




Early Praise for Quantum Computing

You’ll remember shaking your head when someone tries to win a metaphysical
argument with recourse to quantum physics. I call it the “countdown to quantum.”
While you won’t win those arguments with this book, you’ll learn about what
quantum computing really consists of and that it’s not the infinite speed classical
computer of popular opinion. I know nothing of the technical challenges of
building quantum hardware, but there will be a corresponding challenge finding
programmers competent in these skills. This book excels at teaching the necessary
concepts.

➤ Nigel Lowry
Director, Lemmata

Truly scintillating. Professor Mehta’s Quantum Computing opened my eyes to a
beautiful new world of practical probabilistic programming.

➤ Ross Henderson
CEO, CAREM, a geospatial epidemiology company



Quantum computing has a reputation for being tricky and often tangled up in
complex maths; even its basic building blocks can run counter to our everyday
understanding of the world. This book takes a different approach to describing
quantum phenomena that’s much easier to initially grasp and then goes into how
we can use it to build programs, giving us an abstraction that is actually useful
back in the real world. Starting from the basics of quantum states and working
up to building real programs using quantum computers, this book covers it all.
It’s even got some maths if you miss that.

➤ Tim Nugent
Owner, Lonely.Coffee

No other book teaches the fundamentals so clearly. I can’t imagine beginning
quantum programming without this book.

➤ Nick Watts
Software Engineer, CAS, a division of the American Chemical Society
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Preface
Richard Feynman, a Nobel Laureate, first postulated1 a computer rooted in
the laws of quantum mechanics that govern the behavior of subatomic parti-
cles such as muons, gluons, quarks, and bosons. It’s a theory that strains
credulity at every turn—its bizarre concepts jar against everyday experience.
A long line of distinguished quantum physicists from Niels Bohr to Albert
Einstein and Richard Feynman have been exasperated by the very theory
they helped create. Yet, surprisingly, the theory has correctly predicted every
phenomenon that physicists have thrown at it. These same principles now
have their sights trained on digital computing. For the first time since Eniac,
the modern computer built at the University of Pennsylvania in 1946, the
underlying fabric of computing is threatened: bits, with their rigid 0 and 1
states, are replaced with fluid units that seemingly exist in both states
simultaneously, giving us unprecedented ways to tackle challenging compu-
tational tasks. Quantum mechanics is the most spectacular theory ever put
forth, and we are going to latch onto its coattails to learn about quantum
computing and how it’s challenging the notions of conventional computing.

I first got interested in quantum computing years ago when I was exploring
ways to squeeze better performance from the mathematical-based computer
models that I was tasked with building for some of the world’s largest organi-
zations. Time and again, though the computer models would return acceptable
solutions, I couldn’t get them to do even better. It’s like the models hit a wall.
Quantum mechanical concepts such as tunneling seemed to offer a way to
punch through the barrier. But quantum mechanics is strange, and it was
far from clear how to model computational tasks using subatomic particles.
I created “paper” models to help make sense of the counter-intuitive quantum
mechanics concepts. But, with no real quantum hardware to validate the
models, they remained untested ideas that I filed away.

1. https://link.springer.com/article/10.1007/BF02650179
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Over the years, there’s been much research2 on testing out small pieces of
quantum machinery, but there was no integrated computer on which one
could write any meaningful code. All this changed in 2017 when IBM released
a quantum computer which, incredibly, was freely available to one and
all—quantum computing was no longer the sole province of high-octane
research laboratories. Armed with an internet connection, anyone could get
their hands on some über-cool computer technology. I was finally able to test
and refine my “paper” models on an actual quantum computer.

But writing a book on quantum computing poses a singular challenge of weaving
a coherent tale from two distinct threads: its origins in quantum mechanics and
its relationship with computer science. As a result, the tools of one are used to
explain the other—which, for computer science, boils down to treating the inherent
random nature of quantum computing as a branch of probability theory. Neither
of these approaches is satisfactory. It takes a fair amount of effort, for example,
to build the intuition for probabilistic algorithms, and at the same time, quantum
mechanics is alien to many computer professionals.

I, however, believe that there’s a third aspect that’s overlooked: a conceptual
bridge that straddles both quantum mechanics and computer science. I introduce
a way to model quantum phenomena based on quantum mechanical principles
that intersects computer science precepts and gives a way to master the big
ideas of quantum computing. This will help you better appreciate why it’s gar-
nering attention and why computer scientists and corporations think it’s the
next big bet and are willing to spend big dollars. Mathematics underpins much
of quantum mechanics and is essential in any investigation of quantum com-
puting. But, with this model, I promise to not use mathematics as a refuge to
get to the bottom of thorny topics. I’ll factor the fundamental concepts of quan-
tum mechanics on the computer science base layer in a natural and intuitive
way that neatly brings in the quantum mechanical concepts without baffling
you. You’ll begin to see these models from Chapter 2, Goodbye Mr. Bits—From
Classical to Quantum Bits, on page 19 onward.

Is This Book for Me?
This book is for developers new to quantum programming as well as those
who may have read and heard about this technology and are looking for a
quick way to get started. This book will also be helpful to students who are
studying quantum computing at university. They’ll find that the topics covered
in this book complement their classroom lectures.

2. https://en.wikipedia.org/wiki/Timeline_of_quantum_computing
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I don’t expect you to have any background or previous exposure to quantum
mechanics or quantum programming. I’ll introduce you to the relevant con-
cepts and help you gain the necessary dexterity. But I do expect that you
know how to program using any one of the multitude of high-level languages
available today, such as C#, Java, JavaScript, Objective-C, Python, and so
on. Although you don’t need to know assembly language programming, you
should at least be familiar with the notion of Boolean gates and logical oper-
ations, and the fundamentals of complex numbers, basic trigonometry, and
vector and matrix operations, such as multiplying them and finding their
inverses. (See Appendix 1, Mathematical Review, on page 391, to brush up on
these subjects.) You’ll need to know these topics to apply advanced quantum
effects in your programs from Chapter 6, Designer Genes—Custom Quantum
States, on page 141, onward.

After reading this book, you’ll learn the following:

Introducing quantum effects in your programs
You’ll understand the value that quantum mechanics can bring to solving
computational tasks over that of classical machines. You’ll learn a new
mindset to manipulate bits using quantum principles.

Apply quantum computing to real world problems
You’ll design quantum algorithms to solve real world problems. One of the
major themes of this book is to develop your intuition so that you properly
apply quantum concepts for your own challenging computational tasks.

Discern which problems are suitable for quantum computers
Not all applications are suited for quantum computers. You’ll learn to
identify the problems that are best suited for quantum computers and
which ones are better solved using conventional computers.

Interface with a quantum computer from within your application
By invoking a quantum computer from within your own program, you
can execute the heavy-lifting portion of your code on a quantum computer
and transparently return results back to your application.

How Will This Book Give Me What I Want?
Quantum mechanics can be an imposing hurdle to get over before becoming
proficient in quantum computing. Yet a systematic exploration of the fundamen-
tal ideas can make this subject engaging. We take a hands-on-first approach
in this book by emphasizing writing programs on an actual quantum computer
so that you get a concrete handle on the quantum mechanical concepts.
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I’ve organized the material using familiar ideas from classical computers in
Goodbye Mr. Bits—From Classical to Quantum Bits through Beam Me Up,
Scotty—Quantum Tagging and Entangling. You’ll go to the heart of quantum
programming and get a taste for how quantum effects are reshaping comput-
ing. In subsequent chapters, you’ll learn to tailor quantum phenomena in
your own quantum programs.

• We begin in Chapter 1, Hello Quantum, on page 1, by demonstrating how
quantum computing is trespassing on the traditional turf of conventional
computing. Learning quantum programming without using a motivating
application is like trying to explore a new city by riding in the subway. The
subway, like programming syntax, can take you from one stop to another,
but you have to step out to experience the city’s sights and culture. Thus,
you’ll set up and run a quantum program on a standard scheduling problem
and see for yourself how a quantum computer solves it.

• The traditional way of analyzing computers with 0 and 1 bits seems to not
apply with quantum computing. In Chapter 2, Goodbye Mr. Bits—From
Classical to Quantum Bits, on page 19, you’ll be introduced to a way to
think about quantum computing using the standard tools of classical
computing. You’ll learn about quantum bits and compare and contrast
them with the binary bits of conventional computing. You’ll see that
quantum bits exist in a blended state of the two binary bits. You’ll also
learn the Qubelets Model, a new way to think about quantum programming
that computer professionals will find familiar. Much like Google’s Street
View that lets you explore a city from your desk, the model you’ll get to
work with rapidly gets to the heart of quantum computing using intuitive
concepts. These ideas animate the subsequent quantum mechanical
principles used for computation in the later chapters.

• In Chapter 3, Elementary, My Dear Watson—Quantum Logic, on page
41, you’ll work with quantum gates that are largely similar to their classi-
cal counterparts. These gates build the scaffolding for the parts where
the quantum mechanical effects take place in your program. By them-
selves, the quantum logic gates don’t offer any inherent advantages over
their classical counterparts. You can build quantum programs with these
gates, but your code won’t perform better than that designed to work on
classical computers.

• In Chapter 4, All Together Now—Quantum Superposition, on page 77,
and Chapter 5, Beam Me Up, Scotty—Quantum Tagging and Entangling,
on page 107, you’ll learn why quantum computing has the potential to
corner the market for solving hard computational problems. These

Preface • xii

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


quantum mechanical concepts constitute the core of quantum computing
applications. You’ll learn about quantum gates that allow you to nudge
quantum bits around in ways you can’t with classical computers.

Quantum computing isn’t fantasy but is solidly grounded in reality. To
this end, we’ll show that the Qubelets Model explains the quantum
mechanical nature of a well-known set of physics experiments and illus-
trate its connections with quantum programming. You’ll be introduced
to the Mega-Qubit on page 91—a framework that’ll help you understand
and work with quantum superposition, a quantum phenomenon that
manages all possible solutions at once.

• In Chapter 6, Designer Genes—Custom Quantum States, on page 141,
Chapter 7, Small Step for Man—Single Qubit Programs, on page 173, and
Chapter 8, Giant Leap for Mankind—Multi-Qubit Programs, on page 227,
you’ll learn to design quantum algorithms where you can precisely control
quantum bits to suit your purpose. Understanding these concepts is
crucial to writing quantum programs that work reliably.

There’s a handy list of gates, which groups the different ways to introduce
quantum effects when designing your quantum algorithms for your own
problems.

• In Chapter 9, Alice in Quantumland—Quantum Cryptography, on page 279,
and Chapter 10, Quantum Search, on page 295, you’ll learn how the core
quantum concepts of entanglement and superposition are used in real-world
applications. You’ll learn how quantum computing encrypts virtually break-
proof messages and also about algorithms that sweep through the potential
solutions of hard-to-solve computational tasks rapidly.

• While learning quantum computing, it’s easy to forget its origin in quantum
mechanics and the oddball principles that govern the natural world around
us. So if you’re interested to know more about how quantum computing
is strongly intertwined with quantum mechanics, see Appendix 3, Quan-
tum Mechanics with Qubelets, on page 415, to get a peek at the deep
relationship between them.

Most chapters have programming exercises and problems that reinforce
concepts you’ve learned in the chapter and help you become familiar with
this new technology. All exercises and problems have solutions. So you’ll find
them instructive even if you glance through them.
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If You Want Just the Basics
If you’d like to learn just the basic ideas of quantum computing, largely
avoiding complex numbers and trigonometry, read the following:

• Chapter 1, Hello Quantum, on page 1, through Chapter 5, Beam Me Up,
Scotty—Quantum Tagging and Entangling, on page 107.

• Quantum States and Probabilities, on page 142, in Chapter 6, Designer
Genes—Custom Quantum States, on page 141.

• Quantum States as Vectors, on page 174, Quantum Gates as Matrices, on
page 175, and Sequence of Gates as Matrix Multiplication, on page 219, in
Chapter 7, Small Step for Man—Single Qubit Programs, on page 173.

• Chapter 8, Giant Leap for Mankind—Multi-Qubit Programs, on page 227,
onward.

If You’re Impatient
If you’re in a hurry to learn about quantum effects, you can jump ahead to
Chapter 4, All Together Now—Quantum Superposition, on page 77, and see
how quantum computers handle all possible states of a computational problem.

If You’re Really, Really Impatient
If quantum computing is gnawing at you and you’re already somewhat familiar
with quantum mechanics, dive straight to Chapter 6, Designer Genes—Custom
Quantum States, on page 141. When using quantum computers to solve hard
problems modeled with multiple qubits, you’ll see that the concepts introduced
in Qubelets Model, on page 20, are an alternative to using the standard Bloch
sphere. You’ll learn that qubelets let you visualize how qubits interact with each
other and figure out where to introduce quantum effects. You’ll learn how to pre-
cisely create tailor-made quantum states in your programs and then carefully
fine-tune them to solve your computational problem.

What’s Unique in This Book?
If you’re new to quantum computing, you’ll find that the material in this book
is quite different from what you’ll see in others. In fact, it’s only in Chapter
6, Designer Genes—Custom Quantum States, on page 141, that you’ll begin
to see parallels with the literature.
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If you’re already familiar with quantum computing, you’ll find a new, and
hopefully more intuitive, take on standard concepts. In my mind, the following
sections, in particular, stand out most:

Modeling Quantum Bits with the Qubelets Model, on page 20:  Describes a way
to think about quantum states as components similar to, say, analyzing
a block on an inclined plane in classical physics. Specifically, we introduce
the qubelets to model quantum states.

Multi-Qubit Superposition: The Mega-Qubit, on page 91:  Getting a handle on
quantum superposition using the conceptual device of the mega-qubit.

Intuition Behind Entanglement, on page 120:  Making sense of quantum entan-
glement with qubelets and the mega-qubit.

Rotating Qubelets Through Any Angle, on page 150:  Relating the standard
Bloch sphere prevalent in quantum computing with the qubelets intro-
duced in this book.

Classifying Quantum Gates, on page 202:  New way to categorize quantum
gates, based on how they directly affect qubits rather than on abstract
rotations around the Bloch sphere.

Teleporting Mega-Qubit, on page 263:  Seeing the teleporting states as a concrete
concept rather than as esoteric calculations.

Tell-Your-Boss Version: The “Key” Idea, on page 281:  Thinking of quantum
cryptography as a way to send many messages on the same channel at
the same time to confuse anyone illegally listening in.

Canceling Circuit, on page 304:  Explains how to control the odds of a quantum
program returning the correct result.

Online Resources
All source code for the examples in this book can be downloaded from the
book’s page on the Pragmatic Bookshelf’s website at https://pragprog.com/book/
nmquantum/quantum-computing. You’ll also find an errata page at https://pragprog.com/
book/nmquantum/errata.

Acknowledgments
I’m grateful that the Pragmatic Bookshelf agreed to publish this book. The
current technical-books landscape is teeming with so many books that it’s
hard to discern any publisher’s unique imprint. But, from their very earliest
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CHAPTER 1

If you think you understand quantum mechanics, you don’t understand
quantum mechanics.

  ➤  Richard P. Feynman, jointly awarded the Nobel Prize in Physics
1965 for “fundamental work in quantum electrodynamics, with deep-
ploughing consequences for the physics of elementary particles”

Hello Quantum
Quantum computers inhabit the microscopic world of neutrinos and mesons
and muons and electrons buzzing about protons and neutrons—a smorsgasbord
of subatomic particles bringing with them a cornucopia of strange concepts.
Literally from the tiniest aspects of computing to the way we design algorithms,
quantum computing introduces a new paradigm for programming computers
for mainstream applications that demand heavy number crunching, such as:

• Optimizing scanning of magnetic resonance images (MRI) in radiology.1

• Understanding complex molecular structures for building life-saving drugs.2

• Hyper-large-scale logistics and transportation-routing problems.3

• Auto companies4 are betting that quantum computers will help build
better batteries, route autonomous vehicles (self-driving cars), and optimize
assembly lines.

The promise that quantum computing is blazing a new way to solve super-
hard problems is palpable. In 2017 and 2018, at least $450 million5 was
poured into quantum technology companies, more than four times the amount
of the previous two years. Google announced 6 the results of a quantum pro-
gram that blasted through calculations to produce certifiable random numbers
in three minutes, twenty seconds, a task which they estimate would have
taken 100,000 classical computers running the fastest known algorithms

1. https://blogs.microsoft.com/blog/2018/05/18/microsoft-quantum-helps-case-western-reserve-university-advance-
mri-research/

2. https://www.ibm.com/blogs/research/2017/09/quantum-molecule/
3. https://blog.daimler.com/en/2018/11/07/quantum-computers-future-daimler-google-ibm-technology/
4. https://www.axios.com/quantum-computing-cars-vw-mercedes-ford-3223a464-c65a-4163-b92b-

6b7761116384.html
5. https://www.nature.com/articles/d41586-019-02935-4
6. https://www.nature.com/articles/s41586-019-1666-5
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roughly 10,000 years to complete. Google expects that this capability can be
used in optimization applications, machine learning, and designing new
materials, among others, and is currently planning on demonstrating crypto-
graphic protocols.7 But the true significance of this milestone is proving that
quantum effects can be controlled and programmatically introduced at suffi-
cient scales to perform computations even though it may not have any
immediate utility. (You’ll understand how Google made these computations
in How Did Google Show Superiority of Quantum Computers over Classical
Computers?,  on page 352.)

Governments around the world, too, are catching on to the power of quantum
computers:

• In December 2018, the United States Congress unanimously passed the
National Quantum Initiative Act,8 which has been signed into law. This
law is a ten-year commitment by the United States to “accelerate the
development of quantum information science and technology applications”
through partnerships with universities, startups, and corporations. Fur-
ther, the United States (and China) considers quantum computing a
national security priority.

• China is investing $400 million to build the world’s largest quantum
research center, the National Laboratory for Quantum Information Science,
which they claim will have the calculating power of “one million times all
existing computers around the world combined.”9

• India10 is pouring $1.12 billion over five years into quantum technologies.

• The European Union, Australia, Japan, Switzerland, and several others11

are investing in quantum computing.

• Russia12 will plow $790 million over the next five years into “basic and
applied quantum research.”

As this technology, which The New York Times calls the “jazziest and most myste-
rious concepts in modern science,”13 ramps up, it’s a good time to clock in.

7. https://www.nytimes.com/2019/10/30/opinion/google-quantum-computer-sycamore.html
8. https://www.congress.gov/bill/115th-congress/house-bill/6227
9. https://www.scmp.com/news/china/society/article/2110563/china-building-worlds-biggest-quantum-research-

facility
10. https://www.nature.com/articles/d41586-020-00288-x
11. https://www.economist.com/technology-quarterly/2019/02/18/quantum-technology-is-beginning-to-come-into-

its-own
12. https://www.nature.com/articles/d41586-019-03855-z
13. https://www.nytimes.com/2019/10/21/science/quantum-computer-physics-qubits.html
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But quantum computing can be hard to learn. Even a program with a few
lines can stymie experienced programmers. For example, look at these lines:

u3(pi/3,pi/2,-pi/2) q[0];
u3(pi/3,pi/4,-pi/2) q[0];

These statements look familiar, if somewhat puzzling. Although these lines
look vague, they trigger quantum effects in the program. So the challenge
with quantum programming stems not from mastering a new syntax but from
grasping a whole different set of concepts than those in classical computing.

So it’s fair to ask, Why are quantum phenomena important? How do they
help solve hard computational problems? And, is it worth spending time and
effort to learn this technology today?

In this book, I intend to show you how and why quantum mechanics offers
a promising alternative to classical computing for hard problems and that
it’s not as hard to work with as you may think. To convince you that the
technology is already upon us, you’ll be learning quantum computing by
running your programs on a real quantum computer.

But, to master quantum computing, you’ll need to come up to speed with
new ways of thinking of about traditional computational tasks. So, in this
chapter, we’ll review a scheduling problem that’s typical of the kinds where
quantum computing can make a big difference. We’ll work with a variant
whose solution is easy to verify yet allows you to see real quantum phenomena
in action. You’ll also get a chance to try your hand at an actual quantum
program.

In the rest of the chapters, I’ll introduce you to quantum phenomena useful
to computing and how to trigger them in your programs. Each chapter builds
on ideas described in the earlier ones. Learning different quantum effects can
feel like isolated piecemeal techniques that leave you wondering about their
utility. So as you learn new quantum concepts, we’ll use the scheduling
problem to bring these topics together in a meaningful way.

Types of Quantum Computers
A quantum computer isn’t something you download off the internet or buy
at a store. Quantum computers are big hulking beasts that require careful
and delicate installation. They have to be cooled to temperatures close to
absolute zero—that’s just a few bone-chilling degrees above -273°C, if you
want to be precise. Your refrigerator, by comparison, is a sauna where your
quantum computer may go after a hard day at work.
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Quantum Computers Are Huge and Fragile

It’s not our intention to give you a rundown of the blueprints of
how quantum computers are built. It’s instructive, however, to
get a sense of what it takes to build them.

Quantum computer hardware isn’t built from sturdy silicon
material that can be handled by human hands or robotic arms.
Rather, it’s built14 from atoms, which are a million times thinner
than human hair. In the case of the CNOT gate, a device used in
quantum computers, which we talk about in Controlled NOT
(CNOT) Gate, on page 47, a single Beryllium atom is first stripped
of an electron to form a positive ion. This ion is then laser cooled
to extremely low temperatures (much cooler than what you’d
experience in Antarctica) so as to arrest its naturally swaying
movement. Then, a finely tuned pulse of light plays with the
remaining electrons in the Beryllium ion to cause the Controlled
NOT operations. This apparatus requires precision engineering
and is housed in carefully monitored facilities. It’s not something
that can be rigged up, say, in portable devices.

All this just so that less than a handful of atoms can be used for
some of the toughest computational tasks.

Currently, there are two main types of quantum computers:

Quantum Circuit Computers
These computers are built from a network of quantum gates that take an
initial guess of a solution to a computational task and transform it using
quantum principles to one that solves the problem.

Adiabatic Quantum Computers
In these computers, the computational task is represented as the energy
of a configuration of subatomic particles. The energy is then annealed,
or gradually lowered, to arrive at the solution.

Neither one has computational advantage over the other. Recent research15

shows that quantum algorithms designed for one type of hardware can be
transformed to execute on the other in comparable time.

14. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.75.4714
15. https://physicsworld.com/a/quantum-adiabatic-and-quantum-circuit-algorithms-are-equivalent-say-physicists/
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Lately, IBM has made it a cinch for the general public to get access to a
quantum circuit computer with minimal set up. So, in this book, we will
learn to write quantum programs for these quantum computers. As it turns
out, I believe that for someone just starting out, the quantum circuit com-
puter is easier to grasp. You will see that many concepts are a distant cousin
of conventional computers and, thus, easier to digest.

Quantum Computing in Thirty Seconds
Quantum computing can seem mysterious and foreboding. But, at its core,
quantum computing is driven by a few fundamental tenets. Having this bird’s-
eye view may give you a better sense of what’s going on:

• In quantum computing the application’s variables or information units
are represented as subatomic particles, just as the 0 and 1 states of con-
ventional computing. Think of these states as the two faces of a coin.

• Quantum mechanics theorizes that subatomic particles spin like tossed
coins.

• Just as coins land on either the head or the tail face, the spinning sub-
atomic particles when brought to rest also settle into one of the two, 0 or
1, states.

• Crucially, quantum computing differs from classical computing in the
following aspects:

– All the action happens when the coins are in the air. That is, while in
the air, you influence how they spin so that they land on the faces
associated with the optimal solution.

In classical computing using probabilistic techniques, on the other
hand, all the action happens after the coin lands.

– You have the means to invoke quantum mechanical phenomena to
coordinate all the tosses simultaneously. By intertwining the actions,
you can influence the way they spin as a group that can’t be repro-
duced had you operated on them individually.

For example, with three coins, a quantum computer would simultane-
ously consider all eight cases shown in the figure on page 6.
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In classical computing, even with parallel computers, only one bit at
a time is worked on. Moreover, what you do on one bit doesn’t
simultaneously affect the state of another.

• It’s this ability to intricately orchestrate all the coins in mid-flight that
drives the “being in all states at once” portrayal of quantum computing
and gives rise to new ways to solve complex problems.

We’ll sketch this out in more detail starting from Modeling Quantum Bits
with the Qubelets Model, on page 20.

Your First Quantum Program
The way to program quantum computers differs from what you would do for
traditional computers. Although the quantum programming syntax borrows
from today’s computer languages, such as JavaScript, C#, or Python, the
underlying concepts are widely divergent. Objects such as JavaScript Promises
help us write organized and efficient code. But, under the hood, the machine
language instructions are pretty much the same as those, say, for FORTRAN
or BASIC. Quantum programming is different. The underlying hardware has
fundamentally changed. So, to write code that works on these machines, we
need to rethink the way we write computer programs.

Rather than introduce quantum computing on a “Hello World” program or
some other contrived example, we’ll jump right in and run a practical compu-
tational task on a quantum computer. This exercise will immediately show
you that this technology is real.

A Scheduling Problem
We’ll use a quantum computer to come up with a schedule for Las Vegas
shows. This scheduling task is a simpler version of a problem discussed in
Knuth’s The Art of Computer Programming [Knu11], Section 7.1.1. In our ver-
sion, we deal with contemporary performers but have retained the timeless
Las Vegas hotels.

Chapter 1. Hello Quantum • 6
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Joe asks:

What Makes a Problem Hard?
Since the quantum equivalents of the binary bits and gates work differently in the
quantum world, not every application is suitable for quantum computers. For example,
quantum computers aren’t used to verify whether an email address is correctly filled
out in an HTML form or for transactional applications, such as putting information
into a database or streaming video to a browser. Rather, quantum computers are
ideally suited where a computer has to crunch through a large number of possible
solutions of computational tasks.

Such a problem will allow you to see quantum effects in play and will drive home the
point that quantum phenomena can fruitfully be put to use in common computational
applications and not merely reserved for esoteric and highly idealized cases. The
scheduling problem has several candidate solutions, as well as features that allow
you to exercise many quantum principles, yet is simple enough to understand the
solution space without getting overwhelmed with details.

Our job is to schedule three talk show hosts for a comedy festival over two
days at three hotels. We have to slot the shows based on the hotels that each
artist can perform at:

• Jimmy Kimmel performs only at Aladdin and Bellagio.
• Bill Maher performs only at Bellagio and Caesars.
• Trevor Noah performs only at Caesars and Aladdin.

For these kinds of problems, whether you write a program for a conventional
computer or a quantum one, you must first express them with logical con-
straints. Only then can you write a program to hunt for a valid solution.

For a vast range of applications, including these types of scheduling problems,
this form boils down to searching for a feasible solution to a system of Boolean
logic expressions. This way of modeling applications is referred to as the
Boolean Satisfiability (SAT)16 problem in computer science. Following Knuth,
we go through this analysis in the next section.

Modeling Boolean Logic Expressions

Setting up the Boolean logic expressions for computational prob-
lems is more art than science. For many problems, there are sev-
eral acceptable ways to model them. Knuth’s book is a great
resource to get an overall flavor on this way of modeling.

16. https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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Writing a System of Boolean Logic Expressions
To write a quantum program for this scheduling problem, we model it using
a system of Boolean logic expressions. Start by defining three Boolean variables
k,m,n as follows:

• k means that Jimmy Kimmel does Bellagio on Day 1 and Aladdin on Day
2; k-bar or k‾ means that Kimmel does them in opposite order: Aladdin on
Day 1 and Bellagio on Day 2.

• m means that Bill Maher does Bellagio on Day 1 and Caesars on Day 2;
m-bar or m‾ means that Maher does them in opposite order: Caesars on
Day 1 and Bellagio on Day 2.

• n means that Trevor Noah does Aladdin on Day 1 and Caesars on Day 2;
n-bar or n‾ means that Noah does them in opposite order: Caesars on Day
1 and Aladdin on Day 2.

Next, we set up Boolean logic expressions that ensure that no two artists are
slated at the same hotel on the same day—the conflict constraints. For
example, on Day 1 at Aladdin, Kimmel and Noah cannot perform at the same
time. This restriction results in the following logic expression:

• Aladdin on Day 1: ⌐ (k‾ ∧ n) = k ∨ n‾
The symbol ∧ stands for the Logical AND, ∨ for Logical OR, and ⌐ is Logical
NOT.

Thus, the left-hand side of the first relation, for example, states that Kimmel
performing at Aladdin on Day 1 (k‾), and Noah at Aladdin on Day 1 (n),
expressed as (k‾ ∧ n), cannot be true at the same time: ⌐ (k‾ ∧ n). That is, both
can’t perform at Aladdin on the same day. The right-hand side is its simplifi-
cation via De Morgan’s rule (see Boolean Logic Expressions, on page 393).

Similarly, we can define the logic expressions for the other slots:

• Aladdin on Day 2: ⌐ (k ∧ n‾) = k‾ ∨ n

• Bellagio on Day 1: ⌐ (k ∧ m) = k‾ ∨ m‾
• Bellagio on Day 2: ⌐ (k‾ ∧ m‾) = k ∨ m

• Caesars on Day 1: ⌐ (m‾ ∧ n‾) = m ∨ n

• Caesars on Day 2: ⌐ (m ∧ n) = m‾ ∨ n‾

Chapter 1. Hello Quantum • 8
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For a valid schedule, all these logic expressions must be true. That is,

(k ∨ n‾) ∧ (k‾ ∨ n) ∧ (k‾ ∨ m‾) ∧ (k ∨ m) ∧ (m ∨ n) ∧ (m‾ ∨ n‾) = 1

In general, unless there are specialized techniques for a specific class of
Boolean logic expressions, the only way to find a valid set of Boolean variables
is go through each combination one at a time.

Single Letter Variables

Although you’ll prefer using more suggestive variable names in
your programs, I’ll use single-letter variables so that they’re easier
to relate back to the Boolean logic expressions.

In subsequent chapters, you’ll learn how quantum mechanical principles
come together to get a feasible schedule for the performers at the Vegas hotels
by only scanning a fraction of the combinations.

In the next section, you’ll get a rapid-fire overview of how this search is done
on a quantum computer. We’ll explain in detail in subsequent chapters.

Running on a Quantum Computer
I selected the IBM Q Experience,17 a cloud service to run quantum computers,
for all the code examples in this book because it requires minimal setup,
making it ideal to learn this new technology—there are no installation or
connectivity battles to overcome before you can use a quantum computer.
All you need is a web browser and an internet connection. You can also use
the material in this book with Microsoft’s or Amazon’s quantum computer—it’s
much the same as what you’ll see here. We’re just using the IBM computer
because we have to pick one.

To write and run your programs on the IBM Q Experience, which we’ll also
refer to as the IBM Quantum Computer, you’ll need to first set up an account.
You can sign up in one of two ways:

• Get a free IBMid account from https://quantum-computing.ibm.com/login.
• Use your Google, Twitter, LinkedIn, or GitHub account.

Later, in Chapter 11, Where to Go from Here, on page 339, you’ll see how to
invoke the IBM Quantum Computer from within your own applications using
an API Token.

17. https://www.research.ibm.com/ibm-q/technology/experience
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The examples for the IBM Q Experience are written in the Open Quantum
Assembly Language.18,19,20 These programs use a .qasm file extension. We’ll
learn this language along the way.

You’ll Write Most Programs Using Drag-and-Drop

Although .qasm looks like assembly language, you’ll learn quantum
computing concepts by dragging and dropping quantum devices
on a graphical interface. This visual form of your program trans-
lates into .qasm code. You can also upload the source code in this
book, which then produces the visual representation.

Once you understand how to design algorithms with quantum
effects, programming them in a conventional language becomes
routine. In Programming with Qiskit, on page 353, you’ll learn to
program quantum concepts using conventional languages such
as Python. With these languages, though, you don’t get the
immediate interactivity that drag-and-drop brings when learning
about quantum phenomena.

In addition to IBM’s Qiskit, you can use the principles and tech-
niques in this book to program quantum computers in languages
from other vendors, such as Amazon’s Braket, on page 381, Google’s
Cirq, on page 381, and Microsoft’s Q#, on page 384.

Although we’ll work with the IBM Quantum Computer, our examples are
universal and easily modified to run on other quantum circuit computers.

Now that we’ve settled on a quantum computer and signed into our account,
let’s take a walk-through of the interface before we run the quantum program
to find a feasible schedule for the talk show hosts.

On quantum circuit computers, a quantum program is also called a circuit,
which is a visual representation of the sequence of quantum instructions.
Thus, to start writing a quantum program, log in to the IBM Quantum Com-
puter and click the Circuit Composer icon on the left margin, as shown in
the figure on page 11.

18. https://arxiv.org/abs/1707.03429
19. https://github.com/Qiskit/openqasm
20. https://github.com/Qiskit/openqasm/blob/master/spec/qasm2.rst
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This takes you to a page that lists your quantum programs. To create a new
program, click the New Circuit button, shown in the following figure:
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This action will open up the following interface:

This interface is called the Composer. Its key elements are as follows:

1. In a quantum circuit computer, the quantum instructions are called gates.
To write a program, you drag and drop these gates on the main area
labeled Your Program Is Built Here.

2. The variables of your computational problem are stored in arrays that
are the subatomic particles in the computer. The “quantum” stuff
happens here.

3. To see the code corresponding to the visual drag-and-dropping of the
gates, click this tab to open the Circuit editor.

4. To Save and Run, click the respective buttons in this area.

Over the subsequent chapters, you’ll learn to write quantum programs from
scratch. For now, though, you’ll run a complete program and see for yourself
how it solves the Hotel Scheduling Problem. You can get the program from the
book’s official page.21

Simple Scheduling Problem

The quantum program you’ll run is actually a simpler version of
the Hotel Scheduling Problem formulated in Writing a System of
Boolean Logic Expressions, on page 8, as its solution is easier to
verify.

21. https://pragprog.com/book/nmquantum/quantum-computing
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Simple Scheduling Problem

In the simpler version, we’ll work with just one hotel, Bellagio, and
the two hosts, Kimmel and Maher. The solution to this problem
is then that each of them performs on a different day—we can’t
have both perform on the same day or have a day when neither
performs.

The first few lines of the program are listed here:

Bellagio_Hotel_Scheduling_Problem_Final.qasm
OPENQASM 2.0;
include "qelib1.inc";

// Initialize Quantum and Classical Registers
qreg q[7];
creg c[2];

// Generate All Combinations
h q[0];
h q[1];
h q[2];
h q[3];

//// ITERATION 1
// Constraints (to tag optimal solution)
x q[4];
x q[5];
cx q[0],q[1];
cx q[2],q[3];
x q[0];
x q[1];
x q[3];
x q[1];
x q[3];
ccx q[1],q[3],q[4];
x q[1];
x q[2];
x q[3];
ccx q[0],q[2],q[5];
x q[0];
x q[2];
ccx q[4],q[5],q[6];
x q[0];
x q[2];
z q[6];
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The first line specifies the version of the Open Quantum Assembly Language
(OpenQASM) for our programs. On the second line, we pull in an include file
containing the specifications for commonly used functions in a quantum
program. These two lines form the header in every program we write for
IBM’s Quantum Computer. We will cover the remaining lines in subsequent
chapters.

Quantum Programming Language Versus Conventional Languages

Although the statements in a quantum program resemble those
of digital computers, they are instructions to invoke quantum
phenomena to solve computationally intensive problems. They’re
not a direct replacement for those used in conventional computer
languages. They’re based on a fundamentally new template with
its own set of concepts and schemes, which you’ll learn about in
subsequent chapters.

To import this program, click the Circuit Composer tab on the bar on the left
edge of the browser to go to the page that lists your programs. On the top of
this list, click the Import QASM File button and select the program you just
created from your desktop:

Once the program has been loaded, you’ll see it in the list. Click it to open
the program in the Composer. You’ll see the following visual representation
of the code you just imported:

To see the code listing, click the Circuit Editor tab on the left edge of the
Composer.
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We’ll explain how the code works in subsequent chapters. For now, though,
Save the code and click the Run button on the top right.

On the next screen, you have a choice of quantum computers, the backend,
available along with a simulator in the drop down on the left:

If you choose to run the program on a real quantum computer, your program
will be placed in queue. Depending on the workload of the specific quantum
computer selected, my programs have taken anywhere from fifteen minutes
up to a day to get back the results. Of course, the actual runtime of your code
on the computer is very quick. Using the simulator, on the other hand, will
give you results almost immediately.

Use the default in the second drop-down, Number of Shots. We will explain
later when to change this value.
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Quantum Computer Simulators

Quantum computers rely on marshalling the quantum mechanical
nature of subatomic particles to get them to perform computations
for super-hard applications. These quantum features include
superposition and entanglement, concepts we’ll study later, and
need special-purpose hardware from the ground up. These phe-
nomena can’t be reproduced on classical machines. Consequently,
although simulators mimic these characteristics on digital com-
puters, they can’t tap into their inherent potential power. Hence,
simulators are good for only small applications.

Examining the Output
The link to the Results of your program, whether it’s still waiting to be executed
or is complete, appear below the Composer. Scroll the page to get to it and
click the link when it’s available to view the results. (Every time you execute
a program, a new Results link is created.)

On the Results page, scroll down to the Result section, where you’ll see a
graphical output similar to the following figure:

We’ll go over interpreting the output of the program in the next chapter. For
now, I just want to point out a few salient points about how the program
reports the results of an execution.

Quantum computers work with the quantum equivalents of binary bits. So,
while they go about computing a solution differently from classical machines,
we’ll still deal with the 0 and 1 binary concepts in our programs.

In the Hotel Scheduling program, we defined the quantum equivalents of the
classical bits representing the various options for the talk show hosts to
perform. Thus, the program returns values for these options as strings of 0s
and 1s, which you’ll see at the bottom of each bar.
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For reasons that’ll become clear in subsequent chapters, the taller middle
two bars correspond to feasible schedules. The binary strings at the base of
these bars are 01 and 10. These are the ones that correctly solve the Boolean
logic expressions for the simpler version. The others are discarded. I realize
you may not understand the how and why of selecting this particular string
of 0s and 1s gives the optimal solution nor how it relates to the problem vari-
ables. But it’ll soon start making sense. Although we’ll go over this example
in detail in Searching for an Optimal Schedule, on page 324, the point I want
to make now is that quantum programs return valid results for real world
problems—they’re not just laboratory experiments.

This string of 0s and 1s corresponds to the following solutions:

k = 0 ↦ Jimmy Kimmel performs at Alladin on Day 1 and at Bellagio on Day 2
m = 1 ↦ Bill Maher performs at Bellagio on Day 1 and at Caesars on Day 2

and

k = 1 ↦ Jimmy Kimmel performs at Bellagio on Day 1 and at Aladdin on Day 2
m = 0 ↦ Bill Maher performs at Caesars on Day 1 and at Bellagio on Day 2

In other words, limiting our attention to just the assignments for Bellagio,
the solutions represent two valid schedules:

Solution 2Solution 1

KimmelMaherDay 1

MaherKimmelDay 2

This, then, is a typical way quantum programs are used in practice in the
industry: create a system of binary logic expressions, model the task as a
Boolean Satisfiability problem, and then set up those expressions in a pro-
gram. The more variables you use, the more complex the expressions—in this
case, as the number of talk show hosts, days, and hotels increase, the number
of possible solutions increases exponentially. In other words, the problem
grows astronomical quickly. Traditional methods quickly reach their limit
with such problems, which means that developers settle for imperfect solu-
tions, which leaves money on the table. As you’ll soon understand, a quantum
computer solves such problems in a heartbeat.

Even though this problem can be solved using a custom-built technique, as
explained in Knuth [Knu11], a quantum program is still more efficient in the
sense that it’s both easier to set up and it returns a solution quickly.
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Quantum Computers Are Still in Their Infancy

The number of bits that a quantum computer can handle, their
stability, and the speed of computations are improving continually.
So, although quantum computers haven’t quite achieved the
quantum advantage, the point at which quantum computers are
faster than classical ones, the gap between them is closing—dare
I say—daily.

Bottom Line
Quantum computing is real—it’s no longer just theory and wishful thinking,
nor do you need pots of money to use one. It has literally come to a theater
near you.

Unlike other kinds of computer technology, quantum computing works on a
totally different set of principles and needs specialized hardware. As a result,
classical code won’t work on them. You have to rewrite your programs from
the ground up.

Although I glossed over several aspects of running the Hotel Scheduling
Problem on a quantum computer, I wanted to drive home the point that
quantum programs are:

• Not isolated statements that do nothing useful other than demonstrate
esoteric concepts; they can do useful computations for standard appli-
cations.

• Like conventional programs in the sense that you use standard interfaces
to program and get your code to execute on them—you’re not working in
lab coats in sterile environments on particle accelerators.

• Programmable using standard statements. While these types of computers
are based on quantum mechanics, the programming statements are mun-
dane—no arcane constructs—and use familiar programming instructions.

In the next chapter, we’ll learn about quantum mechanics principles in a way
that emphasizes its connection with computer science and makes the quantum
aspects more concrete.
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CHAPTER 2

If quantum mechanics hasn’t profoundly shocked you, you haven’t
understood it yet.

  ➤  Niels Bohr, awarded the Nobel Prize in Physics 1922 for
“his services in the investigation of the structure of atoms
and of the radiation emanating from them”

Goodbye Mr. Bits—From Classical
to Quantum Bits

The program that solved the Hotel Scheduling Problem in the previous
chapter, as well as the output, were in a form similar to what we would see
in classical computing. Yet the machinery on which the program ran lies
squarely in the crosshairs of quantum mechanics. The binary bits of classical
computers are replaced by bits whose behavior is governed by particle physics,
which opens ways of computing that have the potential to dramatically boost
performance over that of classical computers. In this chapter, we peek behind
the curtain and get a glimpse of qubits, the quantum replacement of classical
binary bits.

Learning quantum programming isn’t like a JavaScript ninja wanting to pick
up Objective-C, where the syntax and grammar may differ but the basic ideas
remain the same. Quantum programming is different, from the unique ways
in which quantum computers represent information to how they’re cranked
to get a result. To understand quantum programming, we’ll start with the
familiar so that we’ll be better able to see the jump-off point.

Comparing Classical to Quantum Computing
When you write a computer program to implement an algorithm on a conven-
tional computer, you’d use a high-level language such as C#, Java, Python,
or a myriad others in vogue today. Your program would include statements
such as:

• Branching statements (if-then blocks).
• for-loops to execute a chunk of code multiple times.
• Variable assignments.
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The computer’s compiler then encodes your program’s statements as low-
level instructions that get executed on your computer’s operating system.
These low-level instructions replace what you wrote with operations on
binary (1 and 0) bits that are held in registers or storage locations accessible
by a computer’s central processing unit (CPU):

• Moving bits in and out of registers.
• Incrementing or decrementing the value in registers.
• Comparing the value in a register with that of another register.
• Jumping to different parts of the code based on the state of registers.
• Performing Boolean operations on bits using Boolean logic gates.

Thus, computer programs are just a sequence of bit-level operations.

Classical computers are built from Boolean logic gates and bits driven by the
technology of electronic transistors housed in integrated circuits or chips.
Quantum computers work with logic gates but are based on quantum
mechanical principles. The difference in the underlying physics between
quantum and classic computers offers new ways to write computer programs;
the tools of classical bits and gates are supplemented by quantum gates,
which resemble the standard gates but manipulate quantum bits or qubits
instead of standard binary bits. Unlike standard bits, which at any time are
always in one of the two binary states, quantum bits appear as if hovering
between these two states, such as a tossed coin before it lands. When it’s
spinning in the air, it still has two distinct states even though it appears to
be both heads and tails at the same time. Standard programming statements
can’t capture this ability of qubits to be in a suspension of states and yet
perform computational tasks.

Quantum computing forces us to rethink how we design algorithms and write
programs for quantum computers. To master the jargon of quantum program-
ming, we’ll first review quantum bits, the quantum replacements of classical
bits. This will introduce us to the terminology used in quantum programming,
the so-called quantum speak.

Modeling Quantum Bits with the Qubelets Model
Quantum bits or qubits are the workhorses of quantum programming. They’re
governed by quantum mechanical principles that make it seem as if they’re
oscillating between the two binary states. As a result, we can make the qubits
interact with each other in ways that let us, for example, formulate decision-
making logic circuits that boost their runtime performance or encrypt data
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in virtually unbreakable ways. Thus, to become proficient at writing quantum
programs, we need to first understand how to control these qubits.

Classical bits are binary; you’ll only find them in one of two well-defined
states, 1 or 0. Quantum bits, or qubits, also have two well-defined states
corresponding to the classical binary states 0 and 1. Unlike classical binary
bits, though, qubits can be in a blended state that is a combination of these
two states, such as the coin toss alluded to earlier. This state isn’t an average
like 0.5. Rather, it’s a concept of both states existing at the same time.

To remind us that qubits exist in a blended state, they’re decorated with extra
symbols to distinguish them from standard binary bits. In particular, we’ll
label the idealized states as | 0⟩ and | 1⟩, respectively.

Bra-Ket Notation

The notation to denote quantum states was devised by Paul Dirac,
one of the founders of quantum mechanics. In this chapter, we
use the ket, |q⟩, to represent the quantum bit q.

We’ll introduce its partner, the bra, 〈0 |, in Can the Quantum Gate
Matrix Be Anything?, on page 187.

You’ll hear words such as “blended,” “combination,” and “superposition” used
to describe this state, but they’re not to be taken literally. The English lan-
guage doesn’t have good terms for quantum concepts, so we have to resort
to approximations.

Readers familiar with quantum mechanics will recognize that the blended
states are just another version of Schrödinger’s cat, a famous thought
experiment illustrating being in two states at the same time. You can learn
more about this concept here.1

To bring quantum computing into sharper focus and help us recognize its
potential to solve some of the most complex computational tasks of today, we
first upgrade the coin-toss analogy to a more nuanced model. In this model,
we reinterpret qubits and their quantum states as a collection of imaginary
particles that we call qubelets. These qubelets are not physical subatomic
particles and can’t be isolated from a qubit. They’re merely a figment of our
imagination that gives us something concrete to hold onto when talking about
nebulous quantum concepts. Over the subsequent chapters, we’ll work with
this model to get to the core of quantum computing concepts and intuitively
understand them. With this foundation, you’ll learn to harness quantum

1. https://gizmodo.com/breakthrough-quantum-cat-experiment-captured-on-camera-1786923180
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principles to design quantum programs for your own applications instead of
blindly running well-known algorithms in the literature.

The Qubelets Model Is Unique to This Book

Quantum mechanics is shrouded under dense mathematics that even experts find
challenging. As a result, it’s hard to develop an intuition for the central concepts
related to quantum computing and how they come into play for solving computational
problems. To this end, I developed the Qubelets Model as a way to bring home the
quantum ideas in a form that computer professionals would find familiar.

The Qubelets Model, though, is not just a superficial knock-off of quantum mechanics
that loses steam as we get deeper into the subject. We’ll ride this model to the crux
of quantum computing and explore real-life quantum phenomena with actual pro-
grams. This will help build your intuition so that you can design quantum algorithms
for your own complex applications. In later chapters, we’ll tie this model with the
mathematical theory of quantum mechanics and establish that this model is a valid
way to think about quantum computing.

In Chapter 3, Elementary, My Dear Watson—Quantum Logic, on page 41, through
Chapter 5, Beam Me Up, Scotty—Quantum Tagging and Entangling, on page 107, I’ll
introduce quantum concepts by extending familiar constructs from classical comput-
ing. You’ll learn the statements to initiate quantum effects in your programs and do
basic but meaningful computational work, with a minimal amount of mathematics,
that you can’t reproduce on classical computers.

To push quantum computers to take on more complex computational problems, such
as those described in Chapter 9, Alice in Quantumland—Quantum Cryptography,
on page 279, and Chapter 10, Quantum Search, on page 295, you’ll learn new ways to
manipulate quantum bits in Chapter 6, Designer Genes—Custom Quantum States,
on page 141, and Chapter 7, Small Step for Man—Single Qubit Programs, on page 173.
Alhough these chapters rely on the mathematics that underpins quantum mechanics,
I’ll relate them back to the no-mathematics concepts introduced earlier so that their
motivation is clearer.

Specifically, imagine a qubit as the brew in a witch’s cauldron whose con-
stituents are just two ingredients, pentagons and triangles, that don’t dissolve
or mix with each other, as shown in the following figure:
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Call these pentagon and triangle shapes qubelets or baby qubits:

• The pentagon qubelet is a baby | 0⟩ qubit.
• The triangle qubelet is a baby | 1⟩ qubit.

For example, the | 1⟩ qubit is a “brew” containing only one ingredient, triangle
| 1⟩ qubelets:

Going forward, we’ll dispense with the cauldron and draw the quantum state
as a rectangular box. Thus, the | 0⟩ qubit will only consist of pentagon | 0⟩
qubelets as shown in the following figure:

Similarly, the | 1⟩ qubit is a bundle of triangle qubelets:

Qubits in Blended States
A qubit in a blended state of | 0⟩ and | 1⟩ is shown as follows:

Here, there are an equal number of pentagon and triangle qubelets, indicating
that the qubit is equally likely to collapse to 1 or 0.

We could also show the pentagon and triangle qubelets alternating:
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In this case, you can think of the subatomic particle whirling through the | 1⟩
and | 0⟩ states like the faces of a spinning coin. Feel free to use whichever
format you prefer. The key principle to bear in mind is that it’s only the relative
number of pentagon and triangle qubelets that’s important, not their order
or how they’re arranged.

Qubelets and Polarized Light

Another way to think about qubelets and blended states is a beam of light made up of
two polarized waves—one traveling in the horizontal plane and the other in the vertical
plane:

The vertical wave is made up of triangle | 1⟩ qubelets, and the horizontal wave corre-
sponds to pentagon | 0⟩ qubelets.

In each polarized wave of light, we may associate the maximum amplitude of a wave
with the corresponding number of qubelets: the more qubelets of a particular type,
the greater the amplitude. For example, a quantum state that has fewer pentagon
| 0⟩ qubelets than triangle | 1⟩ qubelets would have the following polarized waves in
the beam of light:

The smaller amplitude of the horizontal polarized wave is a result of there being fewer
pentagon | 0⟩ qubelets than triangle | 1⟩ qubelets in the quantum state.

This view of quantum states, though, fails to explain many of the quantum phenom-
ena that we’ll need in quantum computing. But it’s a good stand-in till you get com-
fortable working with qubelets.
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Equivalent Qubits

Since it’s only the ratio of the number of pentagon | 0⟩ to triangle | 1⟩ qubelets
that matters, the qubit on the left is equivalent to the qubit on the right in
the following diagram:

In each of the left and right bundles of qubelets, the number of pentagons
and triangles is the same. Thus, the left and right qubit each will collapse to
either 1 or 0 with equal probability.

Only the Relative Number of Qubelets Is Important

It’s only the proportion of pentagon | 0⟩ to triangle | 1⟩ qubelets that
governs the collapse of the qubit to a classical state—the actual
number of pentagon and triangle qubelets doesn’t count.

Biased Qubits

The qubits we’ve seen so far have symmetric quantum states: either all states
contain pentagon | 0⟩ qubelets, or they have all triangle | 1⟩ qubelets, or they
have an equal number of pentagon | 0⟩ and triangle | 1⟩ qubelets. Quantum
states, however, can be unbalanced, or biased, in which there are more of
one type of qubelets than the other. For example, the qubit shown in the fol-
lowing diagram has more pentagon | 0⟩ qubelets than triangle | 1⟩ qubelets:

So when we talk about qubits, we’re actually talking about their quantum states.

Qubelets Model the Coin in the Air

Going back to the coin-toss analogy, the qubelets model the coin
as it’s spinning in the air and thus, as you’ll see, give a way to
influence how it lands.

Classical Versus Quantum Bits
Contrasting classical bits with quantum bits is like imagining a world atlas
to be like Google Maps—although the paper almanac differs in fundamental
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ways from the browser version, you can still make meaningful comparisons
that highlight their differences by assuming they work more or less the same.
With this in mind, you can think of a 0 classical bit as containing only a single
pentagon | 0⟩ qubelet, as shown in the following figure:

Likewise, a 1 classical bit has just a triangle | 1⟩ qubelet:

A quantum bit, as we’ve just seen, can have both pentagon | 0⟩ and triangle
| 1⟩ qubelets as shown next:

Or it can even be one where the number of pentagon | 0⟩ qubelets differs from
that of the triangle | 1⟩ qubelets:
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Moreover, over the course of a program, the number of pentagon | 0⟩ and tri-
angle | 1⟩ qubelets in a qubit can change—it’s not fixed as in classical bits.
Simply put, a quantum bit, like Google Maps, is far more versatile than a
classical bit, which is more akin to a paper map. We’ll see that this added
flexibility is largely responsible for giving quantum computers an edge over
conventional computers.

Collapsing Qubits
When we want to inspect the state of a classical bit while a program is being
executed in a conventional computer program, we simply write out the variable
that holds the bit. The act of looking at the bit doesn’t affect its state.

In quantum computing, on the other hand, we can never directly observe the
quantum state of a qubit: we can’t peer into the cauldron to check out a
qubit’s quantum state—the brew is opaque. The only way to examine the
quantum state is to reach into the cauldron and randomly pull out a qubelet.
At that point, two things happen:

1. The remaining qubelets in the cauldron fade away, as they are no longer
of any use—the laws of quantum mechanics dictate that you can’t select
another qubelet.

2. The selected qubelet, either a pentagon | 0⟩ or a triangle | 1⟩, is anointed
the state of the qubit and we say that the qubit has collapsed. The caul-
dron is effectively “reset” so that it only contains the selected qubelet.

For example, if a pentagon | 0⟩ qubelet is selected, the qubit collapses to the
idealized quantum state | 0⟩ and all the other pentagon | 0⟩ and triangle | 1⟩
qubelets vanish from the state. And if a triangle | 1⟩ qubelet is picked from the
cauldron, the qubit collapses to the idealized quantum state | 1⟩ and the
pentagon | 0⟩ and other triangle | 1⟩ qubelets disappear.

In general, though, we can’t conclusively predict which of the two idealized
states the quantum state collapses to: sometimes it collapses to | 0⟩ and at
other times to | 1⟩. To put it another way, finding a qubit in a specific state
after collapsing it doesn’t tell us anything about the relative number of pen-
tagon | 0⟩ and triangle | 1⟩ qubelets in the quantum state before it collapsed.
In particular, if we were to start again from a qubit in an identical quantum
state and collapse it, there’s no guarantee that the qubit will collapse to the
same classical state as the previous selection.

Thus, in quantum computing, as we’ll learn in subsequent chapters, all the
computational work is done on qubits whose quantum states have not collapsed.
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Only after we’re convinced that all the qubits hold the optimal or desired states
that your program is tasked with finding, do we then collapse them.

What Are Quantum Programs?
A quantum program is a sequence of instructions, or actions, that guides
qubits from one quantum state to another such that each qubit arrives at a
state that corresponds to the optimal solution.

For example, a quantum instruction changes the quantum state of a qubit,
as shown in the following figure:

In this case, the quantum instruction, shown as a box, takes a qubit whose
quantum state is shown on the left with two pentagon | 0⟩ qubelets and three
triangle | 1⟩ qubelets to another one shown on the right with five pentagon | 0⟩
qubelets and two triangle | 1⟩ qubelets. Chaining these quantum instructions
together results in a series of steps that varies a qubit’s quantum state.

In a quantum program, we apply these instructions to several qubits and
modify their quantum states. In subsequent chapters, we’ll learn to write the
proper sequence of various instructions so as to get the qubits to collapse to
the desired binary states.

This graphical depiction of a quantum programming instruction underscores
the crucial role that subatomic physics plays in contending with challenging
computational problems. In classical computing, each statement acts on
binary bits that hold only one value at a time. In contrast, because a qubit
in effect has many qubelets, or tiny bits, a quantum instruction juggles with
all of them at once. Thus, quantum computing has two features that together
offer a powerful break from classical computing:

• A quantum instruction works on all the qubelets in a qubit’s quantum
state simultaneously.

• As the quantum state of the qubits is altered, the number of pentagon | 0⟩
and triangle | 1⟩ qubelets in the quantum state can grow or shrink as
necessary and isn’t limited by any physical constraint.

As a result, because the qubits can hold an exponentially large number of
qubelets, or tiny states, even a quantum program with a reasonably small
set of qubits can solve extremely large problems. We’ll expand on this theme
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from Chapter 4, All Together Now—Quantum Superposition, on page 77,
onward.

Pentagon and Triangle Shapes Are Visuals for the Idealized Quantum States

The pentagon and triangle shapes have no quantum significance.
They are just visuals for the idealized quantum states | 0⟩ and | 1⟩,
respectively, and give a way to pictorially explain the mathematics
describing quantum phenomena.

Measuring Qubits
Having settled on an understanding of qubits and quantum states, we’re
ready for the next step in our journey. To get anything useful out of qubits,
we control them with quantum gates, the quantum equivalent of classical
gates.

To get a feel for quantum programs steering quantum states to the correct
solution, imagine a magic trick where your selected card appears at the top
of the deck. It may look random, but the shuffling of the deck is actually a
controlled reordering of the cards to force the selected card to the top of the
deck. Likewise, even though the quantum bits collapse randomly to one of
the two idealized states, the quantum program applies the quantum gates in
a way that forces the qubits to collapse to the desired state.

Because quantum gates guide qubits to reliably transition from one quantum
state to another, they work differently from the classical gates. You can’t
simply take the code you wrote for a conventional computer and run it on a
quantum computer. In fact, because of the unique way that quantum gates
work, you’ll need to redesign your logic circuit, the interconnection of classical
logic gates to perform a computational task, and, thus, your program, so that
you get the qubits to simultaneously collapse to binary states that correspond
to an optimal solution, as we saw in A Scheduling Problem, on page 6. In
quantum computing, the interconnection of quantum gates is called a quantum
circuit.

Quantum Circuits Are Wireless

Even though we draw quantum logic circuits with wires connecting
the quantum gates, you shouldn’t think that qubits flow through
them as electrons would. The wires in a quantum circuit aren’t
physical as they are in electronic circuits. Rather, you should
think of the wires as a conveyor belt that brings the quantum
gates in the order drawn in the circuit to act on the qubit.
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Before we string quantum gates together to build a complete program, you
must first learn how quantum gates behave individually so that you under-
stand how to rework your application’s logic circuit. We’ll start with the Measure
gate. Every quantum program you write needs these.

Measure Gate
In the previous section we saw that since quantum states can’t be directly
observed, the only thing that a quantum program can disclose is the collapsed
states of qubits. So although we’ll write programs that intelligently vary the
quantum states of qubits to arrive at states that correspond to an optimal solu-
tion, we have to eventually collapse the qubits to obtain the associated binary
states. Hence, before studying other gates and quantum statements, we must
first know how to read the result of a quantum computation that changes a
qubit’s quantum state. That is, we need a way to collapse a qubit’s quantum
state in code.

