod N is hard already gives you a
puzzle you can use to hide some data! This puzzle is commonly called the discrete
logarithm problem. If Alice wants to share a secret with you, you can start by publicly
agreeing on a small number like g = 13 and a big number like N = 71. You then each
pick a secret number at random; suppose Alice picks a = 4 and you pick b = 5. Alice
then sends you ga mod N = 19 and you send back gb mod N = 34. If you compute (ga)b
mod N = 195 mod 71 = 45 and Alice computes (gb)a mod 71 = 344 mod 71 = 45 you
both get the same number, but an eavesdropper would have to solve the clockface-
jumping puzzle you saw above to work that out (see figure 11.4). Since gab = 45 is a
number that you and Alice know, but that no one else knows, that means you and Alice
can use gab as a key to hide your messages, using what you learned in Chapter 3.

294

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp

©Manning Publications Co. To comment go to liveBook

DON’T TRY
THIS AT

HOME

There’s a lot of technical conditions to this protocol that go well beyond the scope of this book.
Choosing g and N badly can undermine any security offered by this technique, making it trivial
for an experienced attacker to break. It’s also very easy to introduce bugs by doing this on your
own, so please only consider this as a conceptual example!

If you’re interested in learning more about the practical aspects of using these kinds of puzzles
to keep your data secure, Cryptography Engineering by Niels Ferguson, Bruce Schneier, and
Tadayoshi Kohno is a great book to continue learning from.

Figure 11.4. Using the discrete logarithm problem as a puzzle to hide secret messages.

Unlike QKD, this way of sharing secret data (known as the Diffie–Hellman protocol)
relies on the assumption that the puzzle you and Alice used is hard to solve without a
hint that your eavesdropper doesn’t have access to. If someone can efficiently work out
puzzles like solving ga mod N for a given g and N, your data might as well be public.

One other puzzle that’s commonly used to protect data today is called the RSA
algorithm, and uses a bit more advanced classical math to make a puzzle out of

295

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

factoring really large integers. Just as you can break Diffie–Hellman by solving ga mod
N, you can break RSA by solving N = pq for p or q given only N. In the RSA puzzle,
we call N a public key, and the factors p and q the private key; if you can
factor N easily, you can get access to private keys just given public keys. With that in
mind, you can make the scenario from earlier just a bit more precise.

Example 11.3. Scenario: Breaking RSA
Suppose that you know a public key N. Using Q#, implement Shor’s algorithm to factor N to recover the
private keys p and q.

Break it 'til you make it
The scenario above may seem to be a bit… nefarious when compared to those in previous Chapters. In
practice, though, it’s essential to understand attacks on the tools and protocols that you use to keep your
data safe so that you can adjust your approach accordingly. If you use a cryptographic algorithm like RSA
to protect data, implementing quantum attacks on that algorithm can help you understand how large a
quantum device your attackers would need to compromise your data. After all, there’s claims ranging
from that there’s no problem with RSA at all to that you should be immediately terrified now; separating
between those extremes requires understanding the resources an attacker would need.

Put differently, by exploring a scenario that puts into the role of an attacker for a moment, we can
understand how much quantum computing power would be needed to successfully attack RSA. We’ll
come back to this point at the end of the Chapter, but for now, it helps to think like an attacker.
Understanding how classical cryptography could be attacked by quantum computers serves as a great
scenario for you to practice applying your quantum computing skills!

It’s worth being a bit cautious in using this example, though. The impact that quantum computing has
on information security depends on what assumptions you make about classical algorithms,
improvements in quantum algorithms, progress of quantum hardware development, how long you need
forward secrecy to last for, and many other such concerns. Covering all of these well enough to
make responsible decisions about how to best deploy cryptography would take more than is left in this
book, unfortunately, so we recommend keeping in mind that the RSA scenario in this Chapter is an
example, and not a complete analysis of the subject.

It turns out, though, that even though Diffie–Hellman and RSA look very different, you
can use some classical math to turn the factoring puzzle of RSA into another example
of figuring out how quickly you move around a clock face when you perform modular
arithmetic (the Diffie–Hellman puzzle). That problem can then be solved easily on a
quantum computer using what you learned in Chapter 9. To get a handle on how that
all works, let’s run through a quick example of using Shor’s algorithm to factor a small
integer so that you can see all of those parts at work.

11.3 EXAMPLE OF FACTORING WITH SHOR’S ALGORITHM
The steps listed for Shor’s algorithm can seem very abstract, so before we get into how
they all work, let’s try working through an example using what you learned about
modular arithmetic above. Say the number you want to factor is 21; real RSA public
keys will be much larger, but let’s use it for the sake of working through the math by
hand. Trust us — it keeps the math much much easier.

296

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

11.3.1 WORKING THROUGH THE STEPS OF TO FACTOR 21.

1. Choose a random integer as a generator, let’s say you got 11.
2. You can verify that that since 11 shares no common factors with 21, you can use it

as the generator for the next step.
3. You can’t do the quantum step in your head unfortunately, so you use the Q#

iterative phase estimation operation to estimate the phase generated by applying
an oracle that implements the classical function f(x) = 11x mod 21. It returns a
phase Φ that you can convert to a frequency of 427 by the following

equation: .
4. You use the continued fractions algorithm on 427 to get a guess for what the

period might be. Doing it by hand you get an estimate of 6 for the period.
5. The period you found is even so you can go to the next step.
6. Using the period 6 gives you that either 113 - 1 mod 21 = 7 or 113 + 1 mod 21 =

9 shares a factor with 21. You can check and verify each possibility to confirm
that 7 is indeed a factor of 21.

Exercise 11.2
Try step 6 from the process as above, but using 35 as the number to factor, 17 as your generator, and
12 as your period. Check that either or both of the answers that you get from step 6 share a common
factor with 35.

Using either Python or Q#, try the same with N = 143, g = 19, and the period r = 60.

NOTE: In the next section, you’ll see how you can easily use a classical computer to factor a number
when given another number that shares some of its factors.

While this is a lot of work to go through to factor a number as small as 21, 35, or 143,
the exact same process also works for much larger integers, such as those that you
might encounter trying to solve the puzzle that the RSA algorithm uses to protect data.

The rest of the Chapter will go through each of these steps in detail and show how they
can work together to factor integers. To kick that process off, let’s look at the classical
math behind how period finding helps you factors integers, and how you can use Q# to
implement that classical math.

11.4 CLASSICAL ALGEBRA AND FACTORING
With the concrete example of using Shor’s algorithm above in mind, you can see how
classical arithmetic and algebra help to take advantage of quantum computing. Before
going over the core quantum part of the algorithm, it’s helpful to explore the classical
part a little bit more to understand why finding a the period of generator helps factor
integers.

You may remember from algebra that for any number x, x2 - 1 = (x + 1)(x - 1). As it
turns out, that works in modular (clock) arithmetic as well. If you find that the

297

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

period r of your generator g is even, - then that means there’s an integer k - such that gr
= g2k mod N = 1.

Subtracting one from each side, you get (g2k - 1) mod N = 0, - so that using x2 - 1 = (x
+ 1)(x - 1) gives you - (gk + 1)(gk - 1) mod N = 0.

Why does this matter, though? If you have that x mod N = 0, that tells you that x is a
multiple of N. Thinking back to the clock analogy, 0, 12, 24, 36, and so forth are all
equal to zero mod-12. Put differently, if x mod N = 0, then there’s some integer y such
that x = yN. Using that with what you got from the period above, you know that there’s
some integer y such that (gk + 1)(gk - 1) = yN. If either gk - 1 or gk + 1 is a multiple
of N, you haven’t learned much, but in any other case, that tells you that either gk -
1 or gk + 1 has to share a factor with N.

To figure out whether gk - 1 or gk + 1 shares a factor with N, you can compute
the greatest common divisor (also known as the GCD) of each guess with N. This is
really straightforward to do with a classical computer using a technique called Euclid’s
algorithm.

NOTE Since the GCD is so easy to compute classically, why do you need a quantum computer to help
factor? By this point in Shor’s algorithm, you’ve already narrowed down to two very good
guesses as to potential factors, and are using the GCD just on those guesses. If you didn’t have
things narrowed down so well, you’d have to use the GCD on many, many more guesses to have
a good chance at finding the factors of N. Even as easy as the GCD is to call, you still need a
good way to narrow down to a good set of guesses first.

In Q#, you can compute the GCD using the GreatestCommonDivisorI function, as
shown in where the code was run in a Q# Jupyter notebook.

Listing 11.4. Using GreatestCommonDivisorI to find the GCD between two integers.

In [1]: open Microsoft.Quantum.Math; ❶
 open Microsoft.Quantum.Diagnostics; ❷

 function GcdExample() : Unit { ❸
 let a = 2 * 3 * 113;
 let b = 2 * 3 * 5 * 13;
 let gcd = GreatestCommonDivisorI(a, b); ❹
 Message($"The GCD of {a} and {b} is {gcd}.");

 EqualityFactI(gcd, 6, "Got the wrong GCD."); ❺
 }
Out[1]: - GcdExample
In [2]: %simulate GcdExample ❻
The GCD of 678 and 390 is 6.
Out[2]: ()

❶As usual, you’ll need to open the right namespaces for the functions and operations that you want to
use. In this case, the Q# function that computes the GCD of two integers is in the
Microsoft.Quantum.Math namespace, so you can start by opening that namespace to make
that functionality available.

298

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❷Similarly, facts and assertions can be used by opening the Microsoft.Quantum.Diagnostics
namespace.

❸Next, you can write a simple test case to see how the GCD works. For instance, 2, 3, 5, 13 and 113 are
all prime numbers, so the only prime factors in common between 2 x 3 x 113 and 2 x 3 x 5 x 13 are 2
and 3. Thus, you would expect that the GCD of these two numbers is 2 x 3 = 6.

❹To compute the GCD, you can call GreatestCommonDivisorI from the
Microsoft.Quantum.Math namespace that you opened earlier.

❺You can use the EqualityFactI function to confirm that the answer you got matches what you
expected (namely, 6).

❻As usual, you can use the IQ# magic command %simulate to run a function or operation on a
simulator and print its output back into your notebook. Here, for instance, you get the output () back
since GcdExample returns an output of type Unit.

TIP Note the I at the end of the name GreatestCommonDivisorI. This tells you
that GreatestCommonDivisorI works on inputs of type Int. When using Shor’s
algorithm in practice, N will be much, much larger than you can fit into an ordinary Int value,
so Q# also provides another type called BigInt to help out.

To work with BigInt inputs, Q# also provides the GreatestCommonDivisorL function.
Why L and not B? In this case, L stands for "long," helping disambiguate from other types
starting with "B," such as Bool.

This convention is used throughout the rest of the Q# standard libraries as well. For instance,
the equality fact that you used above compared two integers, and so was
called EqualityFactI. The corresponding fact for comparing two big integers is
called EqualityFactL, while the fact for comparing two Result values is
called EqualityFactR.

Exercise 11.3
What’s the GCD of 35 and 30? Does that help you find the factors of 35?

HINT: Think of this as step two of the previous exercise.

Putting everything together, if you have the period of your generator, let’s take a look
at for how you can use that to write out MaybeFactorsFromPeriod in Q#. The
function name starts with maybe because there is a chance that the period that was
found will not meet conditions necessary to learn something about the factors of the
number.

Listing 11.5. Computing possible factors from a period.

function MaybeFactorsFromPeriod(
 generator : Int, period : Int, number : Int ❶
)
: (Bool, (Int, Int)) { ❷
 if (period % 2 == 0) { ❸

299

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 let halfPower = ExpModI(generator, period / 2, number); ❹

 if (halfPower != number - 1) { ❺
 let factor = MaxI(❻
 GreatestCommonDivisorI(halfPower - 1, number),
 GreatestCommonDivisorI(halfPower + 1, number)
);
 return (true, (factor, number / factor));
 } else {
 return (false, (1, 1));
 }
 } else {
 return (false, (1, 1));
 }
}

❶To compute possible factors from a period, you’ll not only need to know the number N that you’re trying
to factor and the period r, but also the generator. Thus, your function will need to take all three as
inputs.