The Measure gate is a quantum instruction that collapses a qubit: it randomly
selects a qubelet from the qubit and returns the state of the selected qubelet.
The returned state is a classical binary state. Conceptually, the Measure gate
is shown in the following circuit:

The left qubit has two pentagon | 0⟩ qubelets and three triangle | 1⟩ qubelets.
The Measure gate randomly selects a qubelet, for example, a pentagon | 0⟩
qubelet, from the left qubit. The left qubit is collapsed to | 0⟩ and the returned
classical state is 0. This act of collapsing a qubit is called measuring or
examining the qubit.

Under the hood, the process works a little differently. So let’s fix the figure
above. After collapsing the qubit, the Measure—the binary value corresponding
to the idealized quantum state—is recorded in a register. By convention, this
recording action is depicted as shown in the circuit on page 31.

The down arrow is the Measure gate writing to a standard classical register on
the bottom horizontal line.

A Measure gate records the binary state of the collapsed qubit, which forms the
output of your quantum program. Thus, you can think of the Measure gate as
your program’s return statement.
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Selecting a Qubelet Is Measuring a Qubit

The process of randomly selecting a qubelet, collapsing the qubit
by getting rid of the other qubelets in the quantum state, and
recording the state of the selected qubelet as a binary bit is called
measuring a qubit.

For example, when we say that the Measure gate collapses the qubit
to 0, it’s shorthand for the Measure gate selecting a pentagon | 0⟩
qubelet, throwing away the other qubelets, and logging 0, the cor-
responding binary state associated with the selected pentagon | 0⟩
qubelet, in the classical register. Thus, collapsing a qubit is effec-
tively measuring it.

It shouldn’t escape your attention, though, that unless you’re writing a random
number generator, collapsing the qubit on the left with two pentagon | 0⟩ qubelets
and three triangle | 1⟩ qubelets is premature: sometimes you’ll end up with a 0
and at other times a 1 in the classical register. The challenge in quantum com-
puting is to coax qubits to quantum states that have an extremely high likelihood
of collapsing to the optimal binary states so that you don’t end up logging random
states when you measure the qubits. Before seeing how to work with qubits in
a program, we’ll start by covering how to use a Measure gate in code.

Writing the Quantum Program

To declare a Measure gate in a quantum program, we’ll build the following circuit:
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This circuit has a single qubit held in the quantum register q[0], and a single
classical register, c[0], where the Measure gate records the binary bit associated
with the collapsed quantum state of the qubit.

To write a program for this circuit, go to the IBM Quantum Computer and
click the Create a circuit button. This opens the Circuit Composer, where you
can connect the gates for the circuit as shown in the following figure:

The Circuit Composer initializes five quantum registers and five classical
registers. Our circuit, though, only has a single qubit and a single classical
register. To remove the extra qubits and classical registers, go to the Composer
Home panel on the left and click the Circuit editor tab. In the Circuit editor
panel, you’ll see the following initial code:

OPENQASM 2.0;❶
include "qelib1.inc";❷

qreg q[5];❸
creg c[5];❹

Every quantum program begins with the headers shown on the first two lines
followed by the code that specifies the quantum circuit:

❶ Specify the version of the Quantum Assembly Language used for the
quantum program.

❷ Reference the include file that contains pre-built functions for the quantum
instructions.
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❸ The keyword qreg declares the 0-based quantum register array that holds
the qubits. The default name for this array is q, but you can change it to
another label if you’d like. The length of the array is the number of qubits
you’ll use in your program. All qubits are initialized to | 0⟩. Later, we’ll
learn how to initialize it to | 1⟩ and other blended states.

❹ The keyword creg declares the 0-based classical register array that holds
the binary values of the collapsed qubits. The default name for this array
is c, but you can change it to another label if you’d like. The length of this
array is the number of collapsed qubits you want your program to return.

To get rid of the extra qubits and classical registers, set their lengths to 1:

qreg q[1];
creg c[1];

To connect the Measure gate to the qubit in q[0], drag it from the palette to the
top line, representing the qubit register:

When you release the mouse, the Measure gate is dropped onto the line for the
quantum register, q[0], and its downward arrow points to the line for the
classical register, c[0], as shown in the following figure:

You can also directly declare a Measure gate in code by first specifying the gate,
followed by the action the gate does on the qubit. In this case the Measure gate
collapses the qubit in q[0] and logs the associated binary state to the classical
register, c[0].

measure q[0] -> c[0];
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This completes the quantum circuit for the Measure gate writing to a classical
register. Here’s complete code listing:

Measure_Gate.qasm
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c[1];

measure q[0] -> c[0];

Since the qubit in the quantum register q[0] is initialized to | 0⟩, the quantum
circuit effectively looks like the following figure:

The qubelets in the box on the left simply indicate the quantum state of
| 0⟩—they’re not related to the length of the quantum register array.

When the Measure gate acts on the q[0] qubit, it selects a random qubelet from
its quantum state, collapses it, and writes the state of the selected qubit to
the classical register, c[0], as a binary bit. Since the q[0] qubit is initialized to
| 0⟩, its quantum state only has pentagon | 0⟩ qubelets, as shown in the previous
figure. Thus, the Measure gate always selects a pentagon | 0⟩ qubelet and writes
a 0 to the classical register, c[0].

Don’t Add Gates After a Measure Gate

Do not attach any gates to a qubit after you’ve measured its value
with a Measure gate. Although the qubit is still active, its quantum
state before you measured it is forever lost. In particular, don’t
use them to debug your program, as you’ll get inconsistent or
meaningless results.

Running the Quantum Program

To run this quantum program, click the Run button on the top right of the
window. (If the button is grayed out, Save your program first.) The dialog
window shown on page 35 opens.
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Before running the program, you need to specify the following:

• Select the quantum computer (the backend) you’d like to run your program
on. The drop-down lists the available quantum computers that IBM offers,
as well as a simulator.

The simulator will run your code immediately. The actual quantum com-
puters run in the cloud—executing your code on one of them depends on
the number of other programs in queue, so your program’s execution may
be delayed.

• As we discussed in Measure Gate, on page 30, because the Measure gate
randomly picks a qubelet from the quantum state of the qubit it’s acting
on, all quantum programs are run multiple times. Each run is a shot.
The goal of quantum computing, then, is to design algorithms that tilt
the odds so that the optimal solution is returned in the vast majority of
shots.

report erratum  •  discuss

Measuring Qubits • 35

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


The results of your program’s execution will appear as a link in the Result
section below the Composer. When you click the link, you will see the following
Results page:

At the top of the page, the runtime metrics are listed. Next, you’ll see the fol-
lowing sections:

Original Circuit:  This is the circuit you built on the Composer.

Transpiled Circuit:  The circuit diagram you entered on the Composer is
compiled, or transpiled, in which some gates are substituted with equiv-
alent ones before your code is executed. We’ll see examples of these
replacements in later chapters. For the most part, though, you don’t need
to worry about this circuit.

Result:  The results of your program’s execution appear in this section. A
quantum program logs the results of its execution differently from how
classical programs would. In a classical program, you have a wide variety
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of ways of documenting the results of a run, such as printing the values
of your program’s variables when your code terminates. In quantum
programming, the results of an execution are recorded in the classical
registers as binary bits corresponding to the collapsed states of qubits.
In other words, when your quantum program terminates, each classical
register will hold a binary bit: 0 or 1. In particular, because a quantum
program is run multiple times, the number of times each binary bit is
seen in a register is shown as a percentage.

Running on a Simulator

If you elected to run your code on the simulator, the results of your run will
be shown as follows:

The value recorded in the classical register, c[0], is shown at the base of the
big blue bar. The height of the big blue bar is the confidence or probability
of observing the value shown at the base of the bar. In the case of a | 0⟩ qubit,
the computer’s confidence that it collapses to | 0⟩, corresponding to the binary
state 0, is 100%; in other words, the probability that c[0] = 0 is 1, an
unequivocal certainty.

Running on a Real Quantum Computer

If, instead, you ran your program on a real quantum computer, your output
will be similar to the following figure:
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On a real quantum computer, in most shots the Measure gate collapses the
qubit to | 0⟩ as expected. But in a small percentage of shots, the qubit collapses
to | 1⟩. So we see two bars in the this figure: the taller bar is the higher per-
centage for the classical register, c[0], holding the corresponding binary bit,
0, and the shorter one for the classical register logging 1.

The reason why we see a tiny fraction of shots in which the Measure gate col-
lapses the | 0⟩ qubit yet writes the binary bit 1 to the classical register lies with
the way real qubits exist in nature.

Artificial qubits used in a simulator are “pure.” That is, a | 0⟩ qubit will have
only pentagon | 0⟩ qubelets. Real qubits, on the other hand, are not always
precisely aligned within the magnetic fields of the quantum computer’s
hardware. Conceptually, we model a real | 0⟩ qubit as follows:

The vast majority of qubelets in the real | 0⟩ qubit are the pentagon baby | 0⟩
qubelets. But there’s also a smattering of | 1⟩ triangle qubelets.

Likewise, a “real” | 1⟩ qubit is shown as follows:

So when we’re working with real qubits, our quantum circuit looks like the
following figure:

When the Measure gate collapses the real | 0⟩ qubit on the left, there’s a small
chance that a triangle | 1⟩ gets selected. Thus, a binary 1 bit is written in the
classical registers on those seldom occasions. Consequently, every now and
then, you’ll see this errant behavior show up as tiny bars on the output graph.
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As the engineering of quantum computers improves, the effect of noise will
reduce. So we won’t worry about the difference between real and artificial
qubits in our quantum programs. But when interpreting the outputs of your
programs, you’ll sometimes see them collapsing the qubits incorrectly. Discard
these states as noise.

Bottom Line
Qubits are the central computing components of quantum computers. Com-
pared to classical binary bits that are always in one of two states, 0 or 1,
qubits exist in states that are a combination of two idealized quantum states,
| 0⟩ and | 1⟩. The quantum states are not a solid monolithic state as are the
binary states. Rather, you can think of the quantum states as an aggregate
of tiny states called qubelets. This model implies that quantum bits have a
fluidity or elasticity to them that differentiates them from their classical
counterparts, as reviewed in Qubits in Blended States, on page 23.

The other marquee feature of quantum programming is the instructions rep-
resented as quantum gates, the quantum equivalent of classical logic gates.
These gates alter the quantum states of qubits.

Since qubits don’t reveal their states until you inspect them, the only way to
get anything out of a quantum program is to destroy the qubit’s quantum
state using the Measure gate, as shown in Measure Gate, on page 30. The qubit
then collapses to one of the two idealized quantum states, and the correspond-
ing binary state is returned as in a standard computer.

In the next chapter, we’ll learn about quantum gates that juggle qubits before
they’re measured. These gates allow us to model the familiar and, or, as well
as more sophisticated programming constructs such as if-then statements.

Try Your Hand
Many chapters in this book have a section where you’ll find exercises that
test and reinforce your understanding of the concepts we’ve covered. Working
through them will enhance your mastery of the topics.

Solutions to these exercises are given in Quantum Bits Solutions, on page 425.

1. Consider the qubit with the quantum state containing six pentagon | 0⟩
and two triangle | 1⟩ qubelets, as shown in the figure on page 40.
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a. Simplify this qubit. That is, draw an equivalent qubit with fewer
qubelets.

b. Decide whether the following statements are True or False:

i. When this qubit is measured, since the pentagon | 0⟩ qubelets
outnumber the triangle | 1⟩ qubelets, it’ll always collapse to the
idealized quantum state | 0⟩.

ii. When this qubit is measured over multiple shots, the relative fre-
quencies of recording the binary state 0 to 1 is 3:1.

iii. When measuring this qubit, a triangle | 1⟩ qubelet is selected. The
number of remaining triangle | 1⟩ qubelets in the quantum state
is reduced by 1.

iv. If this qubit is measured again immediately in the same program,
it could collapse to a different idealized state.

2. You find a qubit collapsed to the | 1⟩ state. What can you say about its
state before it collapsed?

3. How is | 0⟩ different from 0?

4. A qubit’s state is | 1⟩. If a Measure gate inspects it, what value will it record?

5. When a Measure gate inspects a qubit, does it record all states that the
qubit can collapse to?
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CHAPTER 3

Crime is common. Logic is rare. Therefore it is upon the logic
rather than upon the crime that you should dwell.

  ➤  Sir Arthur Conan Doyle, “The Adventure of the
Copper Beeches”

Elementary, My Dear Watson—Quantum
Logic

In the previous chapter, we covered how to work with the Measure gate and tip
qubits to binary states. We continue building up our toolkit with quantum
gates that coax qubits to collapse in controlled ways, for it’s only through
precision that qubits can take on our application’s tasks.

In this chapter, you’ll learn about gates that perform logic operations, the
bread and butter of computer programs, but on qubits instead of standard
binary bits. These gates are like the fuel injectors in your car—by themselves
they don’t grab our attention but are crucial for regulating the fuel flow to
the engine. Likewise, these gates have no particular computational advantage
over their classical brethren: they shuttle qubits around the quantum circuit
where more complex, and useful, operations are done. Getting how these
logic gates work with qubits down pat will let us write programs from Chapter
4, All Together Now—Quantum Superposition, on page 77, onward, where
we can explore gates that are rooted in quantum mechanics rather than
talking about them in the abstract.

Quantum Logic Operations Aren’t Assembly Language

Fundamentally, digital computers hinge on Boolean logic opera-
tions, such as AND, OR, and NOT, on 0 and 1 bits. Every program
you write on a classical computer, even if it doesn’t explicitly use
Boolean logic, ultimately gets compiled into machine code where
Boolean operations are applied. On the other hand, even though
you’re working with bits and logical operations for the large class
of Boolean Satisfiability problems, such as the Hotel Scheduling
Problem, where you search through the many combinations of 0s
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Quantum Logic Operations Aren’t Assembly Language

and 1s to find one that works, you’d program in, say, Python,
rather than assembly language.

The quantum logic operations you’ll see in this chapter play the
same role as their classical Boolean counterparts for solving
Boolean Satisfiability problems although they go about it in a dif-
ferent way. In this sense, just because quantum computing uses
qubits and quantum logical gates, you shouldn’t equate quantum
programming with assembly language. Boolean logic is the nature
of the computational problem, not the programming language.

Quantum computers don’t have explicit equivalents of the standard classical
logic gates, such as the AND and OR gates. Instead, the following quantum
gates let us apply standard logic operations in quantum programs:

1. NOT (X) Gate
2. Controlled NOT (CNOT) Gate
3. Controlled Controlled NOT (CCNOT) Gate

The Controlled Controlled NOT name is unusual. Just like the “spam, spam, spam,
egg, and spam” breakfast item in the Monty Python episode, these gates also
come in flavors such as Controlled Controlled Controlled NOT. The basic operation of
these variations, however, is fundamentally the same. So, we’ll only cover
Controlled Controlled NOT.

NOT (X) Gate
Formally, the NOT gate belongs to the Pauli family of quantum gates and is also
called the Pauli-X gate. Hence, the gate is often labeled with an X. (In Universal
Quantum Gates, on page 158, we’ll see why the Pauli-X or X gate is fittingly called
the NOT gate.) The other gates in this family are the Pauli-Y and the Pauli-Z gates,
which we’ll discuss in Chapter 7, Small Step for Man—Single Qubit Programs,
on page 173. For more information, see Section 2.4.1.1 in Explorations in
Quantum Computing [Wil11].

Think of the NOT gate as a switcher—its sole purpose is to replace the state
on the qubit from one to the other. Although this seems simple, this gate
plays a large role in quantum programs.

In a binary system, if, for instance, a bit is “NOT 1,” it has to be 0. Thus, we
can talk about the NOT gate in terms of the | 0⟩ and | 1⟩ qubits that it acts on.
When a classical NOT or X gate gets a 0, it returns a 1, and vice versa.
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Working with Idealized or Pure Qubits

Since these gates perform logic operations on qubits instead of binary bits, we’ll study
them using the idealized or pure quantum bits | 0⟩ and | 1⟩. That is, the | 0⟩ qubit is
basically a single pentagon | 0⟩ qubelet, as shown here:

And the | 1⟩ qubit is a single triangle | 1⟩ qubelet:

Once we understand how these gates operate with idealized qubits, we’ll apply these
concepts in the next chapter, Chapter 4, All Together Now—Quantum Superposition,
on page 77, to qubits with blended states.

Likewise, the quantum counterpart of the NOT gate will return a | 1⟩ if presented
with a | 0⟩, as the following figure shows:

And when it acts on a | 1⟩ qubit, it switches the qubit’s state to | 0⟩:
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Algebraic Logic of NOT Gate
The quantum NOT gate’s truth table is:

OutputInput

| 0⟩|1⟩
|1⟩|0⟩

When formulating an application as a quantum circuit, we’ll frequently find
it useful to first express it with logic or algebraic equations. The logic equation
for a NOT gate that acts on a quantum state | a⟩ is:

| a⟩ ↦ 1⊕ |a⟩

where the mapping symbol ↦ indicates the state that is on its left is before
the operation by the gate and the state on its right is after it’s operated on by
the gate. The ⊕ is the exclusive-OR operation.

You can readily verify that the logic equation holds when | a⟩ is | 1⟩ or | 0⟩. (See
Boolean Logic Expressions, on page 393.) Remarkably, though, this equation
also works when | a⟩ is a blended state. (We’ll show this in Chapter 4, All
Together Now—Quantum Superposition, on page 77.)

Using the NOT Gate in Code
Let’s build a quantum circuit with a NOT or X gate. Like all diligent program-
mers, we’ll first draw the quantum circuit on paper before writing code.

As you may have guessed, the circuit is pretty much just a NOT gate. Since
this circuit will become actual working code, we need to initialize the input
to some state, otherwise nothing will happen when you run the program.
We’ll initialize with a | 0⟩ qubit.

You may be tempted to think we’re done. But, if you want to see whether
the NOT gate is working as it’s supposed to, there’s still one more crucial
step before we can say we have a fully working circuit. Quantum mechanics
will give us ample opportunities to contemplate weighty matters such as “If
a cat is in a box, is it dead or alive?” But this isn’t one of those times. For
our program to return a result, we need to make an explicit measurement
of the output. Thus, we add a Measure gate that measures the qubit at the
output of the X gate and writes it to a classical register, as shown in the
figure on page 45.
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For the quantum circuit shown here, we need just a one-dimensional array
for the quantum register with a single qubit, and a single-bit classical register
to record the binary value associated with the collapsed qubit.

We can now build this circuit and run it on a quantum computer. Go to the
IBM site and create a new circuit. You can use the default names for the
quantum and classical registers.

Next, from the palette, select the X gate and drag and drop it on the top line,
which represents the qubit in q[0]:

Then, set the quantum and classical registers to 1:

qreg q[1];
creg c[1];

The q[0] qubit is automatically initialized to | 0⟩. This results in the circuit
shown in the following schematic:
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The code to specify the NOT (X) gate is straightforward:

x q[0];

The NOT gate is specified with an x followed by the qubit that is its input,
the q[0].

Finally, add a Measure gate to inspect the output of the NOT gate. Make sure to
record the measurement to the single classical register, c[0], as shown
schematically in the following figure:

The complete code listing is as follows:

NOT_Gate.qasm
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c[1];

x q[0];➤

measure q[0] -> c[0];➤

Before running this program, let’s review what will take place:

• The gates fire from left to right. That is, gates to the left will execute before
those on the right.

• The qubit in q[0], which is initialized to | 0⟩, is fed to the NOT (X) gate.

• The NOT gate operates on the qubit, switching its state to | 1⟩.

• The Measure gate examines the qubit in q[0] and collapses it to the idealized
| 1⟩ state.

• The associated classical 1 state is recorded in the classical register, c[0].
That is, c[0] will hold the value 1.

To put it succinctly, the following actions have taken place in the quantum
program:

| 0⟩ ↦ |1⟩ ↦ 1 ↦ c[0]

Now, run this program by clicking the Run button and select whether you
want to run on a real quantum computer or the simulator. After a few seconds,
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depending on the load on the system, the output of this program will look
like this:

This output is from executing on a simulator. If you run on a real computer,
you’ll get a similar result, though you may also see that in a tiny fraction of
shots the real qubit incorrectly collapsed to | 0⟩.

Let’s go over this output step-by-step:

1. The value in c[0], which records the measurement of the qubit, is at the
base of the blue bar. In this case the value recorded in c[0] will be 1.

2. The big blue bar in the center is not the 1 state: its height is the confidence
or probability of observing the value at the base of the blue bar, which
will be 1, an unequivocal certainty, at least in the make-believe world of
the simulator. (Due to noise, on a real quantum computer you’ll sometimes
see the 0 state, albeit infrequently.)

The NOT gate may not seem like it does much, but it plays a vital role when
setting up Boolean logic expressions in a quantum program. The NOT gate,
though, isn’t “smart”: it blindly switches states, no questions asked. In the
next section, you’ll see how to limit switching of the states to only under cer-
tain conditions with the Controlled NOT (CNOT) gate.

Controlled NOT (CNOT) Gate
While the NOT gate switches the states of single qubits, the CNOT gate juggles
two qubits simultaneously—an atom-sized expansion of the capability of
quantum gates but a gigantic breakthrough for computing. Since quantum
programming doesn’t have the direct equivalents of if-then statements, the CNOT
gate fills that gap. Moreover, learning to deal with two qubits opens the path
for handling even more qubits, which is important if we want to use quantum
computing for complex computational tasks.

The two qubits that the CNOT gate operates on are labeled as control and target,
respectively. The CNOT gate is drawn as shown on page 48.
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The top gray line represents the control qubit and the bottom gray line repre-
sents the target qubit. The black vertical line, the filled circle on the control
qubit line, and the circle with the plus, ⊕, on the target line represent the
CNOT gate. The vertical line indicates that the two qubits are coupled, in the
sense that the CNOT gate acts on both qubits simultaneously. The gray lines
on the left of the CNOT gate show the values of the two qubits before they’re
acted upon by the CNOT gate, while the gray lines on the right show the values
of the qubits after they’re operated on by the CNOT gate.

CNOT Gate Is Also Called the Feynman Gate

The CNOT gate is called the Feynman gate in honor of Richard Feynman, who first
mused about building computers that exploit quantum mechanics.a b These were not
idle thoughts. Feynman was awarded the 1965 Nobel Prize in Physics for his research
on quantum electrodynamics and its consequences for the physics of elementary
particles. The Feynman diagrams, which arose from this work, grace the pages of
every recent-day textbook on quantum mechanics. He knew full well what he was
unleashing when he broached the possibility of quantum computers.

a. https://link.springer.com/article/10.1007/BF02650179
b. https://link.springer.com/article/10.1007/BF01886518

The CNOT gate switches the target qubit’s state if the control qubit is | 1⟩ and
leaves the target qubit’s state alone if the control qubit is | 0⟩. Simply put,
when the control qubit is | 1⟩, the target acts like a NOT gate.

Let’s write all this down explicitly. When the control qubit is | 1⟩ and the target
qubit is | 0⟩, the CNOT gate will switch the target qubit to | 1⟩:

Control
Target

|1⟩
|0⟩ ↦

CNOT | 1⟩
|1⟩

And if the target qubit is | 1⟩, the CNOT gate will switch the target qubit to | 0⟩:

Control
Target

|1⟩
|1⟩ ↦

CNOT | 1⟩
|0⟩
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When the control qubit is | 0⟩, the target qubit | 0⟩ is unscathed:

Control
Target

|0⟩
|0⟩ ↦

CNOT | 0⟩
|0⟩

And if the target qubit is | 1⟩, it’s also not touched:

Control
Target

|0⟩
|1⟩ ↦

CNOT | 0⟩
|1⟩

When dealing with multiple qubits that are being acted upon as a group by
a gate, such as the control and target, we’ll find it more convenient to concate-
nate the qubits before and after the gate’s operation, as shown here:

| a⟩ | b⟩ ↦ |a′⟩ |b′⟩

The variables a, b are the control and target qubits, respectively, before
passing them to the CNOT gate. And the variables a′, b′ are the values of the
control and target qubits after the operation of the gate. In fact, we can further
clean up the notation and get rid of the intermediate symbols like this:

| ab⟩ ↦ |a′b′⟩

Thus, when the control qubit is | 1⟩ and the target qubit is | 0⟩, the operation
of the CNOT gate is shown as:

| 10⟩ ↦ |11⟩

Here, the left qubit on both sides of the mapping represents the control bit.
And since it’s | 1⟩, the target qubit, the right bit, is switched from | 0⟩ to | 1⟩.

The following figure summarizes the operation of the CNOT gate:

The target qubits in the two bottom circuits highlight that they’ve been
switched because the control qubit is | 1⟩.
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Algebraic Logic of CNOT Gate
We can also write a truth table for the CNOT gate as shown here:

Target1Control1Target0Control0

| 0⟩|0⟩|0⟩|0⟩
|1⟩|0⟩|1⟩|0⟩
|1⟩|1⟩|0⟩|1⟩
|0⟩|1⟩|1⟩|1⟩

Control0 and Target0 are the two qubit values before the application of the
CNOT gate, and Control1 and Target1 are the values after. Note that the control
qubit’s value after the CNOT operation will be the same as it was before the
operation.

In this table, if you hide the third column, the one labeled with Control1, and
relabel the fourth column as Output, you get the following truth table:

OutputTarget0Control0

| 0⟩|0⟩|0⟩
|1⟩|1⟩|0⟩
|1⟩|0⟩|1⟩
|0⟩|1⟩|1⟩

This truth table is identical to that of an XOR or Exclusive OR gate, ⊕, used in
classical computing, that returns a 1 if and only if one of its inputs is 1. If
both inputs are 0 or both are 1, the XOR gate returns a 0. That is, the target
gate after the application of the CNOT gate is equivalent to an XOR operation,
as shown in this figure:

As a result, the operation of the CNOT gate can be expressed by the following
logic equation:

( | a⟩|b⟩ )↦ ( | a⟩
|a⟩ ⊕ |b⟩ )

where the qubit on top is the control and the qubit on the bottom is the target.
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Common Uses of the CNOT Gate
Although the CNOT gate is the quantum double of the classical XOR gate, in
quantum programming we’ll find it more convenient to think of and use it as
a gate in which the state of one qubit, the control, affects the other, the target.
Despite the apparent simplicity of the CNOT gate, it still manages to hide a few
tricks up its sleeve—shhh, the CNOT gate engages in exotic practices such as
teleporting. We won’t, however, instantaneously send anyone or anything
halfway across the earth. Our interests in the CNOT gate include doing practical
things with qubits such as copying or swapping them.

FAN-OUT Gate

In quantum computing, you can’t simply copy a qubit from one register to
another by making a statement like q[0] = q[1]. But we can configure a CNOT
gate so that a qubit in one register “picks up” the state of a qubit in another
register like this:

This configuration is similar to the XOR gate, except that here the target qubit
is always | 0⟩. The qubit to be copied, | a⟩, is the control qubit in register q[0].
The target qubit is clamped at | 0⟩. After the operation of the CNOT gate, the
target qubit will also be | a⟩.

To see that this arrangement works, let’s first suppose that | a⟩, the control
qubit in register q[0], is | 0⟩. The target qubit, in register q[1], will be unaffected
and will continue to be | 0⟩.

When the control qubit, | a⟩, in register q[0], is | 1⟩, then the target qubit in q[1]
is switched from | 0⟩ to | 1⟩.

We summarize this operation in the following truth table:

Target Qubit q[1] -
After

Control Qubit q[0] -
After

Target Qubit q[1] -
Before

Control Qubit q[0] -
Before

| 0⟩|0⟩|0⟩|0⟩
|1⟩|1⟩|0⟩|1⟩

So in both cases, we see that the qubit in q[1], the target, has the same
quantum state as the qubit in q[0], the control.
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Although it’s more descriptive to refer to this way of configuring the CNOT gate
as a COPY gate, in digital electronics it’s traditionally been labeled a FAN-OUT
gate because a single bit feeds the inputs of several gates.

SWAP Gate

To swap the values of two registers, you can’t use assignment operators like
you would in classical computing. Instead, as with the FAN-OUT gate, you can
use three CNOT gates, as shown here:

In this circuit, the state of the qubit in register q[0] is swapped with the state
of the qubit in register q[1] after all three CNOT gates have acted on them. You
can verify the swap by setting the | x⟩ and |y⟩ qubits to either of the | 1⟩ and
| 0⟩ states, respectively, and then tracing how the states transition along both
the upper and lower rails.

SWAP Gate Is Also Available Out-of-the-Box

On the IBM Quantum Computer, the SWAP gate is available out-
of-the-box. You can drag it from the palette onto your circuit in
the Composer.

The SWAP gate is shown within the dotted box:

To swap the qubits in, say, the q[0] and q[1] qubits, you’d declare
it as follows:

swap q[0],q[1];
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Using the CNOT Gate in Code
To see how to represent a CNOT gate in a quantum program, let’s build the
following circuit:

In this diagram, the two quantum bits are in the one-dimensional quantum
register q: the control bit is in q[0] and the target bit is in q[1]. The top horizon-
tal line represents the control qubit in register q[0]. The middle horizontal line
is the target qubit in q[1]. The CNOT gate is within the dotted box. (Note that
going forward, when the context is clear, we’ll omit the dotted box to reduce
clutter in our circuits). After the CNOT gate operates on the control and target
qubits, the two Measure gates knock them down and record the corresponding
binary states in the one-dimensional classical register c.

In this circuit, we’ve placed a NOT gate on the control qubit’s line. The reason
is that we want to see the target qubit switch states. (If we simply fed the | 0⟩
qubit to the CNOT gate, then nothing would happen—the target qubit would
be unaffected by the CNOT gate.)

To build this circuit on the IBM quantum computer, follow these steps:

1. Create a new circuit and give it a name.

2. The Composer initializes with five quantum registers and five classical
registers. Since we only need two of each, click the Circuit editor tab in
the Composer Help panel and set the size of the quantum and classical
registers to 2:

qreg q[2];
creg c[2];

3. On the Composer window, drag and drop the NOT gate, also labeled as the
X gate, on the top line for the control qubit.

report erratum  •  discuss

Controlled NOT (CNOT) Gate • 53

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


4. Select the CNOT gate, shown with a plus sign in a blue circle, representing
the target, and drag and drop it onto the second qubit line that represents
the target qubit, as shown here:

When you release the gate, you’ll see a vertical line going up to the control
qubit on the first line.

5. Add the two Measure gates to record the binary values corresponding to
the collapsed qubits. The control qubit in the quantum register q[0] is
recorded in the classical register c[0], and the target qubit in q[1] is logged
in the classical register c[1]. At this point, your circuit should look like
the following:

The classical registers only record the collapsed state of the qubits. Hence,
they’re shown on a single line even though, technically, each should be
on a separate one. This shortcut keeps the diagrams from getting unwieldy
when your program has more classical registers.

The code listing for this circuit is as follows:

CNOT_Gate_Circuit.qasm
OPENQASM 2.0;Line 1

include "qelib1.inc";2
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qreg q[2];3

creg c[2];4

5

x q[0];6

cx q[0],q[1];7

8

measure q[0] -> c[0];9

measure q[1] -> c[1];10

The first two lines are the standard header lines. These are followed by the
declarations for the one-dimensional quantum and classical arrays, respec-
tively. The qubits are implied to be initialized to | 0⟩.

On line 6, we specify the NOT gate, labeled as x, operating on the | 0⟩ qubit in
q[0]. The NOT gate, specified on line 6, switches it to | 1⟩ before passing it as
the control bit for the CNOT gate. The crux of this program is the CNOT gate
declaration on line 7, shown again here:

cx q[0],q[1];

The CNOT gate is declared with the cx keyword followed by the quantum regis-
ters holding the control and target qubits, respectively.

Lastly, on lines 9 and 10, we measure the control and target qubits using
Measure gates that record the corresponding binary states the qubits collapse
to in the respective classical registers.

When we execute this program, the q[0] qubit is switched by the NOT gate to
| 1⟩ and fed as the control qubit to the CNOT gate. The CNOT gate, in turn,
switches the target qubit to | 1⟩. Finally, the control qubit, which is | 1⟩, is col-
lapsed to a triangle | 1⟩ qubelet and the corresponding binary bit, 1, is
recorded in c[0]. The target qubit, which is | 1⟩, is also collapsed to a triangle
| 1⟩ qubelet and the corresponding binary bit, 1, is written to c[1]. Thus, both
classical registers record a 1, which is shown in the following figure:

The state at the bottom of the blue bar is the concatenated value of c[1] and
c[0], which in this case is 11. Since this state will always be the output for this
program, the height of the bar is 1 or 100%.
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Using the IBM Computer: Multi-Bit Classical Register

A multi-bit register is a one-dimensional array containing many elements. It’s used
to record the binary values corresponding to multiple collapsed qubits. Programmat-
ically, a classical register c that records the binary values of, say, 5 collapsed qubits,
is declared with the creg keyword:

creg c[5];

This array records the final result of the computational task performed by your program.

Visually, the one-dimensional array, c, of n elements is shown:

The value in the last element in the 0-based array, c[n-1], is shown on the left, and
the value of the first element, c[0], is on the right. We’ll represent the values in each
element of the classical register using a shorthand notation by concatenating all the
values, c[0], c[1], ..., c[n-2], c[n-1] in reverse order as a single string: c[n-1]c[n-2]...c[2]c[1]c[0].
For example, suppose that at the conclusion of the program, the n elements in the
classical register are:

c[0] = 1
c[1] = 0
c[2] = 0

⋮
c[n − 2] = 1
c[n − 1] = 1

Then we’ll write all the values in the register in reverse order as 11...001, where the
classical state in c[n-1] is the first position in the string and the state in c[0] is in the
last. Since each element records either a 0 or 1, the total number of distinct strings
of 0s and 1s is 2 × 2 × ··· 2 (n times), or 2n.

It may seem more expedient to also write the quantum states in reverse order to
match those of the classical register. But, as you’ll see in Chapter 8, Giant Leap for
Mankind—Multi-Qubit Programs, on page 227, it’s more natural to continue to write
the quantum bits as |q[0]q[1] ··· q[n − 1] ⟩ and not in the reverse order.

The CNOT gate gives you a single control bit that determines when to switch
a qubit’s state. But, as in classical programs where you can use if statements
with multiple conditions or clauses, in the next section, you’ll learn to use
multiple control bits to determine when to switch states with the Controlled
Controlled NOT (CCNOT) gate.
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Controlled Controlled NOT (CCNOT) Gate
The CCNOT gate, called a Toffoli gate, is a CNOT gate with an additional control
qubit, as shown in the following figure:

For the CCNOT gate, both control qubits need to be | 1⟩ for the target qubit to
switch states. If either control qubit is | 0⟩, the target qubit isn’t affected. So,
as in the CNOT gate case, the CCNOT gate behaves like a NOT gate when both
control bits are | 1⟩:

| 110⟩ ⟶ |111⟩
|111⟩ ⟶ |110⟩

Here, in each group of concatenated qubits, the two control qubits are on the
left and middle, and the target qubit is on the right.

Algebraic Logic of CCNOT Gate
We can express the operation of the CCNOT gate on the control and target
qubits with the following logic equation:

( | a⟩|b⟩
|c⟩

)↦ ( | a⟩
|b⟩

|c⟩ ⊕ ( |a⟩ ∧ |b⟩ )
)

where | a⟩ and | b⟩ are the two control qubits, respectively, and | c⟩ is the target
qubit. The term in parenthesis evaluates to | 1⟩ when both control qubits, | a⟩
and | b⟩, are | 1⟩. We can label the inputs and outputs of the CCNOT gate as in
the following figure:

The additional control qubit gives a greater layer of flexibility when formulating
the circuits for a wide array of applications. As a result, CCNOT gates are
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heavily used in quantum programs. Because the classical logic gates such
as AND and OR have no quantum equivalents, we can use the CCNOT gates to
reproduce their functionality, which we describe next.

Common Uses of the CCNOT Gates
Quantum mechanics imposes rigid requirements on the behavior of quantum
gates that may seem odd. One such constraint is reversibility: given the states
of qubits after they’ve been acted upon by a gate, we should be able to
unambiguously deduce their states before the gate operated upon them. (We’ll
have more to say about this restriction in Chapter 7, Small Step for
Man—Single Qubit Programs, on page 173.) This means that, at a minimum,
quantum gates always have the same number of input and output qubits.

Because AND and OR gates have multiple inputs but only a single output, the
reversibility condition implies they have no native quantum equivalents. But
we can reproduce the behavior of classical gates.

If you’re not familiar with logic gates in classical computing, you can find
resources online that will get you up to speed.1,2

AND Gate

To build the quantum equivalent of an AND gate, we can use the CCNOT gate,
as shown here:

The AND gate resembles a CCNOT gate, except that the target qubit is set to | 0⟩.
Thus, the target qubit after the application of the CCNOT gate is:

| 0⟩ ⟶ |0⟩ ⊕ ( |a⟩ ∧ |b⟩ )

Referring to Boolean Logic Expressions, on page 393, we can manipulate this
expression and bring it to a recognizable form. Starting with the formula to
convert an exclusive-OR operation in terms of the basic NOT and OR operations,
the operation on the target qubit can be written as:

| 0⟩ · ( ⌐ ( |a⟩ ∧ |b⟩ )) ∨ ( |1⟩ · ( |a⟩ ∧ |b⟩ ))

1. https://en.wikipedia.org/wiki/Boolean_algebra
2. https://en.wikipedia.org/wiki/Logic_gate
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This simplifies to:

| 0⟩ ∨ ( |1⟩ ∧ ( |a⟩ ∧ |b⟩ ))

Or:

| 1⟩ ∧ ( |a⟩ ∧ |b⟩ )

Finally, we can write the value of the target qubit as:

| a⟩ ∧ |b⟩

Hence, by initializing the target qubit to | 0⟩ before the application of the CCNOT
gate, the state of the target qubit after the application will be identical to an
AND operation on the two control qubits | a⟩ and | b⟩.

OR Gate

Likewise, to build the quantum equivalent of an OR gate, you can use the
CCNOT gate as shown here:

To understand why this configuration works as a quantum OR gate, it’s easier
to analyze the case when both | a⟩ and | b⟩ input qubits are | 0⟩. To switch the
CCNOT gate target qubit state, we first have to apply a NOT gate on the input
qubits. This switches their states from | 0⟩ to | 1⟩. The CCNOT gate is activated
and the target qubit’s state is switched. Since the target must be switched to
| 0⟩, we feed a | 1⟩ qubit to the CCNOT’s target.

In all other cases, when at least one of the input qubits is | 1⟩, the application
of the NOT gates would mean that at least one of the CCNOT’s control qubits is
| 0⟩. So the target qubit will be unaffected and will continue to be | 1⟩, as
required by the OR operation.

Finally, after the CCNOT gate operates, switch the | a⟩ and | b⟩ qubits back to
their original states by applying the NOT gate to each qubit. In quantum pro-
gramming, we always take care to return qubits back to their initial states to
prevent them from inadvertently getting entangled. We’ll see in Entangling
Qubits, on page 120, that unintended interactions of qubits prevent them from
freely participating in quantum operations later in your program.
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Because of the versatility of the CCNOT gate to mimic classical logic gates, you
can think of it as the Swiss Army knife of quantum gates.

Using the CCNOT Gate in Code
To see how to declare a CCNOT gate in a quantum program, let’s use the follow-
ing circuit:

Similar to the quantum program for the CNOT gate, we’ll apply a NOT gate to
each of the control qubits of the CCNOT gate. This way, we can explicitly switch
the target qubit’s state.

To build this circuit on the IBM Quantum Computer, we’ll use three qubits
and three classical registers to record the value of the collapsed qubits. Go
to the Circuit editor and update the quantum and classical register lengths
to 3 from the default 5:

qreg q[3];
creg c[3];

Then drag and drop the NOT and Measure gates as before. The CCNOT gate is
shown as a purple circle with a plus sign in the palette:
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This time, drag the ccX gate to the target qubit, which is the third line corre-
sponding to q[2]. Since there are only two other qubits in the circuit, the system
will correctly wire up the CCNOT gate.

The complete code for this circuit is as follows:

CCNOT_Gate_Circuit.qasm
OPENQASM 2.0;
include "qelib1.inc";

qreg q[3];
creg c[3];

x q[0];
x q[1];
ccx q[0],q[1],q[2];➤

measure q[0] -> c[0];
measure q[1] -> c[1];
measure q[2] -> c[2];

The initialization of the quantum and classical registers, switching the q[0]
and q[1] qubits’ states using NOT or X gates, and measuring the control and
target qubits after applying the CCNOT gate are declared as explained earlier.
The CCNOT gate itself looks like this:

ccx q[0],q[1],q[2];2

The declaration follows the familiar pattern of first specifying the gate, in this
case ccX, and then the two control qubits, in q[0] and q[1], and the target qubit
in q[2].

When we run this program, the two control qubits in q[0] and q[1] are | 1⟩. Thus,
the target qubit switches from | 0⟩ to | 1⟩. The output of this program on a
simulator will look like the figure shown on page 62.
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The state at the bottom of the blue bar is the concatenated c[2]c[1]c[0] value,
which will be 111. Since this state will always be the output for this program,
the height of the blue bar is 1 or 100%. (On a real computer, the 111 state will
be seen most frequently. That is, it’ll be the bar with the highest height.)

Summary of Quantum Logic Gates
The following table summarizes the NOT, CNOT, and CCNOT quantum gates:

Common UsesAlgebraic ExpressionGate

Switching a| a⟩ ↦ |1⟩ ⊕ |a⟩NOT
qubit’s state

FAN-OUT Gate, SWAP Gate( | a⟩|b⟩ )↦ ( | a⟩
|a⟩ ⊕ |b⟩ )CNOT

AND Gate, OR Gate( | a⟩|b⟩
|c⟩

)↦ ( | a⟩
|b⟩

|c⟩ ⊕ ( |a⟩ ∧ |b⟩ )
)CCNOT

Logic Expressions to Quantum Circuit
So far, we’ve talked about quantum gates operating one at a time for the most
part. Now, we’re ready to put our knowledge of them to use by seeing how
quantum gates can represent logic equations, a crucial first step to ultimately
searching for a valid solution to them.

To keep things simple, we’ll work with just the logic equations for slotting the
talk show hosts, Kimmel and Maher, at the Bellagio, described in Writing a
System of Boolean Logic Expressions, on page 8. Since we’ll be using quan-
tum bits to model the binary variables, we use |k⟩ and |m⟩, instead of k and
m, to express the logic expression, namely:

Bellagio on Day 1: | k‾⟩ ∨ |m‾⟩

and

Bellagio on Day 2: |k⟩ ∨ |m⟩
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For the Bellagio to have an artist perform on each day of the festival, both of
these must evaluate to true, or | 1⟩:

( | k‾⟩ ∨ |m‾⟩ ) ∧ ( |k⟩ ∨ |m⟩ ) = |1⟩ .

We’ll call this logic expression the Bellagio Constraints.

Conceptually, the left-hand side of this logical expression can be drawn like
the following:

The only wrinkle in an otherwise straightforward logical expression of two OR
clauses joined with an AND clause is the matter of simultaneously handling
|k⟩, |m⟩, and their complements, | k‾⟩ , |m‾⟩, in quantum circuits. It’s not just
applying a NOT operation to |k⟩ and |m⟩. Such an operation only affects a single
qubit; |k⟩ becomes | k‾⟩, for example, and then we no longer have |k⟩. Rather,
we need both |k⟩ and | k‾⟩ to exist at the same time in the quantum circuit.
Simply put, we need a way for a quantum state in a quantum register, say
q[0], to force the quantum state in another quantum register, q[1], for instance,
to be its complement.

In quantum computing, as we saw in FAN-OUT Gate, on page 51, we can
synchronize two quantum states by using the quantum registers holding the
control and target qubits of a CNOT gate, as shown here:

If |k⟩ is | 0⟩, then the control and target qubits after the CNOT operation remain
| 0⟩, but the NOT gate on the target qubit switches it to | 1⟩.

Likewise, if |k⟩ is | 1⟩, then the control and target qubits after the CNOT operation
are | 1⟩, and after the NOT operation on the target qubit, that qubit is | 0⟩. Thus,
in both instances, we see that the two quantum registers holding the control
and target qubits have complementary values.

report erratum  •  discuss

Logic Expressions to Quantum Circuit • 63

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


This kind of configuration, without the NOT gate operating on the target qubit
of the CNOT gate, is called a FAN-OUT gate. In the exercises, you’ll have an
opportunity to set one up and experiment with it.

We now have all the ingredients to translate the conceptual circuit to a real
quantum circuit. The two FAN-OUT gates are realized with CNOT gates, and the
OR and AND gates with CCNOT gates, as shown here:

This circuit has 7 quantum registers, q[0]–q[6], specified as follows:

• Quantum registers q[0] and q[1] house the |k⟩ and | k‾⟩ qubits, respectively.

• Quantum registers q[2] and q[3] house the |m⟩ and |m‾⟩ qubits, respectively.

• Quantum registers q[4]–q[6] are the target qubits for the three CCNOT gates
respectively.

The FAN-OUT gate for |k⟩ and | k‾⟩ includes a CNOT gate followed by a NOT gate,
as shown in the following figure:
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The code for these gates is the following:

cx q[0],q[1];
x q[1];

The quantum register q[0] represents the qubit for the quantum variable |k⟩.
The target qubit, q[1], is operated on by the NOT gate and represents the com-
plement of |k⟩, | k‾⟩.

Similarly, the FAN-OUT gate for |m⟩ and |m‾⟩ is shown in the following figure:

Here’s the associated code:

cx q[2],q[3];
x q[3];

Next, the circuit for the OR clause, | k‾⟩ ∨ |m‾⟩, is specified with a CCNOT gate
surrounded by NOT gates, as shown in the following figure:

The code for this circuit is the following:

x q[1];
x q[3];
x q[4];
ccx q[1],q[3],q[4];
x q[1];
x q[3];

The controls are the qubits in the quantum registers q[1] and q[3], representing
| k‾⟩ and |m‾⟩, respectively. The target is the qubit in the q[5] quantum register
and represents the OR clause | k‾⟩ ∨ |m‾⟩.
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Similarly, the OR clause |k⟩ ∨ |m⟩ is set up like this:

x q[0];
x q[2];
x q[5];
ccx q[0],q[2],q[5];
x q[0];
x q[2];

In this case, the controls are the qubits in the quantum registers q[0] and q[2],
representing |k⟩ and |m⟩, respectively. The target is the qubit in the q[5]
quantum register and represents the OR clause |k⟩ ∨ |m⟩.

Finally, these two OR clauses are joined with an AND operator using the CCNOT
gate:

ccx q[4],q[5],q[6];

This completes the setup of the quantum circuit for the Bellagio Constraints.

If you’d like to run this circuit, you’ll need to initialize the |k⟩ and |m⟩ qubits
and then insert the Measure gates to read their collapsed states. For example,
to execute the program with |k⟩ = |1⟩ and |m⟩ = |0⟩, we’d set up the following
quantum circuit:
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The box labeled Bellagio-Constraints-Gates encapsulates the gates modeling
the Bellagio Constraints. A NOT gate is applied to the quantum register q[0]
representing |k⟩:

x q[0];

Note that the quantum register q[2] representing |m⟩ is initialized by default
to | 0⟩, so we don’t have to do anything further here.

Finally, Measure gates are inserted to record the binary values associated with
collapsing the following qubits:

• The Bellagio Constraints, which is the target qubit of the CCNOT gate in
quantum register q[6], is recorded in the classical register c[0]:

measure q[6] -> c[0];

• Qubit |k⟩ in quantum register q[0], representing the artist Jimmy Kimmel’s
schedule, is recorded in the classical register c[1]:

measure q[0] -> c[1];

• Qubit |m⟩ in quantum register q[2], representing the artist Bill Maher’s
schedule, is recorded in the classical register c[2]:

measure q[2] -> c[2];

Putting all this together, we get the following complete code listing for this
circuit:

Bellagio_Constraints_k_1_m_0.qasm
// Initialize Quantum and Classical Registers
qreg q[7];
creg c[3];

// q[0]: |k> (Kimmel)
// q[1]: NOT |k> (NOT Kimmel)
// q[2]: |m> (Maher)
// q[3]: NOT |m> (NOT Maher)

// Initialize |k> to |1>
x q[0];

// Fan Out for |k> and NOT |k>
cx q[0],q[1];❶
x q[1];

// Fan Out for |m> and NOT |m>
cx q[2],q[3];❷
x q[3];
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// (NOT |k>) OR (NOT |m>)
x q[1];❸
x q[3];
x q[4];
ccx q[1],q[3],q[4];
x q[1];
x q[3];

// |k> OR |m>
x q[0];❹
x q[2];
x q[5];
ccx q[0],q[2],q[5];
x q[0];
x q[2];

// ( (NOT |k>) OR (NOT |m>) ) AND (|k> OR |m>)
ccx q[4],q[5],q[6];❺

// Measure whether all constraints are met. Yes:1, No:0
measure q[6] -> c[0];❻

// Measure |k>
measure q[0] -> c[1];

// Measure |m>
measure q[2] -> c[2];

❶ FAN-OUT for |k⟩ and | k‾⟩.

❷ FAN-OUT for |m⟩ and |m‾⟩.

❸ OR gate for | k‾⟩ ∨ |m‾⟩.

❹ OR gate for |k⟩ ∨ |m⟩.

❺ AND gate to test whether both | k‾⟩ ∨ |m‾⟩ and |k⟩ ∨ |m⟩ are satisfied.

❻ The Measure gates for recording whether the qubit q[6], representing the
constraint ( | k‾⟩ ∨ |m‾⟩ ) ∧ ( |k⟩ ∨ |m⟩ ), is satisfied and those for recording
the qubits q[0] for Kimmel and q[2] for Maher, respectively.

If you run this circuit, the values recorded in the classical registers will be
these:

c[0] = 1
c[1] = 1
c[2] = 0

This output corresponds to a valid schedule (since the Bellagio Constraints
evaluates to 1 at termination). In the above circuit, we explicitly set the initial
states for |k⟩ and |m⟩ and got lucky when they turned out to be a valid
schedule. Our eventual goal, though, is to write a quantum program that
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automatically finds a valid schedule without having to iteratively try different
combinations till we hit upon one that satisfies the constraints.

In the exercises at the end of this chapter, you’ll have a chance to experiment
with other values for |k⟩ and |m⟩. Specifically, you’ll see that when a valid
schedule can’t be formed, the Bellagio Constraints is 0.

Now that the logical expressions representing the computation problem have
been set up in the quantum program, we can begin introducing quantum
effects in the program. In the next chapter, you’ll first see how qubits can
hold all solutions at once, an aspect that has no parallels in classical comput-
ing. In subsequent chapters, you’ll then learn to apply more quantum effects
to identify the correct solution.

Bottom Line
Functionally, quantum logic gates are similar to the classical equivalents but
operate on quantum bits instead of binary bits. Although quantum program-
ming doesn’t have replicas of the binary logic gates such as AND and OR gates,
their logic is replicated by suitably configuring the quantum Controlled NOT
(CNOT) Gate, on page 47, and Controlled Controlled NOT (CCNOT) Gate, on
page 57. But by themselves, the quantum logic gates offer no inherent
advantage over the classical logic gates. In fact, even the quantum circuit on
page 62 won’t work any better than one designed with classical gates—you’ll
still need to iterate through all possible combinations to find the optimal
solution.

Nonetheless, quantum logic gates play a crucial role in quantum computing:
because they work with quantum bits, they can model a computational
problem’s constraints in a quantum program, like we did with the Bellagio
Constraints. Classical binary gates can’t be plugged in because they don’t
work on quantum hardware.

In the quantum programs in this chapter, we worked with the idealized, or
pure, quantum bits, | 0⟩ and | 1⟩. In the next chapter, you’ll learn to apply the
Qubelets Model on page 20 on gates that act on blended qubits. We’ll start
with quantum gates that create blended quantum states. Once we know how
to put qubits in states that have pentagon | 0⟩ and triangle | 1⟩ qubelets, we’ll
hook them up with the quantum logic gates that take us on an arc toward
obtaining solutions in a fraction of the time of classical computing’s check-
each-one approach.
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Try Your Hand
Solutions to these exercises are given in Quantum Logic Gates Solutions, on
page 426.

For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

If you want to run any exercise, you must include them in the code you’d like
to execute.

1. Write the code for the following circuit:

a. Write the binary states recorded by the Measure gates. Write your answer
as a concatenated string of the elements in the classical register.

b. Run your code on a simulator.

c. Run your code on a real quantum computer. Did you get the output
you expected?

2. Consider the quantum circuit shown here:

a. Write a quantum program for this circuit.
b. Is the state at point A blended?
c. Write the state at point A.
d. Can you observe the state at point A?
e. What is the value recorded by the Measure gate?
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f. Which of the following figures matches the output for the quantum
circuit?

•

Figure 1—Output A

•

Figure 2—Output B

3. Draw the circuit for the following code:

NOT_Measure_NOT.qasm
qreg q[1];
creg c[1];

x q[0];
measure q[0] -> c[0];
x q[0];

4. Draw the circuit diagram and write the code for initializing a qubit in the
quantum register q[0] to | 1⟩.

5. Write the code for the circuit shown here:
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6. In the standard configuration of the CNOT gate, the target qubit’s state is
switched only when the control qubit is | 1⟩.

a. Draw a quantum circuit to show how to control the switching of the
target qubit’s state when the control qubit is | 0⟩. (To test your circuit,
set the target qubit to | 1⟩ and declare Measure gates to record the
results.)

b. Write the quantum program for the circuit you designed.

c. Write down the values in each of the classical registers when the
program terminates.

7. Consider the following quantum circuit:

a. Write a quantum program for this circuit.
b. At termination, what are the values in the classical registers?

8. The following quantum circuit made up of three CNOT gates is used to SWAP
qubits from one quantum register to another:

a. Work out the quantum states | a⟩, | b⟩, | c⟩, |d⟩, | e⟩, and | f⟩ for the follow-
ing values of | x⟩ and |y⟩:

i. | x⟩ is | 0⟩ and |y⟩ is | 0⟩.
ii. | x⟩ is | 0⟩ and |y⟩ is | 1⟩.
iii. | x⟩ is | 1⟩ and |y⟩ is | 0⟩.
iv. | x⟩ is | 1⟩ and |y⟩ is | 1⟩.
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b. Write a quantum program to implement the SWAP gate when | x⟩ is | 1⟩
and |y⟩ is | 0⟩. Measure the value of the top qubit in the first cell of the
classical register and the bottom qubit in the second cell.

i. Write the classical register as a concatenated string when the
program terminates.

9. The following circuit represents a FAN-OUT gate that makes a copy of a qubit:

a. Using this gate, design a quantum circuit that copies a | 1⟩ qubit, that
is, | a⟩ = |1⟩. Add Measure gates as appropriate to confirm that the qubit
has been copied.

b. Write a quantum program for your circuit.

10. You’ll need to become proficient in manipulating Boolean logic expressions
if you want to design your own quantum programs. This exercise will give
you an opportunity to sharpen your skills.

In OR Gate, on page 59, we argued that the CCNOT configuration on page
59 mimics an OR gate. Using Boolean algebra, explain why this is so. (Refer
to Boolean Logic Expressions, on page 393, to brush up on frequently used
expressions.)

11. In Writing a System of Boolean Logic Expressions, on page 8, the
restrictions on the days each artist can perform at the hotels is listed. In
this problem, you’ll work with the following subset of the constraints
related to the artists, Kimmel and Maher, performing at the Bellagio:

• Bellagio on Day 1: | k‾⟩ ∨ |m‾⟩
• Bellagio on Day 2: |k⟩ ∨ |m⟩

The qubits |k⟩ and |m⟩ stand for the artists Kimmel and Maher, respectively.

a. Draw a quantum circuit for the Bellagio Constraints with the following
initial states:

|k⟩ = |1⟩
|m⟩ = |1⟩

b. Write a quantum program for the circuit you created.
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c. Execute your program and measure the values of the | k‾⟩ and |m‾⟩
qubits as well as the Bellagio Constraints.

d. What can you say about this set of initial conditions?

12. In Writing a System of Boolean Logic Expressions, on page 8, the
restrictions on the days each artist can perform at the hotels is listed. In
this problem, you’ll work with the following subset of the constraints
related to the artists, Kimmel and Noah, performing at the Aladdin:

• Aladdin on Day 1: |k⟩ ∨ | n‾⟩

• Aladdin on Day 2: | k‾⟩ ∨ |n⟩

The qubits |k⟩ and |n⟩ stand for the artists Kimmel and Noah, respectively.

a. Write the logic expression that prevents scheduling conflicts for the
artists performing at Aladdin, the Aladdin Constraints.

b. Draw a quantum circuit for the performance schedule for Jimmy
Kimmel and Trevor Noah at Aladdin. The circuit should include the
following:

• Initialize the quantum variables for Kimmel and Noah to | 1⟩ and
| 1⟩, respectively.

• Insert a Measure gate to record the truth value of the constraint
that determines whether the schedule is valid.

• Insert Measure gates to record the states for the variables represent-
ing Kimmel and Noah.

c. Write a quantum program for your circuit.

d. Does this initial set of quantum variables correspond to a valid
schedule? If so, what days do Kimmel and Noah perform at Aladdin.

13. In Writing a System of Boolean Logic Expressions, on page 8, the
restrictions on the days each artist can perform at the hotels is listed. In
this problem, you’ll work with the following subset of the constraints
related to the artists Maher and Noah performing at Caesars:

• Caesars on Day 1: |m⟩ ∨ |n⟩

• Caesars on Day 2: |m‾⟩ ∨ | n‾⟩

The qubits |m⟩ and |n⟩ stand for the artists Maher and Noah, respectively.
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a. Write the logic expression that prevents scheduling conflicts for the
artists performing at Caesars, the Caesars Constraints.

b. Draw a quantum circuit for the performance schedule for Maher and
Noah at Caesars. The circuit should include the following:

• Initialize the quantum variables for Maher and Noah to | 1⟩ and
| 1⟩, respectively.

• Insert a Measure gate to record the truth value of the constraint
that determines whether the schedule is valid.

• Insert Measure gates to record the states for the variables represent-
ing Maher and Noah.

c. Write a quantum program for your circuit.

d. Does this initial set of quantum variables correspond to a valid
schedule?

e. By experimenting with different quantum states for the variables for
Maher and Noah, determine a feasible schedule for them.
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CHAPTER 4

We must not forget that pictures and models finally have no other
purpose than to serve as a framework for all the observations that
are in principle possible.

  ➤  Erwin Schrödinger, jointly awarded the Nobel Prize in
Physics 1933 for “discovery of new productive forms of atomic
theory”

All Together Now—Quantum
Superposition

In the previous chapter, we covered how to prod qubits from one idealized
state, such as | 1⟩ and | 0⟩, to another idealized state by applying logic operations
on them. In this chapter, we investigate gates that capitalize on quantum
effects to poke qubits into states that are a combination, or superposition, of
the | 1⟩ and | 0⟩ quantum states. In other words, we’ll extend the Qubelets
Model on page 20 to study ways to jab qubits and, more importantly for our
purposes, push them into other quantum states until we’re ready to collapse
them. Since these quantum superposition gates have no classical equivalents,
their behavior can’t be natively reproduced on classical computers. We’ll see
that this singular characteristic is one of the major drivers of designing
quantum algorithms that give us the ability to deal with the entire solution
space as a single unit. In later chapters, you’ll see that superposition forms
the basis for quantum programs that rapidly home in on the optimal solution
of computational problems with X-ray-vision–like precision.