❷If you got the unlucky case that either gr / 2 + 1 or gr / 2 - 1 is a multiple of N, you won’t be able to find any
factors from period and will need to try another generator. To indicate that, your function can return
a Bool indicating whether you successfully found a factor as well as the factors that you found if you
were successful.

❸If the period is odd, then you can’t use the x2 - 1 = (x + 1)(x - 1) trick from above, and so you’ll need
another generator. Thus, you’ll want to start by checking that period is even.

❹The Q# function Microsoft.Quantum.Math.ExpModI returns modular arithmetic exponentials
of the form gx mod N. You can use that to find gr / 2 mod N given g, r, and N.

❺You can check for the unlucky case that gr / 2 + 1 is a multiple of N once you have computed gr / 2 mod N.
If that check passes, then you know you have what you need to find an actual factor, so it’s safe to
continue.

❻As described above, the GCD tells you if one of your guesses has a common factor with N. If your
guess has no common factors with N, though, we say that it is coprime with N, and the GCD will return
1. Using Microsoft.Quantum.Math.MaxI, you can try both guesses and take whichever
guess gives you something other than 1.

Now that you know how to convert a period to potential factors, let’s see the core of
Shor’s algorithm: using phase estimation to estimate the period of your generator. To
do so, you’ll use what you’ve learned throughout the rest of the book together with a
couple new Q# operations to do arithmetic on a quantum computer, so let’s jump in!

DEEP DIVE: Here’s looking at Euclid.
Above, we used the GreatestCommonDivisorI function provided with the Q# standard libraries to
compute the GCD of two integers. This function works by using Euclid’s algorithm, which recursively
attempts to divide an integer into another integer until no remainder is left over.

Suppose that you want to find the GCD of two integers a and b. Then you begin Euclid’s algorithm by
finding two additional integers q and r (short for "quotient" and "remainder") such that a = qb + r. It’s
straightforward to find q and r using integer division instructions, so this step isn’t too hard on a classical
computer. At that point, if r = 0, you’re done: b is a divisor both of a and of itself, so there can’t possibly
be a larger common divisor. If not, you know that the GCD of a and b has to also be a divisor of r, so you

300

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

can recurse by finding the GCD of b and r instead. This process has to end eventually, since the integers
you’re looking for the GCD of get smaller and smaller as you go on, but never become negative.

To make things a bit more concrete, you can work through the example from listing 11.4, as shown in
table 11.1 .

Table 11.1. Using Euclid’s algorithm to find the GCD of 678 and 390.

 𝑏𝑏 𝑟𝑟

78
390 288

90
288 102

88
102 84

02
84 18

4
18 12

8
12 6

2
6

(answer)

0
(done)

11.5 QUANTUM ARITHMETIC
You have seen quite a few different parts of the Q# standard libraries by now, and with
the focus of this chapter on arithmetic, it makes sense to introduce some functions and
operations from the Microsoft.Quantum.Arithmetic namespace provided by the
numerics library for Q#. This namespace, as you might guess, provides you with lots of
helpful functions, operations, and types that make doing arithmetic in quantum systems
easier. In particular, you can use implementations for things like adding and
multiplying numbers represented in qubit registers with support for multiple qubit
register encodings like BigEndian (where the least significant bit is on the left) and
LittleEndian (where the least significant bit is on the right).

Let’s look at some example code using the Q# numerics library to add two integers.

NOTE There is a Q# notebook in the samples repo (https://github.com/crazy4pi314/learn-qc-with-
python-and-qsharp) that has all of these snippets already written out for you!

First, since the numerics package is not loaded by default, you will need to ask the Q#
kernel to load it with the magic command %package. To make things easier, you can
also turn off displaying small amplitudes from diagnostic outputs like DumpMachine,
as shown in .

301

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp

©Manning Publications Co. To comment go to liveBook

Listing 11.6. Loading the numerics package in a Q# notebook, and setting a display

preference for the diagnostic information. Your version numbers will likely vary.

In [1]: %package Microsoft.Quantum.Numerics ❶
Adding package Microsoft.Quantum.Numerics: done!
Out[1]: - Microsoft.Quantum.Standard::0.11.2003.3107 ❷
 - Microsoft.Quantum.Numerics::0.11.2003.3107
In [2]: %config dump.truncateSmallAmplitudes = "true" ❸
Out[2]: "true"

❶The %package magic command adds a new package into your IQ# session, making the functions,
operations, and user-defined types implemented by that package available to you in your session. In
this case, you can use the %package magic to load the Microsoft.Quantum.Numerics package,
which provides additional operations and functions for working with numbers represented by registers
of qubits.

❷After running %package, IQ# will report what packages are currently available in your IQ# session.
❸The %config magic command sets various preferences for your current IQ# session. Here, for

example, you can use %config to tell the DumpRegister and DumpMachine callables to leave
out parts of each state vector that have very small amplitudes. That makes it much easier to visualize
states on several qubits, as printing out each computational basis state can get unwieldy quickly.

TIP When you’re working with Q# from within Jupyter Notebooks, the IQ# kernel provides several
other magic commands to help you write your quantum programs, in addition to the
commands like %simulate, %package, and %config that you’ve seen so far. For a
complete list, check out the documentation
at https://docs.microsoft.com/qsharp/api/iqsharp-magic/

11.6 ADDING WITH QUBITS
Now, let’s get to coding an example that takes two integers and adds them while they
are encoded in qubit registers. In listing 11.7, you can see an example of using
the AddI operation to add the contents of two quantum registers to each other.

Listing 11.7. Example using the numerics library to add integers encoded in qubit

registers.

In [3]: open Microsoft.Quantum.Arithmetic;
 open Microsoft.Quantum.Diagnostics;
 open Microsoft.Quantum.Math;

 operation AddCustom(num1 : Int, num2 : Int) : Int {
 let bitSize = BitSizeI(MaxI((num1, num2))) + 1; ❶
 using ((reg1, reg2) = (Qubit[bitSize], Qubit[bitSize])) {
 let qubits1 = LittleEndian(reg1); ❷
 let qubits2 = LittleEndian(reg2);

 ApplyXorInPlace(num1, qubits1); ❸
 ApplyXorInPlace(num2, qubits2);

302

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://docs.microsoft.com/qsharp/api/iqsharp-magic/

©Manning Publications Co. To comment go to liveBook

 Message("Before addition:");
 DumpRegister((), reg2);

 AddI(qubits1, qubits2); ❹

 Message("After addition:");
 DumpRegister((), reg2);

 ResetAll(reg1); ❺
 return MeasureInteger(qubits2);
 }
 }
Out[3]: - AddCustom

❶You need the registers to be large enough to hold the largest possible sum of the two integers. If you
double the number of qubits needed to represent the largest input and add 1, you know that be
enough to hold the sum without overflow.

❷Here, you can use the LittleEndian UDT provided by the Q# standard library to mark that each
register of qubits is meant to interpreted as an integer using the little-endian encoding (also known as
"least-significant order"). That is, when interpreting a LittleEndian register as an integer, that
means to treat lowest qubit index as the least significant bit. For instance, to represent the integer 6
represented as a three-qubit quantum state in little-endian notation, you’d write |011⟩, since 6 = 0 x 20
+ 1 x 21 + 1 x 22 = 2 + 4.

❸The ApplyXorInPlace operation has the effect of encoding a LittleEndian representation of
an integer into the qubit register. This works since x \oplus 0 = x whether x is 0 or 1.

❹Using the operation AddI loaded from the numerics package, you can add integers represented by the
two input registers qubits1 and qubits2.

❺Lastly, you reset the first register so it can be deallocated, and then measure the register with the
results. The MeasureInteger operation also resets the register after it is done as noted in the
docs at https://docs.microsoft.com/qsharp/api/qsharp/microsoft.quantum.arithmetic.measureinteger,
so you don’t need to reset the qubits2 register as well.

You can see the output of running this snippet in figure 11.5.

Figure 11.5. Output of an example using the numerics library to add integers encoded in qubit
registers.

303

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

11.7 MULTIPLYING WITH QUBITS IN SUPERPOSITION
Of course, if all you could do with arithmetic on a quantum computer was to add one
pair of integers at a time, there wouldn’t be any reason to do so using qubits instead of
on your classical computer. Thankfully, the AddI and many other similar arithmetic
operations work in superposition as well; a fact that you’ll need to use these arithmetic
operations with phase estimation in the next part of the Chapter. Before jumping
straight to that, though, it’s helpful to play around a little bit with what it means to add
or multiply integers in superposition.

Here, you’ll get to see how to apply what you’ve learned about superposition to
arithmetic as well by using the MultiplyByModularInteger as an example. Shortly,
you’ll use the same operation to construct the oracle that you need for Shor’s factoring
algorithm later, so it’s a pretty practical application as well!

First, let’s look at an operation that you can use to prepare a register in a superposition
of two integers. In , you can see how to do so using what you learned about
the ApplyXorInPlace operation from the previous section and what you learned about
the Controlled functor from Chapter 9.

Listing 11.8. Operation to prepare a register in a superposition of integers.

open Microsoft.Quantum.Arithmetic;
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Math;

operation PrepareSuperpositionOfTwoInts(❶
 intPair : (Int, Int),
 register : LittleEndian,
)
: Unit is Adj + Ctl {
 using (ctrl = Qubit()) {
 H(ctrl); ❷

 within {
 X(ctrl); ❸
 } apply {
 Controlled ApplyXorInPlace(❹
 [ctrl],
 (Fst(intPair), register)
);
 }
 Controlled ApplyXorInPlace(❺
 [ctrl],
 (Snd(intPair), register)
);
 (ControlledOnInt(Snd(intPair), Y))(register!, ctrl); ❻
 }
}

❶This operation takes a register and a pair of integers and prepares that register in a superposition of
those integers in a LittleEndian encoding.

304

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❷The H operation puts your control qubit in a superposition, preparing your control qubit in the

 state so that when you control later operations on that qubit, they are also in
superposition.

❸As you saw with other uses of Controlled, controlled operations do something when their control
registers are in the all-ones state (|11 ∙ ∙ ∙ 1⟩). If you want to control on the zero state instead, then you
can use the X operation to map the |0⟩ state to the |1⟩ state. By placing the call to X in a
within/apply block, Q# will make sure to undo your call to X after you’ve applied your controlled
operation. This is very similar to the ControlledOnInt function that you used in the previous
chapter, and is how that function is actually implemented in the Q# standard libraries.

❹Adding the Controlled functor here adds a new input representing the control register, as you
learned about in Chapter 9. Following the control register is a tuple with the arguments for the original
(uncontrolled) operation. In this case, that’s the first integer that you want to prepare as a state, as well
as the register that you want to prepare that state on.

❺Now you can do the same thing with the second integer in intPair and encode it in register, as
controlled on the ctrl qubit.

❻Here, you can add some phase to one of the two branches of your superposition by using the Y
operation to rotate, controlled on your control qubit being in the |1⟩ state. While this is strictly
unnecessary, it helps you see how the phase applied by the Controlled Y operation propagates
through later steps.

Once you have a quantum register that represents the superposition of two integers,
you can apply other arithmetic operations across that superposition. In listing 11.9, for
instance, you can use the DumpMachine callable to see how the state of your register
changes when using the MultiplyByModularInteger operation provided by the Q#
standard libraries.

Listing 11.9. Example using the numerics library to multiply integers in superposition.

operation MultiplyInSuperpositionMod(
 superpositionInts : (Int, Int),
 multiplier : Int,
 modulus : Int
)
: Int {
 using (target = Qubit[BitSizeI(modulus)]) { ❶
 let register = LittleEndian(target);
 PrepareSuperpositionOfTwoInts(superpositionInts, register); ❷

 Message("Before multiplication:");
 DumpMachine();

 MultiplyByModularInteger(❸
 multiplier, modulus, register
);

 Message("After multiplication:");
 DumpMachine();

305

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 return MeasureInteger(register); ❹
 }
}

❶The first thing here is to figure out how big you need our registers to be, and allocate a register of qubits
of that size. Here, since you are doing modular multiplication, the largest possible value our register
has to hold is modulus.

❷You can use the operation that you defined in to prepare our target register in a superposition of
integers.

❸The numerics package provides the MultiplyByModularInteger operation, which can take a
LittleEndian register and multiply the value it represents by a classical multiplier modulo a given
modulus.

❹The MeasureInteger operation measures the register and returns the classical Int that it
represented (based on the encoding provided) and resets the register as you saw in listing 11.8.

If you run the code in listing 11.8 and in listing 11.9 the sample notebook you can see
the following output in figure 11.6.

Figure 11.6. Output of multiplying 3 by 2 and 3 in superposition mod 8.

You can see in that the registers correctly show a superposition of 2 and 3 before
multiplication, and then show a superposition of 1 and 6 after. What would you expect
the correct output to be? If we multiplied as you would normally, it should be 6 and 9,
but since we are doing arithmetic mod 8, the 9 goes to 1. When we then measure that
register we will get 6 half of the time and 1 the other half since they are in an equal
superposition as you can see from the state amplitude bars depicted in .

306

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Exercise 11.4

Suppose that you have prepared a register in the state , with each ket representing an
integer in the little-endian encoding. What state would your register be in after multiplying by 5 modulo
9? Write a Q# program that uses DumpMachine to confirm your answer.

Bonus exercise 11.5
If you run the same program as in the previous exercise, but try to multiply by 3 modulo 9, you’ll get an
error; why? As a hint, consider what you learned in Chapter 7 has to be true of a classical function in
order for it to be represented by a quantum oracle. If you’re stuck, the answer is provided below, lightly
hidden using https://rot13.com/.

ANSWER: Zhygvcylvat ol guerr zbq avar vf abg erirefvoyr. Sbe vafgnapr, obgu bar gvzrf guerr naq sbhe
gvzrf guerr zbq avar tvir mreb, rira gubhtu bar naq sbhe nera’g rdhny zbq avar. Fvapr pynffvpny
shapgvbaf unir gb or erirefvoyr va beqre gb or ercerfragrq ol dhnaghz bcrengvbaf,
gur ZhygvcylOlZbqhyneVagrtre envfrf na reebe va guvf pnfr.

IMPORTANT Notice what you’ve done here: you’ve used a quantum program to multiply an integer
represented by a quantum register by a classical integer. The computation happens entirely on
the quantum device, and doesn’t use any measurement; that means when your register started
off in superposition, the multiplication happens in superposition as well.

11.8 MODULAR MULTIPLICATION IN SHOR’S ALGORITHM
Now that you have seen a bit of the numerics library, let’s return to the factoring
scenario. The main steps from where we will need to do some modular arithmetic and
utilize the numerics library are implementing steps three and four (see algorithm 11.1).
There are three operations that you can implement that will make short work of
implementing those steps of Shor’s algorithm and help you get to factoring integers.

The first operation you can take a look at from the sample code for this chapter is one
that implements step three of , the EstimateFrequency operation ().

Algorithm 11.1 steps 3 and 4: Pseudocode for factoring an integer with Shor’s algorithm.

1. Use iterative phase estimation to find the frequency of the classical function f(x) =
ax mod N. The frequency tells you about how quickly f returns to the same value
as x increases.

2. Use a classical algorithm known as the continued fractions expansion to convert
the frequency from the previous step into a period (r). The period r should then
have the property that f(x) = f(x + r) for all inputs x.

307

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://rot13.com/

©Manning Publications Co. To comment go to liveBook

TIP This operation makes use of the phase estimation operations provided with the Q# standard
libraries and that you saw in Chapter 9. If you need a refresher, head back to Chapter 8 for an
overview of phase estimation, or to Chapter 9 for how to run phase estimation with the
standard libraries.

Listing 11.10. The operation EstimateFrequency uses phase estimation to help

estimate the frequency of a generator.

operation EstimateFrequency(
 inputOracle : ((Int, Qubit[]) => Unit is Adj+Ctl),
 nBitsPrecision : Int,
 bitSize : Int
)
: Int {
 using (register = Qubit[bitSize]) { ❶

 let registerLE = LittleEndian(register); ❷
 ApplyXorInPlace(1, registerLE); ❸

 let phase = RobustPhaseEstimation(❹
 nBitsPrecision,
 DiscreteOracle(inputOracle), ❺
 registerLE!
);
 ResetAll(register); ❻

 return Round(❼
 ((phase * IntAsDouble(2 ^ nBitsPrecision)) / 2.0) / PI()
);
 }
}

❶Since this is the primary step that leverages qubits, you need to allocate a register to use that is big
enough to represent the modulus (since you are doing modular arithmetic and you won’t have
numbers larger than the modulus to represent).

❷The freshly allocated register has to specify how to encode the integers it will be representing so you
can use the LittleEndian UDT from the numerics library to wrap your newly allocated register.

❸The ApplyXorInPlace operation takes an Int and will XOR it with the integer stored in the
register provided in the second argument. Since the integer stored in registerLE is 0, this
operation has the effect of toggling the integer stored in this register to being the largest integer it can
hold (|111…1 ⟩).

❹You can reuse the RobustPhaseEstimation operation from the Q# standard libraries that you
first used in Chapter 9. That operation takes an oracle, a quantum register, and an Int representing
how many bits of precision you want the phase estimated to.

❺Here we need to wrap our oracle in a UDT DiscreteOracle that just makes it clear to
RobustPhaseEstimation that we want the operation that we are passing in here to be
interpreted as an oracle.

❻Once the phase estimation is done, you need to reset all the qubits in the register.

308

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❼The phase you estimated is just that, a phase, and to convert that to a frequency you can use this

equation to convert it to a frequency: .

Now that you have the scaffolding for EstimateFrequency under your belt, you can
take a look at an operation that implements the oracle that you will need for this
algorithm. The ApplyPeriodFindingOracle operation is just that, one that
implements an operation that is structured like an oracle for the

function . See listing 11.11 for an implementation
of ApplyPeriodFindingOracle.

Listing 11.11. Using the numerics library to implement an oracle that represents the

function 𝑓𝑓 that you’re trying to find the period of.

internal operation ApplyPeriodFindingOracle(
 generator : Int, modulus : Int, power : Int, target : Qubit[]
)
: Unit is Adj + Ctl {
 Fact(❶
 IsCoprimeI(generator, modulus),
 "The generator and modulus must be co-prime."
);
 MultiplyByModularInteger(❷
 ExpModI(generator, power, modulus), ❸
 modulus,
 LittleEndian(target) ❹
);
}

❶You can use the Fact function to do some input checking that the provided generator and modulus
are coprime.

❷The MultiplyByModularInteger operation is the same as what you used in listing 11.9 and is
used here to help implement the action of this oracle, i.e. multiply the integer represented in the

target register by .
❸The Microsoft.Quantum.Math namespace has as you have seen earlier has the function

ExpModI which allows you to easily calculate the expression .
❹The qubit register that ApplyPeriodFindingOracle takes must specify how to interpret the

register as an integer, so you can use the UDT LittleEndian to clarify this to the compiler.

The previous two operations you looked at form the basis for step three of algorithm
11.1. Now, you will need an operation that takes care of step four, where you need to
convert the estimated frequency of the generator to a period. The
operation EstimatePeriod in does just that, given a generator and a modulus it will
repeat estimating the frequency using EstimateFrequency and use the continued
fractions algorithm to ensure that the frequency estimated yields a valid period.

309

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 11.12. The EstimatePeriod operation takes the result

of EstimateFrequency and handles edge cases and converts it to a period with the

help of the operation PeriodFromFrequency.

operation EstimatePeriod(generator : Int, modulus : Int)
: Int {
 Fact(❶
 IsCoprimeI(generator, modulus), ❷
 "`generator` and `modulus` must be co-prime"
);

 let bitSize = BitSizeI(modulus); ❸
 let nBitsPrecision = 2 * bitSize + 1; ❹
 mutable result = 1; ❺
 mutable frequencyEstimate = 0;

 repeat { ❻
 set frequencyEstimate = EstimateFrequency(❼
 ApplyPeriodFindingOracle(generator, modulus, _, _), ❽
 nBitsPrecision, bitSize
);

 if (frequencyEstimate != 0) { ❾
 set result = PeriodFromFrequency(❿
 frequencyEstimate, nBitsPrecision,
 modulus, result
);
 } else {
 Message("The estimated frequency was 0, trying again.");
 }
 } until(ExpModI(generator, result, modulus) == 1) ⓫
 fixup {
 Message(⓬
 "The estimated period from continued fractions failed, " +
 "trying again."
);
 }
 return result;
}

❶You can use the Fact function to do some input checking that the provided generator and modulus
are coprime.

❷The IsCoprimeI function from the Microsoft.Quantum.Math namespace makes checking if
the generator and modulus are coprime easy.

❸The largest integer a register of qubits would need to hold is the modulus, so you can use BitSizeI

to help calculate number of bits such that .
❹To use a floating-point number to represent a frequency of the form k / r where r is the period and

where k is an arbitrary other integer, you need that floating-point number to have enough bits of
precision to be a good approximation to k / r. Since neither k nor r can be larger than N, you just need
one more bit than the number of bits you need to represent both k and r.

❺The result mutable variable here will keep track of your current best guess for a period as you
repeat the repeat block below.

310

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❻You want to repeat the frequency estimation steps here as many times as necessary to ensure you
have a viable period estimate to move forward with.

❼You can call the EstimateFrequency operation that you looked at earlier and pass it the
appropriate arguments.

❽The operation ApplyPeriodFindingOracle is partially applied here to ensure that
EstimateFrequency can apply apply it to the right power and register values.

❾If frequencyEstimate is 0, that is a trivial failure case, because a frequency of 0 has an

undefined period (). If you get 0 as your estimate, then the repeat block will just run again as the
until condition will not be met in that case.

❿The PeriodFromFrequency function call here captures step number four of which utilizes some
built-in functions in the Microsoft.Quantum.Math namespace to use the continued fractions
algorithm to calculate the period from the frequency.

⓫You know that you want to repeat the frequency estimation and period calculation until you have a

period such that .
⓬If the until condition is not met, then the fixup block is run, which here just issues a message that

it is going to try again.

With this last operation, you now have all the code you need to fully implement Shor’s
algorithm! In the next section, you will put it all together and explore the implication
of this integer factoring algorithm.

11.9 PUTTING IT ALL TOGETHER
You now have learned and practiced all the skills that it takes to program and run
Shor’s algorithm. The quantum part to Shor’s algorithm was pretty familiar, thanks to
what you learned in Chapters 8 and 9 about phase estimation, and you worked through
classical algebra that links the tasks of factoring numbers and finding the period of a
generator. This is no small feat — you should be quite proud of yourself for making it
this far in your quantum journey!

Continued fraction convergents
You may have noticed one other bit of classical math happening in Shor’s algorithm that we haven’t
really touched on yet. In particular, the PeriodFromFrequency function is called on output you get
from phase estimation before continuing.

Listing 11.13. The PeriodFromFrequency function used in Shor’s algorithm.
function PeriodFromFrequency(
 frequencyEstimate : Int, nBitsPrecision : Int,
 modulus : Int, result : Int
)
: Int {
 let continuedFraction = ContinuedFractionConvergentI(
 Fraction(frequencyEstimate, 2^nBitsPrecision), modulus
);

311

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 let denominator = AbsI(Snd(continuedFraction!));
 return (denominator * result) / GreatestCommonDivisorI(
 result, denominator
);
}

This is needed because phase estimation doesn’t tell you exactly what you need. Instead of telling you
how long it takes your function to spin around a clock (the period of your function), it tells you how fast
your function spins around said clock; something more like a frequency. Unfortunately, you can’t quite do
something like taking the reciprocal of your frequency to get back to your period, as you’re looking for the
period as an integer. Thus, if you got a frequency estimate of f, then you need to search near f / 2n for
the closest fraction of the form N / r in order to find your period r.

This is an entirely classical arithmetic problem, and has thankfully been well solved using a
technique known as continued fraction convergents. This solution is made available in the Q# standard
libraries by the ContinuedFractionConvergentI function, making it easy to go from the
estimate you get from phase estimation to something about the period of your function.