We’ve seen how to perform logical operations with qubits. So we begin the
next phase of our study of quantum computing by covering how to put qubits
in a blended state that is a superposition of | 0⟩ and | 1⟩. Putting qubits in
superposition, as well as performing logic operations on them, is needed to
solve Boolean expressions.

By the end of this chapter, you’ll learn how to use superposition and the
central role it plays in dealing with “all solutions at once,” which makes
quantum computing appealing. You’ll also see that the collapse of qubits from
arbitrary quantum states is controllable, a key aspect for making quantum
computing reliable and practical.
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Operating on Qubelets
The quantum computing literature is replete with a litany of the same smat-
tering of algorithms expounded over and over again in the language of math-
ematics. Mathematics simplifies the tale but sometimes interferes with
developing an intuitive feel for the topic. So if you want to mature into an
accomplished quantum programmer and develop your own algorithms instead
of recycling canned routines, it’s worth spending time to strengthen your
grasp of quantum superposition.

We’ll work with the Qubelets Model on page 20 to help you visualize how
quantum gates operate on qubits and handle multiple quantum states
simultaneously. Building on this understanding of quantum computing, you’ll
get an intuitive feel for designing quantum algorithms for your own computa-
tional tasks.

With this model of qubits as a bundle of pentagon and triangle qubelets, we
can now talk about the different things that can happen to qubelets when a
qubit is acted on by quantum gates. The qubelets are, of course, imaginary.
So the actions on them by the gates aren’t real physical processes but fictional
mechanisms that nonetheless accurately predict how they act on qubits. I
know it may not be clear what these operations do; stick with me. Their pur-
pose will become apparent shortly.

Basic Operations
Specifically, the ways that quantum gates operate on a qubit’s qubelets include:

• Switching: A quantum gate can switch a qubelet of one type with another.
For example, in the | 0⟩ qubit, the pentagon | 0⟩ qubelet is replaced with a tri-
angle | 1⟩ qubelet, resulting in a | 1⟩ qubit, as shown in the following figure:

|0i Qubit

|0i|0i

|1i Qubit

|1i|1i
Quantum
Gate

This operation is a NOT operation but done on qubelets.

• Splitting or Replacing: A quantum gate can split or replace qubelets. For
example, a pentagon | 0⟩ qubelet can be split into two qubelets: a pentagon
| 0⟩ qubelet and a triangle | 1⟩ qubelet, as shown in the figure on page 79.
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The quantum gate acts on the | 0⟩ qubit, containing a single pentagon | 0⟩
qubelet, and modifies it to a qubelet containing a single pentagon | 0⟩ and
a single triangle | 1⟩ qubelet.

• Inverting: A quantum gate can invert qubelets of the same type. For
instance, the pentagon | 0⟩ qubelet on the left is turned upside-down, as
shown here:

Comparing it to a coin, this operation on a qubelet is akin to rotating the
coin face.

To show that a qubelet has been inverted, we’ll use a negative sign. Thus,
− |0⟩ is an inverted pentagon qubelet. If you measure this qubit, it’ll still
collapse to the 0 classical state.

• Operating on Inverted Qubelets: When a quantum gate operates on
inverted qubelets, the affected qubelets are given another half turn. For
example, consider a quantum gate that inverts triangle | 1⟩ qubelets:

If a quantum gate acts on this inverted triangle | 1⟩ qubelet, the qubelet
will be given a half turn, shown as follows:

After the quantum gate operates on the inverted qubelet, the qubelet is
put into the original non-inverted orientation.
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• Affecting only one type: It’s not necessary that a quantum gate operates
on the entire bundle of qubelets. It can modify only one type of qubelet,
for example, the pentagon | 0⟩ qubelets, and leave the other type, the tri-
angle | 1⟩ qubelets, unaffected:

The pentagon | 0⟩ qubelet is inverted, while the triangle | 1⟩ qubelet isn’t
touched.

• Canceling Qubelets: It’s possible that we can end up with a qubit in which
some qubelets of one type are inverted while others of the same type are
not. In this case, the inverted and non-inverted qubelets interfere—cancel
or erase each other out.

Interference

In quantum mechanics, the term interference is used to
describe phenomena where the intensities of particles such as
photons and electrons are neutralized, similar to the interfer-
ence pattern of colliding waves.1

In the following figure, the qubit on the left has two non-inverted pentagon
| 0⟩ qubelets, one non-inverted triangle | 1⟩ qubelet, and one inverted triangle
| 1⟩ qubelet:

The inverted and non-inverted triangle | 1⟩ qubelets cancel each other out,
leaving only the two pentagon | 0⟩ qubelets, as shown in the middle qubit.
Further, since the middle qubit can only collapse to | 0⟩, it’s equivalent to
a qubit with a single pentagon | 0⟩ qubelet, as shown in the right qubit.

1. https://en.wikipedia.org/wiki/Double-slit_experiment#Interference_of_individual_particles.
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Canceling Qubelets and Polarized Light

Polarization isn’t directly involved in quantum computing, but it illustrates canceling,
a central concept in quantum computing. Canceling isn’t setting a bit to 0. It’s
removing the bit completely from the computer, a notion that is alien to classical
computing—one can’t just get rid of registers. In quantum computing, however, since
a qubit holds multiple states, canceling or removing states is common. Nonetheless,
canceling is “unnatural” in computing, so a physical analogy may make it credible.

Canceling qubelets seems contrived: when thinking of a quantum state as a spinning
coin, what does it mean when we say that the tails face is canceled?

But this notion isn’t as far-fetched as it appears. Consider, for example, a beam of
light that’s made up of two polarized waves:

Think of this wave as made up of pentagon | 0⟩ qubelets and triangle | 1⟩ qubelets,
where the triangles outnumber the pentagons.

Now add the following vertically polarized wave that is shifted by half a wavelength
from that of the vertical polarized wave in the previous figure:

This wave is made up entirely of triangle | 1⟩ qubelets that are inverted.

The resulting combined beam of light would look like this:

The two vertical polarized waves now are directly opposite each other and, hence,
cancel each other out, leaving only the horizontal polarized wave:

The non-inverted triangle | 1⟩ qubelets from the first beam of light cancel with the
inverted triangle | 1⟩ qubelets from the second beam, giving a horizontally polarized
beam that’s effectively a quantum state made up of pentagon | 0⟩ qubelets.
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Compound Operations
In general, a particular quantum gate applies a specific combination of these
operations. So, for example, you could have a quantum gate that switches
and inverts qubelets as shown in the following figure:

|0i Qubit

|0i|0i

Qubit with Switched and Inverted Qubelet

|1i-|1iQuantum
Gate

This quantum gate replaces the pentagon | 0⟩ qubelet with a triangle | 1⟩ qubelet
and inverts it, as shown on the right in the previous figure. (If you measure
the right qubit, it would still collapse to the | 1⟩ idealized quantum state. The
inversion doesn’t affect the probability of picking the triangle | 1⟩ qubelet.)

This odd behavior of qubits isn’t invented by scientists. It’s apparently how
nature works—we’ve simply discovered the rules to explain quantum mechanical
phenomena and harness them to build the next generation of computers.

Quantum gates can apply other operations on qubelets—the rotations don’t
always have to be a half turn. We’ll get precise with these operations in
Chapter 6, Designer Genes—Custom Quantum States, on page 141. But for
now, we’re ready to see how quantum computers act on a qubit’s bundle of
qubelets to put the qubits in superposition.

Putting Qubits in Blended States
The Hadamard (H) gate puts qubits in blended states of | 0⟩ and | 1⟩. It’s the signa-
ture gate of quantum computing and forms the bedrock of quantum programs.
For me, it was one of the two quantum gates that brought home the terrific
potential of quantum computing. (The other is the Pauli-Z gate, which we’ll
cover in Chapter 5, Beam Me Up, Scotty—Quantum Tagging and Entangling,
on page 107.)

The H gate is fundamentally a qubelet splitter, which is the basic mechanism
to create blended qubits. For example, it takes a | 0⟩ qubit, which is essentially
a pentagon | 0⟩ qubelet, and splits it into another pentagon | 0⟩ and triangle | 1⟩
qubelet, as shown in the following figure:
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If you measure the blended qubit on the right, it’ll collapse to | 0⟩ roughly 50%
of the time and will flop to | 1⟩ the other times. You’ll never actually see the
qubit in a blended state.

The H gate is often the first quantum gate you declare in quantum programs.
It puts qubits in superposition so that other quantum gates can act on them
to modify their quantum states.

Joe asks:

Why Is It Called the Hadamard Gate?
The oddly named gate is a tribute to the French mathematician Jacques Hadamard, who
along with the German mathematician Issai Schur, is credited with formulating the tensor
product of matrices,a a specialized matrix multiplication technique that’s central to ana-
lyzing the superposition states in quantum circuits. We’ll get to see how this works in
Chapter 8, Giant Leap for Mankind—Multi-Qubit Programs, on page 227.

a. https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

H Gate on | 0⟩ Qubit
To see this gate in action, let’s build the following quantum circuit:

This circuit has only a single quantum register, q[0] initialized with a | 0⟩ qubit,
and a single-bit classical register, c[0]. The Measure gate collapses the quantum
state after the H gate acts on the qubit, and it records the corresponding
binary value that the qubit settles down to in the classical register c[0].

On the IBM Quantum Computer, you can simply drag the H gate from the
palette and place it on the wire representing q[0]. Then, drag the Measure gate
and record the value of the collapsed qubit in c[0].

The code listing, excluding the header, for this circuit is as follows:

H_Gate.qasm
qreg q[1];
creg c[1];

// Put q[0] in superposition
h q[0];➤

measure q[0] -> c[0];
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Declare the H gate, as shown on the highlighted line: the type of gate, in this
case, h, followed by the qubit, q[0], that it acts on.

When we execute this program, the q[0] qubit is put into a superposition by
the H gate. That is, it’s now a bundle of pentagon | 0⟩ and triangle | 1⟩ qubelets.
Thus, when this qubit is measured, it’ll randomly collapse to the | 0⟩ or | 1⟩
idealized states, which correspond to the 0 or 1 binary states, with equal
probability, as shown in the following output:

The output shows that the qubit, after its been operated on by the H gate,
collapses roughly half the time to | 0⟩ and about half the time to | 1⟩, which
are, in turn, recorded as 0 and 1 in the classical registers.

But what does the assertion “qubit collapses to | 1⟩ half the time” really mean?
To see what’s behind this claim, let’s rerun this program a little differently
than a standard execution.

When a quantum program is typically invoked, it’s rarely just run once. More
likely, the program is run repeatedly. For each run, or shot, the following
steps are executed:

• The qubits in the quantum register are operated upon by the quantum
gates as specified in the quantum program.

• The Measure gates inspect the qubits and record the corresponding binary
states in the classical register.

• The system keeps a running tally of the 1 and 0 values observed in the
classical register after each shot. At the end of the specified number of
runs, the system shows the number of times, as a percentage, a 1 or 0
was observed in each classical register element.

Let’s make this a little less abstract by investigating what happens when we
force our program to execute just once. To specify the number of times, or
shots, you want to execute your program, click the Run button and on the
dialog window that opens, specify the number of shots in the second drop-
down list as shown on page 85.
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Then run your code. The solitary qubit in this circuit can only collapse once
in a single run. So, you’ll only find it in either a 0 or 1 binary state in the
classical register at termination. Put another way, one of these two possibilities
will occur with 100% probability. In my case, the qubit collapsed to | 1⟩ with
the corresponding binary state 1, as shown in the following figure:

This single shot run confirms that the qubit still only collapses to one of the
two idealized quantum states—there’s no bizarre two-headed bit created. In
our subsequent quantum programs, we’ll always execute them several times
and keep count of the number of times each qubit collapses to | 0⟩ or | 1⟩ in
each run.
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H Gate on | 1⟩ Qubit
The H gate acts almost identically on the | 1⟩ qubit:

The blended qubit on the right still has an equal number of pentagon | 0⟩
qubelets and triangle | 1⟩ qubelets. But the triangle | 1⟩ qubelets are inverted
from those on the qubelets bundle after the H gate acted on a | 0⟩ qubit. We
label the quantum state on an inverted qubit with a negative sign. Thus, the
operation of the H gate on a | 1⟩ qubit is expressed as:

| 1⟩ ↦ |0⟩ and − |1⟩

When the qubit with the bundle of inverted triangle | 1⟩ qubelets is inspected, a
pentagon | 0⟩ or | 1⟩ qubelet will still be randomly picked with equal probability;
in other words, examining a | 1⟩ qubit immediately after it’s operated on by the
H gate will still be statistically equivalent had the H gate acted on a | 0⟩ qubit.

It seems that the behavior of the H gate is the same whether we feed it a | 0⟩
or a | 1⟩ qubit—the probabilities of recording a 0 or 1 in the classical register
are identical. But in quantum programming, we write quantum instructions
that modify the quantum states of qubits. That is, the program works with
qubelets, and it’s not till the end that we collapse the qubits and record the
corresponding binary states. So even though the H gate collapses the | 0⟩ and
| 1⟩ qubits identically, it affects the pentagon | 0⟩ qubelets and the triangle | 1⟩
qubelets differently. (This state of affairs is akin to what John Wanamaker,
a pioneering U.S. retailer, famously quipped: “Half the money I spend on
advertising is wasted; the trouble is I don’t know which half.”) We’ll have more
to say about these types of collapses in Chapter 6, Designer Genes—Custom
Quantum States, on page 141.

H Gate on | 1⟩ Qubit with an Inverted | 1⟩ Qubelet
The H gate can also act on a | 1⟩ qubit in which the triangle | 1⟩ qubelet is
inverted on the left qubit:

Chapter 4. All Together Now—Quantum Superposition • 86

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


As we saw earlier, when the H gate acts on a | 1⟩ qubit, an equal number of
pentagon | 0⟩ and triangle | 1⟩ qubelets are created, but the triangle qubelets
are inverted. But when a | 1⟩ qubit in which the triangle | 1⟩ qubelets are initially
inverted is acted on by the H gate, the H gate splits the qubelets: the pentagon
| 0⟩ qubelets stay in their initial orientation (inverted), but the triangle | 1⟩
qubelets are inverted from their initial orientation.

The chances of picking either a pentagon or triangle qubit is still roughly half,
and so the qubit will still collapse to either | 0⟩ or | 1⟩ with approximately equal
probability.

H Gate on | 0⟩ Qubit with Inverted | 0⟩ Qubelet
And, of course, a | 0⟩ qubit could be an inverted pentagon | 0⟩ qubelet, as shown
in the following figure:

Here again, when the H gate operates on the inverted pentagon | 0⟩ qubelet,
the qubelet is split into another pentagon | 0⟩ qubelet and triangle | 1⟩ qubelet,
but they’re inverted.

Summary of Basic H Gate Operations
At first, the operation of the H gate may seem confusing. But you only need
to keep in mind the following:

• The H gate is a qubelet splitter.

• When a triangle | 1⟩ qubelet is split, the resulting triangle | 1⟩ qubelet is
inverted while the pentagon | 0⟩ qubelet is not inverted.

• When an inverted qubelet is fed to the H gate, the operation of the H gate
is inverted—a non-inverted qubelet is inverted and an inverted qubelet is
non-inverted.

All this inverting and non-inverting of qubelets has no impact on the proba-
bility of which classical state is ultimately recorded in the classical register.
This randomness, though, isn’t yet helpful and, in practice, we don’t collapse
the qubit right away. In the next section, we’ll see that inverted qubelets give
a path to control the collapse of qubits and not have them flop about randomly.
You’ll learn to continue operating on the bundle of pentagon | 0⟩ and triangle
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| 1⟩ qubelets till they cough up something useful—essentially, we’ll tilt the
odds to favor specific classical states when the qubits collapse. First we need
to heighten our understanding of the superposition gates.

Back-to-Back H Gates: The First Hint of Taming Randomness
In the previous section, we saw the H gate operating on | 0⟩ and | 1⟩ qubits.
When we measure a qubit that’s just been fed to an H gate, though, all we
ever get is one of the two classical states. We never see inverted qubelets. We
can, however, indirectly confirm the existence of inverted qubelets in a qubit
by not inspecting it immediately but by passing it to other gates before col-
lapsing it.

So the next quantum circuit we’ll look at is hooking up two consecutive H
gates, as shown in the following figure:

Note that the second H gate acts on a blended qubit that’s been put in a
superposition of | 1⟩ and | 0⟩ by the first H gate.

Here’s the corresponding quantum program, excluding the header:

H_H_Measure.qasm
qreg q[1];
creg c[1];

// Back-to-back H gates
h q[0];
h q[0];

measure q[0] -> c[0];

We might be tempted to think that two coin tosses are just as random as a
single toss—the coin still lands heads or tails with equal probability—so the
collapse of the qubit after being operated on twice by the H gate should also
collapse to 1 with roughly the same likelihood as 0. But that isn’t the case.
The state of the collapsed qubit is shown in the figure on page 89.
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In every shot, the qubit consistently collapses to 0. We get the same behavior
whether we run one shot, 1,024, or a million. In each case, the second toss
counters the first and arrests the randomness so that, in effect, the coin
always lands showing the same face. This circuit is the first clue that the
collapse of a blended qubit isn’t always random but can be controlled.

You’ll see similar results on a real quantum computer, as shown in the follow-
ing figure:

In almost every case, the qubit returns to the original state of | 0⟩. Because
you’re running on a real quantum computer, expect tiny disturbances so that
in a small number of instances the qubit doesn’t get back to | 0⟩.

Why Back-to-Back H Gates are Neutralizers

Analyzing this quantum circuit with the Qubelets Model gives us a clearer
picture of what’s going on with the qubit when it’s consecutively operated on
by two H gates. The quantum circuit is initialized with a | 0⟩ qubit, which is
basically just a single pentagon | 0⟩ qubelet, as shown in the left qubit in this
figure:

The middle qubit is the result of the first H gate on the left acting on the | 0⟩
qubit. The H gate splits the pentagon | 0⟩ qubelet in the | 0⟩ qubit on the left
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into another pentagon | 0⟩ qubelet and a triangle | 1⟩ qubelet, as shown in the
middle qubit in the same figure.

This blended qubit in the middle is then operated on by the second H gate on
the right. This H gate splits the qubelets in the middle qubit as follows:

• The pentagon | 0⟩ qubelet is split into another pentagon | 0⟩ qubelet and a
triangle | 1⟩ qubelet.

• The triangle | 1⟩ qubelet is split into a pentagon | 0⟩ qubelet and an inverted
triangle | 1⟩ qubelet.

The two triangle | 1⟩ qubelets, one inverted and the other non-inverted, in the
right qubit in the figure cancel each other out, leaving two pentagon | 0⟩
qubelets, as shown in the middle qubit here:

And such a qubit is equivalent to one with a single pentagon | 0⟩ qubelet, as
shown on the right. In other words, a | 0⟩ qubit acted on by two back-to-back
H gates just returns to being a | 0⟩ qubit again. (In the exercises at the end of
this chapter, you’ll see that back-to-back H gates work identically on a | 1⟩
qubit.)

The sequence of steps outlined on the right qubit take place instantaneously.
There’s no time lag. And, more importantly, even though we’ve drawn these
transformations as happening after the gates, they really take place as the
gate is operating on the qubit.

So, although a single H gate acts like a coin toss, back-to-back H gates never
behave randomly. This decidedly oddball characteristic is a direct result of
selectively inverting only the triangle qubelets. In fact, if the H gate was just
like a fair coin toss, it wouldn’t be terribly interesting from an algorithmic
standpoint.

Back-to-back H gates by themselves, though, aren’t very useful—you end up
right where you started from. But, you learned how to analyze quantum cir-
cuits with the Qubelets Model. And it did demonstrate that randomness is
controllable: the “selective negation” which wipes out qubelets gives us levers
to collapse qubits in ways that solve Boolean logic expressions without having
to sequentially test every possibility. We’ll cover these techniques in Chapter
10, Quantum Search, on page 295, after we’ve investigated other ways to
handle qubits.
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Parallels with Quantum Mechanics

Thus far, we’ve talked about quantum mechanics concepts in the
abstract and have not talked about how it came about and its
motivations. So as to make quantum computing less science fiction
and to give you confidence in the Qubelets Model, we’ve described
experiments in Appendix 3, Quantum Mechanics with Qubelets,
on page 415, whose behavior you can analyze with qubelets. You’ll
also see that the H gate is a direct derivative of these phenomena.

Multi-Qubit Superposition: The Mega-Qubit
Controlling randomness is, without doubt, an essential ingredient for quantum
computing. But quantum computing offers an even more compelling case for
reinventing computing. It gives us a way to deal with the entire solution space
as a single unit. This may sound intimidating, but we’ll learn that to think
about the entire solution space at once, we must focus on the characteristics
a solution obeys rather than on the individual solutions themselves. So, before
designing quantum algorithms that find a solution to a system of Boolean
expressions, we need to first get comfortable with this shift in mindset.

Parallel H Gates
For our next exercise, we’ll deal with two qubits and learn how to grapple
with all-solutions-at-once. We’ll start with the following circuit with two qubits:

Here’s the code, excluding the header, for this circuit:

Parallel_H_Gates.qasm
qreg q[2];
creg c[2];

// Put qubits in superposition
h q[0];
h q[1];

measure q[0] -> c[0];
measure q[1] -> c[1];
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Each qubit is initialized to | 0⟩ and acted on by the H gate. This puts each qubit
in a superposition, as shown here:

If we feed these qubits to other gates, then those other gates will operate on
blended qubits. To put it another way, those gates will operate on the various
combinations formed by the qubelets in the top and bottom qubits. We repre-
sent these combinations of qubelets as a mega-qubit, as shown in the following
figure:

In each combination, or column, of qubelets in the mega-qubit on the right,
the top qubelet is from the top qubit, and the bottom qubelet from the bottom
qubit. The qubelets on the top represent the quantum state of the top qubit,
and those on the bottom represent the bottom qubit. Thus, each column is
a possible state of the qubits. In this case, the mega-qubit has four states:
⎹00⟩, ⎹01⟩, ⎹10⟩, and ⎹11⟩, where the first digit is the top qubit and the
second one is the bottom qubit.
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Mega-Qubit Is the Quantum State of System

The mega-qubit models the quantum state of the system. It’s an
aggregate of the entire set of qubelet columns, each of which rep-
resents a possible value of the qubits in the circuit.

The mega-qubits used to analyze the behavior of qubits, however,
are a mental device to help us analyze quantum circuits and write
programs that properly harness quantum behavior. They’re not
real, at least not in the traditional sense. No one really knows what
happens at the quantum level. So the mega-qubit serves as a
stand-in for subatomic phenomena that helps us arrive at results
that can be verified.

Even though we’ve drawn the mega-qubit holding four distinct combinations
or columns of qubelets, in reality they are all presented simultaneously to
the subsequent gates as blended qubits. The mega-qubit, in fact, represents
the state of the entire system and is the key to how quantum computers solve
problems. Thus, you may think of a quantum computer as a massively parallel
processor running on jet fuel.

When we run this circuit, after passing the top and bottom qubits to the H
gate, we measure them, thereby collapsing them. Measuring the qubits is
equivalent to first selecting a qubelet combination, or column, at random
from the mega-qubit and then recording the corresponding binary bits. So
we’ll see each of the four cases—00, 01, 10, and 11—roughly 25% of the time,
as shown here:

Note that as per the quantum circuit, we’re recording the collapsed state of
q[0] in c[0] of the classical register and that of q[1] in c[1]. Thus, in each string
of qubits at the bottom of the bars in the output, the left character corresponds
to the classical state that the qubit in q[1] collapses to, and the right character
is the binary state of the collapsed qubit in q[0].
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Operating on Mega-Qubits
To see how a quantum computer deals with a mega-qubit, consider the fol-
lowing quantum circuit:

The code for this circuit is the following:

CNOT_with_H_on_Control.qasm
qreg q[2];
creg c[2];

h q[0];
cx q[0],q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

After the top qubit is operated on by the H gate, the qubits will be in the quantum
states shown here:

This blended qubit is put into a superposition with the bottom | 0⟩ qubit: each
qubelet in the top qubit pairs up with the single pentagon | 0⟩ qubelet in the
bottom qubit to form the following mega-qubit:
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The top qubelets in each column are associated with the q[0] qubit, and the
bottom qubelets are associated with the q[1] qubit.

When this mega-qubit is operated on by the CNOT gate, all the qubelet combi-
nations are simultaneously operated on by the CNOT gate. Even though all the
qubelet combinations are acted on all at once, to work out what the new
mega-qubit would look like, we apply the CNOT gate individually on each qubelet
combination. As we saw in Controlled NOT (CNOT) Gate, on page 47, the CNOT
gate leaves ⎹00⟩ as is but changes ⎹10⟩ to ⎹11⟩. Thus, the mega-qubit after
applying the CNOT gate is shown here:

If we now measure the control and target qubits, one of the two qubelet
combinations in the mega-qubit would be randomly selected with equal
probability. Thus, we would see the states 00 or 11 roughly equally. Specifically,
the output of the program is shown in the following figure:

Taming the Mega-Qubit Explosion: A Sneak Peek
While the mega-qubit model gives us a way to think about quantum superpo-
sition, it introduces a significant challenge: with two qubits, we get four pairs
of qubelet combinations or columns; with three qubits, we get eight combina-
tions; and with n qubits we get 2n combinations. For large problems, this sit-
uation rapidly becomes unmanageable when designing quantum programs.
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The hardware won’t break a sweat, but writing and thinking about code in
the classical way becomes impractical.

Quantum programming takes a different approach. Instead of focusing on writing
software that steers each combination through the program individually, in
quantum programming our objective will be to identify the characteristics of a
solution and then configure gates to cull the quantum states that don’t play a
role in solving the computational task. We won’t know what the optimal solution
is to a computational task when we write the code, we will know that the Boolean
constraints have to be met. Specifically, we’ll see how the Z gate, which we study
in Chapter 5, Beam Me Up, Scotty—Quantum Tagging and Entangling, on page
107, inverts qubelets to cancel out the unwanted states. We’ll get into the details
later, but I wanted to give you at least a glimpse of the path forward. Next we’ll
review how to put the qubits in a quantum circuit into superposition.

Triggering Superposition in Practical Quantum Circuits
In practical quantum circuits such as those for solving a system of Boolean
equations, we have qubits that represent the system’s variables, the primary
or independent qubits, and those that are the “working,” orsecondary qubits.
For example, in the quantum circuit that represents the schedule of performers
in the Bellagio Constraints, only qubits q[0] and q[2] represent the performer’s
schedule; the others are working or intermediate qubits required to correctly
model the constraints in the quantum circuit, as shown here:
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Thus, we only need to place the primary qubits q[0] and q[2] into blended
states. The others, the secondary or dependent qubits, get driven into blended
states by the gates that operate on them. The modified circuit showing the H
gates acting on the q[0] and q[2] qubits is shown in the following figure:

The pentagon | 0⟩ and triangle | 1⟩ qubelets from each primary qubit join
together to form the qubelet combinations in the mega-qubit. Since there are
only two primary qubits, q[0] and q[2], there’ll be 22 or 4 independent qubelet
combinations in the mega-qubit. Each qubelet combination will hold a possible
quantum state of all the qubits. In particular, the mega-qubit after q[0] and
q[2] have been operated on by the H gates looks like this:
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Each column of qubelets corresponds to a possible combination of qubits.
The qubelet in the top cell is in q[0], the qubelet in the second from top cell
is in q[1], and so on to the qubelet in the bottom cell in q[6]. So, the second
column, for example, is the quantum state ⎹0010000⟩.

After the qubelet combinations in the mega-qubit are operated on by the gates
that model the Bellagio Constraints, but before the qubit q[6] is measured, is
shown here:

In each column of qubelets, the primary qubelets are in the first and third
cells representing q[0] and q[2], respectively. The qubelets in the other cells of
each column are determined by the gates operating on the various qubits.
The qubelets corresponding to the primary qubits, q[0] and q[2], are shown in
solid outlines on the first and third rows, respectively, while the others are
dotted. Note that although we only applied the H gate to the qubits in q[0] and
q[2], all the qubits are forced into blended states.

For example, the gates in the top left of the Bellagio Constraints circuit perform
a FAN-OUT operation on the q[0] and q[1] qubits, representing the quantum
states |k⟩ and | k‾⟩, respectively. Thus, when the top cell of column 1, the left-
most, holds a pentagon | 0⟩ qubelet, the qubelet in the second cell of the same
column will be a triangle | 1⟩. And, since its state is based on the qubelet in
the top cell, the triangle is dotted. Likewise, the qubelets in the other cells
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are determined by tracing how the quantum gates affect them, as listed in
this table:

Column 4Column 3Column 2Column 1Qubit

| 1⟩|1⟩|0⟩|0⟩q[0]|k⟩
|0⟩|0⟩|1⟩|1⟩q[1]| k‾⟩
|1⟩|0⟩|1⟩|0⟩q[2]|m⟩
|0⟩|1⟩|0⟩|1⟩q[3]|m‾⟩
|0⟩|1⟩|1⟩|1⟩q[4]| k‾⟩ ∨ |m‾⟩
|1⟩|1⟩|1⟩|0⟩q[5]|k⟩ ∨ |m⟩
|0⟩|1⟩|1⟩|0⟩q[6]( | k‾⟩ ∨ |m‾⟩ ) ∧ ( |k⟩ ∨ |m⟩ )

Note that the quantum states | 0⟩ and | 1⟩ shown in this table represent the
pentagon and triangle qubelets and not the quantum states of the qubits
themselves. The quantum state of a qubit is obtained by reading across a row
in the table or the mega-qubit shown in the previous figure. So, the quantum
state of the q[0] qubit, representing the |k⟩ variable, is obtained by reading
across the first row: | 0011⟩.

If you run this circuit over multiple shots, the qubits won’t collapse to a single
quantum state like they did in Chapter 3, Elementary, My Dear Watson—Quan-
tum Logic, on page 41. Since we’re measuring blended qubits, the mega-qubit
resolves to one of the columns at random, and the qubits that have the Measure
gates, q[0], q[2], and q[6], are collapsed. For each selected column, the classical
registers will record the binary states corresponding to the qubelets in rows
1, 3, and 7 corresponding to qubits q[0], q[2], and q[6], of the mega-qubit. These
collapsed states are listed in this table:

Column 4Column 3Column 2Column 1Classical Register

1100q[0] ↦ c[1]
1010q[2] ↦ c[2]
0110q[6] ↦ c[0]

Since each classical state is reported as a concatenated string c[2]c[1]c[0], when
you run this program, you’ll see four bars in the output corresponding to the
four columns in the mega-qubit. By reading from bottom to top for each col-
umn in the above table, you’ll get the four states: 000, 110, 101, and 011, all
appearing with equal probability, as shown in the figure on page 100.

Without having to explicitly write for-loops, we got our quantum program to
cycle through all combinations for the system of Boolean expressions. We’re
ultimately only interested in those states in which c[0] is 1 since those
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correspond to solutions when the Bellagio Constraints are satisfied—that is,
the states 011 and 101. At the moment, the combinations that correctly solve
the system of Boolean expressions, however, are indistinguishable from the
others.

In the next chapter, Chapter 5, Beam Me Up, Scotty—Quantum Tagging and
Entangling, on page 107, we turn our attention to the matter of plucking the
optimal solution while discarding the unwanted ones. Specifically, you’ll learn
about gates that identify the states that satisfy the Boolean expressions and
knock out states that give incorrect solutions. We’ll see in Chapter 10,
Quantum Search, on page 295, that the mega-qubits don’t adversely impact
runtime performance, especially as the number of variables increases.

Bottom Line
Dealing with the entire gamut of possible solutions to a system of Boolean
expressions simultaneously in quantum computers has no parallel in conven-
tional processors. The ability of quantum computers to pull off this feat hinges
on qubits holding blended quantum states, which we model with pentagon
| 0⟩ and triangle | 1⟩ qubelets.

Although the qubelets are imaginary subatomic particles, they give us a
familiar way to accurately account for the quantum mechanical principles
and correctly predict the outcome of quantum instructions or gates on
quantum bits. Specifically, the operations on page 78 that modify the qubelets
in a qubit’s quantum state by a quantum gate include:

• Switching qubelets from one type to another as in from, say, pentagon | 0⟩
to triangle | 1⟩ qubelets.

• Splitting or Replacing qubelets into another set of qubelets. For example,
a pentagon | 0⟩ qubelet is replaced by a set consisting of a pentagon | 0⟩
and a triangle | 1⟩ qubelet:
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– The splitting operation done by the H Gate on page 82 is fundamental to
quantum computing, it’s key to triggering qubits holding multiple states.

• Inverting qubelets by giving them a half turn:

– Inverted qubelets play a grand role in quantum computing since they
can pair up with non-inverted qubelets of the same type and cancel
each other out. That is, the canceled pair of qubelets is removed from
the quantum state.

The terrific potential of quantum computers manifests not with individual
qubits holding multiple qubelets but when all the qubits come together to
form the mega-qubit, as we saw in Mega-Qubit on page 91. The qubelets from
different qubits pair up within the quantum hardware to form columns of
qubelets that represent all possible solutions to the computational problem.
The mega-qubit is then fed as a single monolithic unit to the subsequent
gates in the quantum circuit. The quantum gates don’t cycle through these
combinations one by one but act on all the states in the mega-qubit at once—a
characteristic that can’t be replicated on classical computers.

As we saw with the quantum program for the Bellagio Constraints on page
96, even though the mega-qubit contains the optimal solution, it’s indistin-
guishable from the other solutions that don’t satisfy the Boolean constraints.
In the next chapter, you’ll learn about quantum gates that identify the optimal
state. We’ll also study entanglement, which is another quantum phenomenon
that forms the bedrock of quantum cryptography and other applications.

Try Your Hand
Solutions to these exercises are given in Quantum Superposition Solutions,
on page 434.

These exercises demonstrate that by judiciously wiring up quantum gates,
it’s possible to orchestrate the collapse of qubits and that they don’t just
gyrate uncontrollably.

For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

1. The NOT gate operates on a | 0⟩ qubit as shown in this quantum circuit:

Show the operation of the NOT gate in terms of qubelets.
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2. An inverted triangle | 1⟩ qubelet is operated on by a NOT gate:

a. How is this qubelet affected by the NOT gate?
b. If you measure the qubit after it’s operated on by the NOT gate, what

binary state would be logged in the classical register?

3. Draw the qubelets for the | 0⟩ qubit after it’s been operated on by the
H and X gates, as shown in the following quantum circuit:

a.

b. Compare the qubelets against the following quantum circuit:

c. If you measure the qubit after it’s been operated on by both gates in
the previous circuits, would you notice any statistical difference in
the output?

4. Simplify the following qubits.

a.

b.

5. Consider the following quantum state of a qubit:

Compare the likelihoods of the qubit collapsing to | 0⟩ versus | 1⟩.
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6. Describe the quantum operations, if any, you can apply to convert the
quantum state of the qubit on the left to the quantum state on the right
in the following figure:

Hint: Consider the quantum operations such as switching and inverting
qubelets listed in Basic Operations, on page 78. (In Quantum Circuit
Synthesis, or Guess the Gate,  on page 246, you’ll learn to design the
quantum circuit that implements the quantum operations taking the
quantum state on the left qubit to the one on the right.)

7. Draw a quantum circuit and write the quantum program that simu-
lates a coin toss on the real IBM computer.

a.

b. How many shots would you specify for this program?

8. In the following circuit, back-to-back H gates are applied to a | 1⟩ qubit.
Using qubelet diagrams, what is the quantum state of the qubit after it’s
operated on by both H gates?

9. Consider the following quantum circuit with three back-to-back H gates,
shown as follows:

a. Draw the qubelets in the qubit after it’s been acted upon by all three
gates.

b. Write the quantum program for this circuit.

c. Execute this program and examine the output. What strikes you?
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10. When writing quantum programs, it’s crucial that you understand how
to transform quantum states to ones that increase the likelihood of col-
lapsing to states that solve your computational task. For example, what
quantum gates should be performed on the qubit on the left to take it to
the state on the right in the following quantum circuit:

That is, the quantum gates should remove the inverted pentagon | 0⟩
qubelet from the quantum state.

11. Consider a gate that operates as follows:

• Doesn’t affect the pentagon | 0⟩ qubelets.
• Inverts the triangle | 1⟩ qubelets.

How will this gate transform the following qubit:

12. The following mega-qubit is the result of being operated on by quantum
gates. If you measure the qubits making up the mega-qubit, which clas-
sical state is it most likely to be recorded as in the classical register?

13. Draw the mega-qubit for the following quantum circuit shown on page 105.
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14. Consider the following quantum circuit:

a. Draw the mega-qubit before it’s fed to the CNOT gate.

b. Draw the mega-qubit after it’s operated on by the CNOT gate.

c. List the states, and their probabilities, that are recorded in the classi-
cal register when the mega-qubit collapses.

d. If you just measure the bottom qubit and it happens to be 0, what
can you say about the top qubit?

e. Write a quantum program for this circuit and compare the output
with the mega-qubit you drew earlier.

15. Consider the quantum circuit that models the Aladdin Constraints as
outlined in Logic Expressions to Quantum Circuit, on page 62.

a. Where would you place the H gates?
b. Run the quantum program. What can you say about the states shown

in the output?

16. Draw the quantum circuit corresponding to the code listing shown here:

h q[1];
h q[0];
x q[0];
ccx q[0],q[1],q[2];
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CHAPTER 5

[Quantum entanglement] is the characteristic trait of quantum
mechanics, the one that enforces its departure from classical lines
of thought.

  ➤  Erwin Schrödinger, jointly awarded the Nobel Prize in
Physics 1933 for “discovery of new productive forms of
atomic theory”

Beam Me Up, Scotty—Quantum Tagging
and Entangling

The ability of quantum gates to act on the entire solution space at once offers
a spectacular way to tackle some of today’s most complex problems. But for
quantum computing to live up to its billing, we need a way to tease out the
optimal solution efficiently, as opposed to grinding through all the possible
solutions as a classical computer would do.

In this chapter, you’ll see that the mega-qubit isn’t just a nifty bookkeeping
device to track how gates affect all possible states at the same time. It
underpins a central tenet of quantum mechanics that makes a quantum
computer not just another hyper-fast computer but one that solves problems
in ways that can’t be duplicated on classical computers. With the mega-qubit,
you’ll learn new ways to cancel qubelets and command qubits to quantum
states in a controlled and disciplined manner. We’ll also see that the under-
lying quantum physics requires us to design our quantum circuits in a spe-
cific way, otherwise the qubits get “locked” in suboptimal quantum states
and can’t be freely manipulated. By the end of this chapter, you’ll understand
the core premise of quantum computing and glimpse the levers that collapse
qubits to the optimal solution.

Tagging the Optimal Solution
To pull out an optimal solution we must first learn to identify it even though
we may not yet know what it is. This stipulation isn’t as strange as it
sounds—we already know a few things about an optimal solution:

• It satisfies the Boolean expressions, or the constraints, that represent
your computational task.

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


• The mega-qubit holds all the qubelet combinations, including the one
corresponding to an optimal solution.

We can use these facts to understand how to recognize an optimal solution
in the mega-qubit. Consider again the Bellagio Constraints from Logic
Expressions to Quantum Circuit, on page 62, as shown here:

The quantum logic gates shown in the figure model the Boolean expressions
for a workable schedule, one in which the talk show hosts slotted at the Bel-
lagio won’t violate any of the performers’ requirements for the days they can
perform. For example, consider the CCNOT gate that straddles the qubits in
quantum registers q[0], q[2], and q[5] that’s enclosed by the dotted box second
from the right. This gate models the constraint k ∨ m. Recall from Writing a
System of Boolean Logic Expressions, on page 8, that this Boolean expression
enforces the restriction that either Kimmel or Maher perform at the Bellagio
on Day 1. Likewise, the CCNOT gate in the middle requires either one of them
to appear at the Bellagio on Day 2.

If the quantum states at the controls of these CCNOT gates meet the constraints,
then their respective target bits are | 1⟩, indicating that the corresponding
constraint is met. These targets then form the control bits of the final CCNOT
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gate shown on the extreme right. If both its controls are | 1⟩, indicating that
both the constraints for the performers on both days are met, then its target
in q[6] is | 1⟩. Thus, a qubelet combination representing a valid lineup drives
the qubelet in the quantum register q[6] to a | 1⟩.

This setup immediately points the way toward an approach: we need a gate
that detects those qubelet combinations where there’s a triangle | 1⟩ qubelet
in the cell representing q[6], the qubit that signals whether all constraints are
met. We study such a gate next.

Pauli-Z (Z) Gate
In quantum computing, the Pauli-Z, or Z, gate operates like this:

As seen in the figure, the triangle | 1⟩ qubelet is inverted but the pentagon | 0⟩
qubelets aren’t affected. On the other hand, if the triangle | 1⟩ qubelet is
inverted, the Z gate would put it in a non-inverted orientation, as shown here:

In both cases, the triangle | 1⟩ qubelet is inverted from its original orientation,
while the pentagon | 0⟩ qubelet is left alone.

Unlike the X and H gates, which operate on both the pentagon | 0⟩ and triangle
| 1⟩ qubelets, the Z gate operates on the triangle | 1⟩ qubelets only. This ability
to act on only one type of qubelet gives an additional degree of precision to
pare non-optimal solutions from the quantum states held in superposition
by the qubits.

Controlled Z (CZ) Gate
Just as the CNOT gate applied the NOT operation on the target qubit if the control
qubit is | 1⟩, the Controlled Z or CZ gate inverts the triangle | 1⟩ qubelet on the target
qubit when the control qubit is | 1⟩, as shown in the figure on page 110.
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We can write this operation as follows:

Control
Target

|1⟩
|1⟩ ↦

CZ | 1⟩
− |1⟩

By concatenating the control and target qubits, you can express this mapping
more succinctly:

| 11⟩ ↦ − |11⟩

Even though only the qubelet on the target qubit has been inverted by the CZ
gate, the negative sign on the right of the mapping doesn’t indicate which
qubit’s qubelets are inverted. The reason we don’t need to know which qubelet
is inverted is that when these qubits pair up to form a mega-qubit, we look
at the combination as a unit.

On the other hand, if the target qubit is | 0⟩ with a pentagon | 0⟩ qubelet, the
CZ gate doesn’t do anything, as shown here:
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In this case, although the control qubit is | 1⟩, the CZ gate doesn’t affect the
target qubit, which continues to be | 0⟩. That is, when the control bit is | 1⟩,
the CZ gate acts like a Z gate.

As with the CNOT and CCNOT gates, when the control qubit is | 0⟩, the CZ also
doesn’t affect the target qubit.

Algebraic Logic of CZ Gate

Like we did with the CNOT and CCNOT gates, we can write a truth table for the
CZ gate as follows:

Target1Control1Target0Control0

| 0⟩|0⟩|0⟩|0⟩
|1⟩|0⟩|1⟩|0⟩
|0⟩|1⟩|0⟩|1⟩
-| 1⟩|1⟩|1⟩|1⟩

Control0 and Target0 are the two qubit values before the application of the CZ
gate, and Control1 and Target1 are the values after. So it’s only in the single
case, when both the control and target qubits are | 1⟩, that the CZ gate modifies
the target qubit.

Later, in Using the Controlled Z Gate in Practice, on page 117, we’ll see how
this basic operation of the CZ gate extends to mega-qubits that are a superpo-
sition of multiple qubits.

Realizing a Controlled Z Gate

The Controlled Z (CZ) gate plays a marquee role in quantum programs. Although
it’s on the palette and you can drag and drop it on the Composer, it’s
instructive to see how it’s built up from CNOT and H gates. You’ll see that even
though the H gate splits qubelets, they neatly cancel out so that only the tri-
angle | 1⟩ qubelet is inverted when the control qubit is | 1⟩.

The CZ gate is a composite gate constructed from the CNOT and H gates, as
shown in the following figure:
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It’s not immediately apparent why placing an H gate on the target qubit before
and after the CNOT gate operates on the qubit would result in a gate that inverts
only the | 1⟩ qubit on the target when there’s a | 1⟩ on the control qubit, while
leaving every other combination of | 1⟩ and | 0⟩ alone. So we’ll walk through
this circuit in a fair amount of detail to see how it reproduces the behavior
of a Controlled Z gate. This analysis will reinforce how quantum gates work with
qubits in superposition. With a bit of practice, you’ll find that many of the
steps will become second nature and you’ll do them in your head. In Chapter
7, Small Step for Man—Single Qubit Programs, on page 173, we’ll cover tech-
niques to perform this analysis rapidly. But, it’s instructive to see how the
qubits, and their qubelets, are progressively modified as different gates act
upon them. This helps remove the magic and mystery when we apply the
mathematical techniques later.

Control and Target Qubits Are | 1⟩
We’ll first analyze the case when both the control and target qubits are | 1⟩,
as shown in this circuit:

(In practice, to obtain a | 1⟩ qubit, you would apply a NOT or X gate to a | 0⟩
qubit. We’ll assume that’s been done in the following analysis.)

We start by evaluating the portion of the quantum circuit shown within the
dotted box in the figure:

As discussed in Putting Qubits in Blended States, on page 82, the H gate splits
the bottom | 1⟩ qubit, the target, into a pentagon | 0⟩ qubelet and an inverted
triangle | 1⟩ qubelet, while the control qubit on top, q[0], is unaffected, as shown
in the figure on page 113.
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Next, the single triangle | 1⟩ qubelet on the top qubit pairs up with the pentagon
| 0⟩ and the inverted triangle | 1⟩ qubelets of the bottom qubit, forming a mega-
qubit. Since the mega-qubit forms instantaneously on actual quantum
hardware, we combine the steps and directly draw the mega-qubit as shown
in the following figure:

We now evaluate the CNOT gate, shown within the dotted box:

The CNOT gate operates on each qubelet combination simultaneously in the
mega-qubit on the left to form the one on the right, as shown in the figure on
page 114.
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Since the top qubelet in each qubelet column on the left mega-qubit is a tri-
angle | 1⟩ qubelet, the bottom qubelets are switched by the CNOT gate. That is,
a pentagon | 0⟩ qubelet is replaced with a triangle | 1⟩ qubelet, and vice versa.

Finally, we look at the quantum circuit with the H gate within the dotted box:

The bottom qubelets in the mega-qubit after they’re operated on by the CNOT
gate, shown in the previous figure, are fed to an H gate. This H gate splits the
bottom qubelets, as shown here:

Recall from Putting Qubits in Blended States, on page 82, that the H gate
splits a triangle | 1⟩ qubelet into a pentagon | 0⟩ qubelet and an inverted triangle
| 1⟩ qubelet. And it splits an inverted pentagon | 0⟩ qubelet into an inverted
pentagon | 0⟩ and an inverted triangle | 1⟩ qubelet. That is, a | 0⟩ qubelet is split
without any inversions.

Next, in each qubelets column, the top two qubelets team up with the bottom
two qubelets to form four qubelet combinations or columns in the right mega-
qubit, as shown in the figure on page 115.
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We’ll write the quantum state of each pair as a concatenated string of the
qubelet in q[0], the top qubit, followed by the qubelet in q[1], the bottom qubit.
The qubelet pair in the first column on the mega-qubit on the right, − |10⟩,
cancels with the qubelet pair in the third column, | 10⟩, leaving only the qubelet
pairs in the second and fourth columns, as shown here:

Since these two qubelet pairs are identical, the probability of picking any pair
is the same as having just a single pair of qubelets. That is, the mega-qubit
will only hold this combination, − |11⟩, as shown in the next figure:
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Putting the entire sequence of qubelets and mega-qubits together, we see that
the target | 1⟩ qubit is inverted when the control and target qubits are each | 1⟩:

Although we end up with a single qubelet combination, each application of
the H gate doubles the number of qubelet combinations in the mega-qubit.
Classical computers would buckle under such an onslaught of bits. But,
quantum computers can handle this strain. Moreover, the inversions of
qubelets leads to combinations that cancel out, a concept that doesn’t exist
in classical computers.

Control Qubit Is | 0⟩
When the control qubit is | 0⟩, the CNOT gate doesn’t modify the qubits. Thus,
the circuit is effectively as shown here:

The target qubit is acted upon by two back-to-back H gates. As we saw in
Back-to-Back H Gates: The First Hint of Taming Randomness, on page 88, a
sequence of two H gates leaves the qubit in its original state. Thus, when the
control qubit is | 0⟩, the target qubit ⎹q⟩ remains as is. So, qubit pair ⎹00⟩ will
still be ⎹00⟩ after being operated on by this quantum circuit. Likewise, the
qubit pair ⎹01⟩ will also continue to be ⎹01⟩.

The remaining case, when the control qubit is | 1⟩ and the target qubit is | 0⟩, can
be analyzed in a similar manner. You’ll see that the CZ gate doesn’t modify the
target qubit. That is, ⎹10⟩ continues to be ⎹10⟩ after operation by this gate.

For all the cases, then, this circuit correctly reproduces the behavior of the
CZ gate. Thus, a Controlled Z gate can be realized by placing an H gate on the
target qubit before and after the CNOT gate.
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IBM Quantum Computer Has a Built-In CZ Gate

In your programs, you can directly use the built-in CZ gate. In the
palette, this gate is shown in the following figure.

You can also declare it like this:

cz q[0],q[1];
The qubit q[0] is the CZ gate’s control and q[1] its target.

Using the Controlled Z Gate in Practice

To see how the CZ gate is used in practice, we’ll again work with the quantum
circuit that models the Bellagio Constraints. As in Triggering Superposition
in Practical Quantum Circuits, on page 96, we first have the H gates operate
on the q[0] and q[2] qubits to put them in blended states, as shown here:

The q[0] and q[2] qubits each have an equal number of pentagon | 0⟩ and triangle
| 1⟩ qubelets. So, the mega-qubit fed to the Bellagio Constraints will be a
superposition of quantum states that holds all possible combinations of the
quantum states, |k⟩ and |m⟩, representing the schedules of Kimmel and Maher,
including the optimal state.

In addition, we’ve declared another qubit, q[7] at the bottom of the quantum
circuit. This qubit is the target qubit of the CZ gate, shown within the dotted
box in the bottom right of the circuit. Its control is the q[6] qubit, which is | 1⟩
if all the Bellagio Constraints are met. Its target, the q[7] qubit, is clamped at
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| 1⟩ by first connecting it to a NOT or X gate. The reason for fixing the CZ gate’s
target to | 1⟩ will become clear in a moment.

The mega-qubit for this circuit will have columns containing eight cells with the
top cell containing the qubelet for q[0], and so on to the bottom cell, which holds
the qubelet for q[7]. Thus, the mega-qubit, after it’s operated on by the Bellagio
Constraints but before the q[7] qubit is fed to the CZ gate, is shown here:

The top six cells in each qubelet column are identical to those shown in
Triggering Superposition in Practical Quantum Circuits, on page 96. The
additional qubelet cell in each column at the bottom corresponds to q[7]. Since
q[7] hasn’t been acted upon by any gate other than the X gate, the bottom cell
in every column will be a triangle | 1⟩ qubelet. (Because the q[7] qubit isn’t
affected by the gates for the Bellagio Constraints, the qubelets don’t have a
dotted outline like the secondary qubelets.)
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When q[7] is fed to the CZ gate, the CZ gate inverts the triangle | 1⟩ qubelet in
the q[7] qubit’s cell when the qubelet in the cell associated with q[6], its control,
is a triangle | 1⟩ qubelet, as shown here:

The bottom cells in the second and third columns are inverted triangle | 1⟩
qubelets as these columns have a triangle | 1⟩ qubelet in the cell in the second
to last row, corresponding to the q[6] qubit. These columns with inverted tri-
angle | 1⟩ qubelets indicate that these quantum states meet the Bellagio Con-
straints. So, we’ve identified the qubelet combinations that satisfy the Boolean
constraints.

Even though we’ve tagged those columns that represent quantum states that
fit the Bellagio Constraints, we haven’t yet tipped the scales to favor those
columns. So, if you run this quantum program and measure the states of
q[0], q[2], the variables that represent the schedule of the two performers
modeled in this circuit, as well as the qubit in q[6] that indicates whether the
schedule is valid, the output will show all four quantum states in the mega-
qubit occurring with the same probability.
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By using the CZ gate, we’ve tagged or marked those quantum states that
satisfy the Boolean expressions represented by the quantum circuit. But
before seeing how to collapse the mega-qubit to these tagged states, we have
to take care of some side effects peculiar to quantum computing.

Entangling Qubits
When programming with traditional languages, you can safely ignore the
underlying digital electronics. But with quantum computing, the quantum
mechanical principles are always lurking around. In fact, quantum superpo-
sition comes with its own unique by-products that entangle or force qubits
to depend on each other. Qubit states are, of course, coordinated by the
quantum gates that operate on them. That is, their states are determined by
the sequence of gates that act on them, just as in classical computers. But,
entanglement ties the qubits in a deeper way that has more to do with
quantum mechanics than Boolean logic. If these bindings aren’t properly
accounted for in our programs, this oddity can interfere with collapsing the
mega-qubit into the tagged states that solve the computational problem. In
this section, we’ll learn techniques to counter these effects.

Entanglement plays a central role in quantum mechanics as well as in several
applications in quantum computing. We’ll study this topic by going through
detailed and complete steps so you gain a solid intuitive feel for this concept.

Intuition Behind Entanglement
To understand this uniquely quantum mechanical phenomenon, let’s work
with the following quantum circuit:

Here’s the code for this circuit:

h q[0];
cx q[0],q[1];

Before running this circuit on the IBM Quantum Computer, we’ll first analyze
it in our minds. We’ll follow the same approach we’ve been doing but mentally
reason out many of the steps that reorganize and tweak the qubelets. The
exercise will help boost our intuition for working with quantum circuits.

Both the top and bottom qubits, q[0] and q[1], are | 0⟩. So each essentially
contains a pentagon | 0⟩ qubelet. The H gate splits the pentagon | 0⟩ qubelet in

Chapter 5. Beam Me Up, Scotty—Quantum Tagging and Entangling  • 120

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


the top qubit so that it now has a pentagon | 0⟩ qubelet and a triangle | 1⟩
qubelet. These pair up with the pentagon | 0⟩ qubelet in the bottom qubit to
form a mega-qubit with two qubelet pairs, as shown on the left mega-qubit
in the figure:

Writing each pair as a concatenated string as before, the qubelet combination in
the left column in the mega-qubit on the left is ⎹00⟩ and the right column is ⎹10⟩.

Next, the CNOT gate operates on each pair of qubelets in the left mega-qubit.
The top qubelet in each pair is fed to the CNOT gate’s control and the bottom
qubelet is passed to its target. Since the left pair has a pentagon | 0⟩ on the
top, it won’t be affected by the CNOT gate. The right pair, however, has a triangle
| 1⟩ qubelet. Thus, the CNOT gate will switch its bottom qubelet from a pentagon
| 0⟩ qubelet to a triangle | 1⟩ qubelet. As a result, the mega-qubit on the right,
after the CNOT gate has operated on it, will have two pairs: one will be in the
state ⎹00⟩ and the other will be ⎹11⟩, as shown on the right mega-qubit in
the previous figure. We can write this operation of the entire circuit as:

| 00⟩ ↦ { | 00⟩|11⟩

Continuing this train of thought, we can figure out the quantum states when
other combinations of | 1⟩s and | 0⟩s are applied to the q[0] and q[1] qubits of
this quantum circuit. Specifically,

q[0] = |0⟩ and q[1] = |1⟩
When q[0] is | 0⟩ and q[1] is | 1⟩, the top | 0⟩ qubit is split by the H gate into
a pentagon | 0⟩ qubelet and a triangle | 1⟩ qubelet. These pair up with the
| 1⟩ qubit’s triangle | 1⟩ qubelet on the bottom to form the mega-qubit shown
on the left in the figure on page 122.
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The mega-qubit after the CNOT gate is shown on the right. The first column
in the right mega-qubit is ⎹01⟩ and the second is ⎹10⟩.

The operation of this circuit is expressed as:

| 01⟩ ↦ { | 01⟩|10⟩

q[0] = |1⟩ and q[1] = |0⟩
When q[0] is | 1⟩ and q[1] is | 0⟩, the top | 1⟩ qubit is split by the H gate into
a pentagon | 0⟩ qubelet and an inverted triangle | 1⟩ qubelet. These pair up
with the | 0⟩ qubit’s pentagon | 0⟩ qubelet on the bottom to form the mega-
qubit as shown on the left in the figure:

The mega-qubit after the CNOT gate is shown on the right. The first column
on the right mega-qubit is | 00⟩ and the second is − |11⟩. The negative sign on
the second pair is due to the inverted triangle | 1⟩ qubelet in the top cell.

The operation of this circuit is expressed as:

| 10⟩ ↦ { | 00⟩
− |11⟩
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q[0] = |1⟩ and q[1] = |1⟩
When q[0] is | 1⟩ and q[1] is | 1⟩, the top qubit is split by the H gate into a
pentagon | 0⟩ qubelet and an inverted triangle | 1⟩ qubelet. These pair up
with the | 1⟩ qubit’s triangle | 1⟩ qubelet on the bottom to form the mega-
qubit as shown on the left in the following figure:

The mega-qubit after the CNOT gate is shown on the right. The first column
on the right mega-qubit is | 01⟩ and the second is − |10⟩. The negative sign
on the second pair is due to the inverted triangle | 1⟩ qubelet in the top cell.

The operation of this circuit is expressed as:

| 11⟩ ↦ { | 01⟩
− |10⟩

While we can’t directly inspect the mega-qubits, we can plug in Measure gates
and record which states are written to the classical register, as shown:

The code for this circuit is the following:

h q[0];
cx q[0],q[1];
measure q[0] -> c[0];➤

measure q[1] -> c[1];➤

The two Measure gates are shown on the highlighted lines.
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In each case, when we measure the q[0] and q[1] qubits, we’re first selecting
one of the qubit pairs in the corresponding mega-qubit and then collapsing
it, as summarized in the following table:

Classical StateMega-Qubit PairsInitial q[1]Initial q[0]
00 or 11|00⟩ and |11⟩|0⟩|0⟩

01 or 10|01⟩ and |10⟩|1⟩|0⟩

00 or 11|00⟩ and − |11⟩|0⟩|1⟩

01 or 10|01⟩ and − |10⟩|1⟩|1⟩

For example, in the third case, when the initial state of q[0] is | 1⟩ and q[1] is
| 0⟩, one of the qubit pairs in the mega-qubit, | 00⟩ or − |11⟩, is selected at ran-
dom. Thus, the classical register will record either 00 or 11. (The negative sign
indicates an inverted qubelet but doesn’t affect the classical state the qubit
collapses to.)

If we peek into c[0] and see that it’s a 0, we’re guaranteed that c[1] will have
logged a 0. On the other hand, if c[0] is 1, then c[1] is 1. You can verify that
this forcing behavior holds for the other cases in the table.

To put it another way, when you know the classical state in any one of the
two classical register elements, you can always correctly infer the Boolean
state in the other classical register element. Consequently, we only need one
Measure gate in this circuit, for example, the one measuring the q[0] qubit:

(Of course, we could also have measured just the q[1] qubit and deduced the
state that the q[0] qubit collapses to.)