Let’s take a moment to review the FactorSemiprimeInteger operation that you saw
at the beginning of the chapter in light of what you have now learned. If you need a
refresher, check out figure 11.7.

312

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure 11.7. Shor’s algorithm represented as a flowchart.

Listing 11.14. Operation that factors semiprime integers with Shor’s Algorithm.

operation FactorSemiprimeInteger(number : Int)
: (Int, Int) {
 if (number % 2 == 0) { ❶
 Message("An even number has been given; 2 is a factor.");
 return (number / 2, 2);
 }
 mutable factors = (1, 1); ❷
 mutable foundFactors = false; ❸

 repeat {
 let generator = RandomInt(number - 2) + 1; ❹

 if (IsCoprimeI(generator, number)) { ❺
 Message($"Estimating period of {generator}...");
 let period = EstimatePeriod(generator, number); ❻
 set (foundFactors, factors) = MaybeFactorsFromPeriod(❼
 generator, period, number
);

313

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

 } else {
 let gcd = GreatestCommonDivisorI(number, generator); ❽
 Message(
 $"We have guessed a divisor of {number} to be " +
 $"{gcd} by accident. Nothing left to do."
);
 set foundFactors = true;
 set factors = (gcd, number / gcd);
 }
 } until (foundFactors) ❾
 fixup { ❿
 Message(
 "The estimated period did not yield a valid factor, " +
 "trying again."
);
 }
 return factors; ⓫
}

❶The first thing we have to check is if the integer to factor is even. If so, then 2 is as factor and we can
stop early.

❷You can use the mutable variable factors to keep track of the factors that you find for number as
you step through the algorithm.

❸You can use the mutable flag foundFactors to keep track of if you find any factors for number as
you step through the algorithm.

❹This line matches up with step 1 in algorithm 11.1, as RandomInt is used to select a random integer
in the range from 1 to number - 1; you’ll use this random integer as your generator.

❺This is step 2 in algorithm 11.1, where you verify that the generator is coprime to the integer that we
want to factor, if it’s not the else clause handles returning the common factor between the two.

❻This line covers steps 3 and 4 in algorithm 11.1, it will return a period that it computes with continued
fractions from the frequency estimation inside EstimatePeriod.

❼This function MaybeFactorsFromPeriod takes the estimated period and uses algebra to turn it
into integers that might be potential factors of the integer we are trying to factor. Sometimes it will fail,
so it returns a tuple of a boolean value indicating whether it succeeded as well as the tuple of the
factors it finds when it succeeds.

❽This else statement handles the case that the generator we guessed at the beginning has a common
factor with the number we are trying to factor. We can use the Q# library function
GreatestCommonDivisorI to find the shared factors and set foundFactors and factors
appropriately.

❾The until statement adds the condition for how long we should repeat the preceding block. Here we
want to continue looking until we find the factors we are looking for.

❿ The fixup statement tells the program to do before repeating the main loop again, here we just have
it message you to let it know that your Q# program will try again.

⓫Finally, the program can return the tuple of factors for the input integer.

In listing 11.15, you can see what it looks like if you run this operation in an IQ#
notebook to factor 21.

314

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Listing 11.15. Output of running FactorSemiprimeInteger

In [1]: open IntegerFactorization; ❶

 operation Factor21() : (Int, Int) {
 return FactorSemiprimeInteger(21);
 }

Out[1]: - Factor21

In [2]: %simulate Factor21
 We have guessed a divisor of 21 to be 3 by accident. Nothing left to do.
Out[2]: (3, 7)

In [3]: %simulate Factor21
 Estimating period of 19...
 The estimated period from continued fractions failed, trying again.
Out[3]: (7, 3)

In [4]: %simulate Factor21
 Estimating period of 17...
 The estimated period did not yield a valid factor, trying again.
 We have guessed a divisor of 21 to be 3 by accident. Nothing left to do.
Out[4]: (3, 7)

❶To call the FactorSemiprimeInteger operation from within a notebook, it’s helpful to write a
new operation that provides the input 21.

You can see in listing 11.15 that each time your code correctly returned the prime
factors of 21, 3 and 7. The operation was run three times to show some potential
different outcomes you might get. In In [2], when you tried to guess a generator, your
call to RandomInt ended up returning an integer that was not coprime to 21. Thus, you
were able to use GreatestCommonDivisorI to find a factorization. In In [3], your
call to RandomInt selected a generator of 19, and then had to run the frequency
estimation twice to ensure the continued fractions algorithm succeeded. Lastly, the
final run on In [4], one full round of the period finding task completed but failed to
yield a correct factor, and when it went to pick a new generator it guessed a factor by
accident.

NOTE Given the limitations of running this on simulators or small hardware devices, you will quite
frequently guess the correct factors when selecting the generator. You’ll also get unlucky more
often with small integers, guessing trivial factors like 1. Both of these edge cases will happen
less often as the number you are trying to factor grows in size.

Using a simulator on your laptop, your desktop, or in the cloud, you likely won’t be
able to factor anything terribly large with Shor’s algorithm. For example, it would be
quite challenging to factor a 30-bit number by simulating Shor’s algorithm on a
classical computer, but 40-bit numbers were already considered woefully insufficient
at standing up against classical factoring algorithms in 1992. This might seem like it
makes Shor’s algorithm useless, but all that really tells you is that it’s hard to use a
classical computer to simulate large quantum programs; you saw why that was the case

315

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

in Chapters 4 and 5.

Indeed, since the same algorithm works for much larger numbers (using 4,096-bit keys
isn’t at all overkill for protecting personal data, for example), such as those commonly
used to protect your data online, understanding how Shor’s algorithm and other similar
quantum algorithms work can help you understand the assumptions that go into
modern uses of cryptography, and what else you’ll need going forward.

What’s next for privacy?
Given what you’ve learned about Shor’s algorithm, it might seem like the cryptography that protects
everything from your health records to your chat history is doomed. Thankfully, there’s both quantum
technologies such as quantum key distribution, as you learned about in Chapter 3, as well as new
classical technologies meant to resist algorithms such as Shor’s. The latter class of technologies, known
as post-quantum cryptography, is the subject of much ongoing research and exploration.

As it turns out, Q# can play an important role in cryptography research by making it easier to
understand how large a quantum computer you would need to attack a given cryptosystem. For instance,
researchers at Google recently used Q# and Python to help improve the cost required to implement the
modular multiplication step of Shor’s algorithm (https://arxiv.org/abs/1904.07356), helping them
estimate that 20 million qubits would be required to attack reasonable RSA instances using current
quantum algorithms (https://arxiv.org/abs/1905.09749).
Similarly, https://github.com/Microsoft/grover-blocks is a great example of using Q# to understand how
Grover’s algorithm from the previous chapter affects symmetric-key algorithms like AES.

In both cases, Q# is a valuable tool for understanding how much quantum computing power an
attacker would need to compromise current cryptosystems. Together with assumptions about the speed
at which quantum algorithms and hardware will continue to improve, assumptions about how much
quantum computing power will be feasible for attackers to purchase, and requirements for how long
algorithms like RSA need to be secure in order to guarantee your privacy, the understanding developed
by using Q# can help us to understand how quickly current cryptosystems need to be replaced. Like
anything in information security, guaranteeing privacy against quantum attackers is a very complex topic,
not to mention a topic without any easy answers. Thankfully, tools like Q# and the Quantum
Development Kit help make the problem a bit more tractable.

11.10 WRAPPING UP
At this point, before we say goodbye, it’s helpful to take a step back and appreciate
how all the various skills you learned throughout the book came together in this
Chapter to help you understand a real-world application for quantum computers. In
Part I, you learned the basics about how we can describe, simulate, and the basic
quantum effects that make quantum computing unique. You learned in Chapter 3 how
to use single qubits and superposition to securely share cryptographic keys with
quantum key distribution. In Chapters 4 and 5, you entangled multiple qubits to play
games and move data around a quantum device. You even built your own quantum
simulator in Python to help you implement these games and learn about the math that
helps us describe quantum effects.

With all of those basics under your belt, in Part 2 you then started writing quantum
algorithms to help the crew in Camelot play some games. In Chapter 6, you learned
about Q#, a new programming language specifically designed to help you easily write

316

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://arxiv.org/abs/1904.07356
https://arxiv.org/abs/1905.09749
https://github.com/Microsoft/grover-blocks

©Manning Publications Co. To comment go to liveBook

programs for a quantum computer. In Chapter 7, you implemented the Deutsch–Jozsa
algorithm to help select a new king, but along the way, you also learned about oracles
and how they can help you evaluate classical functions in a quantum program. You
also developed your own phase estimation program in Chapter 8, where you learned
how to manipulate phase and leverage it with phase kickback to learn things about
operations in your quantum programs.

Having a new toolbox of quantum development techniques at your disposal, you
tackled some of the most exciting applications of quantum computing. In Chapter 9,
you learned about Hamiltonian simulation and how we can use the quantum systems in
our quantum computers to simulate the energy levels in various chemicals. Chapter 10,
you implemented Grover’s algorithm to help search for information in unstructured
data with amplitude amplification. In this Chapter, you used everything from Q#
diagnostic functions and operations through to phase estimation, and everything
from within/apply blocks through to oracle representations of classical functions to
factor numbers on a quantum computer. Indeed, using what you learned in the rest of
the book, most of the hard parts of writing out Shor’s algorithm were
the classical parts you needed to connect the problem of factoring numbers to one of
period finding.

While this book did not exhaust all there is to learn about quantum computing — a lot
has happened since 1985, after all! — what you’ve learned in this book gives you what
you need to keep learning, keep exploring, and keep pushing forward with quantum
computing. Using Python and Q# together, you have the tools you need to take part in
one of the most exciting advances in computing, to help your peers and colleagues
learn along with you, and to build a community that can put quantum computing to
good use.

Go have fun!

What’s next?
While there’s still always more to learn about quantum computing, you now have what you need to start
developing quantum applications using Python and Q# together. If you’re interested in learning and doing
more with quantum computing, here’s some resources to help you take your next step!
• Q# Community (qsharp.community): An open-source community around quantum programming in

Q#, including blogs, code repositories, and online meetups.
• Microsoft Quantum Docs (docs.microsoft.com/quantum): Full reference documentation for all things

related to the Quantum Development Kit.
• arXiv (arxiv.org): An online repository for scientific papers and manuscripts, including a huge amount

of research about quantum computing.
• Unitary Fund (unitary.fund): Grants and financial support for open-source quantum software, along

with neat suggestions for open-source projects you can take on.
• Quantum Open Source Foundation (www.qosf.org): Foundation for the development of open-source

quantum software, including a list of current projects, and resources for further learning.
• QCEthics (qcethics.org): Resources for ethics in quantum computing.
• Q-Turn (q-turn.org): An inclusive quantum computing conference series.
• Quantum Algorithm Zoo (quantumalgorithmzoo.org): List of known quantum algorithms, with links to

papers about each.

317

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

• Quantum Computing: A Gentle Introduction (ISBN 0262015064): More detail about the math behind
the quantum algorithms that you learned about in this book.

Many universities and colleges also have courses or research programs that may be of interest as you
continue exploring quantum computing. However you decide to continue, we hope you have fun and work
to make the quantum computing community even more wonderful!

11.11 Summary:
• Program with the Numerics library for Q#.
• Implement Shor’s algorithm for factoring integers.
• Recognize the implications of quantum computing to security infrastructure.

318

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

A
This chapter covers:
 • Use the samples for this book online with Binder, or with Visual Studio Online,

 • How to install a Python environment that you can use to design your own quantum simulation stack,

and

 • How to install the Microsoft Quantum Development Kit, including a compiler for the Q# language.

A.1 RUNNING SAMPLES ONLINE
If you’d like to try the samples in this book out without installing anything, there’s two
great options to do so:

• Binder (mybinder.org), a free service for exploring hosted Jupyter Notebooks, and
• Visual Studio Online, an Azure-hosted development environment.

A.1.1 Using Binder
To use Binder, simply go to https://mybinder.org/v2/gist/crazy4pi314/learn-qc-with-
python-and-qsharp/master. It may take a few moments, by Binder will spin-up a new
Jupyter Notebook installation, complete with the Python packages you need and Q#
support.