It’s not reducing the Measure gates that’s the focus in this circuit, though.
Something fundamental is at play here. To see this, consider the circuit from,
say, the q[1] quantum register’s perspective. In particular, let’s again work
with the third row in the table where q[0] is | 1⟩ and q[1] is | 0⟩. The portion of
the mega-qubit that’s visible to q[1] is shown by hiding the qubelets associated
with q[0], as in the figure on page 125.
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Look at the mega-qubit on the right after the CNOT gate operates on the qubits.
As far as the q[1] quantum register is concerned, it holds a pentagon | 0⟩ qubelet
and a triangle | 1⟩ qubelet, as shown in the lower part of the right mega-qubit.
In other words, the quantum state held by the q[1] register is:

Thus, regardless of how the q[0] qubit collapses, it’s reasonable for you to
expect that the q[1] qubit would collapse roughly half the time to 0 and the
other times to 1. After all, how would the q[1] quantum register know about
the qubelets in q[0]? But, as our analysis of measuring mega-qubits showed,
the classical state that the q[1] qubit collapses to is forced by the collapsed
classical state of the q[0] qubit. That is, the q[1] qubit is entangled with the
q[0] qubit—the state of one completely determines the state of the other, no
matter if it collapses right away or much later.

Quantum Mechanics Is Bizarre

If entanglement baffles you, you’re in good company. Physicists
from Neils Bohr to Richard Feynman simply accept this facet of
quantum mechanics and instead worry about wielding the rules
of quantum mechanics to explain the world around us.1 Quantum
mechanics, in this sense, is bizarre: we can get quantum comput-
ers to solve complex problems without fully understanding quan-
tum mechanical phenomenon.

The Qubelets Model and mega-qubits help drive home these quantum
mechanical principles so we can correctly design quantum algorithms
even though no one truly understands entanglement.

1. https://www.nytimes.com/2019/09/07/opinion/sunday/quantum-physics.html
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To convince yourself that this oddball behavior actually occurs, let’s write a
quantum program in which the initial states are again as listed in the third
row of the previous table. This time, to make a more clinching case for
entanglement, we’ll run the program on a real IBM quantum computer and
entangle real qubits as opposed to the phony ones in the simulator. The code
looks like this:

Entanglement_1_0_Real_Computer.qasm
qreg q[2];
creg c[2];

// Set q[0] to |1>
x q[0];

// Entangle Qubits
h q[0];
cx q[0],q[1];

measure q[0] -> c[0];
measure q[1] -> c[1];

When you run this program, you’ll get an output similar to the following:

This output was generated with 8,192 shots. You can use fewer shots if you’d
like—the general pattern will be similar. (Because you’re running on a real
computer, you may get slightly different results.)

You should still see that the two states written to the classical register by far
most often are 00 and 11. These correspond to the following classical states:

c[1]c[0]

00

11

The other two states, 10 and 01 are rarely seen and happen only when the
qubits mistakenly collapse. Thus, this program confirms that entanglement
is real; the qubits are in lockstep, so the collapse of one forever decides the
fate of the other.
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Even though we only reviewed the case when the initial states of the qubits
were | 1⟩ and | 0⟩, respectively, you’ll get similar results for the other three
cases—in each case the qubits will only collapse to two of the four possible
states.

Although we’ve only discussed entangling two qubits, several qubits can be
intertwined. In fact, given the ease with which qubits can be entangled, this
phenomenon occurs quite frequently in quantum computing.

Entanglement in Quantum Mechanics

Remarkably, qubits remain entangled even when you send one of the qubits millions
of miles away in interstellar space. The moment you collapse one, say, the one in
outer space, the one on earth is now guraranteed to collapse into a complementary
state no matter how far away the one in space has traveled. This state of affairs seems
to violate the laws of physics—if one qubit collapses, how does its twin instantaneously
get word of the state it collapses to across the vast expanse of space? This question
has tormented physicists who have disdainfully called it “spooky action at a distance.”
To explain this discrepancy, physicists have had to extend their current theories so
that these types of quantum effects are governed by other mechanisms.

But for all its vexing and idiosyncratic characteristics, entanglement is as real as a
block of concrete and underpins some exotic applications. For example, entanglement
has recently been used to create quantum telescopes that can take images of starlight
from faint stars.a More recently, scientists are exploring ways to peer inside black
holes from where even light can’t escape. By entangling a pair of qubits and then
letting one of them be captured by a black hole, physicists are hoping to study the
other one for clues for what goes on inside a black hole.b Entangled qubits are also
being used to build low-power radar applications for use in the military and for
medical devices.c Since an entangled qubit only affects its dual, you don’t need to
employ high-powered beams. And entanglement is central to teleporting, where
quantum states can be transferred from one point in space to somewhere else. You’ll
learn about this phenomenon in Design a Teleporting Circuit, on page 256.

a. https://arxiv.org/abs/1809.03396
b. https://phys.org/news/2019-03-ion-aces-quantum-scrambling.html
c. https://arxiv.org/pdf/1908.03058.pdf

Entanglement in Quantum Computing
In quantum computing, the interplay of quantum superposition and entan-
glement gives rise to a diverse spectrum of algorithms that have no classical
analogs. At one end, we have algorithms that go straight to the heart of
entanglement to encrypt tamper-proof messages. (We’ll review this method
in Chapter 9, Alice in Quantumland—Quantum Cryptography, on page 279.)
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On the other end, in quantum search, where our chief concern is canceling
qubelet combinations in the mega-qubit, entanglement couples quantum
states, causing them to gyrate in unintended ways, rendering the superposi-
tion-of-all-states-at-once ineffective. So, in the next section, we investigate
how to modify our quantum programs to unravel these states.

Basic Idea
We’ve seen that all it takes to entangle qubits is a couple of gates, for example,
the H and CNOT gates. And, as these gates are regularly used in quantum cir-
cuits, entangled qubits are more the rule than the exception in our programs.

Once qubits are locked into entangled states, it’s impossible to then transform
them to other states that cancel out. Simply put, entangled qubits interfere
with the controlled cancellation of quantum states. Specifically, in the Hotel
Scheduling Problem introduced in A Scheduling Problem, on page 6, the
gates representing the schedule constraints entangle the qubits representing
the performers with the working qubits, which are the targets of the CNOT
gates. So, we snap qubits out of their entangled states by setting them back
to their original states. We can then continue to operate on the disentangled
qubits and remove unwanted states that don’t meet the constraints.

Qubits can be restored back to their original states by recognizing the following
operations:

• Back-to-back H gates
• Back-to-back CCNOT gates

We reviewed the first case in Back-to-Back H Gates: The First Hint of Taming
Randomness, on page 88. For the second case, consider the following circuit:

In particular, let’s see whether the two back-to-back CCNOT gates restore qubits
to their original quantum states after they act on them. That is, we want to
investigate whether the quantum state after the H gate acts on the q[0] qubit,
which together with q[1] and q[2] we’ll call the left quantum state, is recovered
after the CCNOT gates acts on them.

This left quantum state is the mega-qubit formed by the qubelets of the q[0]
qubit after it’s split by the H gate and combined with the qubelets of the qubits
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in q[1] and q[2]. To strengthen our dexterity with analyzing quantum circuits,
we’ll construct this mega-qubit mentally: the | 0⟩ qubit in q[0] consists of a
pentagon | 0⟩ qubelet that’s split by the H gate into a pentagon | 0⟩ qubelet and
a triangle | 1⟩ qubelet. Next, each of these qubelets links up with the triangle
| 1⟩ qubelets associated with the | 1⟩ qubits in q[1] and q[2], respectively. Thus,
we end up with a mega-qubit consisting of two qubelet columns or combina-
tions, as shown in the left mega-qubit in the figure:

Recall from Controlled Controlled NOT (CCNOT) Gate, on page 57, that only
when both control bits are | 1⟩, the CCNOT gate inverts the target qubit. In the
first qubelet combination, the top cell is a pentagon | 0⟩ qubelet. So this qubelet
combination isn’t affected by the CCNOT gate and remains as is as shown in
the first column in the center mega-qubit. The second qubelet combination
on the left, though, has a triangle | 1⟩ qubelet on both its control bits. Thus,
the first CCNOT gate switches the triangle | 1⟩ qubit in the bottom cell, associated
with the q[2] qubit, its target. This operation is shown in the second column
of qubelets in the center mega-qubit. The center mega-qubit, then, is the
quantum state after the first CCNOT gates on the qubits.

In a similar way, the second CCNOT gate acts on the two qubelet combinations
in the center mega-qubit, resulting in the qubelet combinations in the right
mega-qubit. This right mega-qubit has identical qubelet columns to the one
on the left. That is, the quantum state on the left mega-qubit is the same as
that on the right, indicating that back-to-back CCNOT gates recover the original
left quantum state.

Thus, both back-to-back H gates and back-to-back CCNOT gates are their own
inverses. Wherever we see these gates acting on qubits, we can reset those
qubits by immediately using those gates again on those qubits.

report erratum  •  discuss

Entanglement in Quantum Computing • 129

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


Disentangling Qubits
To get a feel for disentangling qubits, consider the following circuit:

In this circuit, q[0] is | 1⟩ and the others, q[1]–q[3] are each | 0⟩. This will be the
original quantum state that we’ll recover.

Although we can use the qubelets model to study how this circuit modifies
the qubits, this time we’ll directly run the quantum program listed here:

Basic_Idea_Entangling_Qubits.qasm
// HeaderLine 1

qreg q[4];-

creg c[4];-

-

// Set q[0] to |1>5

x q[0];-

-

// Put qubits in superposition-

h q[0];-

h q[1];10

-

// Entangle them-

ccx q[0],q[1],q[2];-

-

cz q[2],q[3];15

-

measure q[0] -> c[0];-

measure q[1] -> c[1];-

measure q[2] -> c[2];-

measure q[3] -> c[3];20

On line 6, we declare a NOT gate to initialize the q[0] qubit to | 1⟩. The Measure
gates are declared on lines 17–20. On line 15 we declare a CZ gate. This CZ
gate is the IBM Quantum Computer’s built-in gate and is realized identically
to what we studied in Realizing a Controlled Z Gate, on page 111.

If you run this program, you’ll get an output similar to the output shown on
page 131.

Chapter 5. Beam Me Up, Scotty—Quantum Tagging and Entangling  • 130

report erratum  •  discuss

http://media.pragprog.com/titles/nmquantum/code/Basic_Idea_Entangling_Qubits.qasm
http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


This program ran on a 5-qubit real quantum computer using 8192 shots.

The classical register shows multiple states, indicating that the qubits collapse
to several states. In other words, the gates have put the qubits in a mega-
qubit holding many qubelet combinations—that is, in a superposition of
quantum states.

If we simply disentangle the qubits by reversing the action of all gates,
including the CZ gate acting on the q[3] qubit, we’ll just get back to where we
started and won’t have made any headway toward finding an optimal solution.

Recognizing that the CZ gate is used to tag optimal states in the mega-qubit while
non-optimal states are left alone, as described in Using the Controlled Z Gate in
Practice, on page 117, we won’t undo its operation. We’ll only reverse the action
of the gates to the left of the CZ gate. As a result, qubelet combinations that are
not optimal get disentagled so that subsequent gates can remove them.

Disentanging Qubits Implies Disentagling Qubelets

When you disentangle qubits, you should think in terms of disen-
tangling qubelets in the various qubelet combinations or columns
in the mega-qubit.

To overturn the operations of the gates to the left of the CZ gate, hook up gates
to the right of the CZ gate so that these new gates mirror those on the left, as
shown within the box with the solid border in the figure:

The code listing for disentangling the qubits is shown on page 132.
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Basic_Idea_Disentangling_Qubits.qasm
qreg q[4];
creg c[4];

x q[0];

// Put qubits in superposition
h q[0];
h q[1];

ccx q[0],q[1],q[2];
cz q[2],q[3];

// Disentangling Qubits
ccx q[0],q[1],q[2];➤

h q[0];➤

h q[1];➤

// Measure Gates
measure q[0] -> c[0];
measure q[1] -> c[1];
measure q[2] -> c[2];
measure q[3] -> c[3];

The “mirror image” gates are flagged; you declare them in the reverse order
of those before the CZ gate.

When you run this circuit, you’ll see that the original state is recovered, as
shown in the following output:

This program ran on a 5-qubit real quantum computer using 8192 shots.

The binary state that’s most often seen is 0001. Recall that the classical states
are labeled as a concatenated string with c[4] on the left and c[0] on the right.
Thus, 0001 corresponds to the classical state with c[0] holding 1 and c[1]–c[3]
equal to 0. This classical state is obtained when the q[0] qubit collapses to
± |1⟩ and the q[1]–q[3] qubits each to ± |0⟩. So, in quantum computing, because
we can never directly examine the quantum state of a qubit, all we can ever
say is that we have recovered the original quantum state, perhaps with a
different orientation.
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Disentangling the Bellagio Constraints
In a quantum program, not all qubits have to be disentangled. So that you know
which qubits are slated for disentangling, consider again the quantum circuit
for the Bellagio Constraints but this time with the H and CZ gates hooked up as
described in Using the Controlled Z Gate in Practice, on page 117:

|ki _ |mi |ki _ |mi

|ki : q[0] = |0i H • X • X
|ki

|ki : q[1] = |0i X X • X
|ki

|mi : q[2] = |0i H • X • X
|mi

|mi : q[3] = |0i X X • X
|mi

q[4] = |0i X •
|ki _ |mi

q[5] = |0i X •
|ki _ |mi

q[6] = |0i •
(|ki _ |mi) ^ (|ki _ |mi)

q[7] = |0i X CZ

The mega-qubit after the Controlled Z gate on the right is shown in the figure
on page 134.

The bottom cell of each column in the mega-qubit shows the qubelet in the
q[7] qubit after the Controlled Z gate. The second and third columns have
inverted triangle | 1⟩ qubelets, indicating that the qubelets in the corresponding
columns give a solution that satisfies the Boolean expression—they are a
valid schedule. The first and fourth columns give bookings that violate the
constraints. You’ll learn to get rid of these columns in the mega-qubit in
Chapter 10, Quantum Search, on page 295.

First, though, before applying those techniques, the qubits need to be disen-
tangled, otherwise they’ll forever be stubbornly locked in their current states
and you won’t be able to cancel them out. If you disentangle all the qubits,
you’re back where you started. Since you want solutions corresponding to a
valid schedule, you want to keep the columns that are tagged as workable.
That is, you want to retain the qubelets in the bottom cell of each column in
the mega-qubit. In other words, you only need to disentangle the qubits in
q[0]–q[6].
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q[0]

q[1]

q[2]

q[3]

q[4]

q[5]

q[6]

q[7]

Mega-Qubit after CZ Gate

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|1i� |1i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|1i|1i

|1i� |1i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

To disentangle the qubits in q[0]–q[6], you reverse the operations of the logic
gates so that they form a mirror image around an imaginary vertical line
passing through the Controlled Z gate, as shown here:

|ki _ |mi |ki _ |mi

|ki : q[0] = |0i H • X • X
|ki

X • X •

|ki : q[1] = |0i X X • X
|ki

X • X X

|mi : q[2] = |0i H • X • X
|mi

X • X •

|mi : q[3] = |0i X X • X
|mi

X • X X

q[4] = |0i X •
|ki _ |mi

• X

q[5] = |0i X •
|ki _ |mi

• X

q[6] = |0i •
(|ki _ |mi) ^ (|ki _ |mi)

q[7] = |0i X CZ
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Notice that only a small part of this circuit relies on quantum effects—the H
gates on the left and the Controlled Z gate on the right. The rest of the circuit
deals with the standard logic operations, albeit for quantum hardware.

You’ll also see that several qubits are acted on by back-to-back X gates. These
effectively don’t affect the quantum state and can be removed. We’ll leave
them in the circuit, however, so that you see the pattern. Later, after you’ve
verified the program works, you can remove these redundant gates.

We’ll leave this circuit here and turn our attention to look at ways that pre-
cisely guide qubits from one quantum state to another. We’ll pick up the tale
again in Quantum Search, where we’ll apply these techniques to eliminate the
unwanted columns in the mega-qubit.

Using Entanglement in Applications

Entanglement is a “pure” quantum phenomenon that you’ll never
encounter in classical computing. Before you can fully leverage
this effect, you need to learn a few more concepts in Chapter 6,
Designer Genes—Custom Quantum States, on page 141, and
Chapter 7, Small Step for Man—Single Qubit Programs, on page
173. With this background, you’ll see how it’s used in real-world
applications in Chapter 9, Alice in Quantumland—Quantum
Cryptography, on page 279.

Bottom Line
We’ve seen that by triggering a quantum circuit with judiciously connected
H gates, we can get the mega-qubit to hold qubelet combinations representing
all possible states of the qubits in a quantum circuit. In this chapter, we
learned to further manipulate the mega-qubit of quantum states in ways that
have no counterpart in classical computing. In Pauli-Z (Z) Gate, on page 109,
we saw that the Z gate inverts triangle | 1⟩ qubelets while leaving the pentagon
| 0⟩ qubelets alone. As a result, its complementary gate, the Controlled Z gate,
described in Controlled Z (CZ) Gate, on page 109, presents a mechanism to
tag or flag specific qubelet combinations in the mega-qubit that correspond
to solutions that solve a Boolean system of equations. Specifically, this gate
inverts a triangle | 1⟩ qubelet in those qubelet columns of a mega-qubit that
represents optimal solutions, as illustrated in Using the Controlled Z Gate in
Practice, on page 117.

Next, we saw that quantum hardware is intimately tied to the unique behavior
of particles in the subatomic realm. In particular, in ways that have nothing
to do with the theory of digital computing, qubits are susceptible to getting
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shackled or entangled with each other and fiercely resist any attempt to
manipulate them. As we’ll see in Chapter 9, Alice in Quantumland—Quantum
Cryptography, on page 279, we can exploit this phenonmenon to encrypt and
decrypt messages that are impervious to getting hacked using today’s tech-
nologies. But in quantum search, qubits in lock-step are a hindrance. In
Disentangling Qubits, on page 130, we saw that by hooking up gates symmet-
rically, we can restore quantum states so that subsequent gates can sweep
away unwanted quantum states.

We’re at a point in our tale where we understand enough about quantum
computing to glimpse how quantum programs diverge conceptually from
traditional ones. Quantum programs aren’t a line-by-line conversion of clas-
sical programs to make them run on quantum devices. Rather, quantum
computing gives us new ways to manipulate the information bits of our
computational problems—putting them in superposition, entangling and
disentangling them, and inverting their qubelets to wipe out suboptimal states.

We’re now ready to formalize our intuitive discussion of quantum computing
in the next chapter. You’ll also learn techniques that speed up your analysis
of quantum circuits. These methods will help ensure that your quantum
algorithms converge to the optimal quantum states.

Try Your Hand
Solutions to these exercises are given in Quantum Tagging and Entangling
Solutions, on page 442.

For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

1. The Z gate inverts triangle | 1⟩ qubelets but leaves the pentagon | 0⟩ qubelets alone.

a. Design a circuit that mimics the Z gate for the pentagon | 0⟩ qubelets.
That is, your circuit should leave triangle | 1⟩ qubelets alone but invert
| 0⟩ pentagon qubelets:

| 0⟩ ↦ − |0⟩
|1⟩ ↦ |1⟩

b. Confirm the behavior of your circuit by drawing the qubelets at various
stages for the following cases:

i. Circuit initialized with a | 0⟩ qubit.
ii. Circuit initialized with a | 1⟩ qubit.
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2. Consider the quantum circuit shown in the following figure:

ctrl •

targ X H H X

a. Write a quantum program for this circuit.
b. Describe the behavior of this circuit.

3. In Controlled Controlled NOT (CCNOT) Gate, on page 57, we learned about
modeling an AND gate operating on two qubits. For many real-life problems,
we need to apply an AND operation on several qubits. One way to model
an AND gate with four input qubits is by cascading CCNOT gates, as shown
in the following quantum circuit:

Controlled� Controlled� Controlled� Controlled NOT Gate = AND with 4 Qubits

|q0i • •

|q1i • •

|q2i • •

|q3i • •

|p0i • •

|p1i • •

|p2i •

|p3i

The four input qubits are q[0]–q[3]. Note how the target of the first CCNOT
gate on the left is used as a control, together with the q[2] qubit for the
second CCNOT gate. The second CCNOT gate’s target will be | 1⟩ only when
|q0 ⟩, |q1 ⟩, |q3 ⟩, and |q

4
⟩ qubits are each | 1⟩. This way, we can continue

to handle additional qubits so that they all have to be | 1⟩ for the target
qubit, |p3 ⟩, of the CNOT gate at the very bottom to be | 1⟩. Hence, this circuit
is an AND gate that operates on four qubits. The result of the operation
will be |p3 ⟩.

Moreover, since this circuit will be part of a larger program, the gates on
the right of the CNOT gate at the bottom are a mirror image of those on the
right for disentangling the qubits.

a. Write a quantum program for this circuit.
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b. Initialize your program so that qubits |q0 ⟩–|q3 ⟩ are initialized to | 1⟩.
Declare Meaure gates so that you can confirm your program works
correctly.

4. Consider the following quantum circuit:

The mega-qubits before and after the CZ gate—that is, each qubit has
been operated on by the H gate, respectively—look like this:

a. Determine the missing qubelets in the mega-qubits shown in the figure.
b. Are the qubits entangled? Justify your answer.

5. Consider the following quantum circuit:

a. Draw the mega-qubit after the H and CNOT gates have operated on the
qubits.

b. Are the two qubits entangled? Justify your answer.

c. Write a quantum program and confirm whether your answer to the
previous question matches your program’s output.

6. In the following circuit, shown on page 139, the gates modeling the Bellagio
Constraints are shown within the dotted box.
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Bellagio Constraints

|ki _ |mi |ki _ |mi

|ki : q[0] = |0i x • X • X
|ki

|ki : q[1] = |0i X X • X
|ki

|mi : q[2] = |0i • X • X
|mi

|mi : q[3] = |0i X X • X
|mi

q[4] = |0i X •
|ki _ |mi

q[5] = |0i X •
|ki _ |mi

q[6] = |0i Z
(|ki _ |mi) ^ (|ki _ |mi)

The X gate on the |k⟩ qubit sets it to | 1⟩. And a Z gate is placed on the qubit
in q[6] on the bottom right.

(Notice that this circuit is equivalent to the one described in Disentangling
the Bellagio Constraints, on page 133, but uses one less qubit. We’ll use
this form in Chapter 10, Quantum Search, on page 295.)

a. Draw the mega-qubit after all the gates have acted on these qubits.

b. Write a quantum program for this circuit. In your program, add a
Measure gate to qubits q[0], q[2], and q[6].

c. Run your program on the IBM Quantum Computer Simulator. Explain
your output.

d. Add the quantum logic gates to disentangle the qubits to your program.
Insert these gates before the Measure gates. (Only reverse the operation
of the gates that model the Bellagio Constraints. Don’t reverse the Z
gate.)

e. Run your program on the IBM Quantum Computer Simulator. Again,
explain your output. What can you say about the qubelet in the
quantum register q[6] before the Measure gate collapses it?
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CHAPTER 6

[Quantum mechanics is] imaginary gardens with real toads
in them.

  ➤  Marianne Moore, awarded the 1952 Pulitzer Prize
in Poetry

Designer Genes—Custom Quantum States
The core of quantum computing lies in the distinctive way that qubelets
cancel out, leading to quantum states that rapidly collapse to the optimal
solution or that entangle qubits so that they’re in lockstep. These phenomena
have no analog in classical computing.

Entangled qubits, in particular, offer more ways to boost performance of hard-
to-crack problems, such as earth-to-satellite communications. Here informa-
tion is sent across noisy channels over large distances, and the challenge is
to compress the signal to increase the rate of transmission with minimal loss
of data. In these cases, we typically do the following:

• Create two sets of entangled qubits.

• Keep one set on earth and send the other group with the satellite when
it’s launched into orbit.

• Perform operations on the home qubits to put them into some state.

• Transmit only the sequence of operations to the entangled qubits on the
satellite.

• The system on the satellite applies the sequence of operations on its set
of entangled qubits and recovers the intended state of the qubits operated
on earth.

The size of the message is highly compressed since you’re only sending the
sequence of operations and not the final state of the home qubits. Moreover,
the message is secure since any eavesdropper wouldn’t have the original
entangled qubits to decipher the message.

For these types of quantum algorithms to work, we need a rich repertoire of
gates that nudge qubits into quantum states with exactitude—merely splitting
and inverting qubelets doesn’t give the fine-grained resolution demanded by
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these applications. So, our emphasis in this chapter is to build the scaffolding
that bridges the visual qubelet model with the kinds of mathematics used in
quantum computing. Once we understand how to meticulously fine-tune
quantum states, we can then explore these applications in Chapter 9, Alice
in Quantumland—Quantum Cryptography, on page 279.

We start by covering how qubelets and quantum states are denoted mathe-
matically. Then we’ll expand our notion of how the pentagon | 0⟩ and triangle
| 1⟩ qubelets give rise to an infinite range of quantum states. This generalized
view of qubelets motivates a new class of quantum states that precisely warp
a qubit into any quantum state we desire. Instead of simply splitting qubelets
symmetrically like the H gate, we’ll learn to shape the quantum state so that
they heavily skew toward one or the other types of qubelets. Unlike a fair coin
toss, these qubits strongly favor one classical state over the other.

Joe asks:

Why Do We Need the Math?
Our main aim with quantum computers is to write programs for problems that resist
solutions by traditional mathematical methods. It seems paradoxical, then, to
undertake a mathematical study, especially since, due to their large sizes, we never
explicitly program these techniques. So it’s natural to question what mathematics
buys us.

Learning the mathematics behind quantum computing is important for several reasons:

• It introduces us to the rich family of other types of quantum gates: these give us
additional ways to manipulate qubits in applications such as quantum cryptog-
raphy and superdense coding.

• You’ll need the mathematics to analyze portions of your programs and motivate
patterns for wiring quantum gates; in other words, the mathematical analysis
will guide you in designing quantum algorithms for industrial-scale applications.

• It gives a way to see what’s going on in our quantum circuits: unlike classical
programs, you can’t put breakpoints in your code, expecting to probe intermediate
quantum states—the qubits will immediately collapse.

Our interest, then, in the mathematics of quantum mechanics is strictly practical.

Quantum States and Probabilities
To understand how quantum gates precisely calibrate the quantum states
of qubits in programs, we need a systematic way to represent blended states.
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To model such states in code, let’s start with a qubit containing seven pen-
tagon | 0⟩ qubelets and three inverted triangle | 1⟩ qubelets, shown here:

Looking at this qubit, we can deduce the following:

• When measured, the pentagon | 0⟩ qubelets have a greater chance of being
selected than the triangle | 1⟩ qubelets; in other words, the qubit is skewed
toward collapsing to the | 0⟩ idealized state than the | 1⟩ idealized state.

• Qubelets can be inverted, such as the triangle ones in the figure.

We express these observations for the quantum state |ψ ⟩ of the qubit with
the following equation:

|ψ ⟩ = ω0 | 0⟩ + ω1 | 1⟩

The magnitudes of the coefficients ω0 and ω
1
 relate to the probabilities of the

qubit collapsing to the idealized states | 0⟩ and | 1⟩, respectively; for example, the
greater the value of ω0 relative to ω

1
, the greater the chance the qubit collapses

to | 0⟩ when measured. A negative coefficient merely indicates whether the corre-
sponding qubelets are inverted in the qubit but doesn’t affect the probabilities.

Adding Pentagon | 0⟩ and Triangle | 1⟩ Qubelets

The equation for the quantum state of a qubit isn’t addition in the
usual sense. Instead, think of the pentagon | 0⟩ qubelets as, say,
apples, and the triangle | 1⟩ qubelets as oranges. Then the addition
is akin to stating:

7 apples + 3 oranges

It makes no sense to say that this adds up to 10: it remains forever
as 7 apples and 3 oranges. The equation for the quantum state of a
qubit is a similar addition. The benefit, though, of writing it as an
“addition” of the idealized quantum states (the apples and oranges)
is to get a better handle on manipulating quantum states in code.

To head off the contradiction where probabilities are positive and inversions
are negative, ω0 and ω

1
 don’t directly represent probabilities of the two states.

Instead, we let the square of these coefficients, ω0
2 and ω

1
2, represent the

probabilities. This way, the coefficients for inverted qubelets can be negative,
yet their squares, representing probabilities, are always positive.
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Formally, ω0 and ω
1
 are called amplitudes and their squares are the probabilities:

Probability of collapsing to |0⟩ = ω0
2

Probability of collapsing to |1⟩ = ω
1
2

Amplitudes and probabilities are concepts that arise out of quantum wave
mechanics. For a light-hearted yet serious introduction to this topic, see
Chapter 4: Wave Mechanics in What is Quantum Mechanics? A Physics
Adventure [Col09].

Since the qubit can only collapse to two states, | 0⟩ and | 1⟩, the probabilities
ω0
2 and ω

1
2 must add up to 1:

ω0
2 + ω

1
2 = 1

Further, this equation implies that each coefficient is less than or equal to 1:

ω0 ≤ 1
ω
1
≤ 1

Thus, we can indicate inversions of the pentagon or triangle qubelets and at
the same time express the probabilities of selecting these qubelets, respective-
ly. Moreover, since the probabilities are the squares of the amplitudes, the
inversion of a specific type of qubelet doesn’t affect the chances of the qubit
collapsing to the corresponding idealized state.

Normalizing Qubelets
To relate the pentagon | 0⟩ and triangle | 1⟩ qubelets in a qubit with the likeli-
hoods of their collapsing to the idealized states, | 0⟩ and | 1⟩, respectively, their
numbers must first be normalized. That is, normalization is a way to ensure
that their respective probabilities add up to 1, which in turn limits the values
for the amplitudes.

In general, let a and b be the amplitudes of | 0⟩ and | 1⟩, respectively, of a
quantum state, as stated here:

a |0⟩ + b |1⟩

If a2 + b2 ≠ 1, then the square of the amplitudes doesn’t give valid probabilities.
Thus, for the quantum state to be legal, these amplitudes must be normalized
as follows:

a

a2 + b2
| 0⟩ +

b

a2 + b2
| 1⟩
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The corrected amplitudes ω0 and ω
1
 are:

ω0 = a

a2 + b2

ω
1
=

b

a2 + b2

When we square these amplitudes and sum them up, we get:

( a

a2 + b2
)2 + ( b

a2 + b2
)2 = a2

a2 + b2
+

b2

a2 + b2
= 1

Since | 0⟩ and | 1⟩ are the only two states that the qubit can collapse to, the
square of the amplitudes, the probabilities ω0

2 and ω
1
2, correctly add up to 1.

Number of Qubelets Define the Amplitudes
This definition of amplitudes gives new meaning to the notion of qubelets:

Absolute Value of the Amplitudes
The number of pentagon | 0⟩ and triangle | 1⟩ qubelets in the qubit is
related to the absolute values of the amplitudes, | ω0 | and | ω

1
|, respec-

tively, as follows:

| ω0 | =
Number of pentagon |0⟩ qubelets

Number of pentagon |0⟩ qubelets2 + Number of triangle |1⟩ qubelets2

| ω
1
| =

Number of triangle |1⟩ qubelets

Number of pentagon |0⟩ qubelets2 + Number of triangle |1⟩ qubelets2

We can also express the number of pentagon | 0⟩ qubelets to the number
of triangle | 1⟩ qubelets as the following ratio:

| ω0 | : | ω1 | = Number of pentagon |0⟩ qubelets : Number of triangle |1⟩ qubelets

Sign of the Amplitudes
The sign of the amplitudes indicates whether those qubelets are inverted:
a positive sign implies that the corresponding qubelets are not inverted
while a negative sign denotes that they are.

For instance, in the previous figure at the beginning of this section, there are
seven pentagon | 0⟩ qubelets and three inverted triangle | 1⟩ qubelets in the
qubit. The amplitudes ω0 and ω

1
 are:

ω0 = 7

72 + 32
= 0.9191

ω
1
= − 3

72 + 32
= −0.3939
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The negative sign for ω
1
 indicates the inverted triangle qubelets in the qubit.

Hence, the quantum state shown in the previous figure is:

7

72 + 32
| 0⟩ − 3

72 + 32
| 1⟩ = 0.9191 |0⟩ − 0.3939 |1⟩

The probability that this qubit collapses to | 0⟩, ω0
2, and the probability that it

collapses to | 1⟩, ω
1
2, are calculated as follows:

ω0
2 = ( 7

72 + 32
)2 = 0.8448

ω
1
2 = ( −3

72 + 32
)2 = 0.1552

These probabilities correctly sum to 1:

ω0
2 + ω

1
2 = ( 7

72 + 32
)2 + ( 3

72 + 32
)2 = 1

Qubelets Visualize the Ratio of Amplitudes

When we represent a quantum state with pentagon | 0⟩ and triangle
| 1⟩ qubelets, we’re actually visualizing the ratio of the number of
pentagon | 0⟩ qubelets to those of the triangle | 1⟩ qubelets.

Moreover, their orientation—whether the qubelets are inverted—
indicates the sign of the corresponding amplitude.

Quantum Gates and Amplitudes
The restriction that the squares of the amplitudes add up to 1 for a valid
quantum state must also hold throughout the circuit; in other words, when
quantum gates operate on qubits and modify their quantum states, the
squares of the amplitudes of each new new state must also sum up to 1.
Consider, for example, an H gate acting on a | 0⟩ qubit:

|0i|0i |1i|1i |0i|0i |1i|1iH

The | 0⟩ qubit has only a pentagon | 0⟩ qubelet, but to remind us, in general,
that a quantum state can have both types of qubelets, albeit with varying
amplitudes or probabilities, we draw the | 0⟩ qubit on the left, in which the
triangle | 1⟩ qubelet has a dotted outline indicating it’s not active in this qubit.
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As described in Putting Qubits in Blended States, on page 82, the H gate splits
the pentagon | 0⟩ qubelet into a pentagon | 0⟩ qubelet and a triangle | 1⟩ qubelet,
as shown in the right qubit.

In the language of amplitudes, the H gate splits the amplitudes:

| 0⟩ ↦ a |0⟩ + a |1⟩

Because both the pentagon | 0⟩ and triangle | 1⟩ qubelet are in equal numbers,
the amplitudes a are the same for | 0⟩ and | 1⟩ on the right-hand side.

For this qubit’s quantum state to be valid, the squares of the amplitudes
must add up to 1:

a2 + a2 = 1

Or

2a2 = 1
a2 = 1

2

| a | = 1

2

Both types of qubelets aren’t inverted. So, the quantum state after the H gate
acts on the qubit is:

| 0⟩ ↦ 1

2
| 0⟩ + 1

2
| 1⟩

Probabilities and the Output of Quantum Programs

With this formal definition of a quantum state in terms of amplitudes and
probabilities, let’s relate them to the output of the following quantum circuit:

This is the associated quantum program:

qreg q[1];
creg c[1];

h q[0];
measure q[0] -> c[0];
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In this circuit, we simply have an H gate operate on the | 0⟩ qubit and then
measure the qubit. When you run this program, the Measure gate will collapse
the q[0] qubit on the right so that about half the time a 0 is written to the
classical register and the other times a 1 is recorded, like this:

That is, the probabilities of collapsing to | 0⟩ and | 1⟩ are:

Probability of collapsing to |0⟩ = ω0
2 = 1

2

Probability of collapsing to |1⟩ = ω
1
2 = 1

2

We can take square roots of ω0
2 and ω

1
2, respectively, but we won’t, in general,

know whether the pentagon | 0⟩ and triangle | 1⟩ qubelets are inverted. So, the
best we can say about the quantum state of the qubit before it was measured is:

± 1

2
| 0⟩ ± 1

2
| 1⟩

This circuit exemplifies the inherent tension in quantum computing: you
work with qubelets and amplitudes whose values you can only surmise but
never with probabilities whose values you can accurately measure.

Focus on Amplitudes, Not Probabilities

Although probabilities determine the final output of quantum
programs, you’ll focus on manipulating amplitudes, not probabil-
ities, when you’re designing quantum algorithms.

The stipulation that the probabilities—the squares of the amplitudes—add
up to 1 regulates how the qubelets can be finessed into various configurations.
Quantum gates can’t willy-nilly jerk them around. In the rest of this chapter,
we’ll learn that all quantum gates, including the ones we’ve worked with so
far, such as NOT, H, and Z, are specified based on how they affect the ampli-
tudes of the qubits they act on.
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Try Your Hand
In this chapter, we include the exercises as part of the main text, as the
concepts tightly build up on the content of previous sections. This lets you
strengthen your grasp of the material before moving on to the next section.

Solutions to these exercises are given in Quantum States, Amplitudes, and
Probabilities Solutions, on page 450.

For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

1. Consider the qubit shown here:

a. Write the mathematical expression representing the quantum state
of the qubit above.

b. What are the probabilities of the qubit collapsing to | 0⟩ and | 1⟩,
respectively?

2. Consider a qubit that is in the following quantum state |ψ ⟩:

|ψ ⟩ = − 0.35
N
| 0⟩ + 0.28

N
| 1⟩

a. Calculate N so that |ψ ⟩ is a valid quantum state.
b. Draw the qubit represented by the quantum state |ψ ⟩.

3. Does the following equation represent a valid quantum state?

0.2523 |0⟩ − 0.7517 |1⟩

4. Consider the following expression:

−0.4472 |0⟩ + ω
1
| 1⟩

a. What should ω
1
 be so that it’s a valid quantum state? (Assume ω

1
 is

positive.)

b. Draw the qubelets for this quantum state.
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5. Consider the following quantum state for the qubit:

ω0 | 0⟩ + ω1 | 1⟩

The amplitudes ω0 and ω
1
 have their usual meanings. If the qubit has no

triangle qubelets, what are the values of these amplitudes?

6. Consider the following quantum circuit:

a. Draw the qubelets after each gate operates on the qubit.

b. Write the quantum states after each quantum gate operates on the
qubit.

c. What are the probabilities of the qubit collapsing to | 0⟩ and | 1⟩,
respectively, when collapsed by the Measure gate?

d. Write a quantum program for this circuit.

e. Run your program and compare its output with the probabilities you
computed earlier.

Rotating Qubelets Through Any Angle
In the qubits we’ve considered so far, the pentagon | 0⟩ and triangle | 1⟩ qubelets
have either been non-inverted or inverted. But qubelets are more versatile:
they can be rotated through arbitrary angles. Understanding how to work
with arbitrarily rotated qubelets in your quantum programs can turbo charge
them. New quantum gates that use fractionally rotated qubelets make data
transmission using entangled qubits over large distances1 possible (among
other things). Having this expanded range of quantum gates in your toolkit
can give your programs a burst of power. Lots of it, in fact.

Consider a qubit where the pentagon | 0⟩ qubelets are rotated through, say,
20° clockwise and the triangle | 1⟩ qubelets through 30° anticlockwise:

1. https://science.sciencemag.org/content/356/6343/1140.
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The combined effect of rotating the pentagon | 0⟩ and triangle | 1⟩ qubelets
swivels the qubit in 3D space—that is, the quantum state of a qubit dictates
how it’s warped in the real world. So, even though we’ll draw the qubelets in
2D, their rotations govern how the qubit spins in 3D.

The math you’re about to see here to depict these warped qubits is more
complex than we’ve used to this point. You’re going to need to remember
things like polar coordinates and complex numbers. That’s because, ultimately,
quantum computing has some pretty complex math behind it, and you’ll need
to understand these topics at least at the basic level to be able to design cir-
cuits that use these more complex gates. I’ll show you the equations first,
and their relationship to the pentagon | 0⟩ and triangle | 1⟩ qubelets, and then
how to apply them. You can take it on faith that the equations work, or you
can see the complete derivation in Appendix 2, From Qubelets to the Bloch
Sphere, on page 399.

Qubelets and the Bloch Sphere

Although we’ll not rely on the Bloch sphere when designing algo-
rithms, it’s been a staple of quantum computing as it provides a
way to visualize quantum states. Qubelets are another way to
represent the same information and, more importantly from my
view, are easier to generalize when designing multi-qubit programs:
you don’t have to spin Bloch spheres in your mind to figure out
where the qubits end up. So it’s instructive to see that they’re
related and are, in fact, one and the same thing but with different
perspectives.

In Classifying Quantum Gates, on page 202, you’ll learn new ways
to apply operations on qubelets. In Chapter 8, Giant Leap for
Mankind—Multi-Qubit Programs, on page 227, you’ll use these
techniques to work with multi-qubit programs without resorting
to juggling Bloch spheres.

We represent the warping of the qubit as a point on the surface of a Bloch
sphere which is a sphere whose radius is 1 as shown in the image on page 152.

(Even though the pentagon | 0⟩ and triangle | 1⟩ qubelets making up the
quantum state are a point on the surface of the Bloch sphere, we’ve drawn
it as a patch to better illustrate how it’s associated with the qubelets.)

The angle that the state leans away from the vertical or the Z-axis is θ. And
the angle swept out in the plane of the equator, the XY-plane is φ. Both angles
are measured in radians.
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Radians Versus Degrees

Mathematically, we use radians to measure angles instead of
degrees. So, 180° is π radians. Although when the context is clear,
we may say cos 180° instead of the technically correct cos π to help
us make a point. But we’ll always use eiπ instead of ei180. See
https://en.wikipedia.org/wiki/Radian for more information.

Moreover, in mathematics, anticlockwise angles are positive and
clockwise angles are negative.

Mathematically, we express this point, or the quantum state |ψ ⟩, by the fol-
lowing equation:

|ψ ⟩ = cos θ

2
| 0⟩ + e

iφ
sin θ

2
| 1⟩

Thus, cos (θ / 2) is the amplitude of | 0⟩, and e
iφ
sin (θ / 2) is the amplitude of | 1⟩.

Note that i = −1  is the imaginary or complex number.

If you want to understand why this equation represents the quantum state
of a qubit as well as how the complex number i is involved, see Appendix 2,
From Qubelets to the Bloch Sphere, on page 399.

Note a few points about the Bloch sphere:

• The latitudes are measured from the north pole toward the equator unlike
those on a globe. So, the north pole is at the 0° latitude. These latitudes
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are associated with the angle θ that measures how much the quantum
state swings away from the Z-axis.

• All of the quantum states on a given latitude differ only by e
iφ

. Since
| e

iφ
|2 = e

iφ
e
−iφ

= 1, the probabilities of all quantum states on the same
latitude collapsing to | 0⟩ or | 1⟩ are the same. In other words, you can move
the quantum state along the same latitude, or about the north-south axis,
without affecting their probabilities of collapsing to the idealized states.

• The longitudes measure the angle φ that is swept by the quantum state
in the plane of the equator.

The equation for the quantum state written in the previous equation is related
to the qubelets as follows:

• The angle φ is the difference between the rotations of the triangle | 1⟩
qubelets and the the pentagon | 0⟩ qubelets, measured in radians. Thus,
for the qubit shown in the beginning of this section, the angle φ is:

φ =
(30 − (−20))π

180
= 5π

18
radians

• The normalized value of the pentagon | 0⟩ qubelets is cos θ / 2. Relating this
to the amplitudes in Normalizing Qubelets, on page 144, for the quantum
state expressed as a |0⟩ + b |1⟩, yields the following equation:

cos θ

2
= 3

32 + 22

θ

2
= cos−1 3

13
θ = 1.176 radians

Or, θ is 67.38°.

Inverse Trigonometric Functions

To obtain the angle θ, use the inverse trigonometric functions2

arccosine and arcsine to get the angles (in radians) that correspond
to the amplitudes.

For example, consider the following quantum state:

1

2
| 0⟩ + 1

2
| 1⟩ = cosθ

2
| 0⟩ + sinθ

2
| 1⟩

2. https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
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Inverse Trigonometric Functions

The amplitude for | 0⟩ is related to the angle θ as follows:

1

2
= cos θ

2
θ

2
= cos−1 1

2
θ

2
= π

4

θ = π

2

The function cos−1 used here is the arccosine and is available on
scientific calculators.

Once you know cos (θ / 2), sin (θ / 2) is calculated as follows:

sin2 θ
2
= 1 − cos2 θ

2

= 1 − ( 3

13
)2

= 1 − 9

13

= 4

13

sin θ

2
= 4

13

= 2

13

Hence, the quantum state |ψ ⟩ of the qubit having 3 pentagon | 0⟩ qubelets
rotated 20° clockwise and 2 triangle qubelets rotated 30° anticlockwise is:

3

13
| 0⟩ + e

i 5π
18 2

13
| 1⟩

Now that you know how to calculate the quantum state of qubits with an
arbitrary number of pentagon | 0⟩ and triangle | 1⟩ qubelets rotated through
any angle, you can precisely put a qubit into any specific quantum state. All
you do is vary the following:

• Relative number, or ratio, of the pentagon | 0⟩ and triangle | 1⟩ qubelets.
• Relative difference between the rotations of the pentagon | 0⟩ and triangle
| 1⟩ qubelets.

In the next section, we’ll look at special-purpose quantum gates that meticu-
lously put qubits into these tailor-made states.
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Joe asks:

How to Remember the Equation
for the Quantum State?

Despite the formidable looking equation for the quantum state, you can quickly work
out the general equation of the quantum state by bearing in mind the following:

1. Recall from H Gate on | 1⟩ Qubit, on page 86, that the H gate splits the | 1⟩ qubit
into a pentagon | 0⟩ qubelet and an inverted triangle | 1⟩ qubelet:

As we discussed in Number of Qubelets Define the Amplitudes, on page 145, the
quantum state for the right qubit is:

1

2
| 0⟩ − 1

2
| 1⟩

2. The following cosines:

a. The cosine of 45° or π / 4:

cos π

4
= 1

2

b. The cosine of 180° or π:
cos π = −1

3. The angle φ starts with the same sound as that for floor. Thus, φ sweeps out an
angle on the “floor,” or the plane, of the equator. The other angle, θ, measures
the latitude or the tilt from the vertical axis.

With these basic facts, we can quickly reason our way to the equation for the quantum
state:

1. The qubit split by the H gate has an equal likelihood of collapsing to 0 or 1. Thus,
it lies on the equator of the Bloch sphere, which is on the 90° latitude. This angle
is double that of an angle whose cosine would be 1 / 2 .

2. The difference in rotations between the inverted triangle | 1⟩ qubelet and non-
inverted pentagon | 0⟩ qubelet is 180° or π radians. So, eiπ = cos π + i sin π = −1.

3. We can, thus, put these facts together to deduce that the equation for the
quantum state is:

cos θ

2
| 0⟩ + e

iφ
sin θ

2
| 1⟩
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Try Your Hand
Solutions to these exercises are given in Rotating Qubelets Through Any Angle
Solutions, on page 453.

1. Consider a qubit with the quantum state shown here:

a. Which hemisphere would it lie on in the Bloch sphere?
b. Would it be closer to the equator or one of the poles?

2. Consider a qubit that has 18 pentagon | 0⟩ qubelets rotated 45° anticlock-
wise and 19 triangle | 1⟩ qubelets rotated 25° clockwise as shown:

|0i|0i |0i|0i |0i|0i |1i|1i |1i|1i |1i|1i

Which of the locations, A, B, or C, would this state correspond to on the
Bloch sphere shown here:
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3. Which of the following qubits best matches the quantum state represented
by the shaded patch labeled A on the Bloch sphere shown here:

a.

b.

c.

4. Consider a qubit with a single pentagon | 0⟩ qubelet rotated 90° anticlock-
wise and a single triangle | 1⟩ qubelet rotated 90° clockwise:
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a. Write the equation for its quantum state.
b. How does this qubit compare to a | 1⟩ qubit operated on by a H gate?
c. Suppose the pentagon | 0⟩ qubelets are rotated 45° and the triangle

| 1⟩ qubelets are rotated 225°. What can you say about its quantum
state?

Universal Quantum Gates
Now that we know how to specify made-to-order quantum states, in this
section you’ll study quantum gates that put qubits in these custom states.

In general, every quantum gate, including the NOT, H, Z, and the quantum
logic gates, operates on quantum states defined with complex numbers. Recall
from Rotating Qubelets Through Any Angle, on page 150, the quantum state
|ψ ⟩ is written as follows:

|ψ ⟩ = cos θ

2
| 0⟩ + e

iφ
sin θ

2
| 1⟩

Consider a quantum state defined by |ψa⟩, as follows:

|ψa⟩ = cos
θa

2
| 0⟩ + e

iφa sin
θa

2
| 1⟩

When a quantum acts on this state, it’ll take it to another state, |ψ
b
⟩, defined

as follows:

|ψ
b
⟩ = cos

θ
b

2
| 0⟩ + e

iφ
b sin

θ
b

2
| 1⟩

In other words, all quantum gates take a qubit in one quantum state specified
with complex numbers, |ψa⟩, to another state, |ψ

b
⟩, also defined with complex

numbers, as follows:

|ψa⟩ ↦ |ψ
b
⟩

Substituting for |ψa⟩ and |ψ
b
⟩, we get:

cos
θa

2
| 0⟩ + e

iφa sin
θa

2
| 1⟩ ↦ cos

θ
b

2
| 0⟩ + e

iφ
b sin

θ
b

2
| 1⟩

Because quantum states are specified by the number and orientation of the
pentagon | 0⟩ and triangle | 1⟩ qubelets, you can define a quantum gate by how
it acts on the | 0⟩ and | 1⟩ quantum states, respectively. Then, when the gate
operates on a blended state, its actions on the pentagon | 0⟩ and triangle | 1⟩
qubelets are combined to give the resulting quantum state.
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Action of Quantum Gate on | 0⟩
In particular, every quantum gate takes a | 0⟩ state and puts it in the following
quantum state, |ψ0⟩:

|ψ0⟩ = cos
θ

2
| 0⟩ + e

iφ
sin θ

2
| 1⟩

For example, the NOT gate discussed in NOT (X) Gate, on page 42, takes a
qubit in the | 0⟩ state and switches it to the | 1⟩ state. Because cos π

2
= 0 and

sin π

2
= 1, we can write this operation on the quantum states as:

NOT: |0⟩ ↦ cos π

2
| 0⟩ + e0 sin π

2
| 1⟩ = |1⟩

Action of Quantum Gate on | 1⟩
Since the | 1⟩ state is directly opposite the | 0⟩ state on the Bloch sphere, the
action of a quantum gate on a qubit in the | 1⟩ state puts it opposite to that
of what it did with the | 0⟩ state.

So, replace θ by π − θ and φ by π + φ. (See Sphere Leads to Two Parameters,
on page 406, for more details on these substitutions.) Then simplify the
resulting equations:

|ψ
1
⟩ = cos π − θ

2
| 0⟩ + e

i(π+φ)
sin π − θ

2
| 1⟩

= cos (π
2
− θ

2
) | 0⟩ − eiφ sin (π

2
− θ

2
) | 1⟩

= sin θ

2
| 0⟩ − e

iφ
cos θ

2
| 1⟩

We simplified these equations using the Trigonometric Identities.3

States Have Two, but Gates Have Three Parameters
For reasons that we’ll explain in Can the Quantum Gate Matrix Be Anything?,
on page 187, we tweak the quantum state |ψ

1
⟩ by multiplying the right hand

side by −eiλ:

|ψ
1
⟩ = −eiλ sin θ

2
| 0⟩ + e

i(λ+φ)
cos θ

2
| 1⟩

This change doesn’t affect the probabilities of the quantum state collapsing
to | 0⟩ or | 1⟩.

The new parameter, λ, gives an additional degree of freedom to calibrate
quantum states: we can fine-tune the quantum state along a latitude by

3. https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Reflections
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adjusting the relative orientations of the pentagon | 0⟩ and triangle | 1⟩ qubelets
but without modifying the probabilities of the qubit collapsing to | 0⟩ or | 1⟩.
This allows the qubit to interact differently with other qubits in the mega-
qubit, depending on where the quantum state falls on the latitude. Simply
put, without violating the laws of physics that call for the probabilities of a
qubit collapsing to | 0⟩ or | 1⟩ adding up to 1, we can influence how qubits
interact with each other in the mega-qubit and thereby govern how the pro-
gram executes.

This general-purpose way of using three parameters to describe the operation
on a qubit is referred to as the Universal (U) or U3 gate. We write it as follows:

U3 (θ, φ, λ) : |0⟩ ↦ cos θ

2
| 0⟩ + e

iφ
sin θ

2
| 1⟩

U3 (θ, φ, λ) : |1⟩ ↦ −eiλ sin θ

2
| 0⟩ + e

i(λ+φ)
cos θ

2
| 1⟩

U2 and U1 Gates

The Universal (U) gate comes in two other flavors, defined using two parameters
and one parameter, respectively:

U2 Gate
The U2 gate is just the U3 gate in which θ is set to 

π

2
.

U2 (φ, λ) = U3 (π
2
, φ, λ)

U1 Gate
The U1 gate is just the U3 gate with θ = 0 and φ = 0.

U1 (λ) = U3 (0, 0, λ)

Thus, the U2 and U1 gates are just versions of the U3 gate in which one or two
parameters, respectively, are predefined. In the next section, you’ll see that
different values for θ, φ, and λ let you define arbitrary quantum states.

Using the Universal Gates in Code
You can use the three Universal gates in your code—they’re not just theoretical
concepts. With these gates, you can create precise quantum states.

So far in our quantum programs, we’ve only used single-qubit gates that put
qubits in states that collapse as follows:

• Always collapses to | 0⟩.
• Always collapses to | 1⟩.
• Collapses to | 0⟩ or | 1⟩ with equal probability.
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But with the U3 gate, we can collapse the qubit so that it predictably favors
one or the other idealized state. For example, to put a | 0⟩ qubit in a quantum
state so that it falls frequently to | 0⟩ but also collapses to | 1⟩ a significant
number of times that’s more than just noise, we maneuver it to a state that
is in the upper hemisphere:

(The tiny square at the tip of the arrow is just to indicate that the tip is on
the surface of the sphere.)

In this state, the angle θ that the state makes with the vertical is 60° or π / 3
radians, and the angle φ is 30° or π / 6 radians.

To put the | 0⟩ qubit in this state, we set the parameters of the U3 gate as follows:

U3 (π
3
, π
6
, 0) : | 0⟩ ↦ cos

π

3

2
| 0⟩ + e

iπ
6sin

π

3

2
| 1⟩

= cos π

6
| 0⟩ + (cos π

6
+ i sin π

6
) sin π

6
| 1⟩ =

3

2
| 0⟩ + ( 3

2
+ i 1

2
) 1
2
| 1⟩

=
3

2
| 0⟩ + ( 3

4
+ i 1

4
) | 1⟩

The probability of this state collapsing to | 0⟩ is the square of the amplitude
for | 0⟩:

Probability of collapsing to |0⟩ = ( 3

2 )
2
= 3

4
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Since the amplitude of the | 1⟩ is a complex quantity, the probability of this
state collapsing to | 1⟩ is calculated by multiplying with its conjugate complex:

Probability of collapsing to |1⟩ = ( 3

4
+ i 1

4
)( 3

4
− i 1

4
)

= 3

16
− i2 1

16

= 3

16
+ 1

16

= 1

4

Thus, the sum of the probabilities adds up to 1, as required for a valid
quantum state.

To put a | 0⟩ qubit in this quantum state, we’ll build a circuit using a U3 gate
where θ = π / 3 radians, φ = π / 6 radians, and λ = 0:

Actually, we only need the U3 gate, but since we can’t directly observe a
quantum state, we’ll connect the Measure gate and confirm that it collapses
the qubit to 0 and 1, respectively, with the probabilities calculated.

To run this circuit on the IBM Quantum Computer, start by programming a
New Circuit. Set the number of quantum and classical registers to 1 each by
directly modifying the code:

qreg q[1];
creg c[1];

Next, drag a U3 gate from the gates palette onto the wire for q[0]. You can set
its parameters by clicking on the gate in the Circuit Composer and then
clicking the tiny pencil icon, shown in this figure:

On the panel that slides into view, set the three parameters: theta for the
angle θ, phi for the angle φ, and lambda for λ. All parameters must be specified
in radians. You can use pi for π if you’d like.
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To specify the U3 gate, you declare it with its parameters in parenthesis fol-
lowed by the qubit it acts on:

u3(pi/3,pi/6,0) q[0];

Finally, drag the Measure gate and record the collapse of the q[0] qubit in the
classical register c[0]:

measure q[0] -> c[0];

The complete code listing for this program, excluding the header, is as follows:

U3_Theta_60_Phi_30.qasm
qreg q[1];
creg c[1];
u3(pi/3,pi/6,0) q[0];
measure q[0] -> c[0];

When you run this quantum program, you’ll get an output that looks similar
to the following results:

This output confirms that the | 0⟩ qubit has been put into a quantum state
where the theoretical probability of it collapsing to | 0⟩ or | 1⟩ approximately
matches the frequency of the 0 and 1 states observed in the classical register.

This circuit is interesting in its own right, as it demonstrates how to reliably
collapse a qubit to either the | 0⟩ or | 1⟩ idealized states in quantum programs
according to predetermined odds. But what does this control really buy us
when designing quantum algorithms? What’s the value of creating quantum
states that have a robust chance of collapsing to the “wrong” classical state?
It turns out that nonzero probabilities play a central role in quantum algo-
rithms but in a way that’s different than in classical algorithms. In the next
section, we’ll explore the real role of probability in quantum programming
and how to think about it when designing algorithms based on quantum
phenomena.
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Standard Gates Are Universal Gates Too
Before showing you how to use the Universal gates in your programs to create
arbitrary quantum states, we’ll review the parameters to reproduce the NOT,
Z, and H gates we’ve studied so far.

Universal Gate as a NOT Gate
To get the Universal gate to mimic the NOT gate reviewed in NOT (X) Gate,
on page 42, set θ = π, φ = 0, and λ = π:

U3 (π, 0, π) : |0⟩ ↦ cos π

2
| 0⟩ + e0 sin π

2
| 1⟩

= |1⟩

(The previous equation is simplified by recognizing that cos π / 2 = 0,
sin π / 2 = 1, and eiπ = cos π + i sin π = −1.)

Thus, the U3(π, 0, π) gate switches a | 0⟩ qubit to a | 1⟩ qubit. Similarly, we
compute how the U3 gate acts on the | 1⟩ qubit:

U3 (π, 0, π) : |1⟩ ↦ −eiπ sin π

2
| 0⟩ + eiπ cos π

2
| 1⟩

= |0⟩

That is, the U3 (π, 0, π) gate switches a | 1⟩ qubit to | 0⟩. Thus, with this set
of parameters, the U3 gate switches a | 0⟩ qubit to the | 1⟩ state, and vice versa.

The Not Gate Called the Pauli-X Gate
If you chart the way the NOT gate acts on the | 0⟩ qubit on the Bloch
sphere, the arrow pointing vertically upward to the | 0⟩ quantum state
at the north pole gets rotated so that it points straight down to the
| 1⟩ state at the south pole:

In this diagram we’ve relabeled the U-axis to the more familiar X-axis.
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The arrow representing the quantum state is in effect rotated about
the X-axis. Hence, the NOT gate is also called the Pauli-X gate.

Universal Gates as Z and H Gates
For the Universal (U) gate to behave like the Z gate (reviewed in Pauli-Z (Z)
Gate, on page 109) and H gate (Summary of Basic H Gate Operations, on
page 87), respectively, the corresponding values for the three parameters,
θ, φ, and λ, for the Z and H gates are as follows:

Z gate: = U3 (0, π, 0)

H gate: = U3 (π
2
, 0, π)

Since θ for the U3 gate mimicking the H gate is π / 2, we can also use the
U2 gate as an H gate with the following parameters:

H gate: = U3 (π
2
, 0, π)

= U2 (0, π)

The Universal (U) gates reproduce the behavior of every quantum gate, so you
could, if you’d like, write your programs using just them. The gates such as
NOT, Z, and H, though, are special versions of the Universal gate that make
writing (and reading) programs more convenient.

Heads I Win, Tails You Lose, or How to Prevail with Qubelets
Probabilistic algorithms provide the key to hard-to-solve problems, such as
those in machine learning and artificial intelligence. Although these algorithms
use probability in widely different ways, they all have the same motivation:
use randomness to redirect the search.

Quantum states have probabilities written all over them. You might think,
therefore, that using probability is a magic solution to quantum problems.
Although this is true in a strictly mathematical sense, it’s not easy to create
a valid solution path by chaining together probabilities. So, in this section,
we’ll show that working with qubelets and amplitudes offers an alternative
way to design algorithms.

To illustrate, build the following circuit on the IBM Quantum Computer:
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The complete code listing, excluding the header, is as follows:

U3_Theta_60_Phi_30_H_Measure.qasm
qreg q[1];❶
creg c[1];

u3(pi/3,pi/6,0) q[0];❷
h q[0];❸
measure q[0] -> c[0];❹

❶ Specify the lengths of the quantum and classical registers.

❷ Declare the U3 gate and set θ to π / 3 radians or 60°, φ to π / 6 radians or
30°, and λ to 0.

❸ Split the qubit with an H gate.

❹ Collapse the qubit and record the classical state it falls to by inspecting
it with the Measure gate.

When you run this program, the | 1⟩ qubelets are effectively removed and you’ll
get an output similar to the following:

By introducing the H gate before measuring the qubit, we’ve halved the likeli-
hood of the qubit collapsing to | 1⟩ compared to the program without the H
gate. It’s instructive to work out why this happens, as it also shows you how
to analyze quantum programs.

Although probabilities are the only things we can concretely measure in
quantum programs, the real action in quantum programs happens before the
qubit collapses. We get a clearer picture of how a quantum circuit works if
we work with amplitudes and qubelets instead of dealing with probabilities.

The quantum state of the qubit q[0] after the U3 gate acts on it is:

U3 (π
3
, π
6
, 0) : | 0⟩ ↦ 3

2
| 0⟩ + ( 3

4
+ i 1

4
) | 1⟩
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Recall from Number of Qubelets Define the Amplitudes, on page 145, the ratio
of the amplitude magnitudes is the ratio of the number of pentagon | 0⟩ qubelets
to that of the triangle | 1⟩ qubelets:

Number of pentagon |0⟩ qubelets : Number of triangle |1⟩ qubelets = | 3

2 | : | 3

4
+ i 1

4
|

To obtain the magnitude of the complex number on the right-hand side, use
its complex conjugate as follows:

| 3

4
+ i 1

4
| = ( 3

4
+ i 1

4
)( 3

4
− i 1

4
)

= ( 3

4 )
2
−i2 ( 1

4
)2

= 3

16
+ 1

16

= 1

2

Measuring Magnitudes of Complex Numbers

The square of a number is often used to measure the “raw strength” of a number.
For example, −5 may be less than 3, but in terms of their magnitudes, (−5)2 = 25 is
greater than 32 = 9.

When it comes to complex numbers such as a + i b, squaring gives another complex
number:

(a + i b)2 = a2 + 2iab + b2

= (a2 + b2) + i 2ab
= c + i d

The real part of this complex number, c, is a2 + b2 and its imaginary part, d, is 2ab.
In other words, squaring just replaces one complex number with another.

On the other hand, multiplying a + i b with its complex conjugate a − i b gives:

(a + i b)(a − i b) = a2−i2b2 = a2 + b2

(Note that i2 = ( −1 )2 = −1.) The number in the previous equation has no imaginary
part. Moreover, since it’s the sum of two squares, it’s non-negative. Hence, it makes
a good metric to gauge the magnitudes of complex numbers.

Thus, the ratio of the amplitude magnitudes is the ratio of the number of
pentagon | 0⟩ qubelets to that of the triangle | 1⟩ qubelets:

Number of pentagon |0⟩ qubelets : Number of triangle |1⟩ qubelets =
3

2
: 1

2
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This ratio is simplified to 3 : 1 or 1.7321 : 1. If you like to deal with qubelets
in whole numbers, you could multiply the ratio by 10,000 to get
17, 321 : 10, 000. The qubit would have 17,321 pentagon | 0⟩ qubelets and 10,000
triangle | 1⟩ qubelets. But since the analysis is conceptual, you could equally
well work with fractional qubelets. In fact, we’ll go one step further: we’ll
analyze this circuit without drawing any qubelets.

After the U3 Gate:
The U3 gate puts the | 0⟩ qubit into a quantum state that has the following
qubelets:

• 3  pentagon | 0⟩ qubelets.
• 1 triangle | 1⟩ qubelet.

After the H Gate:
The H gate splits qubelets as follows:

Splitting the | 0⟩ Qubelets
The H gate splits a | 0⟩ qubit into a pentagon | 0⟩ qubelet a triangle | 1⟩
qubelet (see H Gate on | 0⟩ Qubit, on page 83):

Thus, the 3  pentagon qubelets are split into:

• 3  pentagon | 0⟩ qubelets that have the same orientation as those
after the U3 gate.

• 3  triangle | 1⟩ qubelets that have the same orientation as those
after the U3 gate.

Splitting the | 1⟩ Qubelet
The H gate splits a | 1⟩ qubit into a pentagon | 0⟩ qubelet a triangle | 1⟩
qubelet (see H Gate on | 1⟩ Qubit, on page 86):

Thus, the single triangle qubelets is split into:

• 1 pentagon | 0⟩ qubelet that has the same orientation as those after
the U3 gate.

• 1 inverted triangle | 1⟩ qubelet that is oriented exactly opposite to
that after the U3 gate.

The inverted triangle | 1⟩ qubelet will cancel out with one of the non-inverted
ones. Thus, after both the U3 and H gates act on the | 0⟩ qubit, we’ll end up
with a quantum state containing the following qubelets:

• 3 + 1 pentagon | 0⟩ qubelets.
• 3 − 1 triangle | 1⟩ qubelets.
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To calculate probabilities, normalize the number of qubelets as follows:

Probability of qubit collapsing to |0⟩ = ( 3 + 1

( 3 + 1)2 + ( 3 − 1)2
)2

= 0.9331
Similarly,

Probability of qubit collapsing to |1⟩ = ( 3 − 1

( 3 + 1)2 + ( 3 − 1)2
)2

= 0.067
These probabilities roughly match the corresponding values from the execution
of the quantum program as shown in the figure at the beginning of this sec-
tion. Importantly, although we used probabilities, it was only at the end. To
analyze the intermediate steps, we split and canceled qubelets by capitalizing
on the quantum nature of the gates in the program. More importantly, we
got a sense of writing quantum programs that are guaranteed to arrive at an
optimal solution in a single, or at most a few, shots or runs.

This circuit analysis suggests that when synthesizing or designing quantum
algorithms, you can take an approach that does away with the traditional
role of probability and instead focus on canceling qubelets. Begin with a sea
of pentagon | 0⟩ and triangle | 1⟩ qubelets and then introduce quantum gates
to whittle them down so that the quantum state is forced to collapse to the
classical state that solves the computational task.

This notion of splitting qubelets to create more qubelets that, ironically, have
greater chances of canceling them out is central to quantum computing: the
quantum state that initially favored one over the other idealized state now
gets even more biased toward that state. This effect is called amplification
and forms the core of designing quantum algorithms used to search for optimal
solutions in Chapter 10, Quantum Search, on page 295.

Try Your Hand
Solutions to these exercises are given in Universal Gates Solutions, on page 455.

For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

1. In Back-to-Back H Gates: The First Hint of Taming Randomness, on page
88, we saw that two H gates connected in sequence effectively leave a qubit
unchanged. To demonstrate that a Universal gate simulates an H gate, build
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the following circuit on the IBM Quantum Computer, where one of the H
gates has been replaced with a U2 (0, π) gate:

a. Write a program for this circuit.

b. Run your program and determine the state that’s recorded in the
classical register when the qubit q[0] collapses when the program
terminates.

c. Set the φ parameter on the U2 gate to π / 2:

u2(pi/2,pi) q[0];

Run the program and compare the output with what you got earlier.
Why do you think the output is different?

2. In Heads I Win, Tails You Lose, or How to Prevail with Qubelets, on
page 165, we saw that by using an H gate to further split qubelets after

a.

the qubit’s operated on by the U3 (π / 3, π / 6, 0) gate, more | 1⟩ qubelets
are forced to cancel out, thereby increasing the likelihood of the qubit
collapsing to | 0⟩. So, would adding one more H gate, as shown here,
cause even more | 1⟩ qubelets to cancel out?

b. This hunch of continuing to split qubelets to produce more | 1⟩ qubelets
so that they cancel out is correct. But you need to add a gate such
as a U3(π / 3, 0, 0) in between the two H gates, as shown in the following
figure:

i. Write a program for this circuit.
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ii. Run your program and examine its output. Does the probability
of the qubit collapsing to | 0⟩ improve when compared to the circuit
in Heads I Win, Tails You Lose, or How to Prevail with Qubelets?

In the next chapter, we’ll explore why sandwiching a gate such as
a U3(π / 3, 0, 0) between two back-to-back H gates increases the
odds of the qubit collapsing to | 0⟩. Intuitively, though, the sand-
wiched gate perturbs the orientation of the | 0⟩ qubelets so that
they are slightly misaligned and the neutralizing effect of the H
gates doesn’t occur.

3. Consider a quantum circuit in which a gate acts on a | 0⟩ qubit and puts
it into the state shown on the right in the following figure:

|0i|0i |1i|1i |0i|0i |1i|1i |1i|1i?

The right qubit has one pentagon | 0⟩ qubelet and two triangle | 1⟩ qubelets.
The triangle | 1⟩ qubelets are rotated 30° anticlockwise.

a. Calculate the quantum state for the right qubit.

b. Which hemisphere would this quantum state fall on the Bloch sphere?

c. What are the probabilities of this state collapsing to | 0⟩ and | 1⟩,
respectively?

d. What gate would you use that takes the | 0⟩ qubit and puts it into the
state you calculated previously?

e. Write a quantum program for this quantum circuit. Add a Measure gate
to collapse the qubit and record the classical state it collapses to.

f. Run your program and examine its output. Do the probabilities of
collapsing to the classical states match your calculations?

Bottom Line
The promise of quantum computing to offer super-fast solutions to optimiza-
tion problems or virtually foolproof ways to safely send messages depends on
twisting qubits, and by association, rotating their qubelets through arbitrary
angles.
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Although the Bloch sphere is traditionally used to depict the gradual blending
of quantum states from a pure | 0⟩ state at the north pole to a pure | 1⟩ state
at the south pole, its 3D shape makes it hard to visualize the actions of
quantum gates. The model described in Modeling Quantum Bits with the
Qubelets Model, on page 20, takes this single shape and breaks it into two
shapes, pentagons and triangles, that you can rotate independently in 2D
space without having to do any mental calisthenics. More importantly, funda-
mental quantum concepts like canceling and entangling become transparent
without being couched in abstract mathematics. In other words, the Qubelets
Model accurately represents the Bloch Model but in an actionable form par-
ticularly suited for quantum computing.

Qubelets are teased to precise quantum states using devices called Universal
gates. In this chapter, you learned to work with these gates in quantum pro-
grams. To specify Universal gates in code, we declare them using parameters
related to a quantum state that are, in turn, defined by the relative number,
or ratio, of pentagon | 0⟩ and triangle | 1⟩ qubelets and the relative difference
between their rotations. To this end, we covered how to mathematically express
quantum states in terms of amplitudes and probabilities in Quantum States
and Probabilities, on page 142, and to plot the states on a unit sphere called
the Bloch sphere in Rotating Qubelets Through Any Angle, on page 150. With
this mapping, Universal gates act on qubits and regulate their states with full
control. In later chapters, we’ll need these high-fidelity gates when designing
algorithms that tackle complex applications in unprecedented ways.

Even though probabilities govern how qubits land on | 0⟩ and | 1⟩, as you saw
in Heads I Win, Tails You Lose, or How to Prevail with Qubelets, on page 165,
when designing algorithms, your mindset should be on figuring out how to
orient qubelets to remove states that won’t lead to optimal solutions. Universal
gates give you the means to rotate the appropriate set of qubelets so that they
are directly opposed to others and cancel out.

In the next chapter, we’ll analyze circuits where you’ll learn about other
quantum gates that twist qubelets in a variety of ways.
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CHAPTER 7

If nature leads us to mathematical forms of great simplicity and
beauty ... we cannot help thinking that they are “true,” that they reveal
a genuine feature of nature.

  ➤   Werner Heisenberg, awarded the 1932 Nobel Prize in Physics
for “the creation of quantum mechanics, the application of which
has, inter alia, led to the discovery of the allotropic forms of
hydrogen”

Small Step for Man—Single Qubit
Programs

In the previous chapter, Chapter 6, Designer Genes—Custom Quantum States,
on page 141, you saw how to precisely specify any quantum states. In this
chapter, you’ll learn ways to manipulate qubits to any arbitrary quantum
state.

The quantum programs you’ve seen so far have been somewhat limited. You’ve
learned to invoke quantum phenomena in programs, got them to work pre-
dictably, and used the Qubelets Model on page 20, to analyze them. But to
hook up more gates and deal with more qubits to solve big problems, you
need to learn techniques that’ll let you handle larger circuits. In particular,
because we need to consider the all-states-at-once nature of quantum com-
puting, the bookkeeping gets more intricate. You’ll ratchet up your toolkit
with techniques that show you how to keep track of the quantum states of
qubits through a program’s circuitry without going through the one-bit-at-a-
time way of individually tracing the qubelets in each qubit and tabulating
where they end up.

In this chapter, you’ll work with single-qubit programs. Although single-qubit
programs aren’t terribly exciting from an applications standpoint, the ideas
and techniques you’ll learn here extend directly to multi-qubit programs in
the next chapter. Moreover, the techniques described here will help you figure
out which gates to use and how to connect them in your quantum circuit so
that the mega-qubit and its quantum states end up where you want them to.
This will help you design quantum algorithms for your own applications.
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Quantum States as Vectors
In Quantum States and Probabilities, on page 142, we saw that a quantum
state can be expressed as a combination of the | 0⟩ and | 1⟩ states as follows:

ω0 | 0⟩ + ω1 | 1⟩

The parameters ω0 and ω
1
 are the amplitudes whose squares are the proba-

bilities of collapsing to 0 or 1, respectively.

We can express the quantum state more compactly. Since a qubit is a
blended state of just the two quantum states, | 0⟩ and | 1⟩, we can represent it
as a 2 × 1 vector of two rows and one column (see Working with Matrices and
Vectors, on page 394):

(ω0ω
1
)

In this vector, the top element represents the amplitude for the pentagon | 0⟩
qubelets, and the bottom represents the amplitude for the triangle | 1⟩ qubelets
in the qubit.

The vector for the idealized quantum state | 0⟩ will have ω0 = 1 and ω
1
= 0:

| 0⟩ ≡ ( 10 )
Pictorially, this vector represents the following qubelets in the qubit:

The triangle | 1⟩ qubelet is drawn with a dotted outline as it’s not active in this
qubit.

Likewise, the vector for the idealized quantum state | 1⟩ will have ω0 = 0 and
ω
1
= 1:

| 1⟩ ≡ ( 01 )
In this case, this vector corresponds to the following qubelets in the qubit
shown on page 175.

The pentagon | 0⟩ qubelet is drawn with a dotted outline since it’s not active
in the | 1⟩ qubit.
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Consider a qubit with seven pentagon | 0⟩ qubelets and three inverted triangle
| 1⟩ qubelets, shown in the following figure:

You can calculate its quantum state as described in Quantum States and
Probabilities to get:

0.9191 |0⟩ − 0.3939 |1⟩

Rewrite this equation as a vector:

( 0.9191
−0.3939 )

Sometimes, you’ll find it convenient to write the previous vector in terms of
the vectors for the idealized quantum states | 0⟩ and | 1⟩, as shown here:

( 0.9191
−0.3939 ) = 0.9191( 10 ) − 0.3939( 01 )

In general, the quantum state of a single qubit in terms of vectors is:

ω0 | 0⟩ + ω1 | 1⟩ ≡ (ω0ω1 ) ≡ ω0( 10 ) + ω1( 01 )
The squares of the amplitudes ω0 and ω

1
 still add up to 1 for the vector to be

a valid representation of a quantum state:

ω0
2 + ω

1
2 = 1

Quantum Gates as Matrices
The go-to visual for orthogonal vectors is unit lengths directed along the
coordinate axes. This picture, though appealing, quickly breaks down. With
two qubits, we’ll have vectors with 22 or 4 elements, making them hard to
visualize in 3D space. As explained in From Sphere to Hemisphere: The True
Space, on page 408, in the weird geometry of quantum mechanics, the vector
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for | 0⟩ points upward while that for | 1⟩ is downward and not perpendicular to
the vector for | 0⟩.

X

Y

Z

|1i

|0i

-V

When quantum computers become practical to unleash on large scale prob-
lems, we’ll be dealing with several qubits. So we’ll get more mileage thinking
about vectors, as mathematicians would, as opposed to another picture. In
this interpretation, we treat the elements of a vector as selectors of the corre-
sponding column of a matrix. For instance, consider the following N × 1 vector
x of N elements:

x = ( x1x2⋮
xN
)

Multiplying an M × N matrix A with the N × 1 vector x, we get:

Ax = [ a11 a
12

··· a
1N

a
21

a22 ··· a2N
⋮ ⋮
aM1 aM2 ··· aMN

]( x1x2⋮xN ) = (
a
11
a
21
⋮
aM1

)x1 + ( a12a22⋮aM2 )x2 + ··· + ( a1Na2N⋮
aMN

)xN
Each column of the matrix is multiplied by the corresponding element of the
vector x. (If you’d like more details on how we get this result, see Working
with Matrices and Vectors, on page 394.)
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From Vectors to Matrices
A vector whose first element is 1 and whose other elements are 0 pulls the
first column of a matrix, and a vector whose second element is 1 (and 0
elsewhere) selects the second column, and so on. This suggests a way to
model quantum gates with matrices.

For example, consider a quantum gate that operates on the | 0⟩ qubit and
modifies its quantum state to α0 | 0⟩ + α1 | 1⟩. We write this operation in vector
form as:

( 10 )↦ (α0α
1
)

This transformation can be expressed with a matrix A: the right-hand side
of the previous equation is the first column of matrix A so that it’s selected
when A is multiplied by the vector for the | 0⟩ qubit. That is,

A( 10 ) = [ α0 *
α
1
* ]( 10 ) = (α0α1 )

We don’t yet know the second column, hence, we indicate our lack of knowl-
edge with asterisks.

Likewise, if β0 | 0⟩ + β1 | 1⟩ is the quantum state after the gate acts on | 1⟩, then
these amplitudes form the second column of the matrix A. That is, when the
matrix A is multiplied by the | 1⟩ qubit vector, we get a vector whose elements
are the amplitudes β0 and β

1
, respectively. That is:

A ( 01 ) = [ * β0
* β

1 ] ( 01 ) = ( β0β1 )
Putting these two matrices together, we get the complete matrix A for the
gate, as follows:

A = [ α0 β0
α
1
β
1 ]

The first column of the A matrix is the quantum state when the gate operates
on the | 0⟩ qubit, and the second column is when the gate operates on the | 1⟩
qubit.
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Quantum Gate Matrices Are Square

Quantum gates are always square matrices. That is, the matrices have the same
number of rows and columns.

The reason for this property stems from the way that vectors are column selectors of
matrices. When a matrix is multiplied by a vector, an element of a vector selects the
corresponding column of the matrix. This forces the number of columns of the matrix
to be the same as the number of elements of the vector.

Second, since each element selects a column, the final result of this multiplication
will be a vector. This vector represents the quantum state of the qubit after it’s acted
on by the quantum gate. For a single qubit, its quantum state can only collapse to
one of two classical states. Thus, the vector, a column of the matrix, can have only
two elements. Hence, the matrix for single-qubit quantum gates has exactly two rows
and two columns.

Later, when we analyze quantum gates that operate on multiple qubits, we’ll see that
this property continues to hold.

Next, we apply this recipe to compute the AH matrix for the H gate.

H Gate Matrix
To compute the matrix AH for the H gate, we’ll work out the vectors when the
H gate operates on the | 0⟩ qubit for the first column and then the | 1⟩ qubit for
the second column.

First Column of the H Gate Matrix

As described in Putting Qubits in Blended States, on page 82, the H gate splits
a | 0⟩ qubit into one with a pentagon | 0⟩ qubelet and a triangle | 1⟩ qubelet, as
shown in the following figure:

|0i|0i |1i|1i |0i|0i |1i|1iH

The vector for the | 0⟩ qubit on the left has only a pentagon | 0⟩ qubelet. So its
vector is:

( 10 )
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The H splits the | 0⟩ qubit on the left to one with a pentagon | 0⟩ qubelet and a
triangle | 1⟩ qubelet. Its quantum state is:

1

12 + 12
| 0⟩ + 1

12 + 12
| 1⟩

Both amplitudes are positive as the pentagon and triangle qubelets aren’t
inverted. Hence, the vector for the right qubit is:

( 1

2
1

2
)

We can express the previous operation as:

AH ( 10 ) = ( 1

2
1

2
)

The top element of the vector on the left-hand side will select the first column
of the matrix AH. Thus, the first column is the right-hand side in the previous
equation:

AH = [ 1

2
*

1

2
* ]

Second Column of the H Gate Matrix

To determine the second column of the matrix AH, we split a | 1⟩ qubit by the
H gate, as shown in the following figure:

|0i|0i |1i|1i |0i|0i

|1i� |1i
H

The H gate splits the | 1⟩ qubit to one with a pentagon | 0⟩ qubelet and an
inverted triangle | 1⟩ qubelet, as shown in the right qubit in this figure.
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The vector for the | 1⟩ qubit on the left only has a triangle | 1⟩ qubelet. Thus,
its vector is:

( 01 )
The vector for the right qubit is:

( 1

2

− 1

2
)

Thus, applying the matrix AH to the vector for the left qubit, we get the vector
for the right qubit:

AH ( 01 ) = ( 1

2

− 1

2
)

The bottom element of the vector on the left-hand side will pull the second
column of the matrix AH. Thus, the second column is the right-hand side in
the previous equation:

AH = [ * 1

2

* − 1

2
]

Complete H Gate Matrix

The complete matrix AH for the H gate is:

AH = [ 1

2

1

2
1

2
− 1

2 ] = 1

2 [ 1 1
1 −1 ]

Following an analogous calculation, the matrix, A
NOT

, for the NOT gate works
out as:

A
NOT

= [ 0 1
1 0 ]
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Likewise, the matrix, AZ, for the Z gate is:

AZ = [ 1 0
0 −1 ]

And the matrix that leaves a qubit alone is:

AID = [ 1 0
0 1 ]

This is simply the identity matrix. Both the pentagon | 0⟩ and triangle | 1⟩ qubelets
are unaffected by this gate. (You can find this gate, ID, on the IBM Quantum
Computer’s palette, but it’ll have no practical value in your programs.)

Matrix and Vector Multiplication Are Reversed from How They Appear in the Circuit

When the 2 × 2 A matrix is applied to compute how the gate affects
a qubit’s quantum state, the A matrix is written before the vector
for the quantum state: Ax, where x is the 2 × 1 vector for the
quantum state.

This multiplication order is the opposite of how it’s represented
in the circuit: the qubit is first shown followed by the gate that
acts on it. This reversal is typical of matrix equations where the
operation that’s applied last is actually written first. That is, we’ll
never write the action of the gate on the qubit as xA, the order in
which the qubit and gate appear in the circuit. This form is
mathematically meaningless: you can’t multiply a 2 × 1 vector with
a 2 × 2 matrix.

Applying the Gate Matrix on Blended Qubits
Although we computed the A matrix for a single qubit quantum gate by seeing
how the gate affects the | 0⟩ and | 1⟩ qubits, the same matrix can be used to
figure out how the gate affects blended qubits that contain both pentagon | 0⟩
and triangle | 1⟩ qubelets.

We’ll illustrate applying a gate’s matrix on a blended qubit by having the H
gate act on the following blended qubit:

|0i|0i |0i|0i

|1i� |1i
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This qubit has two pentagon | 0⟩ qubelets and one inverted triangle | 1⟩ qubelet.

Before applying the AH matrix for the H gate on this qubit, we’ll first work out
how this qubit is modified by working with individual qubelets. We’ll then
compare the final state of this qubit with that obtained with the AH matrix.

Working Out the Final State by Individually Splitting Qubelets

As we learned in Putting Qubits in Blended States, on page 82, when the H
gate acts on this blended qubit, each qubelet is split as follows:

• Each pentagon | 0⟩ qubelet is split into a pentagon | 0⟩ and a triangle | 1⟩
qubelet. Thus, the two pentagon | 0⟩ qubelets will be split into two pentagon
| 0⟩ qubelets and two triangle | 1⟩ qubelets.

• The single inverted triangle | 1⟩ qubelet will split into an inverted pentagon
| 0⟩ qubelet and a triangle | 1⟩ qubelet.

Putting all this together, we have the following:

|0i|0i |0i|0i

|1i� |1i |0i|0i |1i|1i |0i|0i |1i|1i

|0i� |0i |1i|1iH

One of the non-inverted pentagon | 0⟩ qubelets cancels with an inverted pen-
tagon | 0⟩ qubelet. Thus, we end up with a qubit containing one pentagon | 0⟩
qubelet and three triangle | 1⟩ qubelets, as shown in the following figure:

|0i|0i |1i|1i |1i|1i |1i|1i

Working Out the Final State by Applying the AH Matrix

Now, that we’ve seen how the H gate acts on this blended qubit, let’s work
this operation out by applying the AH matrix.

We need to first determine the quantum state of the qubit before we pass it
to the H gate. This qubit contains two pentagon | 0⟩ qubelets and a single
inverted triangle | 1⟩ qubelet. Its quantum state is:

2

22 + 12
| 0⟩ − 1

22 + 12
| 1⟩ = 2

5
| 0⟩ − 1

5
| 1⟩
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Or, writing as a vector:

( 2

5

− 1

5
) = 1

5
( 2
−1 ) = ( 0.8944

−0.4472 )
To figure out the state of the blended qubit after its been acted on by the H
gate, we apply the AH matrix to this quantum state:

AH
1

5
( 2
−1 ) =

1

2 [ 1 1
1 −1 ] × 1

5
( 2
−1 ) = 2

10
( 11 ) − 1

10
( 1
−1 ) = 1

10
( 13 )

The quantum state on the right-hand side corresponds to a qubit with a single
pentagon | 0⟩ qubelet and three triangle | 1⟩ qubelets, as we showed earlier.

Even though we tested the AH matrix on a single quantum state, in general,
it’ll correctly predict the quantum state after the H gate operates on any
blended state.

The operations of a quantum gate on any quantum state are, thus, represented
compactly as a matrix. In general, an A matrix for a single qubit quantum
gate is defined as:

[ α0 β0
α
1
β
1 ]

To determine how this matrix modifies a qubit, multiply it with the vector for
the quantum state as follows:

[ α0 β0
α
1
β
1 ](ω0ω1 )

The elements ω0 and ω
1
 in the vector are the amplitudes for | 0⟩ and | 1⟩,

respectively, in the qubit.

Simply put, the A matrix then completely defines a quantum gate: like DNA,
it contains the blueprint for how the quantum gate affects a qubit in any
quantum state.

Try Your Hand

Solutions to these exercises are given in Quantum Gates as Matrices Solutions,
on page 460.
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In this section’s exercises, I encourage you to work out any matrix calculations
using the method described in Multiplying Matrices, on page 396. In later
sections, you may find Using a Computer Algebra System for Multiplying,
on page 397, more convenient, but for now the manual calculations will help
solidify interpreting the columns of the gate matrix as its actions on the ide-
alized quantum states.

For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

1. Determine whether the following vectors represent valid quantum states:

a. ( 0.7071
−0.2929 )

b. (−0.8062−0.5916 )
2. Consider the following quantum circuit:

a. Draw the qubelets before and after the Z gate. (Note that the the qubit
has been initialized to | 1⟩.)

b. Write the quantum state in vector form both before and after the Z
gate acts on the | 1⟩ qubit.

3. Consider the following quantum circuit:

a. Draw the qubelets before and after the H gate. (Note that the the qubit
has been initialized to | 1⟩.)

b. Write the quantum state in vector form both before and after the H
gate acts on the | 1⟩ qubit.
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4. In this exercise, you’ll work out the matrix, A
NOT

, for the NOT gate.

a. When a NOT gate acts on a | 0⟩ qubit, it switches the pentagon | 0⟩
qubelet to a triangle | 1⟩ qubelet, as shown in the following figure:

|0i|0i |1i|1i |0i|0i |1i|1iNOT

(The dotted triangle | 1⟩ qubelet on the left qubit indicates it’s not active.
Thus, its amplitude and the probability of its being selected is 0.)

i. Write this operation as a multiplication of the A
NOT

 matrix with
a vector.

ii. Specify the first column of the A
NOT

 matrix.

b. When a NOT gate acts on a | 1⟩ qubit, it switches the triangle | 1⟩ qubelet
to a pentagon | 0⟩ qubelet, as shown in the following figure:

|0i|0i |1i|1i |0i|0i |1i|1iNOT

i. Write this operation as a multiplication of the A
NOT

 matrix with
a vector.

ii. Specify the second column of the A
NOT

 matrix and, then, write
the complete matrix.

c. Consider the blended qubit shown in the following figure:

|0i|0i |0i|0i

|1i� |1i

i. Write its normalized quantum state as a vector.

ii. Analyzing the operation of the NOT gate on qubelets, write the
quantum state as a vector of the qubit after the NOT gate acts on it.

What are the probabilities of this qubit collapsing to 0 and 1,
respectively.
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iii. Apply the A
NOT

 matrix to calculate the quantum state of this qubit
after the NOT gate acts on it. How does this state compare with the
results you obtained in the previous part of this exercise?

What are the probabilities of this qubit collapsing to 0 and 1,
respectively.

5. In this exercise, you’ll work out the matrix, AZ, for the Z gate.

a. As shown in Pauli-Z (Z) Gate, on page 109, the Z gate leaves a | 0⟩ qubit
alone, as shown in the following figure:

|0i|0i |1i|1i |0i|0i |1i|1iZ

i. Write this operation as a multiplication of the AZ matrix with a
vector.

ii. Specify the first column of the AZ matrix.

b. When a Z gate acts on a | 1⟩ qubit, it inverts the triangle | 1⟩ qubelet,
as shown in the following figure:

|0i|0i |1i|1i |0i|0i

|1i� |1iZ

i. Write this operation as a multiplication of the AZ matrix with
vector.

ii. Specify the second column of the AZ matrix and, then, write the
complete matrix.

c. Consider the blended qubit shown in the following figure:

|0i|0i

|1i� |1i |1i� |1i

i. Write the normalized quantum state as a vector of this blended
qubit.

Chapter 7. Small Step for Man—Single Qubit Programs • 186

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


ii. Using qubelets, work out the operation of the Z gate on this qubit.
Write the quantum state as a vector of the qubit after the Z gate
acts on it.

iii. Apply the AZ matrix to calculate the quantum state of this qubit
after the Z gate acts on it. How does this state compare with the
results you obtained in the previous part of this exercise?

Can the Quantum Gate Matrix Be Anything?
Armed with Universal Quantum Gates, on page 158, and knowing that the A
matrix has the entire “genetic code” of a quantum gate, you might be tempted
to think that its elements can be arbitrarily set. But like the amplitudes on
the state vector, the A matrix is similarly restricted.

This section establishes a key result that underlies a large swath of quantum
computing. The development involves linear algebra and complex numbers.
Knowing this material will guide you in designing quantum circuits tuned for
your own applications.

We saw in Rotating Qubelets Through Any Angle, on page 150, that quantum
states are made up of complex numbers. When dealing with complex numbers,
we first need to update what we mean when we “square the amplitudes to
get the probabilities” of the qubit collapsing to | 0⟩ and | 1⟩, respectively.

When dealing with complex numbers, instead of squaring them, multiply
them with their complex conjugates, as outlined in Measuring Magnitudes
of Complex Numbers,  on page 167.

The probabilities of the qubit collapsing to | 0⟩ and | 1⟩ are:

Probability of qubit collapsing to |0⟩ = ω0
*ω0

Probability of qubit collapsing to |1⟩ = ω
1
*ω

1

Since, in general, the amplitudes can be complex numbers, each is multiplied
by its complex conjugate, ω0

* and ω
1
*, respectively.

As before, these probabilities must add up to 1:

ω0
*ω0 + ω1

*ω
1
= 1

In quantum computing, the complex conjugates, ω0
* and ω

1
*, form a row vector

called a bra and written as 〈ψ† |—pronounced “bra-ψ-dagger”:

〈ψ† | = (ω0
* ω

1
* )
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The bra row vector, 〈ψ† |, together with its dual, the ket column vector, |ψ⟩,
make up the bra-ket1 notation for expressing quantum states in quantum
mechanics.

The inner product2 of the bra, 〈ψ† |, and ket, |ψ⟩, is:

〈ψ† | |ψ⟩ = (ω0* ω
1
* )(ω0ω

1
) = ω0*ω0 + ω1*ω1

This expression sums to 1, as we just saw previously.

Next, consider a qubit with a quantum state ψ defined by the amplitudes ω0
and ω

1
 for the idealized states. Write this state as a vector:

ψ = (ω0ω
1
)

Let ψ′ be the quantum state of this qubit after it’s acted on by a quantum
gate defined by the A

G
 matrix, as shown in the following figure:

| i G | 0i

The amplitudes of the idealized states | 0⟩ and | 1⟩ are ω0
′  and ω

1
′ , respectively:

ψ′ = (ω0′ω
1
′ )

Using the A
G
 matrix, we can express this operation with the following equation:

A
G
|ψ⟩ = |ψ′⟩ = A

G (ω0ω1 ) = (ω0′ω1′ )
To compute the sum of the probabilities of this transformed qubit collapsing
to | 0⟩ and | 1⟩, respectively, compute the inner product of this qubit’s quantum
state, bra, 〈ψ†′ |, and its ket, |ψ′⟩:

〈ψ†′ | · |ψ′⟩
The ket, |ψ′⟩, is as shown earlier:

A
G
|ψ⟩ = |ψ′⟩

1. https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
2. https://en.wikipedia.org/wiki/Dot_product
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Non-Inverted and Inverted Qubelets Have Real Conjugates

Recall from Rotating Qubelets Through Any Angle, on page 150, that the general
equation for a quantum state |ψ⟩ is:

|ψ⟩ = cos θ

2
| 0⟩ + e

iφ
sin θ

2
| 1⟩

In vector form:

|ψ⟩ = ( cos θ

2

e
iφ
sin θ

2
) = ( cos θ

2

(cos φ + i sin φ)sin θ

2
)

Here, the angle φ is the relative difference in orientations between the pentagon | 0⟩
and triangle | 1⟩ qubelets.

When both the pentagon | 0⟩ and triangle | 1⟩ qubelets are non-inverted or both are in-
verted, the relative difference in their orientations, φ, is 0. Thus, sin 0 = 0 and cos 0 = 1
and the quantum state vector |ψsame⟩ is:

|ψsame⟩ = ( cos θ

2

(cos 0 + i sin 0) sin θ

2
) = ( cos θ

2

sin θ

2
)

Both elements in this vector are real. So its complex conjugate, 〈ψsame† |, will be a row
vector of real numbers too:

〈ψsame† | = ( cos θ

2
sin θ

2
)

The transpose of this row vector is identical to that for |ψsame⟩.
Likewise, if either of the pentagon | 0⟩ qubelets or the triangle | 1⟩ qubelets are inverted
and the other type is not, then the relative difference in their orientations, φ, is 180° or
π radians. Thus, sin π = 0 and cos π = −1 and the quantum state vector ψopp is:

|ψopp⟩ = ( cos θ

2

(cos π + i sin π) sin θ

2
) = ( cos θ

2

−sin θ

2
)

Both elements in this vector are real too. Its complex conjugate, 〈ψopp |, will also be
a row vector of real numbers:

〈ψopp† | = ( cos θ

2
−sin θ

2
)

The transpose of this row vector is the same as that for |ψopp⟩.
Thus, for both these cases, the complex conjugates for the vectors of the quantum
states have only real elements, and everything we talked about in Quantum States
and Probabilities, on page 142, still holds.
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The bra, 〈ψ†′ |, is obtained by taking the conjugate transpose3 of the previous
equation:

〈ψ† | AG
* = 〈ψ†′ |

Rewriting the inner product using the previous equation, we get the following:

〈ψ†′ | |ψ′⟩ = 〈ψ† | AG
†A

G
|ψ⟩

Writing the Conjugate Transpose of a Matrix

The conjugate transform, A†
, of a matrix, A, is also called the Hermitian matrix. To

compute the conjugate transform of a matrix, do the following two steps:

1. Write its transpose AT
—the rows become the columns and the columns become

rows.

2. Replace each element in the transposed matrix with its complex conjugate.

For example, to write the conjugate transform of the following matrix:

A = [ 1 1
0 i ]

The transposed matrix, AT
, is:

AT = [ 1 0
1 i ]

Next, replace each element with its complex conjugate. In this matrix, the only complex
number is the one in the bottom right, i. Reverse the sign of the imaginary part to
get the complex conjugate, −i. Thus, the complex conjugate matrix, A†

, is:

A† = [ 1 0
1 −i ]

Most Important Step in Quantum Computing

Now comes one of the most important steps in quantum computing: if A
G
†A

G
works out to the identity matrix, I, then the previous inner product, or sum
of the probabilities is:

3. https://en.wikipedia.org/wiki/Conjugate_transpose
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〈ψ†′ | |ψ′⟩ = 〈ψ† | AG
†A

G
|ψ⟩

= 〈ψ† | I |ψ⟩
= 〈ψ† | |ψ⟩

The last term on the right-hand side is the sum of the probabilities of the
qubit collapsing to | 0⟩ and | 1⟩ before the gate acts on it. We saw earlier that
this sum is 1. Thus, the inner product of the bra and ket of the quantum state
after the gate acts on it is 1. That is, the sum of the probabilities after the
gate acts on the qubit adds up to 1, confirming that the transformed state is
a valid quantum state.

In other words, for the transformed quantum state to be a valid quantum
state, the following must be true:

A
G
†A

G
= I

Or, equivalently, the conjugate transpose, A
G
† , is the inverse of A

G
. Such

matrices are called unitary matrices and have the special property that their
inverses are the conjugate transforms.

Unitary Matrices Make Reversible Gates

Unitary matrices aren’t just a theoretical nice-to-know type of result. They
directly limit how quantum gates are built. To see why, consider again the
equation that relates the matrix A

G
 for a quantum gate G with the Hermitian

or unitary matrix A
G
† :

A
G
†A

G
= I

Post-multiply both sides by A
G
−1:

A
G
†A

G
A
G
−1 = I A

G
−1

A
G
† = A

G
−1

That is, the quantum gate G† defined by the dagger matrix, A
G
† , is the inverse

of the matrix for the quantum gate G.

Likewise, pre-multiply both sides of the equation that relates the two matrices
by (A

G
† )−1:

(A
G
† )−1A

G
†A

G
= (A

G
† )−1 I

A
G

= (A
G
† )−1
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That is, the inverse of the dagger matrix is the matrix of the quantum gate
G. This condition that forces the matrix of one gate to be an inverse of the
other means that the action of any quantum gate on a qubit is reversed by
the dagger gate. It’s for this reason back-to-back H gates, in which H† = H,
don’t change the quantum state of the qubit they act on, as described in
Back-to-Back H Gates: The First Hint of Taming Randomness, on page 88.

Unitary matrices are a defining feature of quantum gates. This is a startling
requirement and puts a brake on arbitrarily defined matrices for quantum
gates—their matrices have to be unitary.

Quantum Gates Have the Same Number of Inputs and Outputs

For a gate to reverse the actions on a qubit of another gate means that every quantum
gate must have the same number of input bits as output bits, otherwise the reverse
action won’t work. It’s for this reason that quantum computing doesn’t have the direct
equivalents of the classical AND and OR gates. These classical logical functions had to
be reproduced using the CNOT gates, as shown in Chapter 3, Elementary, My Dear
Watson—Quantum Logic, on page 41.

At first blush reversibility seems like a relatively innocuous action on a qubit.
In quantum computing, though, because of the unique ability of qubits to
hold multiple quantum states, you’ll learn to put back a subset of qubelets
to their original states and only work with those that lead to the optimal
solution. This feature gives you even more ways to control qubits. In Chapter
10, Quantum Search, on page 295, you’ll see the central role that reversibility
plays in turbo-charging search algorithms. To put it another way, you’ve seen
how quantum computing works with the Qubelets Model on page 20. Unitary
matrices give you why quantum computing can be a game changer.

The mathematical perspective is important to know. But in practice, you’ll
often find it more convenient to quickly work out how a gate affects a qubit
qualitatively. Once you’re convinced that the gate modifies the quantum state
the way you want, you can then resort to the mathematics to confirm your
instincts. In the next section, I’ll guide you through such an exercise to
sharpen your intuition for quantum computing.

Try Your Hand
Solutions to these exercises are given in Gate Matrix Restrictions Solutions,
on page 464.
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For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

1. Consider a quantum gate G defined by the matrix, A
G
, as follows:

A
G
= [ 1 −1

i −i ]
a. Write its Hermitian matrix, A

G
† , or its conjugate transpose.

b. Is A
G
 a valid matrix for the quantum gate?

2. Consider a quantum gate S† defined by the matrix, A
S†

, as follows:

A
S†
= [ 1 0

0 −i ]
a. Write its Hermitian matrix or its conjugate transpose.
b. Is A

S†
 a valid matrix for the gate?

3. Consider the AH matrix for the H gate that we saw in H Gate Matrix, on
page 178:

[ 1

2

1

2
1

2
− 1

2
]

a. Write its Hermitian matrix, AH
† , or its conjugate transpose.

b. Is AH a valid matrix for the gate?

4. The matrix, AU, for the Universal gate, U3(θ, φ, λ), is:4

AU = [ cos θ

2
−eiλ sinθ

2

e
iφ
sin θ

2
e
i(λ+φ)

cos θ

2
]

a. Write the matrix AU for U3(π / 3, π / 2, −π / 2).

b. Write its Hermitian matrix, AU
† .

c. Is the matrix AU unitary?

4. https://quantum-computing.ibm.com/support/guides/introduction-to-quantum-circuits#other-single-qubit-gates
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d. Define the parameters for a U3†(θ, φ, λ) gate that implements the
Hermitian matrix, AU

† .

e. Consider the following quantum circuit:

q[0] = |0i U3(⇡3 ,
⇡
2 ,�

⇡
2 )

c •
c[0]

i. Compute the quantum state when the U3(π / 3, π / 2, −π / 2) acts
on the | 0⟩ qubit.

ii. What are the calculated or theoretical probabilities of the qubit
collapsing to the idealized states | 0⟩ and | 1⟩, respectively?

iii. Write a quantum program for this circuit.

iv. Run your program and check whether its output matches the
probabilities of the q[0] qubit collapsing to the idealized states you
calculated in the previous part.

f. Introduce another U3(θ, φ, λ) gate, using the parameters you calculat-
ed earlier, between the U3(π / 3, π / 2, −π / 2) and Measure gates, as shown
in the following figure:

q[0] = |0i U3(⇡3 ,
⇡
2 ,�

⇡
2 ) U3(✓,�,�)

c •

c[0]

i. Write a quantum program for this circuit with back-to-back Universal
gates.

ii. Run your program and explain its output.

g. Replace the U3(θ, φ, λ) gate in the previous circuit with a U3(π / 3, π / 4,
−π / 2), as shown in the following circuit:

q[0] = |0i U3(⇡3 ,
⇡
2 ,�

⇡
2 ) U3(⇡3 ,

⇡
4 ,�

⇡
2 )

c •

c[0]
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Note that the second U3 gate differs from the first in only the value for
the second parameter, φ.

i. Write a quantum program for this circuit.
ii. Run this program and compare its output with the circuit in the

previous part.

5. In most of the exercises you’ve seen so far, you worked with a given
quantum state and had to find the new state after it’s been acted on by
a gate. When designing your own algorithms, you’ll often want a qubit to
be in a specific state. Thus, you’ll need to work out what gates must
operate on the qubit to bring it to the desired quantum state. In this
exercise, you’ll work on a simpler version: you’ll figure out the original
quantum state of the qubit when given the gate that acts on it and the
final quantum state.

The quantum state vector of a qubit after it’s acted on by the S† gate is:

( 1

2

− 1

2
i )

What was the quantum state before it was acted on by the S† gate? Use
the following matrices, A

S
 and A

S†
, related to the S and S† gates, respec-

tively:

S Gate : A
S
= [ 1 0

0 i ]
S† Gate : A

S†
= [ 1 0

0 −i ]
Intuitively Analyzing the Quantum Gate Matrix
By this point, you’ve topped up your toolkit with the equation for the quantum
state, the Bloch sphere, Universal gates, and quantum gate matrices. Given any
quantum gate, you can work out how it’ll modify any arbitrary quantum state.
But before reaching into your arsenal, it is always worth trying to see if you
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can intuitively reason out how the gate acts on the qubit. This will come in
handy when you’re designing your own quantum algorithms and want to
quickly determine if the gate modifies the qubelets as you want, without getting
distracted by the mathematics.

To demonstrate this way of thinking, we’ll work with the S gate defined by the
following matrix:

A
S
= [ 1 0

0 i ]
We want to see how this gate affects the following qubit:

|0
i

|0
i |1i |1i

Both types of qubelets are rotated from their non-inverted orientations: the
pentagon | 0⟩ qubelet is rotated 90° anticlockwise and the triangle | 1⟩ qubelet
is inverted upside down 180°. The relative difference in their orientations, φ,
is 90o−180o = −90o. We can compute the equation for its quantum state, but
we’ll hold off for a bit.

Angles Are Measured Anticlockwise

In mathematics, positive angles are measured by going in the
anticlockwise direction. Thus, an angle of 270° means rotating
three-quarters of a complete rotation anticlockwise. This angle is
equivalent to –90°, a quarter-circle rotation in the clockwise
direction.

Before working out how the S gate affects these qubelets, let’s first see how
the gate modifies each idealized state.

S Gate on the | 0⟩ Qubit
When this gate acts on the | 0⟩ qubit having a pentagon | 0⟩ qubelet, the first
column of the A

S
 matrix defines how it changes the qubit’s state:

A
S ( 10 ) = [ 1 0

0 i ]( 10 ) = ( 10 )
In other words, this gate leaves the pentagon | 0⟩ qubelets alone.
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S Gate on the | 1⟩ Qubit
When a | 1⟩ qubit holding a triangle | 1⟩ qubelet is fed to this gate, the second
column of the A

S
 matrix governs how it changes the qubit’s quantum state:

A
S ( 01 ) = [ 1 0

0 i ]( 01 ) = ( 0i )
The modified quantum state only has a triangle | 1⟩ qubelet. But the presence
of the complex number i hints that something else is going on with the triangle
| 1⟩ qubelet.

Deciphering the Presence of the Complex Number

Recall from Rotating Qubelets Through Any Angle, on page 150, the vector for
a general quantum state and equate it with the vector obtained previously.
That is:

( 0i ) = ( cos θ

2

e
iφ
sinθ

2
)

The angle φ is the relative difference in orientations between the pentagon | 0⟩
and triangle | 1⟩ qubelets, the quantity that we’re most concerned with.

In keeping with our “down-home” analysis, let’s restate the general quantum
state vector as:

( 0i ) = ( something

e
iφ
× something else )

Here, the “something” terms indicate values we’re not interested in at the
moment. In fact, we can go one step further: since the top term of the vector
is 0, we can express the right-hand side of the previous equation as:

( 0i ) = ( 0
e
iφ
× something else )

Using Euler’s formula,5 expand e
iφ

:

e
iφ
= cos φ + i sin φ

5. https://en.wikipedia.org/wiki/Euler%27s_formula#Applications_in_complex_number_theory
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The expanded form of the vector for the quantum state is:

( 0i ) = ( 0
(cos φ + i sinφ) × something else )

Since the bottom term of the vector is a “pure” complex number, namely, i,
experiment with values that force cos φ to 0. In fact, it’s easy to see that if
φ = π / 2 or 90°, cos π / 2 = 0. Moreover, sin φ = sin π / 2 = 1.

In other words, the S gate rotates the triangle | 1⟩ qubelet by 90° anticlockwise:

|1i|1i |1
i

|1
i

S

(Note that since there are no pentagon | 0⟩ qubelets in the idealized | 1⟩ qubit,
the relative angle φ is computed from the position of the triangle | 1⟩ before
the S gate acts on the qubit.)

Now, we can put together the action of the S gate on the original blended
qubit:

• The pentagon | 0⟩ qubelets are left alone.
• The triangle | 1⟩ qubelets are rotated 90° anticlockwise.

Pictorially, the action of the S gate on the blended qubit is shown in the fol-
lowing figure:

|0
i

|0
i |1i |1i

|0
i

|0
i |1i

|1iS

Since only the relative difference between the orientations of the pentagon | 0⟩
and triangle | 1⟩ qubelets determine the angle φ, you could just as well first
rotate both qubelets by 90° clockwise so that the pentagon | 0⟩ qubelet is non-
inverted, and then apply the S gate, as shown in the following figure:

|0i|0i |1
i

|1
i

|0i|0i

|1i |1i

S

If this action of the S gate meets your needs, then proceed to quantitatively
verify the operation and confirm your hunch.
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Precisely Calculating the S Gate Action
To apply the S gate matrix to the blended qubit, you need to compute its
quantum state vector. Again, we’ll do this quickly:

Calculating the Qubelet Amplitudes
Since the qubit has one pentagon | 0⟩ and one triangle | 1⟩ qubelet, the
probability of it collapsing to either one of these is half. Take the square
root to get the amplitudes and write the state as follows:

1

2
| 0⟩ + e

iφ 1

2
| 1⟩

Or, writing as a vector:

( 1

2

e
iφ 1

2
)

Note the e
iφ

 term on the bottom element associated with the triangle | 1⟩
qubelet. At this point, we just know the probabilities of choosing a pen-
tagon | 0⟩ or triangle | 1⟩ qubelet from the blended qubit. We still don’t know
how they’re oriented.

Calculating the Qubelet Orientations
Since φ measures the relative difference in rotations, it helps to rotate
both types of qubelets by 90° clockwise so that the pentagon | 0⟩ qubelet
is non-inverted:

|0i|0i |1
i

|1
i

In this quantum state, the relative difference φ between the rotations of
the pentagon | 0⟩ and triangle | 1⟩ qubelets is still 90° or π / 2. Thus, the
term e

iφ
:

e
iφ

= cos π

2
+ i sin π

2
= i

And this qubit’s quantum state expressed as a vector is:

( 1

2

i 1

2
) = 1

2
( 1i )
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Now that we have the quantum state as a vector, multiply it by the S gate’s
matrix A

S
 to get the resultant state:

A
S

1

2
( 1i ) = 1

2 [ 1 0
0 i ]( 1i ) = 1

2 ( 1
−i2 ) = 1

2
( 1
−1 )

The negative sign in the bottom term comes from e
iφ

 with φ = π. That is,

eiı = cos π + i sin π
= −1

This vector corresponds to a quantum state in which the pentagon | 0⟩ qubelet
is non-inverted and the triangle | 1⟩ qubelet is inverted upside down, as shown
in the following figure:

|0i|0i

|1i |1i

This state is identical to the one we informally calculated earlier.

This exercise was, of course, a simple one, and it may have been easier to
use the S gate matrix. In general, though, the qubelets could be arbitrarily
rotated, and you may need to apply a sequence of gates to get them to the
desired state. In these cases, you may often find it easier to work with pictures
and identify which rotations of the qubelets you need to apply before validating
the operations with precise mathematical calculations.

Before learning to use these matrices when the qubit is acted on by several
gates in sequence, it’s helpful to have a handy cheat sheet listing the pertinent
details for gates you’ll see in practice.

Try Your Hand
Solutions to these exercises are given in Analyzing Quantum Gate Matrices
Solutions, on page 474.

For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

1. In problems and programming exercises so far, you’ve approached them
using qubelets. When you’re working as part of a team, however, the
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other members may not be familiar with this model.6 So in this exercise,
you’ll work through the example in the previous section, but stated using
the language and terms you’ll encounter in the workplace.

a. Specify a Universal gate, U3(θ, φ, λ), that puts a | 0⟩ qubit into a quantum
state, ψ, defined by the following vector:

ψ = 1

2
( 1i )

b. Write a program using this gate and confirm that the quantum state
collapses to | 0⟩ and | 1⟩ as you’d expect.

c. Using the parameters for the U3(θ, φ, λ) gate you calculated previously,
write a program that implements the following quantum circuit:

q[0] = |0i U3(✓,�,�) S

c •
c[0]

Use the following statement to declare the S gate:

s q[0];

d. By looking at the output of your program, can you confirm that the
pentagon | 1⟩ qubelets are rotated as you calculated?

2. Which gate would you use to rotate the pentagon | 0⟩ qubelets by 90°
clockwise while leaving the triangle | 1⟩ qubelets alone, as shown in the
following circuit:

|0i|0i |1i|1i |0
i

|0
i

|1i|1i?

Intuitively reason out the type of gate you’d use in this circuit.

6. You could, of course, recommend this book to them.
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Classifying Quantum Gates
In previous sections and chapters, you’ve seen that quantum computing
handles qubits, the information units of your problems, differently than
classical computers. You’ve learned about a few quantum gates that manip-
ulate a qubit’s quantum state. But, as you develop quantum algorithms to
solve your own challenging problems, you’ll want even more ways of changing
a qubit’s quantum state. So it’s important to build an intuitive feel for how
they nudge quantum states. Specifically, you’ll learn to tie the rotation of the
qubelets to a gate’s matrix. To put it another way, you’ll learn that the gate
matrices are an X-ray into how gates affect quantum states.

Classification Based on How Gates Modify Qubelets

Although there are several ways to introduce quantum effects in
programs, you’ll see that they can be classified into a few basic
types. Thinking of them in terms of these groups organizes the
gates in your mind and, more importantly, helps you determine
which ones to apply when you’re developing your own quantum
algorithms for your specific problem.

This section, in particular, shows how a gate’s matrix is intimately
related to rotating qubelets and is a crucial step in building your
intuition for writing quantum programs.

For most gates, their operation on a qubit is defined by how they rotate just
the triangle | 1⟩ qubelets. The reason is that in quantum computing, it’s only
the relative difference between the pentagon | 0⟩ and triangle | 1⟩ qubelets that
influences the computation. Thus, you can always hold the pentagon | 0⟩
qubelet in the non-inverted position and rotate the triangle | 1⟩ qubelet to
make them do any calculation you want.

I’ve classified the gates by how they function from a practical standpoint
rather than by how they rotate qubelets around the coordinate axes on the
Bloch sphere. So a few gates that normally appear in the same group in the
literature will show up in different categories here.

The categories for the quantum gates that operate on single qubits are:

• Universal Gates
• Gates That Switch Qubelets
• Gates That Rotate the Triangle Qubelets
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• Gates That Split Qubelets
• Identity (ID) Gate

Although you’ve not seen many of the gates listed in this section earlier in
the book, they’re just special cases of those you’ve learned about.

Some Gates Have Confusing Names

Some gates have names based on the three coordinate axes. These
names come from how they move a quantum state on the Bloch
sphere. That is, when you carefully plot how a quantum state
changes on the Bloch sphere when acted on by the gate, it’ll seem
like the gate rotates the quantum state around the corresponding
axis. Although technically correct, I find these descriptions hard
to picture. Moreover, from a practical standpoint, when multiple
gates act on the qubit or when dealing with multiple qubits, these
visualizations quickly get confusing. So instead of classifying the
gates based on rotations on the Bloch sphere, I’ll explain how the
gates operate on the pentagon | 0⟩ and triangle | 1⟩ qubelets. When
designing your own algorithms, you’ll find it easier to work with
these descriptions rather than as rotations on the Bloch sphere.

Universal Gates
These gates let you arbitrarily change the quantum state of a qubit. There
are three types of Universal gates:

• U3 Gate
• U2 Gate
• U1 Gate

Complex Numbers in Gate Matrices Indicate Rotation of Triangle | 1⟩ Qubelets

Complex numbers in a gate matrix can only come from the expo-
nent terms. These terms are associated with the angle φ, the rela-
tive difference between the pentagon | 0⟩ and triangle | 1⟩ qubelets.

Thus, when you see complex numbers in a gate matrix, the
qubelets are rotated.

U3 Gate

The U3(θ, φ, λ) gate is a general quantum gate that forms the basis for all
gates.
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The matrix, AU3, for the U3(θ, φ, λ) gate is:

AU3 = [ cos θ

2
−eiλ sinθ

2

e
iφ
sin θ

2
e
i(λ+φ)

cos θ

2
]

U2 Gate

The U2(φ, λ) gate is a Universal gate but has the θ parameter fixed to π / 2.

The matrix, AU2, for the U2(φ, λ) gate is:

AU2 =
1

2 [ 1 e−iλ

e
iφ

e
i(λ+φ) ]

The U2(φ, λ) gate is equivalent to the U3(π / 2, φ, λ) gate in which θ is preset
to π / 2.

U1 Gate

The U1 gate is a variant of the U3 gate in which two of the three parameters,
θ and φ, are predefined.

The matrix, AU1
, for the U1(λ) gate is:

AU1 = [ 1 0
0 eiλ ]

The U1(λ) gate is equivalent to the U3(0, 0, λ) gate.

Declaring the Universal Gates in Code

Declare these gates in your program as listed below:

U3 Gate
To use, say, a U3(π / 3, π / 4, π / 2) gate on the q[0] qubit, declare it as follows:

u3(pi/3,pi/4,pi/2) q[0];

U2 Gate
To use, for example, a U2(π / 2, π / 3) gate on the q[0] qubit, declare it like this:

u2(pi/2,pi/3) q[0];

U1 Gate
To use, for instance, a U1(π / 2) gate on the q[0] qubit, declare it in this way:

u1(pi/2) q[0];
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Gates That Switch Qubelets
These gates switch pentagon | 0⟩ qubelets to triangle | 1⟩ qubelets, and triangle
| 1⟩ qubelets to pentagon | 0⟩ qubelets. The gates in this section differ by how
they rotate the qubelets when switching them.