The Binder service is intended for exploration only, and will DELETE your changes
after approximately twenty minutes of inactivity. While Binder is a great way to get
started, if you would like to continue developing quantum programs, it’s helpful to
either use Visual Studio Online or to install Python and the Quantum Development Kit
locally on your machine.

Installing Required Software

319

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://mybinder.org/v2/gist/crazy4pi314/learn-qc-with-python-and-qsharp/master
https://mybinder.org/v2/gist/crazy4pi314/learn-qc-with-python-and-qsharp/master

©Manning Publications Co. To comment go to liveBook

A.1.2 Using Visual Studio Online
To use Visual Studio Online, go to http://online.visualstudio.com/ and press "Get
Started." Once you login with a Microsoft account that is associated with an Azure
subscription, you’ll be prompted to create a new Visual Studio Online plan that can be
used to bill Visual Studio Online services.

If you don’t already have an Azure account, you can create one for free
at https://azure.microsoft.com/free. For more details, check out Chapter 1 of Learn
Azure in a Month of Lunches.

After selecting a plan, you can then create new Visual Studio Online environments.
Each environment is a self-contained development environment complete with all the
software you’ll need to work on a project. The code samples for this book, provided
at https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp, come with all the
configuration needed to be used as a Visual Studio Online environment. Press "Create
environment" from https://online.visualstudio.com/environments, then give your
environment a new name. For the Git repository, paste
in https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp, and then press
"Create." After a few minutes, you should see a new Visual Studio Online tab open up
with all of the samples for the book, along with all of the Python packages that you
need, and the Quantum Development Kit.

In most ways, your new Visual Studio Online environment is just like running things
locally on your system, but backed by a service running in Azure. There are a few
differences to keep in mind, though.

For example, the Visual Studio Online environment configuration provided for use
with this book differs a bit from a local installation in that it doesn’t use the Anaconda
distribution. As a result, you can skip the conda activate qsharp-book step when
using Visual Studio Online.

As of this writing, Visual Studio Online is still in public preview, so that some bugs
and service interruptions are to be expected. You can always find the latest information
about Visual Studio Online at http://docs.microsoft.com/visualstudio/online.

A.2 INSTALLING A PYTHON ENVIRONMENT
In the first several chapters of the book, we make heavy use of Python as a tool to
explore quantum programming. In doing so, we rely on several Python libraries that
make it easier to write scientific programs. As a result, it’s often easier to start from a
Python distribution that packages Python along with other libraries and package
management tools. We’ll go through getting up and running with the Anaconda
distribution, but you should be able to follow a similar procedure if you would prefer
to use a distribution such as Enthought Python, or Python(x, y).

A.3 INSTALLING ANACONDA
To install Anaconda, follow the instructions

320

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
http://online.visualstudio.com/
https://azure.microsoft.com/free
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp
http://docs.microsoft.com/visualstudio/online

©Manning Publications Co. To comment go to liveBook

at https://docs.anaconda.com/anaconda/install/.

WARNING At the time of this writing, the Anaconda distribution is provided with either Python 2.7 or 3.7.
Python 2.7 has official reached end-of-life, and is provided for compatibility reasons only. We
will assume Python 3.6 or later in this book, so make sure that you install a version of
Anaconda that provides Python 3.

A.4 INSTALLING PYTHON PACKAGES WITH ANACONDA
Packages are a great way to collaborate and save time when you are trying to learn or
develop new code. They are a way of collecting related code and wrapping it up in
such a way it is easy to share to other machines. Packages can be installed on your
machine with what is sensibly called a package manager, of which there are a few
common options for Python. The reasons you might choose one manager over the other
is each one has its own listing of packages and the package you want to install may
only be known by a particular manager (depending on how the author deployed it).
Let’s start by looking the package managers we have already installed as a part of
Anaconda.

As a default, Anaconda comes with two package managers pip and conda. Given we
have installed Anaconda, the conda package manager has some additional features to
pip that make it a good default choice for package management. conda has support for
installing dependencies automatically when you install a package, it has the concept of
environments (See sidebar) that are really helpful for creating dedicated Python
sandboxes? for each project you are working on. A good general strategy is thus to
install packages from conda when they are available, and to install packages
from pip otherwise.

NOTE The conda package manager can be used with most common command line environments,
but if you would like to use conda with PowerShell, you will need version 4.6.0 or later. To
check your version, run conda --version. If you need to update, run conda update
conda.

Conda Environments
So far, we’ve simply run commands like pip install and conda install to install new
packages for our entire Anaconda installation. We may run into the situation, however, that the packages
we need for two different projects contradict each other. To help isolate projects from each other, the
Anaconda distribution provides conda env as a tool to help manage multiple environments. Each
environment is a completely independent copy of Python with only the packages needed for a particular
project or application. Environments may even use different versions of Python from each other, with one
environment using 2.7 and another using 3.7. Environments are also great for collaborating with others,
as you can send your teammates a single small text file, environment.yml, to tell their conda
env how to create an environment that’s identical to yours.

For more information:
• https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

Following that strategy, let’s start by making a new environment with the packages we

321

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://docs.anaconda.com/anaconda/install/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

©Manning Publications Co. To comment go to liveBook

need. The code samples for this book, found at https://github.com/crazy4pi314/learn-
qc-with-python-and-qsharp, come with a file called environment.yml that
tells conda what packages you need in your new environment. Clone or download the
code from the repository for this book, then run the following at your favorite
command line:

Listing 12.1. Creating a new conda environment

conda env create -f environment.yml

This will create a new environment called qsharp-book using packages from
the conda-forge channel, and will install Python (version 3.6 or later), the IPython
interpreter, NumPy, the matplotlib plotting engine, Jupyter Notebook, and QuTiP into
the new environment. The conda package manager will prompt you to confirm the list
of packages that will be installed, press "y" and then "Enter," and grab a cup of coffee.

The environment.yml file provided at https://github.com/crazy4pi314/learn-qc-with-
python-and-qsharp also installs the qsharp package, which provides integration
between Python and the Quantum Development Kit (which you’ll install in the next
step). If you are using a distribution other than Anaconda, you’ll need to run pip
install qsharp manually.

Once conda has finished creating your new environment, let’s give it a go. To test your
new environment, first activate it:

Listing 12.2. Activating the new conda environment

conda activate qsharp-book

Once the qsharp-book environment has been activated, the python command should
invoke the version installed into that environment. To check this, you can print the path
to the python command for your environment. Run python, and then run the
following at the Python prompt:

Listing 12.3. Testing the new conda environment

>>> import sys; print(sys.executable)"
C:\Users\Chris\Anaconda3\envs\qsharp-book\python.exe ❶

❶Note that you might see a different path depending on your system.

If your environment was created successfully, you can use it either at the command
line with IPython, or in your browser with Jupyter Notebook. To get started with
IPython, run ipython from your command line: (Make sure that you’ve
activated qsharp-book first!)

322

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp
https://github.com/crazy4pi314/learn-qc-with-python-and-qsharp

©Manning Publications Co. To comment go to liveBook

Listing 12.4. Using IPython from the quantum environment

$ ipython
In [1]: import qutip as qt
In [2]: qt.basis(2, 0)
Quantum object: dims = [[2], [1]], shape = (2, 1), type = ket
Qobj data =
[[1.]
 [0.]]

If you would like to learn more about using NumPy, continue reading in Chapter 2. If
you would like to learn more about using QuTiP, continue reading in Chapter 4. If you
would like to learn about the Quantum Development Kit, continue reading here.

For more information
• Anaconda docmentation: https://docs.anaconda.com/anaconda/
• NumPy documentation: http://numpy.scipy.org/
• Jupyter Notebook documentation: https://jupyter-notebook.readthedocs.io/en/stable/notebook.html

A.5 INSTALLING THE QUANTUM DEVELOPMENT KIT
TIP The latest version of the installation instructions for the Quantum Development Kit can be

found at https://docs.microsoft.com/quantum/install-guide/. To use the code samples
provided with this book, you’ll want to make sure to install Python and Jupyter Notebook
support when following the Quantum Development Kit install guide.

The Quantum Development Kit from Microsoft is a set of tools for working with and
programming in Q#, a new language for quantum programming.

NOTE In this book we will focus on using Visual Studio Code, but the Quantum Development Kit can
be used with any other text editor as well by following the command line instructions in the
main text.

The Quantum Development Kit can also be used with Visual Studio 2019 or later by using the
extension at https://marketplace.visualstudio.com/items?itemName=quantum.DevKit

Using the installation of Visual Studio Code from setting up your Python environment,
we need to do a few things to use the Quantum Development Kit with C#, Python, and
Jupyter Notebook.

• Install the .NET Core SDK,
• Install the project templates for Q#,
• Install the Quantum Development Kit extension for Visual Studio Code,
• Install Q# support for Jupyter Notebook, and
• Install the qsharp package for Python.

Meet the .NETs
At this point, answering the question of what .NET is has become a bit more complicated than it used to
be. Historically, ".NET" was a reasonable shorthand for the .NET Framework, a virtual machine and

323

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://docs.anaconda.com/anaconda/
http://numpy.scipy.org/
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://docs.microsoft.com/quantum/install-guide/
https://marketplace.visualstudio.com/items?itemName=quantum.DevKit

©Manning Publications Co. To comment go to liveBook

compiler infrastructure for any of the .NET languages (most notably, C#, F#, and Visual Basic .NET). The
.NET Framework is Windows-only, but third-party reimplementations such as Mono exist for other
platforms including macOS and Linux.

A couple years ago, though, Microsoft and the .NET Foundation open-sourced a new flavor of .NET
called .NET Core. Unlike .NET Framework, .NET Core is cross-platform out of the box. \.NET Core is also
much smaller, with much of the functionality separated out into optional packages. This makes it much
easier to have multiple versions of .NET Core on the same machine, and for new .NET Core features to be
introduced without compatibility issues.

This bifurcation of .NET into Framework and Core comes with its own foibles, however. To make .NET
Core work better as a cross-platform programming environment, a few things in the .NET standard
libraries were changed in ways that aren’t entirely compatible with .NET Framework. To resolve this, the
.NET Foundation introduced the concept of .NET Standard, a set of APIs offered by both .NET Framework
and .NET Core. The .NET Core SDK can then be used to make libraries for either .NET Core or .NET
Standard, and can build applications for .NET Core. Much of the libraries provided Quantum
Development Kit target .NET Standard, so that Q# programs can be used from traditional .NET
Framework applications or from new applications built using the .NET Core SDK.

Going forward, Microsoft has announced that the next version of .NET will based off of .NET Core, but
will just be called ".NET 5," reducing much of the confusion.

Once you’ve done this, you have everything you need to write and run quantum
programs written in Q#.

A.6 INSTALLING THE .NET CORE SDK
To install the .NET Core SDK, go to https://dotnet.microsoft.com/download and select
your operating system from the selections near the top of the page.

A.7 INSTALLING THE PROJECT TEMPLATES
One thing that might be different than what you’re used to is that both .NET
Framework and .NET Core development center around the idea of a project that
specifies how a compiler is invoked to make a new binary. For instance, a C# project
(*.csproj) file tells the C# compiler what source files should get built, what libraries
are needed, what warnings are turned on and off, etc. In this way, project files work
similarly to makefiles or other build management systems. The big difference is in how
project files on .NET Core reference libraries.

A project file can specify one or more references to packages on NuGet.org, a package
repository for .NET Framework and .NET Core software. Each package can then
provide a number of different libraries. When a project that depends on a NuGet
package is built, the .NET Core SDK will automatically download the right package,
and then will use the libraries in that package to build the project.

From the perspective of quantum programming, this allows for the Quantum
Development Kit to be distributed as a small number of NuGet packages that can be
installed not on a machine, but into each project. This makes it easy to use different
versions of the Quantum Development Kit on different projects, or to include only the
parts of the Quantum Development Kit that you need for a particular project. To help
get started with a reasonable set of NuGet packages, the Quantum Development Kit is

324

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://dotnet.microsoft.com/download

©Manning Publications Co. To comment go to liveBook

provided with templates for creating new projects that reference everything you need.