These gates are commonly used for logic operations.

The following gates are in this group:

• NOT (X) Gate
• Y Gate

NOT (X) Gate

The NOT (X) gate switches a pentagon | 0⟩ qubelet to a triangle | 1⟩ qubelet, and
a triangle | 1⟩ qubelet to a pentagon | 0⟩ qubelet, as shown in the following figure:

|0i|0i |1i|1i |0i|1i|1i |1i|0i|0iNOT

After the NOT (X) gate is applied, orientation of the qubelets is also switched.
The pentagon | 0⟩ qubelet takes on the original orientation of the triangle | 1⟩
qubelet. Likewise, the orientation of the triangle | 1⟩ qubelet after the NOT (X)
gate is that of the original pentagon | 0⟩ qubelet.

On the right qubit, the faded qubelets behind the pentagon | 0⟩ and triangle
| 1⟩ qubelets in the foreground indicate what type each qubelet was originally.

The matrix, AX
, for the NOT (X) gate is:

AX = [ 0 1
1 0 ]

The NOT (X) gate is equivalent to the U3(π, π, 0, ) gate.

The NOT gate belongs to the Pauli family of gates and is also called the Pauli-X
gate. When the NOT gate acts on a qubit, it modifies the qubit’s quantum state
so that it seems that it’s rotated about the X-axis on the Bloch sphere.

Y Gate

The Y gate is like the NOT (X) gate, but after switching the qubelets, it rotates
the pentagon | 0⟩ a quarter turn clockwise and the triangle | 1⟩ qubelets a
quarter turn anticlockwise, as shown in the figure on page 206.

report erratum  •  discuss

Classifying Quantum Gates • 205

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


|0i|0i
|1i|1i |0i|1

i
|1
i |1i

|0i |0iY

(Look at the labels on the qubelets to track the rotations.)

On the right qubit, the faded qubelets behind the qubelets in the foreground
indicate their original position.

The matrix, AY
, for the Y gate is:

AY = [ 0 −i
i 0 ]

The Y gate is equivalent to the U3(π, π / 2, π / 2) gate.

The Y gate belongs to the Pauli family of gates and is also called the Pauli-Y
gate. When the Y gate acts on a qubit, it modifies the qubit’s quantum state
so that it seems that it’s rotated about the Y-axis on the Bloch sphere.

Declaring the Gates That Switch Qubelets in Code

Declare these gates in your program as listed below:

NOT (X) Gate
To use a NOT (X) gate on, for instance, the q[0] qubit, declare it like this:

x q[0];

Y Gate
To use a Y gate on, say, the q[0] qubit, declare it as follows:

y q[0];

Gates That Rotate the Triangle Qubelets
These gates rotate the triangle | 1⟩ qubelets through different angles while
leaving the pentagon | 0⟩ qubelets alone. The gates in this section differ by
how much they rotate the triangle | 1⟩ qubelets. They’re also referred to as
Phase gates because only the φ parameter, the relative difference between
the angles of the pentagon | 0⟩ and triangle | 1⟩ qubelets, is varied.

Situations where you would use these gates include:

• To “tag” certain qubelets without affecting the probabilities of how they
collapse to the idealized states, | 0⟩ and | 1⟩.
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• To “twist” certain qubelets so that they can either cancel out or be pre-
vented from doing so. For example, by rotating some qubelets a specific
amount, you can misalign them so they can’t be removed from the mega-
qubit.

The following gates are in this group:

• Z Gate
• S Gate
• S-Dagger Gate
• T Gate
• T-Dagger Gate
• Rz Gate

Z Gate

The Z gate leaves the pentagon | 0⟩ qubelets alone but rotates the triangle | 1⟩
qubelets by 180°, as shown in the following figure:

|0i|0i |1i|1i |0i|0i |1i |1i |1iZ

On the right qubit, the faded triangle | 1⟩ qubelet behind the triangle | 1⟩ qubelet
in the foreground indicates its original position.

The matrix, AZ, for the Z gate is:

AZ = [ 1 0
0 −1 ]

The Z gate is equivalent to the U3(0, π, 0) gate.

Since the Z gate rotates the triangle | 1⟩ qubelets a half turn, applying it twice
on a qubit will bring the qubit back to the orientation before the Z gate was
applied. Thus, Z gate’s matrix is its own inverse:

AZ = AZ
−1

The Z gate belongs to the Pauli family of gates and is also called the Pauli-Z
gate. When the Z gate acts on a qubit, it modifies the qubit’s quantum state
so that it seems that it’s rotated about the Z-axis on the Bloch sphere.
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S Gate

The S gate leaves the pentagon | 0⟩ qubelets alone but rotates the triangle | 1⟩
qubelets 90°, or a quarter turn anticlockwise, as shown in the following figure:

|0i|0i |1i|1i |0i|0i |1i|1i|1
iS

On the right qubit, the faded triangle | 1⟩ qubelet behind the triangle | 1⟩ qubelet
in the foreground indicates its original position.

The matrix, A
S
 for the S gate is:

A
S
= [ 1 0

0 i ]
The S gate is equivalent to the U3(0, π / 2, 0) gate.

The S gate matrix, A
S
, is related to the Z gate matrix, AZ: AS

2 = AZ. That is:

[ 1 0
0 i ][ 1 0

0 i ] = [ 1 0
0 −1 ]

In other words, the S gate matrix, A
S
, is a “square root” of the Z gate matrix,

AZ. From the qubelets’ perspective, applying the S gate twice will rotate the
triangle | 1⟩ qubelets by two quarter turns anticlockwise, which is equivalent
to a half turn or by 180°, the same as if the Z gate was applied instead.

You can think of the “s” in “square root” as a mnemonic for the S gate.

Since the S gate rotates the triangle | 1⟩ qubelets by half the amount of the Z
gate, the quantum state is also rotated about the Z-axis.

S-Dagger Gate

The S† gate—pronounced “S-dagger”—leaves the pentagon | 0⟩ qubelets alone
but rotates the triangle | 1⟩ qubelets –90°, or a quarter turn clockwise, as
shown in the following figure:

|0i|0i |1i|1i |0i|0i |1i

|1i
|1i

S†
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On the right qubit, the faded triangle | 1⟩ qubelet behind the triangle | 1⟩ qubelet
in the foreground indicates its original position.

The matrix, A
S†

, for the S† gate is:

A
S†
= [ 1 0

0 −i ]
The S† gate is equivalent to the U3(0, −π / 2, 0) gate.

Since the S† gate rotates the triangle | 1⟩ qubelet a quarter turn clockwise, a
quarter turn anticlockwise will bring the qubit back to the orientation before
the S† was applied. That is, the S gate reverses the action of the S† gate. In
terms of matrices, the two are related as follows:

A
S
= A

S†
*

Or,
A
S†
= A

S
*

The S† gate matrix, A
S†

, is related to the Z gate matrix, AZ: AS†
2 = AZ. That is:

[ 1 0
0 −i ][ 1 0

0 −i ] = [ 1 0
0 −1 ]

In other words, the S† gate matrix, A
S†

, is also a “square root” of the Z gate matrix,
AZ. From the qubelets’ perspective, applying the S† gate twice will rotate the
triangle | 1⟩ qubelets by two quarter turns clockwise which is equivalent to a half
turn or by 180°, the same as if the Z gate was applied instead.

Since the S† gate rotates the triangle | 1⟩ qubelets by half the amount of the Z
gate, albeit in a different direction, the quantum state is also rotated about
the Z-axis.

T Gate

The T gate leaves the pentagon | 0⟩ qubelets alone but rotates the triangle | 1⟩
qubelets 45°, or a one-eighth turn anticlockwise, as shown in the following
figure:

|0i|0i |1i|1i |0i|0i |1i|1i|1iT
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On the right qubit, the faded triangle | 1⟩ qubelet behind the triangle | 1⟩ qubelet
in the foreground indicates its original position.

The matrix, AT, for the T gate is:

AT = [ 1 0

0 e
iπ
4 ]

The T gate is equivalent to the U3(0, π / 4, 0) gate.

The T gate matrix, AT, is related to the S gate matrix, A
S
:AT

2 = A
S
. That is:

[ 1 0

0 e
iπ
4 ][ 1 0

0 e
iπ
4 ] = [ 1 0

0 e
iπ
2 ] = [ 1 0

0 i ]
In other words, the T gate matrix, AT, is a “square root” of the S gate matrix,
A
S
. From the qubelets’ perspective, applying the T gate twice will rotate the

triangle | 1⟩ qubelets by two one-eighth turns anticlockwise, which is equivalent
to an anticlockwise quarter turn or by 90°, the same as if the S gate was
applied instead.

Since the T gate rotates the triangle | 1⟩ qubelets by half the amount of the S
gate, or a quarter of the Z gate rotation, the quantum state is also rotated
about the Z-axis.

T-Dagger Gate

The T† gate—pronounced “T-dagger”—leaves the pentagon | 0⟩ qubelets alone
but rotates the triangle | 1⟩ qubelets –45°, or a one-eighth turn clockwise, as
shown in the following figure:

|0i|0i |1i|1i |0i|0i |1i

|1i
|1iT †

On the right qubit, the faded triangle | 1⟩ qubelet behind the triangle | 1⟩ qubelet
in the foreground indicates its original position.

The matrix, A
T†

, for the T† gate is:

A
T†
= [ 1 0

0 e
−iπ

4 ]
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The T† gate is equivalent to the U3(0, −π / 4, 0) gate.

Since the T† gate rotates the triangle | 1⟩ qubelets a one-eighth turn clockwise,
a one-eighth turn anticlockwise will bring back the qubit to the orientation
before the T† was applied. In terms of matrices, the two are related as follows:

AT = AT†
*

Or,

A
T†
= AT

*

The T† gate matrix, A
T†

, is related to the S† gate matrix, A
S†

: AT†
2 = A

S
†. That is:

[ 1 0

0 e
−iπ

4 ][ 1 0

0 e
−iπ

4 ] = [ 1 0

0 e
−iπ

2 ] = [ 1 0
0 −i ]

In other words, the T† gate matrix, A
T†

, is also a “square root” of the S† gate
matrix, A

S†
. From the qubelets’ perspective, applying the T† gate twice will

rotate the triangle | 1⟩ qubelets by two one-eighth turns clockwise, which is
equivalent to a clockwise half turn or by –90°, the same as if the S† gate was
applied instead.

Since the T† gate rotates the triangle | 1⟩ qubelets by half the amount of the
S† gate, or a quarter of the Z gate rotation, the quantum state is also rotated
about the Z-axis.

Rz Gate

The Rz(θ) gate is a generalization of the other gates in this class in that it
rotates the the triangle | 1⟩ qubelet through an arbitrary angle while leaving
the pentagon | 0⟩ qubelets alone, as shown in the following figure:

|0i|0i |1i|1i |0i|0i |1i|1i|1iRz(✓)

On the right qubit, the faded triangle | 1⟩ qubelet behind the triangle | 1⟩ qubelet
in the foreground indicates its original position. The triangle | 1⟩ qubelet is
rotated by 55° anticlockwise from its original position on the left qubit.
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The matrix, ARz
(θ), for the Rz(θ) gate is:

ARz
(θ) = [ 1 0

0 eiθ ]
θ Is Related to the Amplitudes

The parameter θ is strongly associated with angles in general. In
fact, as shown in Rotating Qubelets Through Any Angle, on page
150, θ refers to the tilt from the vertical when the quantum state
is plotted on the Bloch sphere. So it may not be obvious that θ
actually measures the number of pentagon | 0⟩ and triangle | 1⟩
qubelets in the quantum state. Then, θ can be related to the
Number of Qubelets on page 145.

The Rz(θ) gate is equivalent to the U3(0, θ, 0) gate.

The ARz
 gate is part of the Rotation family of gates since it effectively rotates

the quantum state of a qubit around the Z-axis.

You may sometimes see the ARz
(θ) matrix written as:

[ e−iθ2 0

0 e
iθ
2 ]

This matrix represents a clockwise rotation of the pentagon | 0⟩ qubelets by
θ / 2 and an anticlockwise rotation of the triangle | 1⟩ qubelets by θ / 2. But, by
rotating both qubelets by θ / 2 anticlockwise, we can set the pentagon | 0⟩
qubelet with no rotation and rotate the triangle | 1⟩ qubelet by θ as shown in
the ARz

 matrix.

Declaring the Gates That Rotate the Triangle Qubelets in Code

Declare these gates in your program as listed here:

Z Gate
To use a Z gate on, say, the q[0] qubit, declare it as follows:

z q[0];

S Gate
To use an S gate on, for example, the q[0] qubit, declare it like this:

s q[0];
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S-Dagger Gate
To use an S† gate on, say, the q[0] qubit, declare it as follows:

sdg q[0];

T Gate
To use a T gate on, for instance, the q[0] qubit, declare it as shown here:

t q[0];

T-Dagger Gate
To use a T† gate on, for example, the q[0] qubit, declare it as follows:

tdg q[0];

Rz Gate
To use, say, a Rz(π / 3) gate on the q[0] qubit, declare it as shown here:

rz(pi/3) q[0];

Gates That Split Qubelets
Next we’ll look at gates that split qubelets. For example, a pentagon | 0⟩ may
be split into other pentagon | 0⟩ and triangle | 1⟩ qubelets. The gates in this
group differ from each other based on the number and rotations of the qubelets
created. They’re also referred to as the superposition gates since they turn an
idealized quantum state into a blended one.

These gates are used to put qubits in blended states.

This group includes the following gates:

• Hadamard (H) Gate
• Rx Gate
• Ry Gate

Hadamard (H) Gate

The Hadamard (H) gate splits qubelets. That is, it splits a pentagon | 0⟩ qubelet
into a pentagon | 0⟩ qubelet and a triangle | 1⟩ qubelet, as shown in the following
figure:

|0i|0i |0i|0i |1i|1iH
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And it splits a triangle | 1⟩ qubelet into a pentagon | 0⟩ qubelet and an inverted
triangle | 1⟩ qubelet, as shown in the following figure:

|1i|1i |0i|0i |1i

|1i |1i

H

On the right qubit, the faded triangle | 1⟩ qubelet behind the triangle | 1⟩ qubelet
in the foreground indicates its original position.

Notice that unlike the previous figures, the inverted triangle | 1⟩ qubelet on
the right doesn’t have a negative sign. Now that qubelets can be arbitrarily
rotated, it’s more accurate to let e

iφ
 determine the signs. In particular, note

that for an inverted qubelet, φ = π and eiπ = cos π + i sin π = −1. So, the negative
sign comes in naturally for inverted qubelets.

The matrix, AH, for the H gate is:

AH =
1

2 [ 1 1
1 −1 ]

The Hadamard (H) gate is equivalent to the U3(π / 2, 0, π) gate or the U2(0, π) gate.

Rx Gate

Unlike the H gate, in which a qubelet is split into an equal number of pentagon
| 0⟩ and triangle | 1⟩ qubelets, the RX(θ) gate shifts the “balance” so that the
qubit has more of one type of qubelets than the other. For example, when the
Rx(θ) gate acts on the | 0⟩ qubit, it may split it as shown in the following figure:

|0i|0i |0i|0i |0i|0i |0i|0i

|1i
|1iRx(✓)

The number of pentagon | 0⟩ and triangle | 1⟩ qubelets created depends on the
parameter θ. Additionally, the Rx gate rotates the triangle | 1⟩ qubelets by a
quarter turn clockwise, or –90°, from the position of the pentagon | 0⟩ qubelets.

Likewise, the Rx gate splits the triangle | 1⟩ qubelets in a similar manner. The
exact number of pentagon | 0⟩ and triangle | 1⟩ qubelets created is best calcu-
lated from the gate matrix, ARx

, shown in the next section.
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The matrix, ARx
, for the Rx(θ) gate is:

ARx
(θ) = [ cos θ

2
−i sin θ

2

−i sin θ

2
cos θ

2
]

The Rx(θ) gate is equivalent to the U3(θ, −π / 2, π / 2) gate.

The ARx
 gate is part of the Rotation family of gates since it effectively rotates

the quantum state of a qubit around the X-axis.

Ry Gate

Like the Rx(θ) gate, the Ry(θ) gate splits a qubelet so that the qubit ends up
with an unequal number of pentagon | 0⟩ and triangle | 1⟩ qubelets. The main
difference between the two is that the Ry(θ) gate doesn’t rotate any qubelets
like the Rx(θ) gate. For example, when the Ry(θ) gate acts on the | 0⟩ qubit, it
may split it as shown in the following figure:

|0i|0i |0i|0i |0i|0i |0i|0i |1i|1iRy(✓)

As with the Rx(θ) gate, the number of pentagon | 0⟩ and triangle | 1⟩ qubelets
created by the Ry gate depends on the parameter θ and is best calculated
from the gate matrix, ARy

, as we see next.

The matrix, ARy
, for the RY(θ) gate is:

ARy
(θ) = [ cos θ

2
−sin θ

2

sin θ

2
cos θ

2
]

The Ry(θ) gate is equivalent to the U3(θ, 0, 0) gate.

The ARy
 gate is part of the Rotation family of gates since it effectively rotates

the quantum state of a qubit around the Y-axis.

Declaring the Gates That Split Qubelets in Code

Declare these gates in your program as listed:
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Hadamard (H) Gate
To use an H gate on, say, the q[0] qubit, declare it as follows:

h q[0];

Rx Gate
To use, for instance, a Rx(π / 3) gate on the q[0] qubit, declare it like this:

rx(pi/3) q[0];

Ry Gate
To use, say, a Ry(π / 3) gate on the q[0] qubit, declare it as follows:

ry(pi/3) q[0];

Identity (ID) Gate
The Identity gate leaves all qubelets alone. That is, when it acts on a qubit, it
leaves all the qubelets in their original states:

|0i|0i |1i|1i |0i|0i |1i|1iID

The matrix, AID, for the ID gate is:

AID = [ 1 0
0 1 ]

This is also the identity matrix.

The ID gate is equivalent to the U3(0, 0, 0) gate.

The Identity gate is primarily of theoretical interest. You sometimes use it for
aesthetic reasons to line up gates in your circuits, but it doesn’t affect the
computation.

To use an ID gate on, say, the q[0] qubit, declare it as follows:

id q[0];

Try Your Hand
Solutions to these exercises are given in Solutions: Quantum Gates and How
to Use Them, on page 479.
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For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

1. When building your own quantum circuits, you may work with qubelets
to figure out how to get your programs to return the correct solution for
your computational tasks. Eventually, though, you’ll need to translate
the actions on the qubelets to quantum gates you can declare in your
programs. This exercise tests your understanding of gates and how they
affect qubelets.

Decide whether the following statements are True or False:

a. The Y gate puts a | 1⟩ qubit in a blended state.

b. An S† gate followed by a T gate has the same effect on a | 0⟩ qubit as it
does on a | 1⟩ qubit.

c. The action of an S gate on a | 1⟩ qubit can be reversed by two T† gates.

d. An S gate followed by a T gate rotates the triangle qubelets by 135°
anticlockwise.

e. You can use an Rx(θ) gate to put a qubit in a blended state.

2. A Y gate operates on a non-inverted | 0⟩ qubit.

a. Draw the quantum state after the Y gate acts on the | 0⟩ qubit.

b. What would be the state had a NOT (X) gate acted on the | 0⟩ qubit
instead of the Y gate?

c. If you measure the state on the right, would you notice any difference
had you used a NOT (X) gate instead?

3. Consider the circuit shown in the following figure:

q[0] = |0i X T X

Which qubelets would be rotated in the q[0] qubit after all three gates act
on it? Explain your reasoning.

4. Consider the following quantum circuit:

q[0] = |0i H S
† H

c •
c[0]
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a. Write a program for this circuit.

b. Run this program and look at its output. Why do you think the S†

gate prevents the second H gate from reversing the actions of the first
H gate?

c. Next, insert an S gate after the S† gate and before the second H gate,
as shown in the following figure:

q[0] = |0i H S
† S H

c •
c[0]

Write a quantum program for this circuit and compare its output with
that of the previous part.

5. Consider the following circuit:

q[0] = |0i Rx

�
⇡
3

�

c •

c[0]

a. Write a program for this circuit.

b. Use the following ARx
 matrix to compute the state |ψ⟩ of the | 0⟩ qubit

after it has been acted on by the Rx(π / 3) gate:

ARx
(θ) = [ cos θ

2
−i sin θ

2

−i sin θ

2
cos θ

2
]

c. What’s the ratio of pentagon | 0⟩ to triangle | 1⟩ qubelets in |ψ⟩?

d. What are the angles of rotations of the pentagon | 0⟩ and triangle | 1⟩
qubelets in |ψ⟩?

e. Compute the probabilities of the |ψ⟩ state collapsing to the idealized
states, | 0⟩ and | 1⟩.

f. Run the program and compare its output with the probabilities you
computed in the previous part.
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Sequence of Gates as Matrix Multiplication
When writing quantum programs for your applications, knowing how the
qubelets end up helps you decide when and where to inject quantum effects
so that your program returns the optimal solution with a high likelihood. So
having a way to succinctly describe how a quantum gate acts on any quantum
state of a qubit is useful. The real value, though, of holding a gate’s “genomic
code” is figuring out how a sequence of gates modifies a qubit’s quantum
state. For example, consider the quantum circuit shown in the following figure:

|0i H S
† Rx(

⇡
6 ) T Rx(

⇡
2 )

Working out the cumulative effect of these gates on the | 0⟩ qubit is cumber-
some. If you write a program for this circuit and run it, you’ll only get the
collapsed state of the qubit, as you won’t know the rotation of qubelets before
you measure it. But, the gate matrices reveal how the qubits end up without
collapsing the qubelets.

To see how to compute the action of these gates on the | 0⟩ qubit, start with the
first gate, H. The quantum state |ψH⟩ after the H gate acts on the | 0⟩ qubit is:

|ψH⟩ = AH | 0⟩

Vectors Versus Kets—Notational Convenience

When using gate matrices to figure out how a gate acts on a
quantum state, you multiply the matrix with the vector for the
quantum state. For example, when a quantum state |ψ⟩ with
amplitudes ω0 and ω

1
 is fed to a gate G, whose matrix is A

G
, it

changes the quantum state |ψ⟩ to |ψ
G
⟩, according to the following

equation:

|ψ
G
⟩ = A

G (ω0ω1 )
We’ll frequently find it convenient to drop the vector for |ψ⟩ and
instead write the previous equation as:

|ψ
G
⟩ = A

G
|ψ⟩

Because this form emphasizes the qubit over its amplitudes, it’s
sometimes easier to see the actions of the gates in context.
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So that you can pictorially see the | 0⟩ qubit being modified by the gates, label
the quantum circuit with this state, as shown in the following figure:

|0i H

| Hi = AH |0i
S
† Rx(

⇡

6 ) T Rx(
⇡

2 )

The next gate that acts on this qubit is the S† gate, which takes it to the state
|ψ

S†
⟩:

|ψ
S†
⟩ = A

S†
|ψH⟩

Now comes the key step: replace the quantum state |ψH⟩ in terms of the gate
matrix AH for the H gate, as stated earlier:

|ψ
S†
⟩ = A

S†
AH | 0⟩

To see the progression of quantum states pictorially, label the quantum state
after the S† gate acts on the qubit, as shown in the following figure:

|0i H

| Hi = AH |0i
S
†

| S†i = AS†AH |0i
Rx(

⇡

6 ) T Rx(
⇡

2 )

Continuing in a similar manner, the quantum state |ψ
Rx(π/6)

⟩ after the Rx(π / 6)
gate is:

|ψ
Rx(π/6)

⟩ = A
Rx(π/6)

A
S†
AH | 0⟩

Likewise, after the T gate, the quantum state |ψT⟩ is:

|ψT⟩ = ATARx(π/6)
A
S†
AH | 0⟩

And, after the Rx(π / 2) gate acts on the qubit, the quantum state |ψ
Rx(π/2)

⟩ is:

|ψ
Rx(π/2)

⟩ = A
Rx(π/2)

ATARx(π/6)
A
S†
AH | 0⟩

In other words, a chain of quantum gates is equivalent to one whose matrix
is obtained by multiplying the matrices of the gates in the chain in reverse
order.

Gate Matrices Are Multiplied in the Reverse Order in Which Gates Are Applied

Consider a qubit acted on by two gates, G1 and G2, respectively,
as shown in the following figure:

| i G1 G2
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Gate Matrices Are Multiplied in the Reverse Order in Which Gates Are Applied

In terms of matrices, the action of the gates on the qubits are
written in the reverse order in which the gates are applied. Thus,
if A

G1
 and A

G2
 are matrices for the two gates, G1 and G2, respective-

ly, the quantum state |ψ⟩ on the | 0⟩ qubit is calculated as follows:

|ψ⟩ = A
G2
A
G1
| 0⟩

Even though you draw the gates operating on the qubit from left
to right, the matrices are written from right to left in the order that
they operate on the qubit.

Thus, in the previous circuit, the final quantum state |ψ⟩ that the | 0⟩ qubit
ends up in after the H, S†, Rx(π / 6), T, and Rx(π / 2) gates act on it is:

|ψ⟩ = A
Rx(π/2)

ATARx(π/6)
A
S†
AH | 0⟩

= [ cos π

4
−i sin π

4

−i sin π

4
cos π

4
][ 1 0

0 e
iπ
4 ][ cos π

12
−i sin π

12

−i sin π

12
cos π

12
][ 1 0
0 −i ][ 1

2

1

2
1

2
− 1

2
]( 10 )

= (−0.0794593112989455 − i 0.4330127018922190.433012701892219 − i 0.786566092485493 )
Each matrix is associated with a gate. For example, the first matrix corre-
sponds to the Rx(π / 2) gate.

Thus, this sequence of gates takes the | 0⟩ qubit and puts it in the following
state:

( 10 )↦ (−0.0794593112989455 − i 0.4330127018922190.433012701892219 − i 0.786566092485493 )
Use a Computer Algebra System for Matrix Multiplications

Instead of multiplying matrices by hand, use a computer algebra
system to do the heavy lifting for you. See Using a Computer
Algebra System for Multiplying,  on page 397, for one such system
that you can use for free on the internet.

You’ll also find this calculated state in the Visualizations panel of the Com-
poser. Click the Bar Graph icon on the left tabs, as shown in the figure on
page 222.
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The quantum state is reported under the State Vector drop-down list, as in
the following figure:

Note: the quantum state vector shown in the previous figure uses j for the
complex number instead of i. Both forms are valid and used interchangeably.
Also, the state is written as a row vector.

This quantum state is a theoretical result obtained by multiplying gate
matrices. If you run this circuit on an actual quantum computer, though,
and measure the state at the end, you’ll find that the | 0⟩ qubit collapses to
the idealized states roughly in accordance with this quantum state.

Matrix multiplication simplifies the action of a sequence of gates on a
qubit—the final quantum state of a qubit falls out directly. But we lose the

Chapter 7. Small Step for Man—Single Qubit Programs • 222

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


rationale of why the calculations work. In this sense, the Qubelets Model on
page 20 provides the insight behind the math.

In the next chapter, we’ll expand the idea of gate matrices to analyze circuits
with multiple qubits.

Try Your Hand
Solutions to these exercises are given in Sequence of Gates as Matrix Multi-
plication Solutions, on page 484.

For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

1. As you start building larger quantum circuits, you’ll come across several
gates in sequence. In these situations, you can frequently replace them
with a another gate, thereby reducing the number of gates in your pro-
gram. In this problem, you’re asked to work out whether such replace-
ments are possible.

In each of the following quantum circuits, determine whether the quantum
state after the | 0⟩ qubit is acted on by the gates can be estimated from
the corresponding multiplication of the respective gate matrices shown
below each circuit:

a. |0i H S
† | i

|ψ⟩ = AHAS†
| 0⟩

b. |0i H T
† T Y | i

|ψ⟩ = AYAH | 0⟩

c. |0i H S | i

|ψ⟩ = A
S†
† AH | 0⟩

d. |0i H S T
† | i

|ψ⟩ = ATAH | 0⟩

e. |0i H Z H | i

|ψ⟩ = AX | 0⟩
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2. Consider again the quantum circuit in the previous section:

|0i H S
† Rx(

⇡
6 ) T Rx(

⇡
2 )

a. Can you execute this circuit on a quantum computer? If not, what do
you need to do to get it running on a quantum computer?

b. Write a quantum program for your circuit in the previous part.

c. Using the quantum state vector in the previous section, compute the
probabilities of the qubit collapsing to the idealized states | 0⟩ and | 1⟩,
respectively.

d. Run your program and compare its output with the probabilities you
calculated in the previous part.

3. Consider the following quantum circuit:

q[0] = |0i H S H

| i

c •
c[0]

a. Express the quantum state |ψ⟩ in terms of the gate matrices.

b. Compare the quantum state vector you calculated in the previous
part with that shown in the Visualizations tab on the IBM Quantum
Computer.

c. What are the probabilities for the qubit q[0] to collapse to the idealized
states?

d. Write a program for this circuit.

e. Run your program and compare its output with the probabilities you
calculated in an earlier part.

Bottom Line
Although quantum gates are at the center of quantum computing and form
the bulk of the statements in any quantum program, they just do three things:

• Switch Qubelets on page 205
• Rotate Qubelets on page 206
• Split Qubelets on page 213

Unlike classical computing, which has a wide range of ways to manipulate
data, quantum computing crunches out a solution to hugely complex problems
merely by tinkering with qubelets. Looking back at the coin-toss analogy in
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Quantum Computing in Thirty Seconds, on page 5, it’s as if you’re tweaking
the spinning coins so that they land on the faces corresponding to the correct
solution.

Like a fingerprint, each gate has its own distinct matrix, which completely
codifies how a quantum state is modified. These matrices essentially document
how the gate modifies the number of pentagon | 0⟩ and triangle | 1⟩ qubelets
as well as how the relative difference in their rotations is changed. Or, if you
prefer to limit the number of things you’re juggling in your head, you can
equivalently think in terms of how the triangle | 1⟩ qubelets are rotated, as
described in Intuitively Analyzing the Quantum Gate Matrix, on page 195.

The various gates in quantum programming give a range of preset ways in
which to switch, split, and rotate qubelets. These simplify declaring these
gates in your quantum programs. But if you need to introduce quantum
effects with finer control, you can use the Universal Gates, on page 203, which
give you complete freedom in how you want to mold the qubelets.

Using matrices to represent the quantum gates also leads to a handy way to
work out how a chain of quantum gates affects a qubit: multiplying the gate
matrices written in the reverse order of when they act on the qubit gives the
final state of the qubit. Ironically, even though matrix multiplication mirrors
how qubits change, don’t think of your quantum program as one big matrix
multiplication. The reason is that as the number of qubits increases, matrix
multiplication quickly gets unwieldy on classical computers, as we’ll see in
the next chapter. The true value of matrices is that they help in building
patterns that can then be extrapolated to larger problems, as you’ll learn in
Chapter 10, Quantum Search, on page 295.

But, first, in the next chapter, you’ll extend the matrix technique to circuits
with multiple qubits. Specifically, you’ll develop matrices for multi-qubit gates,
such as the CNOT on page 47 and CCNOT on page 57 gates and also see how
these gates are paired up with single qubit gates.
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CHAPTER 8

My own suspicion is that the Universe is not only queerer than we
suppose, but queerer than we can suppose.

  ➤  J. B. S. Haldane, Fellow of the Royal Society, winner of
the 1961 Kimber Genetics Award of the United States
National Academy of Sciences

Giant Leap for Mankind—Multi-Qubit
Programs

If you step back and think about it, it’s actually quite remarkable that a 2 × 2
matrix is all it takes to tell you how it transforms any of the infinite quantum
states of a single qubit: regardless of the number of pentagon | 0⟩ and triangle
| 1⟩ qubelets, or their relative rotations, the gate matrix correctly expresses
how the gate affects the qubit.

In this chapter, you’ll learn to generalize the matrix concept for gates that
handle multiple qubits. As with single-qubit gate matrices, once you know
how to represent multi-qubit gates, you can then hook up any configuration
of gates and reliably predict how the qubits will collapse. But, as I pointed
out at the end of the previous chapter, matrices aren’t an end to themselves,
especially when dealing with many qubits. So it’s imperative to think about
them intuitively and how they form the basis for patterns that can be applied
to circuits and programs that use several qubits.

We’ll start by generalizing the notion of idealized states when working with
multiple qubits. Then we’ll look at the single-qubit gate matrices, but from
the perspective of deducing how the gate modifies the qubelets rather than
as signatures for a specific gate. This viewpoint lets us formulate matrices
for multi-qubit gates. Finally, you’ll learn to apply these methods to introduce
quantum effects customized for your application. You’ll design a teleporting
circuit by breaking it up into smaller and more manageable parts, a paradigm
that’ll guide you when developing your quantum programs.
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Idealized States Redux—Multi-Qubit Version
Before learning to precisely manipulate multiple qubits in quantum circuits,
like you did with single qubits in Chapter 6, Designer Genes—Custom
Quantum States, on page 141, and Chapter 7, Small Step for Man—Single
Qubit Programs, on page 173, you need to augment your understanding of
idealized states.

Idealized States for One Qubit
The idealized states for single qubits are the two ways that it can collapse.
Consider, for example, a qubit having five pentagon | 0⟩ and two triangle | 1⟩
qubelets (both rotated), as shown in the following figure:

|0i|0i |0i|0i |0i|0i |0i|0i |0i|0i |1i|1i |1i|1i

Regardless of how the pentagon | 0⟩ and triangle | 1⟩ qubelets are rotated, this
qubit collapses in one of the following two ways:

Collapses to | 0⟩
Blended Qubit

|0i|0i |0i|0i |0i|0i |0i|0i |0i|0i |1i|1i |1i|1i

|0i Qubit

|0i|0i

Collapses to | 1⟩
Blended Qubit

|0i|0i |0i|0i |0i|0i |0i|0i |0i|0i |1i|1i |1i|1i

|1i Qubit

|1i|1i

Of course, the qubit would collapse more frequently to | 0⟩ than | 1⟩ because
the qubit has a greater number of pentagon | 0⟩ qubelets than triangle | 1⟩
qubelets. But it would always collapse to one of these two types.

Thus, as in Quantum States and Probabilities, on page 142, any quantum
state |ψ

1
⟩ can be expressed in terms of the idealized states | 0⟩ and | 1⟩, as

follows:

|ψ
1
⟩ = ω0 | 0⟩ + ω1 | 1⟩
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The parameters ω0 and ω
1
 are the amplitudes associated with the idealized

states. By setting different values for the amplitudes ω0 and ω
1
, you can

specify any quantum state. And the subscript on the quantum state |ψ
1
⟩

indicates that it’s a quantum state for a single qubit.

In terms of vectors, as shown in Quantum States as Vectors, on page 174, the
quantum state |ψ

1
⟩ can also be written as:

|ψ
1
⟩ = (ω0ω

1
) = ω0( 10 ) + ω1( 01 )

Idealized States for Two Qubits
When dealing with two qubits, the situation is similar: each qubit collapses
to either | 0⟩ or | 1⟩. Thus, we can write the ways that two qubits collapse as
follows:

Qubit 2Qubit 1

| 0⟩|0⟩
|1⟩|0⟩
|0⟩|1⟩
|1⟩|1⟩

Thus, the idealized states of the two qubits are as follows:

| 00⟩ , |01⟩ , |10⟩ , |11⟩

These, then, are the 22, or 4, idealized states for two qubits, and any two-
qubit quantum state can be expressed in terms of these four idealized states.
Specifically, if the quantum state of the first qubit is |ψ

1
⟩ and that of the second

is |ψ2⟩, then the quantum state of the two-qubit system is written as |ψ
1
ψ2⟩.

|ψ
1
ψ2⟩ = ω00 | 00⟩ + ω01 | 01⟩ + ω10 | 10⟩ + ω11 | 11⟩

The coefficients ω00, ω01, ω10, and ω
11

 are the amplitudes of the idealized states
| 00⟩, | 01⟩, | 10⟩, and | 11⟩, respectively.

Since the two qubits can only collapse to these four idealized states, the
probabilities of collapsing to them, the “squares” of the amplitudes—an
amplitude multiplied by its conjugate—sum up to 1:

ω00ω00
* + ω

01
ω
01
* + ω

10
ω
10
* + ω

11
ω
11
* = 1

report erratum  •  discuss

Idealized States Redux—Multi-Qubit Version • 229

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


The quantum state of a two-qubit system is completely defined by these four
amplitudes. It’s also expressed by the vector shown.

|ψ
1
ψ2⟩ = (ω00ω

01
ω
10

ω
11

)
This vector, in turn, can be written in terms of the four idealized states:

|ψ
1
ψ2⟩ = (ω00ω

01
ω
10

ω
11

) = ω00( 100
0
) + ω01( 010

0
) + ω10( 001

0
) + ω11( 000

1
)

Since there are four idealized states, the quantum state of a two-qubit system
will be a 4 × 1 vector. Specifically, the vectors for the four idealized states are:

| 00⟩ = ( 100
0
) , | 01⟩ = ( 010

0
) , | 10⟩ = ( 001

0
) , | 11⟩ = ( 000

1
)

Each element in the vector corresponds to an idealized state. So, the first
element is associated with | 00⟩, the second with | 01⟩, and so on, till the last
with | 11⟩.

These idealized states aren’t just theoretical concepts. They underpin all
quantum programs, as shown in the next section.

Idealized States and Quantum Programs

Idealized states are closely intertwined with quantum programs—they’re the
outputs. Consider, for example, the two-qubit quantum circuit shown in the
following figure:

| 1i = q[0] = |0i

| 2i = q[1] = |0i H S

c • •

c[0] c[1]
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Analyze this circuit by first looking at each qubit individually:

Qubit q[0]
No gates act on the q[0] qubit:

|ψ
1
⟩ = |0⟩

Qubit q[1]
The H gate splits the | 0⟩ qubit in q[0] to a pentagon | 0⟩ qubelet and a triangle
| 1⟩ qubelet. The S gate then rotates the triangle | 1⟩ qubelet 90°, or a
quarter turn clockwise, as shown in the following figure:

|0i|0i |1
i

|1
i

Alternatively, you can also use the gate matrices (see Classifying Quantum
Gates, on page 202) and the vector for the idealized state | 0⟩, as follows:

|ψ2⟩ = A
S
AH | 0⟩

= [ 1 0
0 i ] [ 1

2

1

2
1

2

−1

2
] ( 10 )

= 1

2 [ 1 1
i −i ] ( 10 )

= 1

2
( 1i )

This vector indicates that the quantum state |ψ2⟩ is made up of a pentagon
| 0⟩ qubelet and a triangle | 1⟩ qubelet rotated 90° anticlockwise.

But, because this is a quantum circuit, there’s an additional step that has
no classical equivalent: the formation of the mega-qubit, as described in
Multi-Qubit Superposition: The Mega-Qubit, on page 91, to get the quantum
state |ψ

1
ψ2⟩ of the two-qubit circuit.

The pentagon | 0⟩ qubelet in the top qubit q[0] pairs up with the qubelets in
the bottom qubit q[1] to give the mega-qubit shown in the figure on page 232.
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q[0] Qubit

|0i|0i

q[1] Qubit

|0i|0i |1
i

|1
i

Mega-Qubit

|0i|0i

|0i|0i

|0i|0i

|1
i

|1
i

This mega-qubit can collapse to either of the two qubelet combinations with
equal probability. To get the quantum state of the mega-qubit, normalize the
chances of picking a qubelet combination by following the procedure similar
to that described in Normalizing Qubelets, on page 144, but apply it for qubelet
combinations instead of qubelets:

|ψ
1
ψ2⟩ = 1

12 + 12
| 00⟩ + i

12 + 12
| 01⟩

= 1

2
| 00⟩ + i

2
| 01⟩

The triangle | 1⟩ qubelet at the bottom of the second qubelet combination is
rotated a quarter turn anticlockwise. As a result you see the complex number
i associated with the second term.

Since this qubit has two qubelet combinations, it collapses in one of the fol-
lowing two ways:

Collapses to | 00⟩
When this mega-qubit is measured, the qubelet combination on the left
is selected roughly 50% of the time and collapses to | 00⟩, as shown here:

q[0]

q[1]

q[0]

q[1]

Mega-Qubit

|0i|0i

|0i|0i

|0i|0i

|1
i|1
i

Collapses to |00i

|0i|0i

|0i|0i

This corresponds to the following vector:
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( 1000 )
Collapses to | 01⟩

When this mega-qubit is measured, the qubelet combination on the right
is selected roughly 50% of the time and collapses to | 01⟩, as shown in the
following figure:

q[0]

q[1]

q[0]

q[1]

Mega-Qubit

|0i|0i

|0i|0i

|0i|0i

|1
i|1
i

Collapses to |01i

|0i|0i

|1i|1i

Although rotated qubelets play a pivotal role in quantum effects such as
entangling and canceling qubelets, when a qubit collapses, qubelets are
reset to their non-rotated orientations. Thus, the rotated triangle | 1⟩
qubelet snaps back to the non-rotated position.

The collapsed qubelet combination corresponds to the following vector:

( 0100 )
You can verify that this circuit does indeed work as the analysis just described
by running it on the IBM Quantum Computer. The code listing for this circuit
is as follows:

0_Measure_1_H_S_Measure.qasm
qreg q[2];Line 1

creg c[2];2

3

h q[1];4

s q[1];5

measure q[0] -> c[0];6

measure q[1] -> c[1];7

The H and S gates acting on the q[1] qubit are declared on lines 4 and 5,
respectively, followed by the Measure gates.
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The output of this program running on a real quantum computer is shown
in the following figure:

This program collapses to the two binary states 00 and 10 roughly half the
time. The other two states are just noise when using a real quantum comput-
er. Because of the way that IBM’s classical register is structured (see Using
the IBM Computer: Multi-Bit Classical Register,  on page 56), the highest
numbered classical bit, in this case c[1], is written first. Thus, the 10 state
corresponds to c[1]c[0], which, in turn, records the qubits q[1]q[0]. Hence, the
measured classical states 00 and 01 correspond to | 00⟩ and | 01⟩, respectively.
In other words, the measured classical states reflect the idealized states.

Idealized States for Three or More Qubits
Determining the idealized states for three or more qubits is analogous: docu-
ment the ways that the qubits collapse. For example, a three-qubit quantum
state |ψ

1
ψ2ψ3⟩ collapses to the following 8 × 1 vectors:

| 000⟩ = ( 100000
0
0

) , | 001⟩ = ( 010000
0
0

) , | 010⟩ = ( 001000
0
0

) , | 011⟩ = ( 000100
0
0

)
| 100⟩ = ( 000010

0
0

) , | 101⟩ = ( 000001
0
0

) , | 110⟩ = ( 000000
1
0

) , | 111⟩ = ( 000000
0
1

)
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The idealized states for n qubits follow a similar pattern: you’ll end up with
2n states. As n—the number of qubits in your program—grows, the number
of idealized states grows exponentially and become impossible to write down.
But the mega-qubit is able to handle all these states simultaneously. So,
whereas it’s difficult for a classical computer to work with them, a quantum
computer merely needs n qubits, a far smaller number, to work with.

In the next section, you’ll see how the idealized states are intimately tied to
the gate matrix.

Speed Reading a Gate’s Operation from Its Matrix
In Classifying Quantum Gates, on page 202, you saw that single-qubit quantum
gates can be classified by how they affect qubelets. In this section, you’ll learn
to infer a gate’s matrix and understand how it affects the qubelets. We’ll not
be concerned with whether the given matrix is unitary on page 191. Our
interest is merely to figure out how the gate acts on the pentagon | 0⟩ and tri-
angle | 1⟩ qubelets. Thus, we’ll assume valid gate matrices.

Single-Qubit Gate Matrices
To fix these ideas in your mind, consider the following 2 × 2 matrix:

[ a c
b d ]

The letters a, b, c, and d denote complex numbers. Their complex conjugates
are a*, b*, c*, and d*, respectively. So, if a is 0.5 + i 0.5, then a* = 0.5 − i 0.5.
Equivalently, in polar coordinates using Euler’s formula:

a = 1

2
e
iπ
4

a* = 1

2
e
−iπ

4

Even though this matrix encodes how any quantum state, including blended
ones, are modified by the corresponding gate, we’ll determine how the gate
affects the qubelets by focusing on how the matrix affects the idealized states
| 0⟩ and | 1⟩, respectively.

To this end, as described in Quantum Gates as Matrices, on page 175, the first
column lists the amplitudes of the quantum state obtained when the gate
operates on | 0⟩.
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In other words, when the gate corresponding to this matrix acts on | 0⟩, the
gate puts the qubelet in the quantum state defined by the first column, as
shown here:

| 0⟩ ↦ a |0⟩ + b |1⟩ = ( ab )
Similarly, when the gate acts on the | 1⟩ qubelet, the gate puts the qubelet in
the quantum state defined by the second column, as follows:

| 1⟩ ↦ c |0⟩ + d |1⟩ = ( cd )
Let’s now cover how to look at the entries of the gate matrix and reason out
the following ways that the gate changes the qubelets:

• Leave Qubelets Alone
• Switch Qubelets
• Split Qubelets
• Rotate Qubelets
• Compound Operations on Qubelets

Leave Qubelets Alone

When a gate acts on the pentagon | 0⟩ qubelets only and doesn’t affect the
triangle | 1⟩ qubelets, the element corresponding to the amplitude of | 1⟩ in the
first column is zero. That is, the second element in the first column is zero:

[ a c
0 d ]

If the gate acts on the triangle | 1⟩ qubelets only and leaves the pentagon | 0⟩
qubelets alone, then the amplitude for | 0⟩ is zero. That is, the first element
in the second column is zero:

[ a 0
b d ]

Switch Qubelets

When a gate switches a qubelet, it “changes” it to the other type. For example,
a pentagon | 0⟩ qubelet is switched to a triangle | 1⟩ qubelet. The entry for the
amplitude of | 0⟩ becomes zero and the one for the amplitude of | 1⟩ is nonzero:
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[ 0 c
b d ]

In the same way, when a triangle | 1⟩ qubelet is switched to a pentagon | 0⟩
qubelet, the second element in the second column is zero:

[ a c
b 0 ]

For instance, the NOT gate, which switches a pentagon | 0⟩ qubelet with a tri-
angle | 1⟩ qubelet, and a a triangle | 1⟩ qubelet with a pentagon | 0⟩ qubelet, has
the following matrix:

[ 0 1
1 0 ]

Split Qubelets

When a gate splits either a pentagon | 0⟩ or a triangle | 1⟩ qubelet, it creates
qubelets of both types. For example, splitting a pentagon | 0⟩ qubelet creates
both a pentagon | 0⟩ and a triangle | 1⟩ qubelet. In other words, both entries in
the respective column are nonzero.

If a gate splits both pentagon | 0⟩ and triangle | 1⟩ qubelets, then the matrix
has all nonzero entries like the H gate:

[ 1

2

1

2
1

2

−1

2
]

Rotate Qubelets

When a gate rotates a qubelet, it shows up as a complex number in the entry
associated with that qubelet. For example, when a gate acts on a triangle | 1⟩
qubelet and rotates it by, say, π / 4 radians or 45° anticlockwise (and leaves
the pentagon | 0⟩ qubelet alone), the quantum state is expressed as:

| 1⟩ ↦ e
iπ
4 | 1⟩
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Using Euler’s formula, write the previous equation as:

| 1⟩ ↦ (cos π

4
+ i sin π

4
) | 1⟩

= ( 1

2
+ i 1

2
) | 1⟩

Write this operation in the bottom right element of the matrix:

[ 1 0
0 ( 1

2
+ i 1

2
) ]

Thus, any time you see a complex number as an entry in the gate matrix, it
means the corresponding qubelet is rotated.

Compound Operations on Qubelets

Knowing how to recognize the basic operations we’ve listed will let you infer
when a gate combines them when modifying the qubelets. For example, con-
sider the gate matrix associated with the Y Gate, on page 205, as follows:

[ 0 −i
i 0 ]

Looking at the first column associated with the gate acting on the | 0⟩ qubit,
the complex number i in the bottom element indicates that the pentagon | 0⟩
qubelet is switched to the triangle | 1⟩ qubelet and is rotated.

You can calculate the exact angle of rotation by noticing that i can be
expressed as follows, again using Euler’s formula:

i = cos π

2
+ i sin π

2

Thus, the triangle | 1⟩ qubelet is rotated π / 2 radians, or a quarter turn anti-
clockwise.

You can reason out the action on the | 1⟩ qubit in a similar way by looking at
the second column.

Two-Qubit Gate Matrices
Just as the columns of a single-qubit gate matrix correspond to the idealized
states, the columns of a matrix representing a two-qubit gate, such as the
Controlled NOT (CNOT) Gate, on page 47, correspond to the four idealized
states—| 00⟩, | 01⟩, | 10⟩, and | 11⟩— for two qubits:
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[ a e i m
b f j n
c g k o
d h l p ]

The letters a − p are complex numbers with the usual conjugates a*−p*.

Each column is the action of the gate on the idealized state associated with
that column. For example, look at the Controlled NOT (CNOT) Gate gate in
which the control qubit is set to | 1⟩ and its target to | 0⟩, as shown in the fol-
lowing figure:

Control: |1i • |1i

Target: |0i |1i

Because the control is | 1⟩, the target qubit is switched to | 1⟩.

Or, the | 10⟩ state is changed by the CNOT gate to the | 11⟩ state. To express this
operation as a matrix column, write the latter as a vector:

| 10⟩ ↦ ( 000
1
)

Thus, the third column of the matrix A
CNOT

 for the CNOT gate is:

[ * * 0 *
* * 0 *
* * 0 *
* * 1 *

]
Similarly, you can fill the other columns:

CNOT acts on | 00⟩
When the control qubit is | 0⟩, the target qubit continues to be | 0⟩. Thus,
| 00⟩ ↦ |00⟩ or:

| 00⟩ ↦ ( 100
0
)

report erratum  •  discuss

Two-Qubit Gate Matrices • 239

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


CNOT acts on | 01⟩
Since the control qubit is | 0⟩, the target qubit is unaffected and continues
to | 1⟩. Thus, | 01⟩ ↦ |01⟩ or:

| 01⟩ ↦ ( 010
0
)

CNOT acts on | 11⟩
In this case, the control qubit is | 1⟩. So, the target qubit switches from | 1⟩
to | 0⟩. Thus, | 11⟩ ↦ |10⟩ or:

| 11⟩ ↦ ( 001
0
)

Putting these vectors as the appropriate columns in the previous matrix, we’ll
get the CNOT gate’s matrix A

CNOT
:

A
CNOT

= [ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
Notice that we’ve suppressed the column labels, but you should still associate
each column with the corresponding idealized states.

Following the same line of reasoning, you can derive the gate matrix A
CZ

 for
the Controlled Z (CZ) Gate, on page 109. The CZ gate only rotates the triangle
| 1⟩ qubelet on the target qubit when the control bit is | 1⟩, as shown in the
following figure:

Control: |1i

|1i|1i

Target: |1i

|1i|1i

Control: |1i

|1i|1i

Target: � |1i

|1i� |1iCZ
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That is, the state | 11⟩ becomes − |11⟩. Writing the latter as a vector:

| 11⟩ ↦ ( 0
0
0
−1
)

The CZ gate leaves the other idealized states alone. Or, in terms of vectors:

| 00⟩ ↦ ( 100
0
) , | 01⟩ ↦ ( 010

0
) , | 10⟩ ↦ ( 001

0
)

In the first two instances, the control qubit is | 0⟩. Thus, the target qubit is
unchanged. In the last case, even though the control qubit is | 1⟩, the target
qubit is | 0⟩ and not affected by the CZ gate.

These vectors form the rest of the columns of the CZ gate’s matrix A
CZ

:

A
CZ
= [ 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1

]
With matrices for two-qubit gates, you can follow the procedure in Sequence
of Gates as Matrix Multiplication, on page 219, to work out how circuits with
two-qubit gates modify quantum states. For example, see the following circuit:

CNOT CZ

Control: |1i • • | 1i

Target: |0i Z | 2i

Obtain the two-qubit quantum state |ψ
1
ψ2⟩ as follows:

|ψ
1
ψ2⟩ = AZACNOT

| 10⟩

= [ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

][ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]( 001
0
)

= ( 0
0
0
−1
)
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Notice the order of the multiplication of the AZ and A
CNOT

 matrices is reverse
that of the order in which the corresponding gates are applied to the input
state | 10⟩ in the quantum circuit. Also, in the previous equation, the input
state | 10⟩ is replaced with a vector which has a 1 in the third element, corre-
sponding to | 10⟩.

The result of this multiplication is a vector whose last element is −1. The
bottom element is associated with the quantum state | 11⟩. So, a −1 value
indicates that this sequence of gates changes the quantum state as follows:

| 10⟩ ↦ − |11⟩

For this circuit, you can verify this result by manually working out the action
of the gates on the qubits: the control qubit is 1, the CNOT gate switches the
bottom qubit to | 1⟩, which the CZ gate then inverts to − |1⟩. This corresponds
to the quantum state − |11⟩, as found earlier using matrices and vectors. As
the number of gates increases, this sort of analysis becomes tedious and
error-prone. But the matrix approach always works.

Matrix and Vector Multiplication Isn’t a Replacement for Quantum Computing

You may get the idea that multiplying gate matrices with the vector
for a quantum state is really all that it takes to do quantum com-
putations. In fact, this principle drives many simulators in various
computer languages. But as the number of qubits increases,
classical computers would grind to a halt as they run out of
resources trying to do matrix math. Quantum computers, on the
other hand, are impervious to this excessive workload, as they
work with the mega-qubit using quantum mechanical principles
instead of using classical means.

Still, the matrix method is important to learn since it gives you a
way to analyze small portions of a circuit and see how the qubelets
are affected. If you try to use Measure gates instead, you won’t get
a complete picture of how the rotations of the qubelets of different
qubits interact.

You can apply this technique of multiplying quantum state vectors with gate
matrices as long as your quantum circuit only has two-qubit gates. In the
next section, you’ll learn to include single-qubit gates that switch, split, and
rotate qubelets on one or both qubits in your quantum circuits.
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Circuits with Single- and Two-Qubit Gates
When designing your own quantum programs you’ll frequently want to apply
a single-qubit gate on one or both qubits in addition to the two-qubit gates.
For example, consider the following circuit:

CZ

|1i • | 1i

|1i S Z | 2i

A single-qubit S gate is applied on the bottom qubit before it’s fed to the target
of the CZ gate. So, this circuit contains the single-qubit S gate coupled with
the two-qubit CZ gate. In other words, you end up with a situation where you
have to deal with the 2 × 2 matrix for the S gate as well as the 4 × 4 matrix for
the CZ gate.

To apply the matrix method to calculate the quantum states of the qubits in
this circuit, the matrices need to be compatible so that they can be multiplied.
For square matrices, this means that the matrices must have the same
dimensions.

Thus, the single-qubit S gate is “made” into a two-qubit gate by appending
the second qubit, the top one in this case, as a pass-through, as shown in
the following figure:1,2

|q1i

|q2i S

Next, use the single-qubit S gate’s 2 × 2 matrix as a guide to calculate the
matrix for the two-qubit S gate. For reference, the matrix A

S
 for the S Gate,

on page 208, is:

A
S
= [ 1 0

0 i ]
Notice that this matrix implies that the pentagon | 0⟩ qubelets are unaffected,
while the triangle | 1⟩ qubelets are rotated by π / 2 radians, or 90° anticlockwise:

1. https://docs.microsoft.com/en-us/quantum/concepts/multiple-qubits
2. http://www.cs.bham.ac.uk/internal/courses/intro-mqc/current/lecture05_handout.pdf
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i = cos π

2
+ i sin π

2

= e
iπ
2

= e
iφ
where φ = π

2

The angle φ = π / 2 indicates the relative difference between the pentagon | 0⟩
and triangle | 1⟩ qubelets.

As we did for the CNOT gate earlier in this section, work out the columns of
the 4 × 4 matrix by seeing what this circuit does to each of the four idealized
states, | 00⟩, | 01⟩, | 10⟩, and | 11⟩:

| 00⟩ Idealized State:
The top qubit, |q

1
⟩ = |0⟩, is a pass-through. So it’s unchanged by the gate.

The bottom qubit, |q2⟩ = |0⟩, is fed to the S gate. From this gate’s matrix,
A
S
, the bottom | 0⟩ qubit, is also unaffected.

Thus, | 00⟩ ↦ |00⟩. Write the latter state as a vector:

| 00⟩ ↦ ( 100
0
)

Note that the first element of this vector is associated with | 00⟩.

| 01⟩ Idealized State:
The top qubit, |q

1
⟩ = |0⟩, is a pass-through. So, it’s unchanged by the gate.

The bottom qubit, |q2⟩ = |1⟩, becomes i |1⟩ when acted on by the S gate
in accordance with the gate matrix A

S
. Thus, | 01⟩ ↦ i |01⟩. Write the latter

state as a vector:

| 01⟩ ↦ ( 0i0
0
)

The second element, associated with | 01⟩, is i.

| 10⟩ Idealized State:
The top qubit, |q

1
⟩ = |1⟩, is a pass-through. So it’s unchanged by the gate.

The bottom qubit, |q2⟩ = |0⟩, is fed to the S gate and is unchanged in
accordance with the gate matrix A

S
. Thus, | 10⟩ ↦ |10⟩. Write the latter

state as a vector:
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| 10⟩ ↦ ( 001
0
)

The third element is associated with | 10⟩.

| 11⟩ Idealized State:
The top qubit, |q

1
⟩ = |1⟩, is a pass-through. So it’s unchanged by the gate.

The bottom qubit, |q2⟩ = |1⟩, becomes i |1⟩ when acted on by the S gate
in accordance with the gate matrix A

S
. Thus, | 11⟩ ↦ i |11⟩. Write the latter

state as a vector:

| 11⟩ ↦ ( 000
i
)

These vectors then form the columns of the 4 × 4 matrix for the pass-through
two-qubit S gate:

[ 1 0 0 0
0 i 0 0
0 0 1 0
0 0 0 i ]

Now, the matrices for both the pass-through S gate and the CZ gate are the
same size. Thus, you can multiply their matrices to get how these gates act
on | 11⟩:

|ψ
1
ψ2⟩ = AZAS

| 11⟩

= [ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

][ 1 0 0 0
0 i 0 0
0 0 1 0
0 0 0 i ]( 0001 )

= ( 000
−i
)

Notice that the order of multiplying the matrices AZ and A
S
 is opposite to the

order in which the corresponding gates are applied to the input state | 11⟩.
Also, the input state | 11⟩ is replaced with its vector in the previous equation.
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Quantum Circuit Synthesis, or Guess the Gate

The gate matrix technique is a useful tool to analyze how gates modify quantum states.
But they can also guide you to select gates that transform a given quantum state to
another. For example, suppose you want to take a state that has a triangle | 1⟩ qubelet
to one that has an inverted pentagon | 0⟩ qubelet, as shown in the following figure:

|1i|1i

|0i |0iQuantum
Gates

The vector for the quantum state with the single triangle | 1⟩ qubelet is:

( 01 )
And, the vector for the quantum state after the quantum operations is:

(−10 )
Thus, you can represent this change of state by the following equation:

A0( 01 ) = (−10 )
The matrix A0

 represents a sequence of quantum operations implemented by hooking
up quantum gates. To determine the gate matrices that underpin these quantum
operations, apply matrix operations to tease apart A0

 to reveal the gates.

Since a triangle | 1⟩ qubelet on the left is switched to a pentagon | 0⟩ qubelet on the
right, albeit inverted, it seems reasonable that a NOT gate will be a part of this sequence
of gates. So, modify theA0

matrix by “pulling” the matrix for the NOT gate out, as follows:

A0 = A
NOT

A
1

= [ 0 1
1 0 ]A1

Substituting for A0
 in the previous equation:

[ 0 1
1 0 ]A1( 01 ) = (−10 )
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As A
1
 still needs to be determined, simplify the left hand side by multiplying both

sides by the Hermitian transpose of A
NOT

:

[ 0 1
1 0 ][ 0 1

1 0 ]A1 ( 01 ) = [ 0 1
1 0 ](−10 )

A
1 ( 01 ) = ( 0

−1 )
Thus, A

1
 represents a gate that leaves the pentagon | 0⟩ qubelets alone but inverts

the triangle | 1⟩ qubelets. That is, A
1
 represents a Z gate.

In other words, the triangle | 1⟩ qubelet can be made into an inverted pentagon | 0⟩
qubelet by first applying the NOT gate, followed by the Z gate. This operation is
expressed as follows:

AZANOT ( 01 ) = (−10 )
Notice that the gate matrices are written in the order opposite in which they’re applied
to the qubit.

We’re making the assumption that the NOT gate is applied last. If it turns out that we
hit a dead end and are unable to get the quantum state we want, we try other place-
ments of the NOT gate’s matrix A

NOT
.

The multiplication of the matrices with the vector for | 11⟩ results in the
quantum state −i |11⟩:

| 11⟩ ↦ i |11⟩

Once again, to convince yourself that the matrix procedure gives the correct
result, you can reason this circuit out manually: the S gate on the bottom
qubit, | 1⟩, rotates its triangle | 1⟩ qubelet by π / 2 radians, or a quarter turn
anticlockwise. Since, the control qubit to the CZ gate is | 1⟩, the CZ gate will
rotate the triangle | 1⟩ qubelet on the target qubit on the bottom by a half turn.
So, the triangle | 1⟩ qubelet will end up rotated a quarter turn clockwise, or
−π / 2 radians, as shown in the figure on page 248.

Analyzing existing circuit designs is useful to pick up ways to work with
qubits. But eventually you’ll want to twist qubelets in ways unique to your
application. So in the next section, you’ll learn how matrices also help to
identify the gates you’ll need in your own designs.
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Control: |1i

|1i|1i

Target: i |1i

|1
i

|1
i

Control: |1i

|1i|1i

Target: �i |1i

|1i
|1iCZ

The circuits in this section were initialized with idealized states. In the next
section, you’ll learn to work with circuits seeded with blended states obtained
as a result of a previous computation.

Working with Blended States: Mega-Qubit as a Tensor
As you start working with larger quantum circuits, you’ll analyze chunks of
it at a time. Consequently, you’ll need to consider blended states that are the
result of previous parts of your circuit. Consider the following circuit, where
the bottom qubit is in a blended state:

CNOT

|1i • H | 1i

1p
2
|0i+ 1p

2
|1i | 2i

Specifically, the bottom qubit has a single pentagon | 0⟩ qubelet and a single
triangle | 1⟩ qubelet, as shown in the following figure.

|1i|1i

|0i|0i |1i|1i

H

CNOT

When working with quantum computers, you shouldn’t consider qubits as
individual units as you would when working with classical bits in conventional
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computers. Rather, you should think about them as forming a “super” qubit,
as described in Multi-Qubit Superposition: The Mega-Qubit, on page 91, made
up of all combinations of qubelets from both qubits. An example is shown in
the following figure.

Mega-Qubit

|1i|1i

|0i|0i

|1i|1i

|1i|1i

H

+

The single triangle | 1⟩ qubelet in the top qubit combines with the two qubelets
in the bottom qubit to form the two qubelet combinations, | 10⟩ and | 11⟩, in
the mega-qubit shown on the left in the previous figure.

Quantum physicists write these combinations using the tensor operator, ⊗,
as follows:

| 1⟩ ⊗ ( 1

2
| 0⟩ + 1

2
| 1⟩ ) = 1

2
| 1⟩ |0⟩ + 1

2
| 1⟩ |1⟩

= 1

2
| 10⟩ + 1

2
| 11⟩

In other words, the tensor operator couples each qubelet on the left of it to
each qubelet on its right. Thus, the quantum state of the mega-qubit in terms
of a vector is:

| 1⟩ ⊗ ( 1

2
| 0⟩ + 1

2
| 1⟩ ) = ( 00121

2

) = 1

2 ( 001
1
)

Now that we’ve represented the blended-state inputs to this quantum circuit,
we can analyze how the circuit will modify them by using the gate matrix
multiplication technique described in Two-Qubit Gate Matrices, on page 238.
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Joe asks:

What Are Tensors?
Perhaps due to their origins in Einstein’s general theory of relativity, a topic that
rivals quantum mechanics in terms of mastering the underlying mathematics, tensors
can seem pretty daunting if you’re seeing them for the first time. But, in quantum
computing, they describe the mega-qubit.

The tensor operator, ⊗, is used to enumerate qubelet combinations in a mega-qubit.
For example, consider two quantum states, |ψ

1
⟩ and |ψ2⟩, as follows:

|ψ
1
⟩ = a |0⟩ + b |1⟩

|ψ2⟩ = c |0⟩ + d |1⟩

The tensor product of the two states, |ψ
1
⟩ ⊗ |ψ2⟩, is similar to multiplying

polynomials:

|ψ
1
⟩ ⊗ |ψ2⟩ = (a |0⟩ + b |1⟩ ) ⊗ (c |0⟩ + d |1⟩ )

= ac |0⟩ |0⟩ + ad |0⟩ |1⟩ + bc |1⟩ |0⟩ + bd |1⟩ |1⟩
= ac |00⟩ + ad |01⟩ + bc |10⟩ + bd |11⟩

Note that in the above equation, states of the form |ψ
1
⟩ |ψ2⟩ are combined under a

single ket: |ψ
1
ψ2⟩. Also, maintain the order of the | 0⟩s and | 1⟩s and don’t switch them

around. That is, don’t write, say, the second terms as ad |10⟩ where the first and
second qubits are swapped—it’s not the same as ad |01⟩.
Thus, the mega-qubit formed by these two quantum states will contain the qubelet
combinations stated above. The coefficients ac, ad, bc, and bd determine the number
of times each of the combinations, | 00⟩, | 01⟩, | 10⟩, and | 11⟩, appear in the mega-
qubit, respectively. In other words, tensors are just a way of organizing the qubelet
combinations succinctly.

Once you’ve represented the mega-qubit formed by individual qubits using tensors,
you can then do gate operations directly on the states by modifying the appropriate
qubit. For example, if the first qubit is fed to the control of a CNOT gate and the second
to the target, the resulting operation can be done by inspection:

ac |00⟩ + ad |01⟩ + bc |10⟩ + bd |11⟩ ↦
CNOT

ac |00⟩ + ad |01⟩ + bc |11⟩ + bd |10⟩

In accordance with the operation of the CNOT gate, only the second qubits in the last
two terms are switched.

The tensor operator can also be applied to the vectors for the quantum states:

( ab ) ⊗ ( cd ) = ( a( cd )b( cd ) ) = (
ac
ad
bc
bd
)
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Unlike when multiplying vectors, tensors can be applied even if the dimensions of
the vectors are incompatible. For instance, you can apply a tensor operator to a single-
qubit quantum state and a two-qubit quantum state, an operation that would be
illegal if you were multiplying them:

(ω0ω
1
) ⊗ (ω00ω

01
ω
10

ω
11

) = (ω0 (ω00ω
01

ω
10

ω
11

)
ω
1 (ω00ω

01
ω
10

ω
11

) ) = (ω0ω00ω0ω01
ω0ω10
ω0ω11
ω
1
ω00

ω
1
ω
01

ω
1
ω
10

ω
1
ω
11

)
The coefficients ω0 and ω

1
 are the amplitudes of the single-qubit quantum state. And

the coefficients ω00, ω01, ω10, and ω
11

 are the amplitudes of the idealized states for
the two-qubit quantum state.

The flexibility of tensors extends to gate matrices too.a Our preferred method in this
book, though, is to limit the use of tensors to specify the mega-qubit.

a. https://docs.microsoft.com/en-us/quantum/concepts/vectors-and-matrices

To apply this technique, the single-qubit H gate must be made into a two-
qubit gate by appending the bottom qubit as a pass-through, as shown in
the following figure:

|q1i H

|q2i

Work out the 4 × 4 matrix for this pass-through two-qubit gate using the fol-
lowing AH matrix. For reference, the matrix AH for the Hadamard (H) Gate,
on page 213, is:

AH =
1

2 [ 1 1
1 −1 ]
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Each column of the gate matrix corresponds to using the four idealized states
as inputs:

| 00⟩ Idealized State
For the idealized state | 00⟩, the top qubit is | 0⟩ and the bottom qubit is
| 0⟩. The top | 0⟩ qubit is split by the H gate as follows:

| 0⟩ ↦ 1

2
| 0⟩ + 1

2
| 1⟩

The bottom | 0⟩ qubit is a pass-through so remains at | 0⟩. Thus, the
quantum state after the pass-through H gate is the following mega-qubit:

( 1

2
| 0⟩ + 1

2
| 1⟩ ) ⊗ |0⟩ = 1

2
| 00⟩ + 1

2
| 10⟩

Or, in terms of a vector:

| 00⟩ ↦ 1

2 ( 101
0
)

| 01⟩ Idealized State
For the idealized state | 01⟩, the top qubit is | 0⟩ and the bottom is | 1⟩. The
top | 0⟩ qubit is split by the H gate as follows:

| 0⟩ ↦ 1

2
| 0⟩ + 1

2
| 1⟩

The bottom | 1⟩ qubit is a pass-through so remains at | 1⟩. Thus, the
quantum state after the pass-through H gate is the following mega-qubit:

( 1

2
| 0⟩ + 1

2
| 1⟩ ) ⊗ |1⟩ = 1

2
| 01⟩ + 1

2
| 11⟩

Or, in terms of a vector:

| 01⟩ ↦ 1

2 ( 010
1
)

| 10⟩ Idealized State
For the idealized state | 10⟩, the top qubit is | 1⟩ and the bottom qubit is
| 0⟩. The top | 1⟩ qubit is split by the H gate as follows:

| 1⟩ ↦ 1

2
| 0⟩ − 1

2
| 1⟩
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The bottom | 0⟩ qubit is a pass-through so remains at | 0⟩. Thus, the
quantum state after the pass-through H gate is the following mega-qubit:

( 1

2
| 0⟩ − 1

2
| 1⟩ ) ⊗ |0⟩ = 1

2
| 00⟩ − 1

2
| 10⟩

Or, in terms of a vector:

| 10⟩ ↦ 1

2 ( 1
0
−1
0
)

| 11⟩ Idealized State
For the | 11⟩ idealized state, the top qubit is | 1⟩ and the bottom qubit is
| 0⟩. The top | 1⟩ qubit is split by the H gate as follows:

| 11⟩ ↦ 1

2
| 0⟩ − 1

2
| 1⟩

The bottom | 1⟩ qubit is a pass-through so remains at | 1⟩. Thus, the
quantum state after the pass-through H gate is the following mega-qubit:

( 1

2
| 0⟩ − 1

2
| 1⟩ ) ⊗ |1⟩ = 1

2
| 01⟩ − 1

2
| 11⟩

Or, in terms of a vector:

| 11⟩ ↦ 1

2 ( 0
1
0
−1
)

To get the 4 × 4 matrix for this pass-through two-qubit H gate, arrange these
four vectors as the columns of a matrix AH2

:

AH2
= 1

2 [ 1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

]
Now both the gates in the circuit are identical 4 × 4 matrices. So we can
multiply them with the 4 × 1 quantum state vector for the input mega-qubit
and get the output mega-qubit |ψ

1
ψ2⟩:
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|ψ
1
ψ2⟩ = AH2

A
CNOT

1

2 ( 001
1
)

= 1

2

1

2 [ 1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

][ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]( 001
1
)

= 1

2 [ 1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0

]( 001
1
)

= 1

2 ( 1
1
−1
−1
)

Note that the the gate matrices are multiplied in the reverse order in which
they act on the two qubits.

The |ψ
1
ψ2⟩ mega-qubit corresponds to:

|ψ
1
ψ2⟩ =

1

2
| 00⟩ + 1

2
| 01⟩ − 1

2
| 10⟩ − 1

2
| 11⟩

Notice that the negative signs are associated with the idealized states and not
with individual qubits.

The qubelet columns in the mega-qubit are a reflection of the idealized states
in the quantum state. In essence, it encapsulates the quantum state in a
graphical way. The mega-qubit representation of the quantum state, however,
reveals a subtlety not readily apparent from writing it out as an equation. In
the next section, we explore how the mega-qubit manages to keep this trick
up its sleeve.

Rotating Qubelets in the Mega-Qubit
To illustrate the curious property of a mega-qubit, consider the quantum
state |ψ

1
ψ2⟩ stated earlier:

|ψ
1
ψ2⟩ =

1

2
| 00⟩ + 1

2
| 01⟩ − 1

2
| 10⟩ − 1

2
| 11⟩

The mega-qubit corresponding to this quantum state is shown in the figure
on page 255.
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| 1i

| 2i

Mega-Qubit for | 1 2i

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i |1i

|0i|0i

|1i |1i

|1i|1i

The triangle | 1⟩ qubelets in the top cell of the third and fourth qubelet combi-
nations are inverted. This gives the negative signs associated with these
qubelet combinations in the quantum state equation.

But, you could also straighten these triangle | 1⟩ qubelets in the top cell and
instead invert the qubelets in the third and fourth columns, as shown in the
following figure:

| 1i

| 2i

Equivalent Mega-Qubit for | 1 2i After Rotating Qubelets

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i|1i
|0i |0i

|1i|1i
|1i |1i

Because of the inverted qubelets in the bottom cell of the third and fourth
qubelet combinations, these will still have a negative sign in the equation for
the quantum state. In other words, it makes no difference which qubelet is
rotated in a qubelet combination, they all result in the same quantum state.

In the next section, you’ll see the outsized role this curious property of the
mega-qubit plays in some of the more exotic quantum algorithms.

Recap
In general, the method to analyze two-qubit circuits boils down to these steps:

• Use tensors to work out the input mega-qubit vector.

• Obtain 2 × 2 matrices for all gates in the circuit. If necessary, change single-
qubit gates to two-qubit gates by appending suitable pass-through qubits.

• Multiply the gate matrices in reverse of the order in which they act on the
mega-qubit with the input mega-qubit vector.

report erratum  •  discuss

Working with Blended States: Mega-Qubit as a Tensor • 255

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


In the next section, we demonstrate how the method to analyze two-qubit
circuits can be used to design a three-qubit quintessential quantum computing
circuit, but using only two-qubit circuits as building blocks.

Design a Teleporting Circuit
As the number of qubits in your circuit increases, these analytic methods
using gate matrices or tensors break down. Instead, the idea is to identify
patterns that guide your design of quantum algorithms. You’ll learn about
this more in Chapter 10, Quantum Search, on page 295. In addition to dealing
with the growing size of your circuits, another equally important consideration
is figuring out how to properly harness quantum effects and designing your
algorithms with them in mind. In this section, we’ll use the methods intro-
duced in this chapter and analyze a teleporting quantum circuit.3 This circuit
shares many characteristics for down-to-earth applications such as encrypting
messages using quantum theory, described in Chapter 9, Alice in Quantum-
land—Quantum Cryptography, on page 279.

Our goal as budding quantum computer scientists is to design a quantum
program for teleporting.

Although your own applications will vary in their intent and objectives, when
designing quantum algorithms, a few broad strokes are common:

• Identify relevant quantum effects that are the most suitable for the problem.
• Implement the quantum effects.
• Refine the design to properly use the chosen quantum effects.

Admittedly, these are fairly high level. Nonetheless, they’re important to
explicitly state since quantum effects rarely come in tidy packages that solve
your problem cleanly. More likely, as you’ll see shortly, your program will
need to account for the different ways that the qubelets collapse before you
can complete your design. You’ll see these steps play out when designing the
circuit for teleporting, as well as when you build a scheme to securely send
messages in Chapter 9, Alice in Quantumland—Quantum Cryptography, on
page 279.

Identify Quantum Effects
Throughout the course of this book, you’ve seen several ways of introducing
quantum effects in programs such as switching on page 205, rotating on page
206, and splitting on page 213 qubelets. But these effects are local in the sense

3. https://docs.microsoft.com/en-us/quantum/techniques/putting-it-all-together

Chapter 8. Giant Leap for Mankind—Multi-Qubit Programs • 256

report erratum  •  discuss

https://docs.microsoft.com/en-us/quantum/techniques/putting-it-all-together
http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


Joe asks:

What is Teleporting?
In science fiction, teleporting is when you disappear in one place and magically
reappear on the far side of the universe instantly. In the real-life version, we have to
contend with a few more details.

In practice, the objects to teleport are few and tiny—roughly the size of qubits. And
what’s teleported aren’t bulky objects but wispy quantum states. The distances, too,
are nowhere near cosmic scales. But by far, the most important difference is that,
unlike science fiction, qubits don’t just materialize out of thin air while teleporting.
For teleporting to work, a qubit is first sent to the other place together with a user-
guide. The idea is that this qubit becomes the “vessel” which sports the quantum
state that will later be teleported.

You also have the engineering aspect of physically getting a qubit from one place to
the other to act as the “vessel.” For our purposes of designing quantum programs,
it’ll suffice to lump the operational details into a quantum channel. The quantum
channel is an abstraction that lets us gloss over the mechanical blueprints—don’t
think of it as something that you can pick up at your neighborhood hardware store.
Our purpose isn’t to actually build a teleporting machine but to understand design
principles that you can use in practical problems.

that they affect only the qubit that is being acted on. Quantum phenomena
can be nonlocal, too, where actions on one qubit are intertwined with another
qubit, as described in Entangling Qubits, on page 120.

For teleporting, a promising quantum effect to consider is entangling qubits.
The basic premise is to keep one and send its entangled twin over a quantum
channel to the other place. This way, anything you do to one would instantly
affect the other—a feature of teleporting. So our initial quantum circuit design
looks like the following figure:

| 1i
Entangler

|keepi

| 2i |sendi

The entangled qubits, |keep⟩ and | send⟩, are called the carrier qubits. They
form the means by which we teleport the quantum state |ψ0⟩. The |keep⟩ qubit
remains with us and we transfer the | send⟩ qubit to the place we want to
teleport a quantum state |ψ0⟩.

Next, we need a way to “load” the quantum state |ψ0⟩ we want to teleport to
the |keep⟩ qubit, the one we retain. The motivation for loading is that once
the quantum state |ψ0⟩ is tied with the |keep⟩ qubit, it’s automatically linked
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with its entangled twin, the | send⟩ qubit, which was previously sent to the
place where the quantum state |ψ0⟩ The quantum state to load the quantum
state |ψ0⟩ onto the |keep⟩ qubit is shown in the following schematic:

| 0i

Loader

| 1i
Entangler

|keepi

| 2i |sendi

Entangle the |keep⟩ and | send⟩ qubits first before loading the quantum state
|ψ0⟩ to be teleported with the |keep⟩ qubit. Then, at some later point, when
you load the quantum state |ψ0⟩ onto the |keep⟩ qubit, it’ll be instantaneously
transmitted to the | send⟩ qubit. Otherwise, if the quantum state |ψ0⟩ was first
loaded onto the |keep⟩ qubit and then the |keep⟩ qubit was entangled with the
| send⟩ qubit, the | send⟩ qubit would, in effect, be physically transporting the
state to the other place, as it would do in classical communication.

We end up with a three-qubit circuit. In the next section, we break up the
three-qubit circuit into two-qubit sections and then combine the results to
get the overall design.

Implement Quantum Effects
One way to continue with the design is to generalize the matrix multiplication
technique to three-qubit circuits. Although this can be done, we’ll get unwieldy
8 × 8 matrices and 8 × 1 vectors. Instead, we’ll design each block individually
as a two-qubit circuit.

Design Entangler Block

In this part of the circuit, the |keep⟩ and | send⟩ qubits are entangled using
the following circuit:

| 0i

Loader

|0i H • |keepi

|0i |sendi

Entangler
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The gates in the dotted box entangle the |keep⟩ and | send⟩ qubits. In Intuition
Behind Entanglement, on page 120, we used mega-qubits to demonstrate that
the two qubits are entangled. Here we’ll do the same, but using the gate
matrices.

The single-qubit H gate is first “converted” to a two-qubit pass-through H gate.
As shown in the previous section, it’s matrix AH2

 is:

AH2
= 1

2 [ 1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

]
And for the CNOT gate, its matrix A

CNOT
 is:

A
CNOT

= [ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
Thus, the matrix for the entanglement A

Entangler
 is:

A
Entangler

= A
CNOT

AH2

= 1

2 [ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

][ 1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

]
= 1

2 [ 1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

]
Since the |keep⟩ and | send⟩ qubits are initialized to | 0⟩, their entangled state
|keep send⟩ is given by the first column of the previous matrix:

|keep send⟩ = 1

2 ( 100
1
)

This corresponds to the following state for |keep send⟩:

|keep send⟩ = 1

2
| 00⟩ + 1

2
| 11⟩
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Even though the |keep⟩ and | send⟩ qubits are part of the same circuit, they’ll
ultimately be separated. To remind us of their distinct existence, we’ll write
them as follows:

|keep send⟩ = |keep⟩ |send⟩

Thus, we’ll also write their state as:

|keep⟩ |send⟩ = 1

2
| 0⟩ |0⟩ + 1

2
| 1⟩ |1⟩

You can confirm that this state is entangled by imagining collapsing, say, the
first qubit. Since this quantum state has only two qubelet combinations, | 00⟩
and | 11⟩, if you see a | 0⟩, the |keep send⟩ quantum state has collapsed to | 00⟩.
Thus, the second qubit is guaranteed to be | 0⟩. Likewise, if the first qubit
collapsed to | 1⟩, the |keep⟩ |send⟩ quantum state collapses to | 11⟩, forcing the
second qubit to | 1⟩. A similar argument holds if you instead measured the
second qubit.

So no matter which qubit you measure, the other’s fate is automatically
determined.

Now that we’ve established that the |keep⟩ |send⟩ state is entangled, don’t
collapse it, but load the quantum state |ψ0⟩ onto the |keep⟩ qubit.

Design Loader Block

Loading the quantum state |ψ0⟩ onto the |keep⟩ qubit doesn’t mean that the
latter somehow physically “carries” the former. Rather, quantum mechanics
gives you the ability to create a “joint” state—a mega-qubit—in which the
quantum state |ψ0⟩ is combined with that of |keep⟩.

We’d like to create the “joint” state in such a way that no matter which way
|keep⟩ collapses, the quantum state |ψ0⟩ is recoverable. One way to create
such a mega-qubit is to use the following loader circuit:

Loader

| 0i • H

|keepi

To see how this circuit creates a mega-qubit where the quantum state |ψ0⟩
is tied with |keep⟩, start by writing |ψ0⟩ in terms of the idealized states:

|ψ0⟩ = ω0 | 0⟩ + ω1 | 1⟩
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The coefficients ω0 and ω
1
 are the amplitudes associated with | 0⟩ and | 1⟩,

respectively.

|ψ0⟩ then interacts with |keep⟩ to form the following mega-qubit:

|ψ0⟩ ⊗ |keep⟩ = (ω0 | 0⟩ + ω1 | 1⟩ ) ⊗ |keep⟩
= ω0 | 0 keep⟩ + ω1 | 1 keep⟩

Notice that for this circuit, we’ve not separated the qubits. That is, we’ve
written | 0 keep⟩ instead of | 0⟩ |keep⟩. The reason is that both the |ψ0⟩ and
|keep⟩ qubits remain together, not separated from each other like the | send⟩
qubit.

The first qubit in each term is fed to the control of the CNOT gate and the |keep⟩
qubit to its target.

It’ll be easier to see how this circuit works if we work with the |keep⟩ qubit in
the abstract without writing it in terms of the idealized states. Since we then
won’t have the coefficients of the idealized states, we can’t write the state as
a vector and won’t be able to use the matrix method. So we’ll analyze the
circuit by inspection.

The mega-qubit consists of two terms: ω0 | 0 keep⟩ and ω
1
| 1 keep⟩. We’ll analyze

how the loader circuit affects each term separately.

ω0 | 0 keep⟩ Term
When the control is ω0 | 0⟩, the target is left alone. Thus, ω0 | 0 keep⟩ is
unaffected by the CNOT gate.

The H gate splits the first qubit, | 0⟩:

ω0 | 0 keep⟩ ↦ ω0( 1

2
| 0⟩ + 1

2
| 1⟩ ) |keep⟩

=
ω0

2
| 0 keep⟩ +

ω0

2
| 1 keep⟩

ω
1
| 1 keep⟩ Term
When the control is ω

1
| 1⟩, the target is switched. Thus, | 1 keep⟩ is modified

by the CNOT gate as follows:

ω
1
| 1 keep⟩ ↦ ω

1
| 1 KEEP⟩

Here |KEEP⟩ is the complement of |keep⟩. That is,

|KEEP⟩ = |1⟩ − |keep⟩

In other words, |KEEP⟩ is the same as NOT( |keep⟩ ) or |keep‾ ⟩. We use
capitals since it’s less clutter and makes the equations easier to read.
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The H gate splits the first qubit, | 1⟩:

ω
1
| 1 KEEP⟩ ↦ ω

1( 1

2
| 0⟩ − 1

2
| 1⟩ ) |KEEP⟩

=
ω
1

2
| 0 KEEP⟩ −

ω
1

2
| 1 KEEP⟩

Thus, the quantum state after the loader circuit acts on the qubits is:

ω0 | 0 keep⟩ + ω1 | 1 keep⟩ ↦
ω0

2
| 0 keep⟩ +

ω0

2
| 1 keep⟩ +

ω
1

2
| 0 KEEP⟩ −

ω
1

2
| 1 KEEP⟩

Rearrange the terms so that the | 0⟩ states are grouped together; the same
goes for the | 1⟩ states:

ω0 | 0 keep⟩ + ω1 | 1 keep⟩ ↦ |0⟩ ( ω0
2
|keep⟩ +

ω
1

2
|KEEP⟩ ) + |1⟩ ( ω0

2
|keep⟩ −

ω
1

2
|KEEP⟩ )

In the quantum state on the right-hand side, the amplitudes ω0 and ω
1
 that

defined the quantum state |ψ0⟩ are now associated with the |keep⟩ qubit. In
other words, the loader circuit takes the amplitudes for the state to be tele-
ported, |ψ0⟩, and transfers them to the |keep⟩ qubit.

At this point, we have a chain of quantum effects: the |keep⟩ is entangled with
| send⟩, and the quantum state |ψ0⟩ is linked with |keep⟩. In the meantime,
the | send⟩ qubit could be millions of miles away beyond the heliosphere and
in intergalactic space. So in the next section, we’ll see how the quantum state
|ψ0⟩ becomes associated with the | send⟩ qubit too.

Evaluating the Teleporting Circuit
To illustrate teleporting, we’ll use the qubit in the following figure:

|1
i

|1
i

This qubit has a single triangle | 1⟩ qubelet rotated a quarter turn clockwise.
It’s quantum state |ψ0⟩ is:

|ψ0⟩ = i |1⟩

We’ll teleport this rotated triangle | 1⟩ qubelet. That is, we’ll show that the
teleporting circuit relays the information that defines the quantum state |ψ0⟩
through the |keep⟩ qubit to its entangled partner, the | send⟩ qubit. The tele-
porting circuit is shown in figure on page 263.
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Loader

| 0i • H

|0i H • |keepi

|0i |sendi

Entangler

Next, we’ll work out the teleporting mega-qubit associated with this circuit.

Teleporting Mega-Qubit

The |keep⟩ and | send⟩ qubits are first entangled as described in the previous
section. This results in the following mega-qubit:

|keepi

|sendi

Entangled Qubits

|0i|0i

|0i|0i

|1i|1i

|1i|1i

This mega-qubit has two qubelet combinations: | 00⟩ and | 11⟩.

To remind us that the | send⟩ qubit is physically separated from the |keep⟩
qubit, we’ll draw the qubelet combinations so that the qubelets associated
with the | send⟩ qubit, the bottom qubelets in each column, are detached, as
shown in the following figure:

|keepi

|sendi

Entangled Qubits

|0i|0i

|0i|0i

|1i|1i

|1i|1i
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Even when disconnected, however, the two qubits are still entangled and act
as a unit, shown within the outer dotted box of each qubelet combination—one
of the bizarre characteristics of quantum mechanics.

The single 90° rotated triangle | 1⟩ qubelet of |ψ0⟩ then joins with the qubelet
combinations of those of the |keep⟩ and | send⟩ qubits forming the complete
mega-qubit having two qubelet combinations for this three-qubit circuit, as
shown in the following figure:

| 0i

|keepi

|sendi

Teleporting Mega-Qubit

|1
i

|1
i

|0i|0i

|0i|0i

|1
i

|1
i

|1i|1i

|1i|1i

Since this mega-qubit can collapse to either of these qubelet combinations
with equal probability, normalize the chances of picking each qubelet combi-
nation to get the mega-qubit’s quantum state following the procedure similar
to that described in Normalizing Qubelets, on page 144, but for qubelet combi-
nations instead of qubelets:

|ψ0⟩ = i

12 + 12
| 10⟩ |0⟩ + i

12 + 12
| 11⟩ |1⟩

= i

2
| 10⟩ |0⟩ + i

2
| 11⟩ |1⟩

To continue to emphasize that the qubelets for the | send⟩ qubit are physically
separate from those of the rest of the circuit, we’ve pulled the third qubelet
in each of the terms of the previous equation out and show it detached from
the rest of the quantum state. Thus, you’ll see, for example, i |10⟩ |0⟩, instead
of i |100⟩.
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You can also derive this mega-qubit using the following tensor product:

i |1⟩ ⊗ 1

2
( |0⟩ |0⟩ + |1⟩ |1⟩ ) = i

2
| 10⟩ |0⟩ + i

2
| 11⟩ |1⟩

This mega-qubit is then acted on by the loader circuit described next.

Loader Circuit on Teleporting Mega-Qubit

We’ll use the gate matrix technique to work out how the loader circuit modifies
the qubelet combinations in the mega-qubit. Visually, we’ll confirm that the
90° rotated triangle | 1⟩ qubelet gets automatically transferred by quantum
effects to the physically distant | send⟩ qubit without you having to do any
further programming.

Since the loader circuit only affects the first two qubits, we can use the two-
qubit gate matrices to analyze how the teleporting mega-qubit is affected by it.

The matrix for the loading circuit, A
Loader

, is:

A
Loader

= AH2
A
CNOT

= 1

2 [ 1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

][ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
= 1

2 [ 1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0

]
You’ll use this matrix to work out how it affects each of the qubelet combinations.

When depicting qubelet combinations in the mega-qubit, retain the complex
part of the amplitudes. These relate to the relative difference in rotations
between the qubelets in each combination. The real part of the amplitudes
is associated with the likelihoods of selecting a qubelet combination. In the
mega-qubit, they translate to the number of qubelet combinations.

Next, analyze each qubelet combination individually and then aggregate them
to get the final complete mega-qubit.
i

2
| 10⟩ |0⟩ Qubelet Combination
The first two qubelets, i |10⟩, in this combination are from the |ψ0⟩ and
the |keep⟩ qubits. Thus, the vector for the “partial” quantum state that’s
applied to the loader circuit is:

report erratum  •  discuss

Design a Teleporting Circuit • 265

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


i

2 ( 001
0
)

The loader circuit modifies this partial state as follows:

A
Loader

i

2 ( 001
0
) = 1

2 [ 1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0

] i

2 ( 001
0
)

= i

2 ( 0
1
0
−1
)

This vector corresponds to the following qubelet combination:

i

2 ( 0
1
0
−1
) = i

2
( |01⟩ − |11⟩ ) = i

2
| 01⟩ − i

2
| 11⟩

To get the full qubelet combination, append the third qubelet from the
| send⟩ qubit:

( i
2
| 01⟩ − i

2
| 11⟩ ) | 0⟩ = i

2
| 01⟩ |0⟩ − i

2
| 11⟩ |0⟩

The corresponding qubelet combination is shown in the figure on page 267.

Notice that the qubelets of the |ψ0⟩ quantum state in the top cell of each
qubelet combination are rotated by quarter turns as dictated by their
respective amplitudes in the previous equation.

i

2
| 11⟩ |1⟩ Qubelet Combination
The first two qubelets, i |11⟩, in this qubelet combination are from the |ψ0⟩
and |keep⟩ qubits. Thus, the vector for the “partial” quantum state that’s
applied to the loader circuit is:

i

2 ( 000
1
)
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| 0i

|keepi

|sendi

| 0i

|keepi

|sendi

i |10i |0i

|1
i

|1
i

|0i|0i

|0i|0i

|0
i

|0
i

|1i|1i

|0i|0i

|1i
|1i

|1i|1i

|0i|0i

The loader circuit modifies this partial state as follows:

A
Loader

i

2 ( 000
1
) = 1

2 [ 1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0

] i

2 ( 000
1
)

= i

2 ( 1
0
−1
0
)

This vector corresponds to the following qubelet combination:

i

2 ( 1
0
−1
0
) = i

2
( |00⟩ − |10⟩ ) = i

2
| 00⟩ − i

2
| 10⟩

To get the full qubelet combination, append the third qubelet from the
| send⟩ qubit:

( i
2
| 00⟩ − i

2
| 10⟩ ) | 1⟩ = i

2
| 00⟩ |1⟩ − i

2
| 10⟩ |1⟩
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The corresponding qubelet combination is shown in the following figure:

| 0i

|keepi

|sendi

| 0i

|keepi

|sendi

i |11i |1i

|1
i

|1
i

|1i|1i

|1i|1i

|0
i

|0
i

|0i|0i

|1i|1i

|1i
|1i

|0i|0i

|1i|1i

Notice, as in the previous qubelet combination, the qubelets of the |ψ0⟩
are rotated by quarter turns as required by their respective amplitudes
in the previous equation.

These four qubelet combinations then form the complete mega-qubit, as shown
in the figure on page 269.

This mega-qubit is the quantum state after the |keep⟩ and | send⟩ qubits have
been entangled and the |ψ0⟩ qubit loaded onto |keep⟩. In other words, the
single anticlockwise rotated triangle | 1⟩ qubelet should be transferred, or
teleported, to the | send⟩ qubit.

Looking at the mega-qubit, however, you don’t see a rotated triangle | 1⟩ qubelet
in any bottom cell for the | send⟩ qubit. To see that the | send⟩ qubit does indeed
carry the rotated triangle | 1⟩ qubelet, we’ll massage the mega-qubit in the
next section to reveal the qubelet in the desired orientation.

Refining the Design for Desired Behavior
As we stated at the beginning of this section, rarely will you get a one-to-one
match between a quantum effect and the problem you’re solving. The idea of
using quantum entangling for teleporting seems fitting. But by itself, you
won’t automatically see the state you want to teleport magically show up on
the | send⟩ qubit. So you’ll need to add some post-processing to get what you’re
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| 0i

|keepi

|sendi

Final Teleporting Mega-Qubit

|0
i

|0
i

|1i|1i

|0i|0i

|1i
|1i

|1i|1i

|0i|0i

|0
i

|0
i

|0i|0i

|1i|1i

|1i
|1i

|0i|0i

|1i|1i

looking for, much like you’d refine a program in a traditional programming
language that wasn’t performing as designed. So, in this section, you’ll see
the kinds of steps you’ll need to take to shape the end result of the quantum
effect to something that actually solves your problem. In Chapter 9, Alice in
Quantumland—Quantum Cryptography, on page 279, you’ll see a tighter way
in which quantum effects and the post quantum processing go hand in hand
when designing quantum algorithms.

As a first step, it’s a good idea to try rotating qubelets to see if the result pops
out. Since it’s only the relative difference in rotations between the qubelets
that defines quantum states, turning qubelets while retaining the relative
difference in their orientations may reveal desired states without affecting the
mega-qubit.

Looking at the third qubelet combination, you can get the state you want to
teleport by rotating the triangle | 1⟩ qubelet in the bottom cell a quarter turn
anticlockwise. To keep the state of the entire qubelet combination unchanged,
twist an already rotated qubelet a corresponding turn the other way. In this
case, rotate the top pentagon | 0⟩ qubelet a quarter turn clockwise.

Likewise, rotate the qubelets in the other qubelet combinations so that the
top qubelets in each cell go back to their original non-oriented states, while
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simultaneously rotating the bottom qubelet in each combination an equal
amount the other way. As shown in Rotating Qubelets in the Mega-Qubit, on
page 254, these rotations don’t affect the state of the mega-qubit. These rota-
tions result in the following mega-qubit:

| 0i

|keepi

|sendi

Final Teleporting Mega-Qubit After Rotations

|0i|0i

|1i|1i

|0
i

|0
i

|1i|1i

|1i|1i

|0i |0i

|0i|0i

|0i|0i

|1
i

|1
i

|1i|1i

|0i|0i

|1i
|1i

Only the bottom qubelet in the third combination has a triangle | 1⟩ qubelet
correctly rotated a quarter turn anticlockwise. None of the other qubelet
combinations mirror the exact state being teleported. But with a set of
deterministic operations, these qubelets can be brought to the required state.

Operations Are Not yet Available in Current Quantum Computers

The operations you’re about to see aren’t yet implemented by
today’s quantum computers. They’re part of the theory of quantum
computing, though, and you’ll see gates that implement them in
the future.

Specifically, apply the following operations:

If |ψ0 keep⟩ = |00⟩
This case corresponds to the third qubelet combination. Its bottom qubelet
associated with the | send⟩ qubit correctly reflects the state to be transport-
ed. Do nothing.
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If |ψ0 keep⟩ = |01⟩
This case corresponds to the first qubelet combination. Its bottom qubelet
associated with the | send⟩ qubit is a pentagon | 0⟩ qubelet that’s rotated a
quarter turn clockwise.

To get this qubelet in the proper state, switch it to a triangle | 1⟩ qubelet
by using a NOT gate. The NOT gate will preserve the quarter turn clockwise
rotation.

If |ψ0 keep⟩ = |10⟩
This case corresponds to the fourth qubelet combination. Its bottom
qubelet associated with the | send⟩ qubit is a triangle | 1⟩ qubelet, but
rotated a quarter turn clockwise.

To get this qubelet in the proper orientation, apply a Z gate which inverts
or rotates triangle | 1⟩ qubelets by a half turn.

If |ψ0 keep⟩ = |11⟩
This case corresponds to the second qubelet combination. Its bottom
qubelet associated with the | send⟩ qubit is a pentagon | 0⟩ qubelet rotated
a quarter turn clockwise.

To get this qubelet in the proper orientation, apply a NOT gate to switch the
pentagon | 0⟩ qubelet to a triangle | 1⟩ qubelet. Then, apply a Z gate to rotate
the triangle | 1⟩ qubelet by a half turn to bring it to the proper orientation.

With these “post–quantum-processing” steps defined, the teleportation program
is complete. If you now collapse the |ψ0⟩ and |keep⟩ qubits and apply the corre-
sponding operation as listed above, the | send⟩ qubit will reflect the state of |ψ0⟩.

We have one final loose end to tie up. We worked out the post–quantum-
processing steps for a single specific state: a triangle | 1⟩ qubit rotated a
quarter turn anticlockwise. That is,

|ψ0⟩ = i |1⟩

It just so happens that the same post-processing steps we just worked out
also hold when teleporting a general state:

|ψ0⟩ = ω0 | 0⟩ + ω1 | 1⟩

When designing your own algorithms, you can start with a specific state like
we did, work out the post–quantum-processing steps for that state and then
fine-tune them, if necessary, for the general state. Or you could directly
analyze the general state. In the latter case, you’ll work with gate matrices
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on quantum state vectors defined symbolically. The resulting analysis becomes
more algebraic than graphical.

Although the teleporting circuit may not be immediately practical, it illustrates
a couple of key design principles for quantum algorithms:

• By judiciously breaking up the design into salient blocks involving fewer
qubits, we were able to design an algorithm using smaller 4 × 4 matrices
instead of dealing with 8 × 8 gate matrices for three-qubit circuits.

• Post–quantum-processing steps are an important facet of the algorithmic
design, enabling you to correctly harness the power of quantum effects
for your problem.

In the next chapter, Chapter 9, Alice in Quantumland—Quantum Cryptogra-
phy, on page 279, you’ll learn how these principles lead to a protocol for highly
secure communication.

Bottom Line
With multi-qubit programs, you’re finally in a position to introduce quantum
effects that give new ways to solve your computational problems. The unique
way in which qubelets of multiple qubits pair up with each other results in
an exponential number of states that a quantum computer simultaneously
deals with.

Although quantum computing affords you this unprecedented capability of
juggling the equivalent of many states, getting them to perform a useful
computational task is another matter. Representing gates as matrices and
then matrix math gives you the means to work with all these states at once.
But as the number of qubits increases, matrices become large and unwieldy
and won’t provide the insight you need to design algorithms. Nonetheless, by
breaking up your design into smaller blocks, as you saw with the teleporting
circuit, you can design programs that work with more qubits.

A crucial aspect of designing quantum algorithms for your problems is iden-
tifying which quantum effect would work best. Even though entangling is a
shoo-in for teleporting, in general you won’t find such an obvious quantum
effect for your problem. As you’ll see in the next chapter, you’ll use a general
quantum phenomenon and then build additional logic around it to solve a
particular computational task.

Chapter 8. Giant Leap for Mankind—Multi-Qubit Programs • 272

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


Try Your Hand
Solutions to these exercises are given in Multi-Qubit Programs Solutions, on
page 488.

For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

1. In each of the following cases, identify the coefficient for the stated ideal-
ized state.

a. What’s the amplitude, ω
01

, for | 01⟩ in the following vector?

( 0120
i 1

2

)
b. What’s the amplitude, ω00, for | 00⟩ in the following vector?

( −i21212
1

2

)
2. Can a 3 × 3 matrix represent a quantum gate? Explain your answer.

3. Consider a qubit with the following quantum state:

|0i|0i |0i|0i |1
i

|1
i
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Which of the following is the correct way to write its quantum state?

a. i |001⟩

b. ( 1

5
1

5

− 1

5

)
c. 2

5
| 0⟩ + i

5
| 1⟩

4. In classical computing, you’re encouraged to use print or write statements
to look at the values of your program’s variables during debugging. In
this problem, you’ll see the pitfall of placing Measure gates in your quantum
programs to examine their states for debugging.

Consider the following quantum state |ψ⟩:

|ψ⟩ = 2

5
| 00⟩ + 4i

5
| 01⟩ − i

5
| 10⟩ + 2

5
| 11⟩

a. Calculate the probabilities of collapsing to each of the four idealized
states.

b. If you measure the second qubit, what is the probability of recording
a 1?

c. If a 1 is logged in the classical register, does the quantum state of the
system change? If so, what is the new quantum state?

5. Consider the following 4 × 4 matrix:

[ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i ]

What type of gate does it describe?

6. In SWAP Gate, on page 52, you saw a quantum gate that swapped the
quantum states of two qubits with each other. In a Controlled SWAP Gate, also
called a Fredkin gate, the two quantum states |ψ

1
⟩ and |ψ2⟩ are swapped

only if the control qubit is | 1⟩, as depicted in the figure on page 275.
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control :  0 •

 1 ⇥

 2 ⇥

a. What are the dimensions of this gate’s matrix?
b. Write out its gate matrix.

7. Determine the matrix for the following quantum circuits:

a.
 0 H

 1 H

b. |q1i

|q2i S†

In this case, though, obtain the gate matrix by inspection using the
gate matrix of the pass-through S gate computed in Circuits with
Single- and Two-Qubit Gates, on page 243, as a reference:

A
S
= [ 1 0 0 0

0 i 0 0
0 0 1 0
0 0 0 i ]

8. For each circuit shown, calculate its matrix:

a.
H • H

H H

b.
H H

•

9. When working out the gates to correctly rotate the qubelets in your programs,
it’s important to bear in mind that you can reorient qubelets without affecting
the quantum state of the qubelet combinations. In this exercise, you’re asked
to identify rotations that maintain the same quantum state.
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For each of the qubelet combinations, determine the rotations of the
qubelets that make the quantum state of the combination on the right
identical to that on the left:

a. i |11i

|1i|1i

|1
i

|1
i

i |11i

?

|1i|1i

b. �i |101i

|1
i

|1
i

|0i|0i

|1i |1i

�i |101i

?

|0i|0i

|1i|1i

10. As you start writing quantum programs with more qubits, you’ll find it
useful to easily go back and forth between the tensor product of quantum
states and its mega-qubit so that you can see how the gate affects the
quantum state. Thus, in the next few problems, you’ll test your under-
standing of tensors and how they relate to the mega-qubit.

Write the quantum state vector and draw the mega-qubit for the following
tensor operations:

a. | 1⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |1⟩ ⊗ |0⟩

b. 1

2
( |0⟩ + i |1⟩ ) ⊗ |0⟩

c. 1

2
( |0⟩ − i |1⟩ ) ⊗ 1

2
( |0⟩ + i |1⟩ )

d. | 1⟩ ⊗ X |1⟩ ⊗ H |0⟩

X |1⟩ is the operation of the NOT gate on | 1⟩ and H |0⟩ is the operation
of the H gate on | 0⟩.

11. The ability to factor a quantum state as a tensor product of qubits indi-
cates whether the qubits are entangled. If it’s not possible to write the
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quantum state as a tensor product of individual qubits, then the qubits
can’t exist independently of each other and are entangled. In this problem,
you’ll try factoring quantum states to determine whether the qubits are
entangled.

Write the following quantum states as tensor products, if possible, and
determine whether the qubits are entangled.

a. |ψ⟩ = 3

10
| 00⟩ + 1

10
| 01⟩ − 9

10
| 10⟩ − 3

10
| 11⟩

b. |ψ⟩ = 1

2
| 01⟩ + 1

2
| 10⟩

12. Consider the following tensor product:

1

2
( |0⟩ + i |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

Its associated mega-qubit is:

1p
2
(|0i + i |1i)

|0i|0i |1
i

|1
i

1p
2
(|0i + |1i)

|0i|0i |1i|1i

1p
2
(|0i � |1i)

|0i|0i

|1i |1i
Mega-Qubit

|0i|0i

|0i|0i

|0i|0i

|0i|0i

|0i|0i

|1i |1i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

?

|1
i

|1
i

|0i|0i

|0i|0i

?

|0i|0i

|1i |1i

|1
i

|1
i

|1i|1i

|0i|0i

?

|1i|1i

|1i|1i

Identify the type and rotation of the three missing qubelets.

13. In quantum computing, the ability to rotate qubelets underpins all
quantum effects such as canceling and entangling quantum states. So
in this problem, you’ll work with a mega-qubit and figure out the quantum
circuit that created it.

Look at the following mega-qubit on page 278.

a. Enumerate the ways that this mega-qubit can collapse. For each way,
estimate the corresponding probability of the mega-qubit collapsing
to it, as well as the state that’s logged in a classical register.

b. Write the quantum state for this mega-qubit.

c. Write the quantum state as a tensor product.

d. From the tensor product you found in the previous part, work out a
quantum circuit that produces the given mega-qubit.
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Mega-Qubit Quantum State | i = | 0 1i

|0i|0i

|0i|0i

|0i|0i

|1
i

|1
i

|1i|1i

|0i|0i

|1i|1i

|1
i

|1
i

14. Suppose you’d like to teleport two quantum states, |ψ
1
⟩ and |ψ2⟩. Can

you use the teleporting circuit described in Design a Teleporting Circuit,
on page 256, to teleport the two states one after the other—that is, teleport
|ψ

1
⟩ and then teleport |ψ2⟩?

15. Consider the teleporting circuit discussed in Design a Teleporting Circuit,
on page 256. Suppose the |ψ0⟩ and |keep⟩ collapse so that the quantum
states for all three qubits are as follows:

|ψ0⟩ ↦ |1⟩
|keep⟩ ↦ |0⟩

|send⟩ ↦ 1

2
| 0⟩ − i

2
| 1⟩

Refer to Refining the Design for Desired Behavior, on page 268, to determine
the quantum state that’s teleported.

16. Can the following circuit teleport a quantum state?

H •

• H

If so, identify the Entangler and Loader parts, and label the |keep⟩, | send⟩,
and the qubit holding the quantum state, |ψ0⟩, to be teleported.
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CHAPTER 9

“Curiouser and curiouser!” cried Alice (she was so much surprised,
that for the moment she quite forgot how to speak good English).

  ➤  Lewis Carroll, author of Alice in Wonderland

Alice in Quantumland—Quantum
Cryptography

Quantum computing has the potential to rapidly factor large numbers. That’s
a problem for standard cryptography, which relies on classical computers
being unable to handle that level of computation.1,2 When that happens,
almost all transactions—financial, medical, business—will be rendered moot,
as there would be no reliable way to secretly share information. The situation
is so dire that there’s a tremendous urgency to find an adequate replacement
when quantum computers become commonplace.

In this chapter, you’ll learn the main ideas behind quantum cryptographic
methods and why quantum mechanics makes such methods inherently safe
from eavesdropping and other attempts to break them. To help you build your
own intuition when designing quantum algorithms, as in the previous discus-
sion on building a teleporting circuit, we’ll identify a suitable quantum effect
coupled with additional logic to build a secure protocol for communicating
between different parties.

Just as in classical cryptography, any exchange of information entails the
use of keys. These are binary strings which encrypt and decrypt the message
to be sent. The primary challenge in cryptography is the distribution of the
keys between the sender and receiver before any message is sent. After
reviewing how keys are used to encrypt messages, you’ll see how quantum
computing provides unique ways to share keys between the parties

1. https://www.scottaaronson.com/blog/?p=208
2. https://en.wikipedia.org/wiki/Shor%27s_algorithm

report erratum  •  discuss

https://www.scottaaronson.com/blog/?p=208
https://en.wikipedia.org/wiki/Shor%27s_algorithm
http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


communicating. These methods, with their signature quantum effects, have
no classical analogs.

Quantum Channels, Not Mainstream

In quantum cryptography, we’ll be sending qubits from one location
to another, as we did in Design a Teleporting Circuit, on page 256.
Moving qubits takes place over what is loosely called a quantum
channel—you can’t move them over classical transmission cables,
such as copper wires. Engineering work is still needed before such
quantum channels become commercially viable. In the meantime,
we’ll continue to use these channels in our analysis as if they’re
readily available. But you should be aware that a large part of the
technology undergirding quantum cryptography isn’t yet ready for
prime time, although scientists and engineers have made substan-
tial progress, as we’ll review in How Real Is BB84?, on page 290.

Encrypting with Symmetric Keys
In cryptography, messages are encrypted using keys, which are strings to
make the original message gobbledygook. Broadly speaking, the keys are of
two types:

• Symmetric key algorithms where both the sender and receiver use the
same key to encrypt and decrypt messages. In classical cryptography, the
Advanced Encryption Standard (AES)3 is a widely used symmetric key
algorithm.

• Asymmetric Key algorithms use different keys for encrypting and decrypting
messages. These algorithms, such as RSA,4 are also called public/private
key algorithms since one of the keys is publicly known. Using the public
key, anyone can encrypt a message, but only the intended receiver can
decrypt it based on the private key. These algorithms are used, for instance,
to send encrypted information, such as credit card transactions, over the
web. With asymmetric cryptography, the key distribution is moot since the
public key is well known and doesn’t have to be kept secret.

Both types of algorithms are secure. Though with symmetric key algorithms,
you have the additional burden of ensuring that the secret key is first
securely communicated to the receiver. But, as we’ll see, with quantum
computing, safely delivering keys is assured.

3. https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
4. https://en.wikipedia.org/wiki/RSA_(cryptosystem)
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Once a secret key is generated, the message can be encrypted by adding the
secret key to the message doing modulo-2 addition, for example, on each bit.
In modulo-2 addition, you add each bit of the message with the corresponding
bit of the secret key but throw out the carry over. Thus,

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

So if your message is 0110101001 and the secret key is 0101010101, then the
encrypted message is:

0 1 1 0 1 0 1 0 0 1
+ 0 1 0 1 0 1 0 1 0 1
= 0 0 1 1 1 1 1 1 0 0

The encrypted message 0011111100 is sent to the receiver, who then decrypts
it by subtracting the secret key to recover the original message:

0 0 1 1 1 1 1 1 0 0
− 0 1 0 1 0 1 0 1 0 1
= 0 1 1 0 1 0 1 0 0 1

Despite the simplicity of symmetric key methods, if the key is used just once,
it’s highly resistant to attacks.

The concepts of quantum cryptography are, at first sight, strange. So that
you don’t get lost in the minutiae, we next outline the main ideas that’ll help
frame the subsequent discussion. We’ll call it the Tell-Your-Boss version, as
it’s a quick way to get across the key concepts without going into details.

Tell-Your-Boss Version: The “Key” Idea
Quantum cryptography is a topic where it’s easy to lose the plot with all the
exchange of information taking place to transmit a single message. So before
getting into the nitty-gritty details, you’ll look at the key insight that undergirds
all of quantum cryptography. The intent is to get you to appreciate the
quantum effects at play rather than making sure that all the auxiliary logic
is properly connected up.

The central problem in cryptography is making sure that the sender and
receiver have the necessary encryption and decryption keys before any message
is communicated. With the keys in place, the sender encrypts the message
and transmits it over a public channel, confident that only the receiver can
decrypt it. Thus, we’ll focus on getting the keys across to the receiver: the
Quantum Key Distribution (QKD) problem.

report erratum  •  discuss

Tell-Your-Boss Version: The “Key” Idea • 281

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


In classical cryptography, information is encrypted with a key and then sent
along a public channel to the receiver. In quantum cryptography, information
is also encrypted with a key, but what’s sent is a mega-qubit. To put it
another way, instead of sending a single encrypted string, the mega-qubit
contains, in effect, several encrypted strings. The following figure shows a
mega-qubit carrying two such strings:

Should the mega-qubit fall into the wrong hands, the thieves wouldn’t count
themselves among the lucky few. Despite the mega-qubit carrying the
encrypted strings, it’s virtually impossible to extract them. Because the strings
are in a superposition in the mega-qubit, the only way to get anything out of
a mega-qubit is to collapse its qubits. But this is easier said than done. In
the mega-qubit shown in the previous figure, the first qubit can collapse to
| 0⟩ or | 1⟩, the second to | 1⟩, the third to | 0⟩ or | 1⟩, and so on. Thus, for this
example, the mega-qubit could collapse to | 0111001011⟩, or even | 1111011111⟩
or | 0100000101⟩ or any of the 28−3 = 253 other combinations. As the number
of bits in the binary string gets larger in any real-life transaction, the chances
that a random collapsing of the mega-qubit results in the actual encryption
key is virtually nil. In other words, the quantum nature of the mega-qubit
means that the secret encryption key is safe from any attempt to pry it out.

Yet, the receiver needs to pull out the correct encryption key from the mega-
qubit. Quantum cryptographic algorithms are a way for the sender and
receiver to legitimately get around the inherent tamper-proof seal of the mega-
qubit. They’re a carefully choreographed sequence of actions taken by both
the sender and receiver so that the latter can recover the correct key, despite
eavesdroppers on the public channels over which the sender and receiver
communicate. In the next section, we’ll describe one such mechanism.

The BB84 Key Exchange Mechanism
The most commonly cited quantum key exchange mechanism is BB84,5 named
after Charles Bennet and Gilles Brassard, who devised this scheme and pre-
sented it at the International Conference on Computers, Systems and Signal

5. https://www.sciencedirect.com/science/article/pii/S0304397514004241
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Processing in 1984. Over the years, this mechanism has been shown to be
highly secure.6 7

In quantum cryptography, both quantum and classical information is
exchanged: a quantum channel carries quantum traffic—the mega-qubit—
and a classical channel for non-quantum or classical information.

The underlying quantum effect for the BB84 mechanism is based on Back-
to-Back H Gates: The First Hint of Taming Randomness, on page 88. The first
H gate takes the qubits and puts them in a blended state. The second H gate
then puts the qubits back to their original states. In quantum cryptography,
this concept is divvied up between the sender and receiver: the sender puts
the qubit in a blended state by applying a H gate to the qubit. The receiver
then applies another H gate on the blended qubits to recover the original states
that the sender wants to convey. The complete state of the mega-qubit—the
“content,” if you will—isn’t relevant to the security of the channel.

Of course, if eavesdroppers get hold of the blended qubits during their
transmission from the sender to the receiver, then they too could simply apply
the H gate to reveal the original message. Thus, to thwart any attempt by
eavesdroppers to steal the message, the message is transmitted in two phases:

1. Establish trust between the sender and receiver.
2. Only after the security of the channel is assured, create a single-use key

to encrypt and decrypt the message.

Notice that in every transmission, a secure channel between the sender and
receiver is first assured before a single-use key is generated. Besides the
mega-qubit itself being a cagey player, as was hinted at in the previous section
and which we’ll explore in depth here, this two-step handshake between the
sender and receiver virtually guarantees that the message is fully protected.

Next, we’ll describe the role of quantum computing in these two phases.

Establish Trust
In this phase, the sender and receiver confirm that they’re able to communi-
cate securely without any malicious middlemen snooping around. The actual
message to be transmitted isn’t used in this determination. The only publicly
known information is that both parties use H gates for their work.

6. https://arxiv.org/abs/quant-ph/0003004
7. https://www.nature.com/articles/srep16200
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The trust is established by both the sender and receiver taking independent
steps and then comparing their results, as follows:

Sender Creates a Random Quantum State
Sender creates a quantum state that’s a long random string of | 0⟩ and | 1⟩
qubits.

To illustrate the steps, we’ll use the following five-qubit quantum state
expressed as a tensor product:

| 01101⟩ = |0⟩ ⊗ |1⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ |1⟩

The resulting mega-qubit has a single qubelet combination.

The | 1⟩ qubits are created by having a NOT gate operate on a | 0⟩ qubit, as
shown in the following circuit:

|0i |0i

|0i X |1i

|0i X |1i

|0i |0i

|0i X |1i

Sender Applies H Gate on Random Qubits
Next, the sender randomly selects some qubits and applies the H gate on
them creating a mega-qubit with several qubelet combinations.