To install the project templates, run the following command at your favorite terminal:

Listing 12.5. Installing the project templates for the Quantum Development Kit

dotnet new -i "Microsoft.Quantum.ProjectTemplates"

Once the project templates are installed, you can use them by running dotnet
new again:

Listing 12.6. Creating a new project with the Quantum Development Kit project

templates

dotnet new console -lang Q# -o ProjectName ❶

❶Make sure to replace ProjectName by the name of the project you would like to create.

A.8 INSTALLING THE VISUAL STUDIO CODE EXTENSION
NOTE This section assumes that you installed Visual Studio Code with your Anaconda installation

above. If you do not have Visual Studio Code, you can install it manually
from https://code.visualstudio.com/.

To install the extension for Visual Studio Code, open a new Visual Studio Code
window and press Ctrl+Shift+X (Windows and Linux) or ⌘+Shift+X to bring up the
extensions sidebar. From the search bar, type in "Microsoft Quantum Development
Kit," and press the "Install" button. Once Visual Studio Code has installed the
extension, the "Install" button will change to a "Reload" button, which will close
Visual Studio Code and reopen your window with the Quantum Development Kit
extension installed.

Alternatively, press Ctrl+P or ⌘+P to bring up the Go To pallette. In the pallette,
type ext install quantum.quantum-devkit-vscode and press Enter.

In either case, once the extension has been installed, to use it, open a folder
(Ctrl+Shift+O or ⌘+Shift+O) containing the Q# project you’d like to work on. At
this point, you should have everything you need to get up and programming with the
Quantum Development Kit!

For more information
• Quantum Development Kit documentation: https://docs.microsoft.com/quantum
• Using the dotnet command: https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet
• Getting started with Visual Studio Code: https://code.visualstudio.com/docs/introvideos/basics

A.9 INSTALLING IQ# FOR JUPYTER NOTEBOOK
Run the following from your favorite command line:

325

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://code.visualstudio.com/
https://docs.microsoft.com/quantum
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet
https://code.visualstudio.com/docs/introvideos/basics

©Manning Publications Co. To comment go to liveBook

dotnet tool install -g Microsoft.Quantum.IQSharp
dotnet iqsharp install

TIP On some Linux installations, you may need to run dotnet iqsharp install --
user instead.

This will make Q# available as a language for Jupyter Notebooks such as the ones used
in Chapter 6.

326

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

B
This chapter covers:

• What vectors and matrices are,

• How to work with vectors and matrices to represent linear functions,

• How to use Python and NumPy to work with vectors and matrices.

B.1 APPROACHING VECTORS
One more thing we’ll need before we can get to what qubits are is the concept of
a vector.

Suppose a friend of yours is having people over to celebrate that they fixed their
doorbell, and you’d very much like to find their house and celebrate the occasion with
them. How can your friend help you find their home?

Linear Algebra Refresher

327

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure B.1. Looking for your friend’s house party…

Vectors are a mathematical tool that can be used to represent a variety of different
concepts — basically, anything that we can record by making an ordered list of
numbers.

B.1.1 Examples of vectors
• Points on a map
• Colors of pixels in a display
• Damage elements in a computer game
• Velocity of an airplane
• Orientation of a gyroscope

For instance, if I’m lost in an unfamiliar city, someone can tell me where to go by
giving me a vector that instructs me to take 𝑎𝑎 blocks East and then 𝑏𝑏 blocks North
(we’ll set aside the problem of routing around buildings). We write these instructions
with the vector [[a], [b]].

328

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure B.2. Vectors as coordinates.

Like ordinary numbers, we can add different vectors together.

NOTE An ordinary number is often called a scalar to distinguish it from a vector.

Using this way of thinking about vectors, we can think of this addition between vectors
as being defined element-wise. That is, we interpret [[a], [b]] + [[c], [d]] as
being instructions to go a blocks East, b blocks North, c blocks East, then
finally d blocks North. Since it doesn’t matter what order we step in, this is equivalent
to taking a + c blocks East, then b + d blocks North, and so we write that [[a],
[b]] + [[c], [d]] is [[a + c], [b + d]].

329

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Figure B.3. Adding vectors to find a party.

VECTOR
A vector in d dimensions can be written as a list of d numbers. For instance, = [[2], [3]]
is a vector in two dimensions.

Figure B.4. Drawn vectors have the same information as a list of directions, or a column of
numbers.

330

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Similarly, we can multiply vectors by ordinary numbers to transform vectors. I may be
lost not just in any city, for example, but a city that uses meters instead of the feet that
I’m used to. To transform a vector given in meters to a vector in feet, I’ll need to
multiply each element of my vector by about 3.28. Let’s do this using a Python library
called NumPy to help us manage how we represent vectors in a computer.

TIP Full installation instructions are provided in Appendix A.

Listing B.1. Representing vectors in Python with NumPy.

>>> import numpy as np
>>> directions_in_meters = np.array(❶
... [[30], [50]]) ❷
>>> directions_in_feet = 3.28 * directions_in_meters ❸
>>> directions_in_feet
array([[98.4], ❹
 [164.]])

❶Vectors are a special case of NumPy arrays. We create arrays using the array function, passing a list
of the rows in our vector. Each row is then a list of the columns — for vectors, we only ever have one
column per row, but we’ll have examples later where this isn’t true.

❷Let’s start with an example of going 30 meters East, then 50 meters North.
❸NumPy represents multiplication between scalars and vectors by the Python multiplication operator *.
❹Printing out the result of multiplying, I see that I need to go 98.4 feet East, then 164 feet North.

Exercise B.1
What would 25 meters West and 110 meters North be in feet?

This structure makes it easier to communicate directions. If we didn’t use vectors, then
each scalar would need its own direction, and it would be critical to keep the directions
and scalars together.

B.2 SEEING THE MATRIX FOR OURSELVES
As we’ll see shortly, we can describe how qubits transform as we apply instructions to
them in the same way that we describe transforming vectors, using a concept from
linear algebra called a matrix. This is especially important as we consider
transformations of vectors that are more complicated than adding or rescaling.

To see how to use matrices, let’s return to the problem of finding the party — that
doorbell isn’t going to ring itself, after all! Up until now, we’ve simply assumed that
the first component of each vector means East and the second means North, but
someone could well have chosen another convention. Without a way of reconciling the
transformation between these two conventions, I’ll never find the party! Thankfully,
not only will matrices help us model qubits later on in the chapter, they can help me
find my way to my friends!

Happily, the transformation between listing North first and listing East first is simple to

331

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

implement: we swap the coordinates [[a], [b]] to obtain [[b], [a]]. Suppose that
this swap is implemented by some function swap. Then, swap plays nicely with the
vector addition that we saw above, in that swap(v + w) is always the same
as swap(v) + swap(w). Similarly, if we stretch a vector and then swap (that is, scalar
multiplication), that’s the same as if we had swapped and then stretched: swap(a * v)
= a * swap(v). Any function that has these two properties is a linear function.

LINEAR
FUNCTION

A linear function is a function f such that f(ax + by) = af(x) + bf(y) for all scalars 𝑎𝑎 and 𝑏𝑏 and all
vectors 𝑥𝑥 and 𝑦𝑦.

Exercise B.2
Which of the following functions are linear?
• f(x) = 2x
• f(x) = x2
• f(x) = 2x

Linear functions are common in computer graphics and machine learning, as they
include a variety of different ways of transforming vectors of numbers.

B.2.1 Examples of linear functions
• Rotations
• Scaling and stretching
• Reflections

What all of these linear functions have in common is that we can break them apart and
understand them piece by piece. Thinking again of the map, if I’m trying to find my
way to the party still (hopefully there’s still some punch left) and the map I’ve been
given has been stretched out by 10% in the North–South direction, and has been
flipped in the East–West direction, that’s not too hard to figure out. Since both the
stretching out and flipping are linear functions, someone can set me on the right path
by telling me what happened to the North–South direction and the East–West
directions separately. In fact, we just did that at the beginning of this paragraph!

TIP If you learn just one thing from this book, the most important take-away that we have to offer
is that you can understand linear functions and thus quantum operations by breaking them up
into components. We will see in the rest of the book that, since operations in quantum
computing are described by linear functions, we can understand quantum algorithms by
breaking them apart in the same way as we broke up our map example. Don’t worry if that
doesn’t make a lot of sense at the moment, as it’s a way of thinking that takes some getting
used to.

This is because once I understand what happens to the North vector (let’s call it [[1],
[0]] as before), and to the West vector (let’s call it [[0], [1]]), then I can figure out
what happens to all vectors by using the linearity property. For example, if I am told
there’s a really pretty sight 3 blocks North and 4 blocks West of me, and I want to
figure out where that is on my map, I can do so piece by piece:

332

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

• I need to stretch the North vector out by 10% and multiply it by 3,
getting [[3.3], [0]].

• I need to flip the West vector and multiply it by 4, getting [[0], [-4]].
• I finish by adding what happens to each direction, getting [[3.3], [-4]].

Linear functions are pretty special! ����
In the example above, we were able to stretch our vectors using a linear function. This is because linear
functions aren’t sensitive to scale. Swapping North–South and East–West does the same thing to
vectors, whether they’re represented in steps, blocks, miles, furlongs, or parsecs. That’s not true of most
functions, though. Consider a function that squares its input, f(x) = x2. The larger x is, the more it gets
stretched out.

That linear functions work the same way no matter how large or small their inputs are is precisely
what lets us break them down piece by piece: once we know how a linear function works at any scale, we
know how they work at all scales.

Thus, I need to look 3.3 blocks North and 4 blocks East on my map.

333

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

TIP Later, we’ll see how the bits "0" and "1" can be thought of as directions or vectors, not too
different from North or East. In the same way that North and East aren’t the best vectors to
help you understand Minneapolis, we’ll find that "0" and "1" aren’t always the best vectors to
help you understand quantum computing.

Figure B.5. North and West aren’t always the best directions to use if you want to understand
where you’re going. See this map of downtown Minneapolis, where a large section of the
downtown grid is rotated to match the bend in the Mississippi river. Photo by davecito.

This way of understanding linear functions by breaking them apart piece by piece

334

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

works for rotations, too. If my map has the compass rotated by 45° clockwise (wow, I
need a serious lesson in cartography), so that North becomes Northeast, and West
becomes Northwest, then I can still figure out where things are piece by piece. Using
the same example, the North vector now gets mapped to approximately [[0.707],
[0.707]] on the map, and the West vector gets mapped to [[-0.707], [0.707]].

When we sum up what happens in the example above, we thus get 3 * [[0.707],
[0.707]] + 4 * [[-0.707], [0.707]], which is equal to (3 - 4) * [[0.707],
[0]] + (3 + 4) [[0], [0.707]], giving us [[-0.707], [4.95]].

It might seem that this has less to do with linearity and more to do with that North and
West are somehow special. We could have, however, run through exactly the same
argument but writing down Southwest as [[1], [0]] and Northwest as [[0], [1]].
This works because Southwest and Northwest are perpendicular to each other, allowing
us to break down any other direction as a combination of Northwest and Southwest.
Other than ease of reading a compass that we buy off a shelf, there’s nothing that
makes North or West special. If you’ve ever tried to drive around downtown
Minneapolis (see figure B.5), it quickly becomes apparent that North and West aren’t
always the best way to understand directions!

Formally, we call any set of vectors that lets us understand directions by breaking them
apart piece by piece in this way a basis.

NOTE Technically, we’ll be concerned here with what mathematicians call an orthonormal basis, as
that’s most often useful in quantum computing. All that means is that the vectors in a basis are
perpendicular to all the other basis vectors and have a length of 1.

Let’s try an example of writing a vector in terms of a basis. The vector
can be written as using the basis and .

BASIS
If any vector in d dimensions can be written as a sum of multiples of , we

say that are a basis. In two dimensions, one common basis is horizontal and
vertical.

More generally, if we know the output of a function 𝑓𝑓 for each vector in a basis, we
can compute 𝑓𝑓 for any input. This is similar to how we used truth tables to describe a
classical operation by listing the outputs of an operation for each possible input.

Example 13.2. Problem solving with linearity
_Let’s say f is a linear function that represents how our map is stretched and twisted, how could we find
where we need to go? We want to compute the value f(np.array([[2], [3]])) (a somewhat
arbitrary value) given our basis f(np.array([[1], [0]])) (horizontal)
and f(np.array([[0], [1]])) (vertical)? We also know from looking parts of the map legend we
see that the map warps the horizontal direction to np.array([[1], [1]]) and the vertical
direction to np.array([[1], [-1]]) _

335

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

B2.2 Steps to compute f(np.array([[2], [3]]))
• We use our basis, np.array([[1], [0]]) and np.array([[0], [1]]),

to write that np.array([[2], [3]]) is equal to 2 * np.array([[1],
[0]]) + 3 * np.array([[0], [1]]).

• Using this new way to write our input to the function, we want to compute f(2 *
np.array([[1], [0]]) + 3 * np.array([[0], [1]])).

• Next, we use that f is linear to write f(2 * np.array([[1], [0]]) + 3 *
np.array([[0], [1]])) as 2 * f(np.array([[1], [0]])) + 3*
f(np.array([[0], [1]])):

Listing 13.3. Using NumPy to help compute f(np.array([[2], [3]]))

>>> import numpy as np
>>> horizontal = np.array([[1], [0]]) ❶
>>> vertical = np.array([[0], [1]])
>>> vec = 2 * horizontal + 3 * vertical ❷
>>> vec
array([[2],
 [3]])
>>> f_horizontal = np.array([[1], [1]]) ❸
>>> f_vertical = np.array([[1], [-1]])
>>> 2 * f_horizontal + 3 * f_vertical ❹
array([[5],
 [-1]])

❶First, we define variables horizontal and vertical to represent the basis we will use to
represent [[2], [3]].

❷We can write [[2], [3]] by adding multiples of horizontal and vertical.
❸We next define how f acts on horizontal and vertical by introducing new variables

f_horizontal and f_vertical to represent f(horizontal) and f(vertical),
respectively.

❹Because f is linear, we can define how it works for [[2], [3]] by replacing horizontal and
vertical by the outputs f_horizontal and f_vertical.

Exercise B.3
Suppose that you have a linear function g such that

and .

Using this insight, we can make a table of how a linear function transforms each of its
inputs. These tables are called matrices, and are complete descriptions of linear
functions. If I tell you the matrix for a linear function, then you can compute that
function for any vector. For example, the transformation from the North/East
convention to the East/North convention for map directions transforms the instruction
"go one unit North" from being written as [[1], [0]] to being written as [[0],
[1]]]. Similarly, the instruction "go one unit East" goes from being written as [[0],

336

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

[1]] to being written as [[1], [0]]. If I stack up the outputs for both sets of
instructions, I get the following matrix:

Listing 13.4. Stacking the vectors for swapping East/North conventions on a map

>>> swap_north_east = np.array([[0, 1], [1, 0]])
>>> swap_north_east
array([[0, 1],
 [1, 0]])

TIP This is a very important matrix in quantum computing as well! We will see much more of this
matrix throughout the book.

To apply the linear function represented by a matrix to a particular vector, we multiply
the matrix and the vector, as illustrated in figure B.6.

While the order in which we add vectors doesn’t matter, the order in which we
multiply matrices matters quite a lot. If we rotate our map by 90° and then look at it in
the mirror, we’ll get a very different picture than if we rotate what we see in the mirror
by 90°. Both rotation and flipping are linear functions, and so we can write down a
matrix for each; let’s call them R and F, respectively. If we flip a vector , we
get F . Rotating the output gives us RF , a very different vector than if we rotated
first, FR .

Figure B.6. How to multiply a matrix by a vector: In this example, the matrix for f tells us that
f([[1], [0], [0]]) is [[1], [2], [9]].

Matrix multiplication formalizes the way that we computed f given its outputs for a

337

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

particular set of inputs by "stacking up" the outputs of f for vectors like [[1], [0],
[0]] and [[0], [1], [0]], as illustrated in . While the actual sizes of the matrices
and vectors may change, this idea that a matrix can describe a linear transformation
stays the same. For the rest of this chapter, we will look linear transformations on
vectors of length 2. We can think of each row (the outermost index in NumPy) of a
matrix as how the function acts on a particular input.

DEEP DIVE: Why do we multiply functions?
When we multiply a matrix by a vector (or even by a matrix by a matrix), we’re doing something that
seems a bit odd at first. After all, matrices are another way of representing linear functions, so what does
it mean to multiply a function by its input, let alone by another function?

To answer this, it’s helpful to go back to ordinary algebra for a moment, in which we have that for any
variables 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐, 𝑎𝑎(𝑏𝑏 + 𝑐𝑐) = 𝑎𝑎𝑏𝑏 + 𝑎𝑎𝑐𝑐. This property, known as the distributive property is fundamental
to how multiplication and addition interact with each other. In fact, it’s so fundamental, that the
distributive property is one of the key ways we define what multiplication is — in number theory and other
more abstract parts of math, researchers often work with objects known as rings, where all we really
know about multiplication is that it distributes over addition. Though posed as an abstract concept, the
study of rings and other similar algebraic objects has broad applications, especially in cryptography and
error correction.

The distributive property looks very similar to the linearity property, though, that 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) = 𝑓𝑓(𝑥𝑥) +
𝑓𝑓(𝑦𝑦). If we think of 𝑓𝑓 as being a part of a ring, then the distributive property is identical to the linearity
property.

Put differently, as much as programmers like to reuse code, mathematicians like to reuse concepts.
Thinking of multiplying matrices together lets us treat linear functions in the many of the same ways as
we’re used to from algebra.

Thus, if we want to know the ith element of a vector x that has been rotated by a
matrix M, we can find the output of M for each element in 𝑋𝑋, sum the resulting vectors,
and take the i`th element. In NumPy, matrix multiplication is
represented by the `@ operator.

NOTE
The code sample below only works in Python 3.5 or later.

Listing 13.5. Matrix multiplication with the @ operator

>>> M = np.array([
... [1, 1],
... [1, -1]
...], dtype=complex)
>>> M @ np.array([[2], [3]], dtype=complex)
array([[5.+0.j],
 [-1.+0.j]])

Exercise B.4

Let X be the matrix [[0, 1], [1, 0]], and let be the vector [[2], [3]]. Using NumPy, compute X and XX.

338

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

Why NumPy?
We could have written all of the matrix multiplication above out by hand, but there’s a few reasons that
it’s very nice to work with NumPy instead. Most of the core of NumPy uses constant-time indexing, and is
implemented in native code, such that it can take advantage of built-in processor instructions for fast
linear algebra. Thus, NumPy will often be much, much faster than manipulating lists by hand. In , we
show an example where NumPy can speed up multiplying even very small matrices by 10×. As we get to
larger matrices in Chapters 4 and later, using NumPy over doing things by hand gives us even more of an
advantage.

Listing 13.6. Timing NumPy evaluation for matrix multiplication

$ ipython ❶
In [1]: def matmul(A, B):
 ...: n_rows_A = len(A) ❷
 ...: n_cols_A = len(A[0])
 ...: n_rows_B = len(B)
 ...: n_cols_B = len(B[0])
 ...: assert n_cols_A == n_rows_B ❸
 ...: return [❹
 ...: [
 ...: sum(❺
 ...: A[idx_row][idx_inner] * B[idx_inner][idx_col]
 ...: for idx_inner in range(n_cols_A)
 ...:)
 ...: for idx_col in range(n_cols_B)
 ...:]
 ...: for idx_row in range(n_rows_A)
 ...:]
 ...:
In [2]: import numpy as np ❻
In [3]: X = np.array([[0+0j, 1+0j], [1+0j, 0+0j]]) ❼
In [4]: Z = np.array([[1+0j, 0+0j], [0+0j, -1+0j]])
In [5]: matmul(X, Z)
Out[5]: [[0j, (-1+0j)], [(1+0j), 0j]]
In [6]: X @ Z ❽
Out[6]:
array([[0.+0.j, -1.+0.j],
 [1.+0.j, 0.+0.j]])
In [7]: %timeit matmul(X, Z) ❾
10.3 µs ± 176 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [8]: %timeit X @ Z
926 ns ± 4.42 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

❶This time, we’ll use the IPython interpreter for Python, as it provides a few extra tools that are helpful in
this example. Please see Appendix A for instructions on how to install IPython.

❷We start by finding the sizes of each matrix that we need to multiply. If we’re representing matrices by
lists of lists, then each element of the outer list is a row. That is, an n x m matrix has n rows and m
columns when written out this way.

❸The inner dimensions of both matrices need to agree in order for matrix multiplication to make sense.
Thinking of each matrix as representing a linear function, the first index (the number of rows) tells us
how large each output is, while the second index (the number of columns) tells us how large each
input is. Thus we need the outputs from the first function to be applied (the one on the right) to be of
the same size as the inputs to the second function. This line checks that condition.

339

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

❹To actually compute the matrix product of A and B, we need to compute each element in the product
and pack them into a list of lists.

❺We can find each element by summing over where the output from B is passed as input to A, similar to
how we represented the product of a matrix with a vector in .

❻For comparison, we can import NumPy, which provides us with a matrix multiplication implementation
that uses modern processor instructions to accelerate the computation.

❼We’ll initialize two matrices as NumPy arrays as test cases. We’ll see much more about these two
particular matrices throughout the book.

❽Matrix multiplication in NumPy is represented by the @ operator in Python 3.5 and later.
❾The %timeit "magic command" tells IPython to run a small piece of Python code many times and

report the average amount of time that it takes.

B.3 PARTY WITH INNER PRODUCTS
There’s one last thing we need to worry about in finding the party. Earlier, I said I was
ignoring the problem of whether there was a road that would let me go in the direction
I needed to, but this is a really bad idea when I’m wandering through an unfamiliar
city. To make my way around, I need a way to evaluate how far I should walk along a
given road to get where I’m going. Thankfully, linear algebra gives us a tool, the inner
product to do just that. Inner products are a way of projecting one vector onto

another vector , telling us how much of a "shadow" casts on .

Figure B.7. How to find a party with inner products.

We can compute the inner product of two vectors by multiplying their respective
elements and summing the result. Note that this multiply-and-sum recipe is the same as
what we do in matrix multiplication! Multiplying a matrix that has a single row with a
matrix that has a single column does exactly what we need. Thus, to find the projection

of onto , we need to turn into a row vector by taking its transpose,

340

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

©Manning Publications Co. To comment go to liveBook

written .

Example

The transpose of is .

NOTE
Later, we’ll see that we also need to take the complex conjugate of each element, but we’ll set
that aside for now.

In particular, the matrix product of (the transpose of) with gives us a 1×1
matrix containing the inner product we want. Suppose I need to go 2 blocks south and
3 blocks east, but I can only go on a road that points more south-southeast. Since I still
need to travel south, this road helps me get where I need to go. But how far should I
walk before this road stops helping?

SQUARE
ROOTS AND

LENGTHS

The square root of a number 𝑥𝑥 is a number 𝑦𝑦 = √𝑥𝑥 such that we get 𝑥𝑥 back when we square 𝑦𝑦,
𝑦𝑦² = 𝑥𝑥. We’ll use the square root a lot throughout the book, as square roots are essential to
finding the length of vectors. In computer graphics, for instance, quickly finding the lengths of
vectors is essential to making games work
(see https://en.wikipedia.org/wiki/Fast_inverse_square_root for some fun history about how
square roots are used in gaming).

Whether vectors describe how we get to parties, or as we’ll see later, those vectors describe the
information that a quantum bit represents, we’ll use square roots to reason about their lengths.

Listing 13.7. Computing vector dot products with NumPy

>>> import numpy as np
>>> v = np.array([[-2], [-3]]) ❶
>>> south_east = np.array([[1], [-1]]) ❷
>>> np.linalg.norm(south_east) ❸
1.4142135623730951 ❹
>>> w = np.array([[1], [-1]]) / np.sqrt(2) ❺
>>> np.linalg.norm(w) ❻
0.9999999999999999
>>> v.transpose() ❼
array([[-2, -3]])
>>> v.transpose() @ w ❽
array([[0.70710678]]) ❾

❶In this case, is the vector describing where I need to go, namely two blocks north and three blocks
east.

❷If the road available points southeast, then it goes one block south for every block east that it goes.
❸We can find the length of a vector using Pythagoreas' theorem by taking the sum of the absolute values

of each element, then taking the square root. In NumPy, this is done with the np.linalg.norm
function, as the length of a vector is sometimes also called its norm.

341

Licensed to Dan German <dgerman@indiana.edu>

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion
https://en.wikipedia.org/wiki/Fast_inverse_square_root

©Manning Publications Co. To comment go to liveBook

❹The length of [[1], [−1]] is thus .

❺Thus, when we define to be the direction southeast, we need to divide by √2.

❻Checking, we see that the length of is now approximately 1.

❼The transpose turns .

❽We can then multiply the transpose of with the same way as we multiplied matrices with
vectors earlier.

❾Doing so, we see that I need to walk 1 / √2 ≈ 0.707 blocks along this road before it stops helping me to
the party.

Exercise B.5
Given a vector [[2], [3]], find a vector that points in the same direction but with length 1.

HINT: You can either do this by using an inner product, or the np.linalg.norm function.

Finally we have made it to the party (only slightly late) and are ready to try out that
new doorbell!

342

https://livebook.manning.com/#!/book/learn-quantum-computing-with-python-and-q-sharp/discussion

	Learn Quantum Computing with Python and Q#: A Hands-on approach MEAP V08
	Copyright
	Welcome
	Brief contents
	Chapter 1. Introducing Quantum Computing
	1.1 WHO THIS BOOK IS FOR
	1.2 WHO THIS BOOK IS NOT FOR
	1.2.1 Textbooks and other resources for learning further

	1.3 HOW THIS BOOK IS ORGANIZED
	1.4 WHY DOES QUANTUM COMPUTING MATTER?
	1.4.1 Decisions that are strongly impacted by quantum computing.

	1.5 WHAT CAN QUANTUM COMPUTERS DO?
	1.5.1 Some useful quantum algorithms

	1.6 WHAT IS A QUANTUM COMPUTER?
	1.7 HOW WILL WE USE QUANTUM COMPUTERS?
	1.7.1 Exotic cloud computing resources

	1.8 WHAT CAN’T QUANTUM COMPUTERS DO?
	1.8.1 Factoring N classically.

	1.9 WHAT IS A PROGRAM?
	1.10 WHAT IS A QUANTUM PROGRAM?
	1.11 SUMMARY

	Chapter 2: Qubits: The building blocks
	2.1 WHY DO WE NEED RANDOM NUMBERS?
	2.1.1 Things some humans like to use randomness for
	2.1.2 Statements about probability
	2.1.3 Quantum random number generator algorithm

	2.2 WHAT ARE CLASSICAL BITS?
	2.2.1 What Can We Do With Classical Bits?
	2.2.2 Abstractions are our friend

	2.3 QUBITS: STATES AND OPERATIONS
	Example 2.3. Scenario
	2.3.1 State of the qubit
	2.3.2 The game of Operations
	2.3.3 A mouthful of math
	2.3.4 Measuring Qubits
	2.3.5 Generalizing measurement: basis independence
	2.3.6 Simulating qubits in code

	2.4 PROGRAMMING A WORKING QRNG
	2.4.1 QRNG
	2.4.2 Quantum device interface requirements.
	2.4.3 Qubit interface requirements.

	2.5 SUMMARY

	Chapter 3: Sharing secrets with Quantum key distribution
	3.1 ALL’S FAIR IN LOVE AND ENCRYPTION
	Example 3.1. Computational vs. Provable security

	3.2 QUANTUM NOT OPERATIONS
	3.2.1 Algorithm for sending a random classical bit string encoded in qubits.

	3.3 SHARING CLASSICAL BITS WITH QUBITS
	3.4 A TALE OF TWO BASES
	3.5 QUANTUM KEY DISTRIBUTION: BB84
	3.5.1 Steps of the BB84 protocol:

	3.6 USING OUR SECRET KEY TO SEND SECRET MESSAGES
	3.7 SUMMARY

	Chapter 4: Nonlocal games: working with multiple Qubits
	4.1 NONLOCAL GAMES
	4.2 WHAT ARE NONLOCAL GAMES?
	4.3 TESTING QUANTUM PHYSICS ITSELF: THE CHSH GAME
	4.3.1 Steps for one round of the CHSH game

	4.4 CLASSICAL STRATEGY
	4.5 WORKING WITH MULTIPLE QUBIT STATES
	4.6 REGISTERS
	4.6.1 Example three-qubit states

	4.7 WHY IS IT HARD TO SIMULATE QUANTUM COMPUTERS?
	4.8 TENSOR PRODUCTS FOR STATE PREPARATION
	4.9 TENSOR PRODUCTS FOR QUBIT OPERATIONS ON REGISTERS
	4.10 QUTIP OF THE ICEBERG
	4.11 QUANTUM OBJECTS IN QUTIP
	4.11.1 Selected metadata that the Qobj class tracks:

	4.12 UPGRADING THE SIMULATOR
	4.13 MEASURING UP: HOW CAN WE MEASURE MULTIPLE QUBITS?
	4.14 CHSH: QUANTUM STRATEGY
	4.15 SUMMARY

	Chapter 5: Teleportation and entanglement:
Moving quantum data around
	5.1 MOVING QUANTUM DATA
	5.2 SWAPPING OUT OUR SIMULATOR
	5.3 WHAT OTHER TWO-QUBIT GATES ARE THERE?
	5.4 ALL THE SINGLE (QUBIT) ROTATIONS
	5.5 RELATING ROTATIONS TO COORDINATES: THE PAULI OPERATIONS
	5.6 TELEPORTATION
	5.7 PART I: CONCLUSION

	Chapter 6: Changing the odds: An introduction to Q#
	6.1 INTRODUCING THE QUANTUM DEVELOPMENT KIT
	6.2 FUNCTIONS AND OPERATIONS IN Q#
	6.2.1 Morgana’s side game

	6.3 PASSING OPERATIONS AS ARGUMENTS
	6.4 PLAYING MORGANA’S GAME IN Q#
	Example 6.8. The Q# standard libraries

	6.5 SUMMARY

	Chapter 7: What is a Quantum Algorithm?
	7.1 CLASSICAL AND QUANTUM ALGORITHMS
	7.1.1 Quicksort algorithm

	7.2 DEUTSCH–JOZSA ALGORITHM: MODERATE IMPROVEMENTS FOR SEARCHING
	7.3 LADY OF THE (QUANTUM) LAKE
	7.3.1 Kingmaker game rules
	7.3.2 Nimue’s objectives
	7.3.3 Merlin’s strategies:

	7.4 ORACLES: REPRESENTING CLASSICAL FUNCTIONS IN QUANTUM ALGORITHMS
	7.4.1 Our strategy for representing classical functions as quantum oracles
	7.4.2 Deutsch–Jozsa Algorithm

	7.5 SIMULATING THE DEUTSCH–JOZSA ALGORITHM IN Q#
	7.6 EXPLORING THE DEUTSCH–JOZSA ALGORITHM BY EXAMPLE
	7.7 STEP 1. PREPARING THE INPUT STATE FOR DEUTSCH–JOZSA
	7.8 STEP 2. APPLYING THE ORACLE
	Example 1: id oracle
	Example 2: the not oracle
	Example 3: the zero oracle

	7.9 STEPS 3 AND 4. UNDO THE PREPARATION ON THE TARGET QUBIT AND MEASURE.
	7.10 REFLECTING BACK
	7.11 SHOES AND SOCKS: APPLYING AND UNDOING QUANTUM OPERATIONS
	7.12 USING HADAMARD INSTRUCTIONS TO FLIP CONTROL AND TARGET
	7.13 PHASE KICKBACK
	7.14 SUMMARY

	Chapter 8: Quantum Sensing: It’s Not Just A Phase
	8.1 PHASE ESTIMATION: LEVERAGING USEFUL PROPERTIES OF QUBITS FOR MEASUREMENT
	8.2 PART AND PARTIAL APPLICATION
	8.2.1 Steps for Dagonet and Lancelot’s game

	8.3 USER-DEFINED TYPES
	8.3.1 Reasons you might define UDTs in Q#:

	8.4 RUN, SNAKE, RUN: RUNNING Q# FROM PYTHON
	8.5 EIGENSTATES AND LOCAL PHASES
	8.6 CONTROLLED APPLICATION: TURNING GLOBAL PHASES INTO LOCAL PHASES
	8.7 CONTROLLING ANY OPERATION
	8.8 IMPLEMENTING LANCELOT’S BEST STRATEGY FOR THE PHASE ESTIMATION GAME
	8.8.1 Steps for Dagonet and Lancelot’s game

	8.9 SUMMARY

	Chapter 9: Solving Chemistry Problems With Quantum Computers
	9.1 REAL CHEMISTRY APPLICATIONS FOR QUANTUM COMPUTING
	9.1.1 Steps to simulate another quantum system, Marie’s H₂ molecule, with your quantum computer:

	9.2 MANY PATHS LEAD TO QUANTUM MECHANICS
	9.3 HAMILTONIANS DESCRIBE HOW QUANTUM SYSTEMS EVOLVE IN TIME.
	9.4 ROTATING AROUND ARBITRARY AXES WITH PAULI OPERATIONS
	9.5 MAKING THE CHANGE YOU WANT TO SEE IN THE SYSTEM
	9.6 GOING THROUGH (VERY SMALL) CHANGES
	9.7 PUTTING IT ALL TOGETHER
	9.7.1 Steps to find the ground state energy of H₂.

	9.8 SUMMARY

	Chapter 10: Searching With Quantum Computers
	10.1 SEARCHING UNSTRUCTURED DATA
	10.2 REFLECTING ABOUT STATES
	10.3 REFLECTION ABOUT THE ALL-ONES STATE
	10.4 REFLECTION ABOUT AN ARBITRARY STATE
	10.5 IMPLEMENTING GROVER’S SEARCH
	10.6 RESOURCE ESTIMATION
	10.7 SUMMARY

	Chapter 11: Arithmetic With Quantum Computers
	11.1 FACTORING IN QUANTUM COMPUTING TO SECURITY
	11.2 CONNECTING MODULAR MATH TO FACTORING
	11.3 EXAMPLE OF FACTORING WITH SHOR’S ALGORITHM
	11.3.1 Working through the steps of to factor 21.

	11.4 CLASSICAL ALGEBRA AND FACTORING
	11.5 QUANTUM ARITHMETIC
	11.6 ADDING WITH QUBITS
	11.7 MULTIPLYING WITH QUBITS IN SUPERPOSITION
	11.8 MODULAR MULTIPLICATION IN SHOR’S ALGORITHM
	11.9 PUTTING IT ALL TOGETHER
	11.10 WRAPPING UP
	11.11 Summary:

	Appendix A: Installing Required Software
	A.1 RUNNING SAMPLES ONLINE
	A.1.1 Using Binder
	A.1.2 Using Visual Studio Online

	A.2 INSTALLING A PYTHON ENVIRONMENT
	A.3 INSTALLING ANACONDA
	A.4 INSTALLING PYTHON PACKAGES WITH ANACONDA
	A.5 INSTALLING THE QUANTUM DEVELOPMENT KIT
	A.6 INSTALLING THE .NET CORE SDK
	A.7 INSTALLING THE PROJECT TEMPLATES
	A.8 INSTALLING THE VISUAL STUDIO CODE EXTENSION
	A.9 INSTALLING IQ# FOR JUPYTER NOTEBOOK

	Appendix B: Linear Algebra Refresher
	B.1 APPROACHING VECTORS
	B.1.1 Examples of vectors

	B.2 SEEING THE MATRIX FOR OURSELVES
	B.2.1 Examples of linear functions
	B2.2 Steps to compute f(np.array([[2], [3]]))

	B.3 PARTY WITH INNER PRODUCTS