For example, if the H gate is applied to just the first, second, and last qubits,
the quantum circuit is modified as shown in the following figure:

|0i H | 0i = 1p
2
(|0i+ |1i)

|0i X H | 1i = 1p
2
(|0i � |1i)

|0i X | 2i = |1i

|0i | 3i = |0i

|0i X H | 4i = 1p
2
(|0i � |1i)
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The quantum state created by this circuit is expressed as the following
tensor product:

|ψ0ψ1ψ2ψ3ψ4 ⟩ = H |0⟩ ⊗H |1⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗H |1⟩

H |0⟩ and H |1⟩ are the actions of the H gate on the | 0⟩ and | 1⟩ qubits, as
stated here:

H |0⟩ = 1

2
( |0⟩ + |1⟩ )

H |1⟩ = 1

2
( |0⟩ − |1⟩ )

Thus, by expanding the tensor product, the mega-qubit, |ψ0ψ1ψ2ψ3ψ4 ⟩, is:

|ψ0ψ1ψ2ψ3ψ4 ⟩ = H |0⟩ ⊗H |1⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗H |1⟩

= 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ ) ⊗ |1⟩ ⊗ |0⟩ ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2
( |00⟩ − |01⟩ + |10⟩ − |11⟩ ) ⊗ |1⟩ ⊗ |0⟩ ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2
( |001⟩ − |011⟩ + |101⟩ − |111⟩ ) ⊗ |0⟩ ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2
( |0010⟩ − |0110⟩ + |1010⟩ − |1110⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2 2
( |00100⟩ − |01100⟩ + |10100⟩ − |11100⟩ − |00101⟩ + |01101⟩ − |10101⟩ + |11101⟩ )

This mega-qubit has eight qubelet combinations, with each combination
having five qubelets, as shown below:

| 0i

| 1i

| 2i

| 3i

| 4i

1
2
p
2
(|00100i � |01100i + |10100i � |11100i � |00101i + |01101i � |10101i + |11101i)

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|0i |0i

|1i|1i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|0i|0i

|0i|0i

|0i |0i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|1i|1i

|0i|0i

|1i|1i
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Mega-Qubit Sent Across Quantum Channel
The sender transmits the mega-qubit over the quantum channel to the
receiver.

Picture this mega-qubit as a superposition of its qubelet combinations,
drawn using familiar 0/1 bits to emphasize the idea that what’s being
transmitted is actually a superposition of several binary strings as opposed
to a single string in classical cryptography, as shown in this figure:

The negative qubelet combinations in the mega-qubit are drawn upside-
down.

Receiver Applies H Gate on Random Qubits
The receiver gets the mega-qubit from the quantum channel and randomly
selects qubits and applies the H gate.

Suppose the receiver selects the first, third, and last qubits and applies
the H gate, as shown in the figure below:

| 0i H

| 1i

| 2i H

| 3i

| 4i H

c • • • • •
c[0] c[1] c[2] c[3] c[4]

By sheer chance, some qubits will have back-to-back H gates applied to
them, while others won’t. In fact, if you put the sender’s and receiver’s
circuits side by side, you’ll get the overall circuit as shown in the figure
on page 287.
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Sender Quantum Receiver

Channel

| 0i H H

| 1i X

| 2i X H

| 3i

| 4i X H H

• • • • •

c[0] c[1] c[2] c[3] c[4]

Only the first and last qubits have back-to-back H gates. Thus, when
measured, these qubits will hold the original state set by the sender. Thus,
c[0] records a 0 and c[4] logs a 1, matching those of the sender.

There’s no guarantee that the other qubits will match, although some
may by chance. (For example, because of the random nature of how the
blended quantum state of the third qubit collapses, c[2] will have roughly
a 50% chance of matching the original state set by the sender.)

Overall Circuit Is Not a Single Program

Although we’ve drawn the overall circuit in a single diagram,
it doesn’t result in a single quantum program. It’s actually
implemented as three separate parts: the sender’s circuit, the
receiver’s circuit, and the quantum channel that transmits the
qubits from sender to receiver.

Both Parties Compare Which Qubits Have Back-to-Back H Gates
Over an assumed “leaky” classical channel, where eavesdroppers can
freely listen in, both the sender and receiver announce which qubits they
applied H gates to. Thus, both the sender and receiver, as well as any
eavesdroppers, will know which qubits match. Tellingly, though, the
actual values of the qubits aren’t shared—just whether they were acted
on by back-to-back H gates. So while the sender and receiver would know
the values, eavesdroppers wouldn’t.
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Given that both the sender and the receiver independently select the
qubits to apply the H gate to, statistically we expect that about 50% of the
time their choices will match. Thus, in practice, the sender starts by
choosing a sufficiently long string of qubits so that the matched qubits
are still adequate to make a secret key.

Optional Step for an Enhanced Seal of Trust
If you still need additional evidence that the quantum channel is free from
eavesdroppers and middlemen with nefarious intent, the sender selects
a subset of the matching qubits and declares their actual original quantum
states over the leaky classical channel. Only if these states are identical
to those measured by the receiver is the communication deemed safe and
private.

Joe asks:

What Makes BB84 Tamper-Proof?
Quantum cryptography not only makes it hard to illegally tap messages but provides
incontrovertible proof when tampered. The certificate of tamper-free messages comes
directly from the principles of quantum mechanics. In classical cryptography, on the
other hand, no one is the wiser when a hacker stealthily listens in.

In quantum cryptography, the odds stack up against evil-doers quickly:

• Firstly, there’s the mega-qubit itself. Even if someone managed to snatch it, they
can’t simply read it like a classical string. They have to collapse the qubits. And
since at least half of the qubits are in a blended state, the likelihood is tiny that
every qubit would collapse to the original state at the same time.

• Secondly, the mega-qubit doesn’t contain the complete information. Even if you
had full knowledge of the original quantum states, you still wouldn’t know the
secret key. The actions of the receiver have to be factored in.

• If establishing an enhanced level of trust, the presence of an eavesdropper is
easily detected. The moment an eavesdropper probes a qubit to inspect its state,
the overall quantum state of the system is immediately altered so that there’s a
mismatch when the sender and receiver compare their qubits.

Thus, the security of the quantum channel hinges on whether a match occurs
when the H gate is applied to roughly half the qubits selected by both the
sender and receiver. Remarkably, it’s only the total number that is rele-
vant—not the quantum states of the qubits themselves nor which qubits are
selected. In other words, trust is established by sharing minimal information,
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which in itself makes it more secure, since it reduces the attack surface, or
the amount of content that can fall into wrong hands.

Create the Secret Key
Now that the sender and receiver have established a secure quantum channel,
they each independently determine the secret key based on the matching
qubits. The secret key itself is never sent across any channel, as it would be
in classical cryptography.

Specifically, the secret key is derived as follows:

• Discard the qubits used for establishing the enhanced level of trust.

• Consider those qubits to which both the sender and receiver apply H gates:

– Since sender generates the random string to initiate the negotiation,
sender knows the quantum state of the matching qubits.

– Receiver obtains the quantum state of the matching qubits from the
value recorded in the classical register.

• Form the secret key by both sender and receiver concatenating the values
of the matching qubits:

– If the length of the key is shorter than the message to be sent, the key
is repeated as many times as necessary.

– Other schemes, such as reversing the bits in each repetition, could
be used if both parties agree to them.

In the example, the sender and receiver apply H gates to the first and last
qubits. The secret key is, thus, | 01⟩, assuming that the optional step isn’t
needed in this transmission. The sender then encrypts the message using
this key. And the receiver decrypts the message using the same key, even
though the actual key is never sent across the channel.

The BB84 mechanism’s strength is, thus, multifold:

• Using mega-qubits to establish trust of the communication channel makes
it foolproof—virtually impossible for any hacker to operate successfully.
Moreover, any attempt to crack it is easily detectable, and no message is
communicated till the channel is clear.

• The secret key itself is derived independently by both the sender and
receiver and is never actually sent across the channel.
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• Each new transmission uses a new secret key—the same key is never
used again.

BB84 Using Entangled Qubits

In the BB84 mechanism, each qubit is first operated on by the
sender and then the receiver. Using entangled qubits, however,
such as those described in Design a Teleporting Circuit, on page
256, the sender operates on one and the receiver works on the
other entangled qubit.8 This way, if any entangled qubit is illegiti-
mately intercepted, the sender immediately knows and can stop
the communication.

How Real Is BB84?
Quite real.

Scientists and engineers in several countries have racked up a growing list
of experiments demonstrating that BB84 is a feasible and secure method of
communication. Many of these implementations are based on optical quantum
computing using light, or photons, as qubits to transmit information. So
although the quantum computers are different than the IBM Quantum
Computer, the underlying principles and quantum circuits described in this
chapter are the same.

Here’s a partial list of these demonstrations:

• In 2002–2007, the DARPA Quantum Network,9 10 a joint effort by Harvard
and Boston Universities and BBN Technologies, was the world’s first QKD
experiment. It used “polarization-entangled photon pairs”11 and operated
continuously for three years in the Cambridge, Massachusetts, and Boston
area. At its peak, it interconnected ten sites. Keys created by this mecha-
nism were used in standard internet security protocols.

In collaboration with MIT, this setup was also used to test a proof-of-
concept version of a quantum eavesdropper.

• In 2006, Los Alamos National Laboratory (LANL) together with the
National Institute for Standards and Technology (NIST) in the United
States, using a severely throttled pulsed laser beam, produced photons

8. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.67.661
9. https://iopscience.iop.org/article/10.1088/1367-2630/4/1/346
10. https://en.wikipedia.org/wiki/DARPA_Quantum_Network
11. https://arxiv.org/abs/quant-ph/0503058
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that mimicked individual qubits and proved that QKD works over long
distances.12 These distances are comparable to the spans in today’s fiber
networks.

• In 2008, forty-one research and industrial organizations from the Euro-
pean Union, Switzerland, and Russia tested a QKD network using eight
sites around Vienna.13 The system used a variety of systems, including
entangled photons, to demonstrate that they could be successfully inter-
connected.

See here14 for other experiments around the world.

Bottom Line
In quantum cryptography, the deterministic and the inherent probabilistic
nature of quantum mechanics come together to secure communications
between two parties. The back-to-back nature of connecting H gates provides
a reliable mechanism for the parties to lock in a secret key. At the same time,
should the mega-qubit fall into the wrong hands during transit, the random
way in which qubits collapse makes it virtually impossible for the interloper
to glean anything of value. It’s like sending a booby-trapped package. Quantum
computing has the potential to seriously crimp the hacking industry.

Although you can’t yet build and deploy quantum cryptographic algorithms
like you would for other types of applications, the principles you have learned
in this chapter will apply when commercially viable hardware becomes com-
monplace. That is, the security schemes to establish trust between commu-
nicating parties and the quantum circuits will still be valid, although they
will be implemented differently than the programs you have been working
with so far.

In the next chapter, you’ll see how quantum computing provides new ways
to slash the time searching for solutions to hard problems in many diverse
industries.

Try Your Hand
Solutions to these exercises are given in Quantum Cryptography Solutions,
on page 504.

12. https://iopscience.iop.org/article/10.1088/1367-2630/8/9/193
13. https://iopscience.iop.org/article/10.1088/1367-2630/11/7/075001
14. https://en.wikipedia.org/wiki/Quantum_key_distribution#Commercial
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1. Alice wants to send a message to Bob and they agree to use the BB84
mechanism to set up a secret key to encrypt and decrypt her message.

Suppose Alice sets up her circuit as shown in the following figure:

|0i H | 0i

|0i X | 1i

|0i X H | 2i

|0i H | 3i

|0i X | 4i

|0i X H | 5i

|0i X H | 6i

a. Decide whether the following statements are True or False:

i. The random key is 000000.

ii. The secret key is 0110111.

iii. The random key is:

H |0⟩ ⊗ |1⟩ ⊗H |1⟩ ⊗H |0⟩ ⊗ |1⟩ ⊗H |1⟩ ⊗H |1⟩

iv. The random key is 0110111.

v. Assuming that the first and last qubits are used for establishing
an enhanced level of trust, the secret key is:

| 1⟩ ⊗H |1⟩ ⊗H |0⟩ ⊗ |1⟩ ⊗H |1⟩

b. When Bob receives the qubits, he applies the H gate on the second,
third, fourth, sixth, and seventh qubits. Draw his circuit.

c. Alice and Bob want an enhanced level of trust before Alice sends a
message to Bob. They agree to use the seventh qubit to test. What do
they do next?

d. What is the secret key? Who sets it up?
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2. Imagine it’s 2025 and the internet has a parallel network of optical routers
and switches using pulsed lasers alongside the classical world wide web.
These devices send single photons, effectively acting as single qubits. In
other words, the world wide web has gone quantum.

In this new world, you’d like to buy a book from the Pragmatic Bookshelf,
the number one site for computer professionals. As in the classical way
to buy a book, you first select your book, add it to the cart, enter your
address and payment information, and click Buy.

Now, before your browser on your desktop or smart device sends your infor-
mation to the bookstore, it first initiates a “handshake” or negotiation with
the Pragmatic Bookshelf site to generate a secret key using the BB84 mecha-
nism. This secret key will then be used to encrypt your personal details.

Suppose your machine generates the following quantum program for the
“handshake”:

x q[0];
x q[2];
x q[4];
x q[6];
x q[7];
x q[8];
h q[0];
h q[1];
h q[3];
h q[4];
h q[6];
h q[8];

a. Draw the quantum circuit associated with this program. On the
classical channel, what qubits does your machine declare that it
applies the H gates on?

b. What random string did your smart device come up with?

c. Your machine sends the qubits to the Pragmatic Bookshelf site. On a
classical channel, the site declares it has applied H gates on qubits 1,
2, 4, 6, 7, and 9. Assuming that 2 and 9 are used to establish an
enhanced level of trust, what is the secret key derived by your machine?

3. In the experimental setups in How Real Is BB84?, on page 290, to test the
feasibility of using the BB84 mechanism to generate secret keys and
communicate securely, researchers used predominantly optical devices.
Assume that for some reason, these devices are only able to rotate photons,
and hence, qubits, by a quarter turn.
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What type of gates would the sender and receiver need to use to negotiate
a secret key using the BB84 mechanism?

4. In this exercise, you’ll see that intercepting a mega-qubit isn’t particularly
useful. To this end, consider the following mega-qubit:

Qubit 1

Qubit 2

Qubit 3

Qubit 4

Qubit 5

Qubit 6

Qubit 7

Qubit 8

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|1i|1i

|1i|1i

|0i|0i

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|1i|1i

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

a. An interceptor gets hold of this mega-qubit and collapses it. Which
of the following states may be logged in the classical registers?

i. 10100010
ii. 01000101
iii. 11100111
iv. 11001111

b. After recording the collapsed state, the interceptor sends the collapsed
mega-qubit—the one you identified in the previous part—to the
intended receiver. The receiver then applies the H gate on qubits 1, 2,
4, and 6. What are the possible states that the receiver can observe?

c. On the classical channel, the sender and receiver each declare that
they applied the H gates on qubits 1, 2, 4, and 6.

i. If qubit 1 is used to establish an enhanced level of trust, what is
the probability that the interceptor is detected?

ii. If qubits 1 and 2 are used to establish an enhanced level of trust,
what is the probability that the interceptor is detected?

iii. If qubits 1, 2, and 4 are used to establish an enhanced level of
trust, what is the probability that the interceptor is detected?
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CHAPTER 10

It’s a funny thing about looking for things. If you hunt for a needle in a
haystack you don’t find it. If you don’t give a darn whether you ever see
the needle or not it runs into you the first time you lean against the stack.

  ➤  P. G. Wodehouse, English comic writer in “Extricating
Young Gussie”

Quantum Search
In Chapter 9, Alice in Quantumland—Quantum Cryptography, on page 279,
you saw how a circuit that essentially duplicates back-to-back quantum gates
collapses qubits to their original states thereby permitting recovery of a secret
message. Quantum effects get even more tantalizing when applied to applica-
tions such as the optimal routing of airliners, detecting the presence of cancer
cells in medical images, or even simply making you rent another movie or
buy another book. In each of these cases, classical computer algorithms churn
through millions of possibilities to come up with a flight schedule, correctly
diagnose diseases, or offer up movie or book choices that nudge you to
another click-to-buy. But quantum computers hold the promise of simultane-
ously evaluating all these millions of combinations and identifing the correct
one in just a handful of steps. The techniques you’ll see here are impossible
to conduct with classical computers.

Harnessing these quantum effects, however, gets more intricate than the
applications you worked with earlier. In Design a Teleporting Circuit, on page
256, although you could potentially teleport hundreds of qubits, the quantum
entanglement effects are localized in groups of a few qubits. As with teleport-
ing, in Chapter 9, Alice in Quantumland—Quantum Cryptography, on page
279, the mechanism to share cryptographic keys that can’t be meddled with,
again, relies on quantum effects restricted to groups of a couple of qubits. In
searching for solutions across a large number of possibilities, the quantum
effects are intertwined across the entire gamut of all possible quantum
states—you can’t break up the problem and apply quantum effects in smaller
chunks.

To design quantum-based search algorithms, you need to shed the “classical”
ways of thinking and develop a new mindset. In this chapter, you’ll begin that
transformation.
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Working with Simple Applications

To better illustrate the quantum effects in search problems, we’ll
work with simple applications. This will help build your intuition
instead of getting caught in mathematical minutiae. But you
should bear in mind that the concepts you’ll learn can be extended
to larger problems.

Also, although the quantum technology and hardware is evolving
rapidly, we’re limited, when compared to classical machines, by
the number of qubits we can program with. Working with smaller
problems for which you can develop quantum circuits will let you
see how quantum effects are introduced for yourself—a far more
satisfying approach than just a theoretical exposition.

So rather than just showing you how to hook up S gates and T†

gates that demonstrate arbitrary quantum behavior and leaving
this chapter out of the book entirely, I wanted to at least give you
a taste for how quantum computing can be brought to bear on
applications that search through a vast number of permutations.
This way, you’ll ready to solve industrial scale problems when
larger quantum computers become available.

Grover’s Algorithm
Giving developers a way to simultaneously hold all solutions to a problem is
like taking kids to a candy store but then having them first figure out the
combination of the lock to the store before they can eat all the sweets they
want. Likewise, quantum computers exploit the natural ability of subatomic
particles to remain suspended so that each can collapse to one of two states
—a collection of n quantum particles effectively holds all 2n states. But the
challenge is to figure out how to collapse the qubits so that they land on the
correct solution of the problem.

When the constraints of the problem are well defined, we can use Grover’s
algorithm,1 2 a technique that identifies the optimal solution from the mega-
qubit by eliminating the non-optimal ones. (Also see Quantum Computer Science
[Mer07].) To use this algorithm, your application’s constraints must be set up
with Boolean logic expressions, using the quantum logic gates as shown in
Logic Expressions to Quantum Circuit, on page 62. Think of these gates as a
referee: given a potential solution of | 0⟩ and | 1⟩ qubits, they’ll say whether the

1. https://arxiv.org/abs/quant-ph/9605043
2. https://arxiv.org/abs/quant-ph/0109116

Chapter 10. Quantum Search • 296

report erratum  •  discuss

https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/0109116
http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


qubits satisfy the Boolean logic expressions. For those qubit values that meet
the constraints, their qubelets are rotated, or tagged, to distinguish them from
those that aren’t feasible. The quantum logic gates don’t actually produce a
valid set of qubit values that satisfy the Boolean logic expressions.

The quantum logic gates model the Boolean logic expressions we set up when
we defined the problem. The solution we’re looking for is one that satisfies those
expressions. A classical computer would test each solution in turn. The quantum
circuit considers all the possible solutions in the mega-qubit at the same time,
and the logic gates are used to eliminate all the solutions except for the correct
ones. These steps are shown schematically in the following figure:

|q0i

All Combinations Tag the Best
|q1i

...
...

...

|qni

The high-level steps in Grover’s algorithm are shown by the following figure:

|q0i

All Combinations Tag the Best Cancel the Rest Measure
|q1i

...
...

...
...

|qni

Tagging and Canceling Are Referenced Differently in the Literature

In the literature, the tagging phase is called the oracle—a function
that decrees whether a given state of 0s and 1s qualifies as a
solution for the Boolean logic expressions.

The canceling phase is called reflection and amplification. The
mathematics of the Canceling Circuit can also be interpreted as
reflecting the amplitudes along a suitable axis, which has the effect
of reducing the non-optimal amplitudes and simultaneously
magnifying those that satisfy the constraints.

Before showing you how Grover’s algorithm can be used for larger problems,
you’ll first get a close-up view of the basic building blocks on a two-qubit
circuit3 so that you can better see the quantum effects working. In Fundamen-
tal Circuit Pattern for Searching, on page 314, we’ll describe a pattern to apply
these quantum effects to larger applications with more qubits.

3. https://quantum-computing.ibm.com/support/guides/user-guide?page=5ddb0f995d640300671cc61b
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Quantum Effects in Grover’s Algorithm
Grover’s algorithm is a sequence of the following quantum effects:

• Superposition to generate all 2n combinations of n qubits.
• Rotate qubelets to achieve the following:

– Tag optimal qubelet combinations in the mega-qubit.
– Cancel, or eliminate, non-optimal qubelet combinations from the

mega-qubit.

Because of the nature of quantum mechanics, the qubelet combinations
within the mega-qubit are acted on simultaneously by the quantum gates.
Thus, you can think of Grover’s algorithm as a massively parallel computation.

Qubelets Versus Bloch Sphere

So far, for the most part, you’ve worked with circuits that illustrate
how quantum gates work, but other than in a few cases, such as
the Design a Teleporting Circuit, on page 256, you’ve not had to
chain gates in tandem to achieve a specific goal.

The material in this section reaffirms the validity of analyzing
quantum programs with mega-qubits—pentagon | 0⟩ and triangle
| 1⟩ qubelets and their rotations. This framework gives a way to
work with multiple qubits and correctly models how quantum
gates act on qubits. On the other hand, to get it right by visualizing
simultaneous rotations of multiple qubits using multiple Bloch
spheres in 3D space and figuring out how they interact and remove
non-optimal states is a daunting prospect.

Generating All Combinations

To generate all possible quantum states of n qubits, apply an H gate on each
qubit. For two qubits, the circuit shown in the following figure generated all
four quantum states:

All Combinations

|0i H

|0i H

The top and bottom H gates each split the | 0⟩ qubit as follows:

| 0⟩ ↦ 1

2
( |0⟩ + |1⟩ )
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Thus, the mega-qubit after each qubit is acted on by the respective H gate is:

1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ ) = 1

2
| 00⟩ + 1

2
| 01⟩ + 1

2
| 10⟩ + 1

2
| 11⟩

This mega-qubit has four qubelet combinations, as shown in the following
figure:

Top Qubit

Bottom Qubit

All Combinations

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

Each qubelet combination corresponds to one of the four possible states of
two qubits: | 00⟩, | 01⟩, | 10⟩, or | 11⟩.

Tagging the Best

After applying the H gates to the qubits, the mega-qubit holds all possible
solutions to the application problem, including the optimal qubelet combina-
tion. The challenge in designing a quantum algorithm, then, is to remove the
non-optimal quantum states. Grover’s algorithm is a way to retain a specific
qubelet combination in the mega-qubit while removing the others. To illustrate
how Grover’s algorithm goes about eliminating non-optimal quantum states,
we’ll initially assume that we know which qubelet combination in the mega-
qubit is optimal. Of course, in a real application, you’d like your program to
find the optimal solution. So in Tagging When You Don’t Know the Optimal
Solution, on page 325, you’ll learn to design a quantum circuit that doesn’t
require you to identify up front the optimal quantum state.

For now, though, suppose we want to retain the fourth qubelet combination,
| 11⟩. We can achieve this by applying a Controlled Z (CZ) gate, described in Con-
trolled Z (CZ) Gate, on page 109, as shown in the following circuit:

Tag |11i
|0i H •

|0i H Z
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The CZ gate only affects the | 11⟩ qubelet combination:

| 11⟩ ↦
CZ
− |11⟩

The other states’ qubelet combinations are left alone. The mega-qubit after
applying the CZ gate is as shown in the following figure:

Top Qubit

Bottom Qubit

Tag |11i

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|1i |1i

The inverted qubelet on the fourth qubelet combination, corresponding to
| 11⟩, is, thus, tagged to differentiate it from the others.

Qubelet Inversions Are Tied to the Equation for a Quantum State

Recall from Rotating Qubelets Through Any Angle, on page 150,
the quantum state |ψ⟩ is:

|ψ⟩ = cos θ

2
| 0⟩ + e

iφ
sin θ

2
| 1⟩

The terms cosθ / 2 and sinθ / 2 are the amplitudes for | 0⟩ and | 1⟩,
respectively, and determine the probabilities of the qubit collapsing
to those states. And φ is the relative difference in orientations
between the pentagon | 0⟩ and triangle | 1⟩ qubelets.

So when one of them, say, the pentagon | 0⟩ qubelet, is not inverted
while the other, the triangle | 1⟩, is, the relative difference between
their orientation, φ. is 180° or π radians. Thus,

e
iφ

= eiπ
= cos π + i sin π

Noting that cos π = −1 and sin π = 0, the e
iφ

 term in the quantum
state is −1. Thus, when the relative difference in orientations
between the pentagon | 0⟩ and triangle | 1⟩ qubelets is 180°—one is
inverted while the other isn’t—a negative sign is associated with
that qubelet combination.
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The quantum state, |ψtag ⟩, of this mega-qubit is:

|ψtag ⟩ =
1

2
( |00⟩ + |01⟩ + |10⟩ − |11⟩ )

Or, in vector form:

|ψtag ⟩ =
1

2 ( 1
1
1
−1
)

The amplitude of the | 11⟩ qubelet combination is negative; the others are
positive.

You can also confirm this on the IBM Quantum Computer by looking at the
Statevector—a graphical view of the quantum state vector in which the
amplitudes are shown as bars whose heights are their magnitudes and whose
colors correspond to the complex component (relative orientation between
the qubelets)—as shown in the following figure:

You’ll see a graphical view of the quantum vector, as shown in the following
figure:
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The four idealized states are shown as bars whose heights are the amplitudes.
The color of the bar indicates the sign of the amplitude. The lighter colored
bar on the extreme right, corresponding to | 11⟩, indicates its amplitude is
negative.

You can reason similarly to tag another state, for instance, | 10⟩, where q[0]=1
and q[1]=0. When we tagged | 11⟩, we applied a CZ gate so that the bottom tri-
angle | 1⟩ qubelet could be inverted. Thus, to tag | 10⟩, where the second qubit,
q[1], is | 0⟩, you need to first switch it to | 1⟩. To this end, consider the following
circuit:

Tag |10i

|0i H •

|0i H X Z X

Even though you can analyze this circuit with matrices and confirm that the
amplitude of the | 10⟩ qubelet combination is negative, you should be able to
reason this out in your mind as follows:

• To tag | 10⟩ where the bottom qubit is | 0⟩, the bottom qubit must first be
switched to | 1⟩ before being fed to the target of the CZ gate.

The mega-qubit after the first set of H gates on the left and the first X gate
on the bottom qubit, before the target of the CZ gate, is as shown in the
following figure:

Top Qubit

Bottom Qubit

Before CZ Gate

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|0i|0i

• The CZ gate only affects the | 11⟩ qubelet combination, the third column
in the previous figure, and inverts the bottom triangle | 1⟩ qubelet as shown
in the figure on page 303.
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Top Qubit

Bottom Qubit

After CZ Gate

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|1i |1i

|1i|1i

|0i|0i

Thus, the qubelet combination | 11⟩ will have a negative sign.

• Finally, to switch − |11⟩ to − |10⟩, apply an X gate to the bottom qubit again.
The X gate toggles the bottom qubelets in all qubelet combinations, as
shown in the following figure:

Top Qubit

Bottom Qubit

After Second X Gate

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i|1i
|0i|0i

|1i|1i

|1i|1i

The bottom qubelet in the third column is switched to a pentagon | 0⟩
qubelet and the others are restored to their original qubelet types before
the first X gate was applied to both qubits.

As a result of these operations, the mega-qubit |ψtag ⟩ is:

|ψtag ⟩ =
1

2
( |00⟩ + |01⟩ − |10⟩ + |11⟩ )

Or, in vector form:

|ψtag ⟩ =
1

2 ( 1
1
−1
1
)

The amplitude of the | 10⟩ qubelet combination is negative and the others are
positive. The | 10⟩ qubelet combination is, thus, tagged.
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You can check the Statevector on the IBM Quantum Computer’s console.
This time, it’ll be as shown in the following figure.

The lighter colored bar, indicating a negative amplitude, is associated with
01. But, in the discussion above, we wrote the state as |q0q1⟩, which is the
reverse of the way that the IBM Quantum Computer console writes it. Thus,
01 on the console actually corresponds to the tagged state | 10⟩.

Using Drag-and-Drop to Build the Circuit Gives You Insight

Dragging and dropping gates from the palette while keeping the
Statevector tab active lets you see how the circuit modifies the
quantum states as you add gates. You’ll notice that some gates
barely affect the states, but other placements introduce large scale
changes in the quantum state.

In summary, then, to tag a particular qubelet combination, its amplitude has
a different sign, achieved by inverting one of its qubelets, than the other
combinations or idealized states. If you measured the qubits at this stage,
however, then despite the amplitude of the tagged qubelet combination being
negative, the mega-qubit formed by the two qubits would collapse to all four
quantum states with roughly equal probability. That is, there seems to be no
preference yet to tagging the optimal qubelet combinations. In the next section,
you’ll see how the untagged qubelet combinations are removed from the mega-
qubit.

Canceling Circuit

To identify the tagged qubelet combinations representing the optimal solutions
for your application, you need to remove the others from the mega-qubit.
We’ll call this part of the program that eliminates the non-tagged qubelet
combinations the Canceling Circuit.

The design of the Canceling Circuit illustrates why designing quantum circuits
is vexing and puts a spotlight on a crucial aspect: when analyzing quantum
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Joe asks:

Why the Second X Gate?
The Tagging Circuit for | 10⟩ illustrates a trademark feature of quantum computing:
gates that reverse the action of those applied earlier, such as the X gate after the CZ
gate. In conventional programming, after writing a statement that, for example,
increments a variable, it would be unusual to decrement it later if there was no
computational logic dictating it. Yet this quirky way of programming is a hallmark of
quantum computing.

The reason for this seemingly redundant way of hooking up gates in quantum com-
puters is because you’re working with many states at the same time. When you
applied the first X gate on the bottom qubit, it switched the bottom qubelets for all
the qubelet combinations, not just the one that had to be tagged. So after you’re
done dealing with the tagged qubelet combination by applying the CZ gate, you need
to reverse the action of the first X gate and restore the other qubelet combinations
back to their original states. This way, you can focus the quantum effects on spe-
cific qubelet combinations even though the quantum computer deals with all of
them at the same time.

circuits, even though your attention is on one set of states, always bear in
mind that this set is just one of the many qubelet combinations in the mega-
qubit associated with the circuit. What gates you apply to one state are
simultaneously applied to the other combinations. It’s imperative that you
keep the other states on your radar. Consequently, designing an algorithm
is a combination of pattern extrapolation—a quantum effect for two qubits is
extended to more qubits—applying matrices to portions of a circuit to precisely
work out how gates modify quantum states and a healthy dose of guesswork
or trial-and-error to calibrate the quantum effects. You’ll get lost in minutiae
if you try to be absolutely precise. Rather, you’ll see how by using intuition
and heuristic arguments, you can turn general ideas of quantum effects into
workable code. By the end of this chapter, you’ll have a pattern that you can
use to solve larger applications with more qubits.

In the Canceling Circuit, in particular, you have to eliminate several non-
tagged states. What you do to remove one state impacts the others too. So
you can’t just focus on one non-tagged state at a time. You have to think
broadly first before zeroing in on specific gates.

Begin, then, by identifying at a high level the quantum effects you’ll need to
use, as we’ll describe next.
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Tagging Quantum States

With so many non-tagged and tagged states, it seems reasonable to expect
that some form tagging will be used. Ironically, you’ll be tagging non-tagged
states, as those are the ones that need to be eliminated.

Whatever states you end up deciding to tag, it’ll likely be when certain condi-
tions are met. Thus, you’ll use a Controlled Z or CZ gate here, as shown in the
following figure:

Canceling Circuit

|q0i · · · • · · ·

|q1i · · · Z · · ·

Tagging

For most gates, you want to add a second one to reverse its effects (known
as "backing out"). This time, you won’t do that because you want to retain
the tagged solution—it’s the main purpose of this section of your program.

The matrix A
CZ

 for this CZ gate is:

A
CZ
= [ 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1

]
Splitting Qubits

No amount of rotating the qubelets in the non-tagged qubelet combinations
will get rid of them: operations you apply on one will also be applied to the
others, so there’s no net effect. Thus, paradoxically, to remove the non-tagged
quantum states or qubelet combinations from the mega-qubit, you need to
introduce additional qubelet combinations in the mix to provide opportunities
for qubelet combinations to cancel.

Specifically, begin by applying an H gate to each qubit, as shown in the follow-
ing figure:

Canceling Circuit

|q0i H · · ·

|q1i H · · ·
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The dots indicate that other gates will be added later to this circuit.

Following the procedure in Two-Qubit Gate Matrices, on page 238, the matrix
AH2

 defining these stacked H gates is:

AH2
= 1

2 [ 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

]
Before moving on to the next step in the design, back out these gates as you
saw in Why the Second X Gate?,  on page 305, so that whichever qubelet
combinations you don’t want to affect get restored back to their original states,
as shown in the following figure:

Canceling Circuit

|q0i H · · · H

|q1i H · · · H

The dots indicate that you’ll have other gates before the H gates are backed out.

Finding Asymmetry

Thus far, despite creating more qubelet combinations by splitting qubits, the
overall mega-qubit is still somewhat symmetric in the sense that there are
an equal number of each type of qubelet combination in the mega-qubit. To
tilt the odds toward the optimal solution, you need to introduce asymmetry
to favor some qubelet combinations over others. Moreover, whatever you do
must work regardless of the quantum state that’s tagged. That is, just as we
needed to introduce H gates to add more qubelet combinations to increase
opportunities to cancel, we’ll need to first find symmetries.

Look again at the AH2
 matrix shown previously. Each column spells out how

the gates modify the idealized state corresponding to that column. Specifically,
each element in the column will tell you how the gate affects each of the ide-
alized states when they act on the qubelet combination corresponding to that
column. For example, the third column stipulates that the | 10⟩ qubelet com-
bination in the mega-qubit is modified as follows:
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| 10⟩ ↦ ( 1
1
−1
−1
)

= 1

2
| 00⟩ + 1

2
| 01⟩ − 1

2
| 10⟩ − 1

2
| 11⟩

Likewise, the second column tells you how the | 01⟩ qubelet combination is
affected:

| 01⟩ ↦ ( 1
−1
1
−1
)

= 1

2
| 00⟩ − 1

2
| 01⟩ + 1

2
| 10⟩ − 1

2
| 11⟩

Compare the two quantum states: you’ll see that, for instance, the | 01⟩ qubelet
combination has a positive sign from the gates acting on | 10⟩ and a negative
sign when they act on | 01⟩.

In fact, by evaluating how all other idealized states are modified by the circuit,
you’ll notice that | 00⟩ is the only qubelet combination that always retains the
same sign for any idealized state. (You can also see that the first row of AH2is the only one in which every element has the same sign.)

This, then, is the lever we’re looking for. | 00⟩ is the only qubelet combination
that will consistently appear in the mega-qubit after the H gates, regardless
of which quantum state is tagged by the Tagging Circuit.

Tagging | 00⟩
To tag | 00⟩, using the same logic outlined for tagging | 10⟩ in Tagging the Best,
on page 299, place X gates as shown in the following figure:

Canceling Circuit

|q0i H X • X H

|q1i H X Z X H

These X gates need to be backed out since they’re only used as an intermediate
step so that the non-tagged qubelet combinations are consistently tagged.
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The matrix AX2
 for these stacked X gates is:

AX2
= [ 0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0

]
The CZ gate tags the | 00⟩ qubelet combination so that it’s not restored by the
“backing-out” gates as the other combinations are. But, and this is a very
important point, keeping these combinations in the mega-qubit regardless of
which state is tagged forces some other qubelet combinations to cancel out
so that the overall probability of the mega-qubit collapsing to some state
continues to be 1.

At this point you have a design that breaks the symmetry in the mega-qubit.
So it’s worthwhile now to precisely see how these non-optimal qubelet combi-
nations are canceled out. To this end, break up the circuit into parts, as
shown in the following circuit:

AH2 AX2 ACZ
AX2 AH2

|q0i H X • X H

|q1i X X Z X H

The label above each part is the matrix describing the operation of that part.
For example, AH2

 is the matrix that shows how a two-qubit quantum state is
changed when each qubit is acted on by an H gate.

The matrix A
Canceling

 for the Canceling Circuit is the following product of these
matrices:

A
Canceling

= AH2
× AX2

× A
CZ
× AX2

× AH2

= 1

2 [ 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

] × [ 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

] × [ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

] × [ 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

] × 1

2 [ 1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 −1 −1 1

]
= 1

2 [ 1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

]
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Remember that the order of multiplying matrices is opposite to that in which
the corresponding parts of the circuit they describe appear.

This matrix has both positive and negative terms in each column. In particular,
the positive terms appear on the diagonal of the matrix and the negatives on
the non-diagonal terms. These negative terms will be instrumental in wiping
out the non-optimal states.

To see how the Canceling Circuit removes the non-tagged qubelet combina-
tions, multiply its matrix A

Canceling
 with the vector |ψtag ⟩ for the | 10⟩ tagged

state:

A
Canceling

× |ψtag ⟩ = 1

2 [ 1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

] × 1

2 ( 1
1
−1
1
)

= 1

4 ( 1
−1
−1
−1
) + 1

4 (−11−1
−1
) − 1

4 (−1−11
−1
) + 1

4 (−1−1−1
1
)

= 1

4 ( 1 − 1 + 1 − 1−1 + 1 + 1 − 1
−1−1−1−1
−1−1 + 1 + 1

)
= ( 0

0
−1
0
)

In other words,

A
Canceling

× |ψtag ⟩ = − |10⟩

Even though the last remaining state, | 10⟩, after all the others have been
eliminated, has a negative sign, when it collapses, 10 will still be recorded in
the classical register.

Notice the way the terms in the previous equation cancel out: the negative
terms pair up with the positive terms in each element of the quantum state
vector, except for the element that will remain. That is, the non-tagged qubelet
combinations, | 00⟩, | 01⟩, and | 11⟩, are removed from the mega-qubit.
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Unscrambling Quantum States and Matrices

Multiplying matrices to get the matrix for the Canceling Circuit, A
Canceling

, looks
formidable. But, since AX2

 and AH2
 are their own inverses, the multiplication for

A
Canceling

 can be rewritten as:

A
Canceling

= AH2
AX2

A
CZ
AX2

AH2

= AH2
AX2

A
CZ
AX2

−1AH2

−1

= (AH2
AX2)ACZ (AH2

AX2)
−1

The last equation is obtained by noting that X−1Y−1 = (YX)−1.
In this form, the matrix equation is the conjugate found in group theory:a

ABA−1

Here, A and B are generic matrices, or transformations, that describe how the state
of a system changes by these two transformations, respectively. The conjugate is an
“almost-inverse” in that it restores most of the qubelets back to their original states,
except the ones that have to be retained.

Don’t confuse this conjugate with complex conjugates discussed earlier. The group
theory conjugates have a rich connection with quantum mechanics. (See Group Theory
and its Application to the Quantum Mechanics of Atomic Spectra [WG59] for more
information. The author was awarded the Nobel Prize in Physics in 1963b for intro-
ducing group theory in quantum mechanics. Another classic is The Theory of Groups
and Quantum Mechanics [WR14]. Warning: these books are highly theoretical and not
needed for quantum computing. I’ve mentioned them here to emphasize the deep
connection between the matrix method for analyzing circuits and the group theoretic
formulation of quantum mechanics.)

a. https://en.wikipedia.org/wiki/Conjugacy_class
b. https://www.nobelprize.org/prizes/physics/1963/summary/

We didn’t explicitly work out the Canceling Circuit by analyzing how the
pentagon | 0⟩ and triangle | 1⟩ qubelets form qubelet combinations that are
transformed by the circuit. Doing so would have been painfully tedious and
error-prone—and not particularly enlightening. With the stack of H gates at
the beginning and end of the Canceling Circuit acting on blended states to
begin with, you end up with too many split qubelets to keep organized. Rather,
thinking holistically but still in terms of rotating and toggling qubelets, and
how these operations in turn affect qubelet combinations, will guide you
better as you design your own algorithms.
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It may, though, seem that we somehow got lucky with the way we designed
the Canceling Circuit to get the non-tagged states to cancel out. In fact, when
dealing with larger numbers of qubits, the chances of getting all the non-
tagged to cancel out are unlikely. But, as you’ll see in the next section, you
can apply the concept multiple times to whittle away at the non-tagged states
in each iteration by reducing the probabilities of the qubits collapsing to these
non-tagged qubelet combinations at each iteration.

Canceling by Any Other Name Is ... Amplification

In the literature, the Canceling Circuit is described as reflection
about the “average value of all the amplitudes” followed by
“amplification” of the tagged state. See, for example, Grover himself
explaining it here.4 This characterization makes for some nice
graphics of bars turning upside down and contracting. But I find
this way of thinking hard to connect back to what’s happening in
the quantum machine and, more importantly, extracting design
principles from it to develop algorithms for other types of applica-
tions.

Multiple Iterations

In the case in the previous section, the negative terms in each column of the
matrix neatly lined up so that the non-optimal qubelet combinations got
eliminated. When your application has to deal with many qubits, the math
may not always work out so neatly. In fact, you’ll have to iterate the Tagging
and Canceling circuits a few times to remove the non-optimal qubelet combi-
nations.

In general, the number of iterations depends on the number, n, of qubits in
your circuit:

Number of Iterations = O( n )

The symbol O is the Big-O function that indicates the complexity of the algo-
rithm (loosely speaking, the number of iterations) in terms of the number of
variables. We expect that the number of iterations will increase as your
problem size increases. But you want to strive to design algorithms where
the growth in iterations isn’t exponential, making them impossible to imple-
ment on actual machines.

Thus, the overall structure of Grover’s algorithm is as shown in the figure on
page 313.

4. https://cryptome.org/qc-grover.htm
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Iteration Mirror Iteration

|q0i

All Combinations Tag the Best Cancel the Rest Tag the Best Cancel the Rest
|q1i

... ... ... ... ... ...

|qni

c • • •

Putting the Quantum Effects Together

Going back to the two-qubit circuits that implement the quantum effects,
connect them up in sequence, as shown in the following diagram:

All Tag |10i Canceling Circuit Measure

|q0i H • H X • X H

|q1i H X Z X H X Z X H

c • •

c[0] c[1]

The quantum program describing this circuit is shown below:

Putting_Quantum_Effects_Together_Grovers_Algorithm.qasm
// Initialize Quantum and Classical Registers
qreg q[2];
creg c[2];

// Generate All Combinations
h q[0];
h q[1];

// Tag |10> Quantum State
x q[1];
cz q[0],q[1];
id q[0]; // Dummy gate for visually lining up circuit
x q[1];

// Canceling Circuit
h q[0];
h q[1];
x q[0];
x q[1];
cz q[0],q[1];
x q[0];
x q[1];
h q[0];
h q[1];

// Collapse Qubits
measure q[0] -> c[0];
measure q[1] -> c[1];
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Executing this circuit cancels out all the qubelet combinations except for the
tagged one, | 10⟩. The output of this program is shown in the following figure:

This output was obtained by running on a real quantum computer. The 01
state has highest probability of being observed in the classical register.
Because the IBM Quantum Computer labels the bars opposite of our conven-
tion, the 01 state actually corresponds to 10. This indicates that the two qubits
collapsed to | 10⟩, the tagged state. (The other states are the result of noise
when running on a real quantum computer.)

Optimizing Your Quantum Programs

As you hook up the tagging and canceling blocks, you’ll frequently
see back-to-back H or back-to-back X gates. Since these gates
restore the qubit to the state before these gates were applied, you
can remove them when they occur in your code.

Now that you’ve seen how these quantum effects come together to eliminate
non-tagged quantum states, in the next section, you’ll begin to put these
effects together to hunt for optimal solutions for realistic applications.

Fundamental Circuit Pattern for Searching
Although the circuit in the previous section eliminated non-tagged quantum
states, it can’t directly be used to search for solutions for your applications
for the following reasons:

• The qubits aren’t handled symmetrically: the control qubit of the CNOT
gate is |q0⟩ and its target is |q

1
⟩. So for a problem in which the optimal

solution isn’t known beforehand, it’s tricky knowing how to place gates
so that the optimal solution is properly tagged.

• The circuit to tag a state assumed you knew which state to tag. For example,
the circuit to tag | 11⟩ is different than that to tag | 10⟩. For your applications,
you won’t know the state to tag when you’re designing your program—that’s
the state you actually want the quantum program to find.
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Thus, in this section, you’ll see a circuit that symmetrically handles the qubits
representing your problem’s variables. This pattern, derived from Grover’s
algorithm, which we’ll call the Fundamental Pattern, can then be more read-
ily extended to actual applications.

As in the previous section, we’ll first discuss the Fundamental Tagging Pattern
followed by the Fundamental Canceling Pattern. These two together give the
Fundamental Pattern for Searching for Optimal Solutions.

Fundamental Tagging Pattern
To this end, consider the circuit to tag, for example, | 011⟩, shown within the
dashed box in the following figure:

All Fundamental Tagging Pattern for |011i

|x0i H X • • X

|x1i H • •

|x2i H • •

|p0i • •

|p1i Z

The variables for the application problem are | x0 ⟩, | x1 ⟩, and | x2 ⟩. Hence, the
H gates are only applied to these three qubits, as shown within the dashed
box on the left. Qubits |p0 ⟩ and |p

1
⟩ represent the constraints that bind the

variables, | x0 ⟩, | x1 ⟩, and | x2 ⟩, to specific states.

This circuit has 5 qubits, so it has 25 or 32 idealized states. Thus, its 32 × 32
matrix is quite unmanageable. But you can confirm that | 011⟩ is tagged by
wiring up this circuit and checking out Statevector on the IBM Quantum
Computer’s Console, which is as shown in the figure on page 316.

The labels below the bars may be hard to read. Helpfully, on the Console,
you’ll also find the individual quantum states listed as a row vector. The
important point, though, is that the label 00110, second from right, is lighter
than the others indicating its amplitude is negative.

Bear in mind that the IBM Quantum Computer labels states opposite to the
way we’re writing them, even though it doesn’t matter in this case. So, 00110
corresponds to |p

1
p0q2q1q0 ⟩. Keeping only the qubits corresponding to the

application’s variables, | x0 ⟩, | x1 ⟩, and | x2 ⟩, and ignoring the other two, the
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state for the lighter bar corresponds to | x0 ⟩ = |0⟩, | x
1
⟩ = |1⟩, and | x2 ⟩ = |1⟩,

or − |011⟩.

Since only the first three qubits, | x0 ⟩, | x1 ⟩, and | x2 ⟩, are proxies for the
application’s variables, there will be 23, or 8, primary or independent states.
Thus, the quantum state is:

0.354( |000⟩ + |001⟩ + |010⟩ − |011⟩ + |100⟩ + |101⟩ + |110⟩ + |111⟩ )

Each of the eight idealized states has the same amplitude, 0.354, which is
1 / 8 , indicating that the mega-qubit has a 1 / 8 probability of collapsing to
each of these states even though the amplitude of | 011⟩ is negative.

In this form, the tagged state is − |011⟩.

Although confirming the tagged state by checking the Statevector on the IBM
Quantum Computer is a good idea, it’s useful to know how to work with CCNOT
gates by inspection.

Analyzing the CCNOT Gate

First focus on just the two CCNOT gates within the dashed box, as shown in
the following figure:

CCNOT Gates

|x0i X •

|x1i •

|x2i •

|p0i •

|p1i Z
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Consider first the CCNOT gate on the left. Only when both its control qubits,
| x0 ⟩ and | x

1
⟩, are | 1⟩ will its target qubit, |p0 ⟩, be | 1⟩. For any other combina-

tion of its control qubits, the target, |p0 ⟩, is | 0⟩.

For the second CCNOT gate, its control qubits are | x2 ⟩, the third application
variable, and |p0 ⟩, the qubit representing the constraint that both | x0 ⟩ and
| x
1
⟩ are | 1⟩. Thus, if | x2 ⟩ and |p0 ⟩ are each | 1⟩, then the target |p

1
⟩ switches

to | 1⟩.

To put it another way, all three variable qubits, | x0 ⟩, | x1 ⟩, and | x2 ⟩, have to
be | 1⟩ for |p

1
⟩, the qubit fed to the Z gate, to be | 1⟩. In this case, the Z gate

inverts the triangle | 1⟩ qubelet by a half turn. That is, the state | 111⟩ is tagged.

Thus, by placing an X gate on | x0 ⟩, one of the controls of the first CCNOT gate,
a | 0⟩ state on | x0 ⟩ will get switched to | 1⟩ so that both CCNOT gates’ control
qubits are | 1⟩. As a result, the Z gate will still invert |p

1
⟩’s triangle | 1⟩ qubelet.

In other words, the original state | 011⟩ is tagged.

By changing the placement of the X gates, you can tag other states. For
example, to tag | 010⟩, use the following circuit:

Tag |010i

|x0i X •

|x1i •

|x2i X •

|p0i •

|p1i Z

In this case, X gates are placed on | x0 ⟩ and | x2 ⟩. Thus, when these qubits are
set to | 0⟩, the respective controls associated with these qubits are | 1⟩. Conse-
quently, a state of | 010⟩ puts |p

1
⟩ to | 1⟩. And the Z gate, in turn, rotates its

triangle | 1⟩ qubelet by a half turn. That is, the state | 010⟩ is tagged.

Finally, as part of Grover’s algorithm, the Tagging Circuit is actually fed a
mega-qubit containing all possible combinations of the application’s indepen-
dent or primary variables. So, these X and CCNOT gates act on all states and
not just on the state to be tagged. Thus, as described in Why the Second X
Gate?,  on page 305, you need to add the gates to back out the changes to the
other other states that aren’t to be tagged. In this way, the desired state is
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tagged while the rest return to their original non-inverted states. The complete
circuit to tag | 010⟩ is shown in the following figure:

All Fundamental Tagging Pattern for |010i

|x0i H X • • X

|x1i H • •

|x2i H X • • X

|p0i • •

|p1i Z

The gates within the dashed box to the right of the Z gate back out the changes
made by the X and CCNOT gates to the left of the Z gate.

Next, we’ll design a generic Fundamental Canceling Circuit that can be applied
to practical applications.

Fundamental Canceling Pattern
To derive the Fundamental Canceling Pattern, redraw the Canceling Circuit,
on page 304, in terms of its functional components as shown in the following
figure:

Splitter Asymmetry Restore

|x0i H X

Tag Qubelet Combinations to Retain

X H

|x1i H X X H

|x2i H X X H

|p0i

|p1i
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Replace the Tagging Qubelet Combinations to Retain block with CCNOT gates
so that the Z gate on the bottom qubit, |p

1
⟩ is fired, as shown in the following

figure:

Splitter Asymmetry Tagging Qubelet Combinations to Retain Restore

|x0i H X • • X H

|x1i H X • • X H

|x2i H X • • X H

|p0i • •

|p1i Z

Hook up theses circuits together to get the Fundamental Pattern for Search,
as shown in the following figure:

All Tagging Circuit Canceling Circuit Measure

|x0i H X • • X H X • • X H

|x1i H • • H X • • X H

|x2i H • • H X • • X H

|p0i • • • •

|p1i Z Z

c • • •

The quantum program associated with the above circuit is written as follows:

Grover_Fundamental_Pattern_for_Search.qasm
// Initialize Quantum and Classical Registers
qreg xvar[3]; // Qubits for the variables
qreg p[2]; // Qubits for the constraints
creg c[3]; // Classical Register

// Generate All Combinations
h xvar[0];
h xvar[1];
h xvar[2];

// Tag |011> Quantum State
x xvar[0];
ccx xvar[0],xvar[1],p[0];
ccx xvar[2],p[0],p[1];
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z p[1];
ccx xvar[2],p[0],p[1];
ccx xvar[0],xvar[1],p[0];
x xvar[0];

// Fundamental Canceling Circuit
id xvar[1]; // Dummy gate to visually line up other gates
id xvar[2]; // Dummy gate to visually line up other gates
h xvar[0];
h xvar[1];
h xvar[2];
x xvar[0];
x xvar[1];
x xvar[2];
ccx xvar[0],xvar[1],p[0];
ccx xvar[2],p[0],p[1];
z p[1];
ccx xvar[2],p[0],p[1];
ccx xvar[0],xvar[1],p[0];
x xvar[0];
x xvar[1];
x xvar[2];
h xvar[0];
h xvar[1];
h xvar[2];

// Collapse Qubits
measure xvar[0] -> c[0];
measure xvar[1] -> c[1];
measure xvar[2] -> c[2];

In this code, instead of using a single array, q, for the qubits, we’ve declared
two arrays: xvar for the application’s variables qubits and p for the qubits
representing the application’s constraints. (To prevent any confusion with
the X gate, in the code, we’ve used xvar to represent the variable qubits.)

The output of running this code on a simulator is shown in the following figure:

The highest bar is the one labeled 110. Bearing in mind that the IBM Quantum
Computer reports the quantum states in the reverse order of how we’ve written
them, the 110 bar corresponds to the | x0x1x2 ⟩ = |011⟩ quantum state. This,
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of course, is the tagged quantum state, while the likelihood of finding other
non-tagged states is substantially lower.

Running on an Actual Quantum Computer

If you try and execute programs with more than a few qubits on
an actual quantum program, your results may not match those
of the simulator. The reason is that the current state-of-the-art
quantum computers are still highly susceptible to noise. As a
result, qubits don’t behave as expected and frequently get into
incorrect states.

Quantum computing is still in its infancy, so our goal is to cover
the principles so that we’re ready when the engineering of these
machines improves.

Can We Do Better?
Although the Fundamental Circuit for Search does a pretty cool job of
retaining the tagged quantum state, | 110⟩, while at the same time severely
suppressing non-tagged quantum states from surviving, it’s possible to boost
the odds for observing the tagged quantum state. In this section, you’ll see
how to improve the chances of collapsing the qubits to | 110⟩ increase from
around to 78% to over 90%.

According to Grover’s algorithm, the number of iterations is O( n ), where n
is the number of independent qubits. In the circuit in the previous section,
there are 3 qubits. So the theoretical number of iterations is 3 = 1.732, which
is rounded off to 2 cycles. So, let’s add another round of the Tagging and
Canceling circuits. The code for this revised program is listed below:

Grover_Fundamental_Pattern_for_Search_2_Iterations.qasm
// Initialize Quantum and Classical Registers
qreg xvar[3]; // Qubits for the variables
qreg p[2]; // Qubits for the constraints

creg c[3]; // Classical Register

// Generate All Combinations
h xvar[0];
h xvar[1];
h xvar[2];

//// ITERATION 1 ////
// Iteration 1: Tagging Circuit
x xvar[0];
ccx xvar[0],xvar[1],p[0];
ccx xvar[2],p[0],p[1];
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z p[1];
ccx xvar[2],p[0],p[1];
ccx xvar[0],xvar[1],p[0];
x xvar[0];

// Iteration 1: Canceling Circuit
id xvar[1];
id xvar[2];
h xvar[0];
h xvar[1];
h xvar[2];
x xvar[0];
x xvar[1];
x xvar[2];
ccx xvar[0],xvar[1],p[0];
ccx xvar[2],p[0],p[1];
z p[1];
ccx xvar[2],p[0],p[1];
ccx xvar[0],xvar[1],p[0];
x xvar[0];
x xvar[1];
x xvar[2];
h xvar[0];
h xvar[1];
h xvar[2];

//// END OF ITERATION 1 /////

//// ITERATION 2 ////
// Iteration 2: Tagging Circuit
x xvar[0];
ccx xvar[0],xvar[1],p[0];
ccx xvar[2],p[0],p[1];
z p[1];
ccx xvar[2],p[0],p[1];
ccx xvar[0],xvar[1],p[0];
x xvar[0];

// Iteration 2: Canceling Circuit
id xvar[1];
id xvar[2];
h xvar[0];
h xvar[1];
h xvar[2];
x xvar[0];
x xvar[1];
x xvar[2];
ccx xvar[0],xvar[1],p[0];
ccx xvar[2],p[0],p[1];
z p[1];
ccx xvar[2],p[0],p[1];
ccx xvar[0],xvar[1],p[0];
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x xvar[0];
x xvar[1];
x xvar[2];
h xvar[0];
h xvar[1];
h xvar[2];

//// END OF ITERATION 2 ////

// Collapse Qubits
measure xvar[0] -> c[0];
measure xvar[1] -> c[1];
measure xvar[2] -> c[2];

I simply copied and pasted the Tagging and Canceling circuits’ code blocks
before the statements for the Measure gates for the second iteration. The
resulting circuit on the IBM Quantum Computer is shown in the following
figure:

This time when you run this program, you’ll get an output that’s similar to
the following figure:

The probability of recording 110 in the classical register, corresponding to the
tagged quantum state | 110⟩, has shot up to around 94% using two iterations
from around 78% with one iteration.

Thus, by using asymmetry and rotating the qubelets of the quantum state
we want to retain, we’re forcing the non-tagged states to cancel out when the
“restoring” gates are applied.

In the next section, we’ll use this generic pattern to find an assignment of
performers at the Bellagio, introduced in A Scheduling Problem, on page 6.
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Searching for an Optimal Schedule
In all the circuits you’ve seen so far in this chapter, the tagged quantum state
was specified up front. In this section, you’ll learn to design circuits that tag
the optimal solutions for actual application problems even though you don’t
know about them when you’re setting up your code.

To illustrate this way of designing circuits, we’ll develop a quantum algorithm
to find a valid schedule for Kimmel and Maher performing at the Bellagio.
The constraints governing when these stand-up hosts do their acts are listed
in A Scheduling Problem, on page 6, and stated here:

• Bellagio on Day 1: | k‾⟩ ∨ |m‾⟩
• Bellagio on Day 2: |k⟩ ∨ |m⟩

The qubits |k⟩ and |m⟩ stand for the comedians Kimmel and Maher, respectively.

The quantum circuit that models these constraints is explained in Logic
Expressions to Quantum Circuit, on page 62, and shown in the following
figure:
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You’ll use this set of gates in several places in your program. So we’ll refer to
it as Bellagio-Constraint-Gates.

Tagging When You Don’t Know the Optimal Solution
Among the many ways that classical computers differ from quantum comput-
ers, one of the most fundamental is the ability of quantum computers to
simultaneously hold all possible solutions for the application problem.
Whereas in classical computing, the algorithms start with an initial guess
and then work up to an optimal solution, Grover’s algorithm takes the reverse
tack—starting from all solutions, it whittles away at the mega-qubit to remove
non-optimal solutions.

So that the algorithm removes qubelet combinations from the mega-qubit
that are non-optimal, you need to differentiate between optimal qubelet
combinations—those that satisfy the system of Boolean logic expressions—from
non-optimal, those that don’t.

Before the quantum program can get rid of the non-optimal qubelet combina-
tions, you need to first generate all possible qubelet combinations by placing
H gates on the variable qubits, as described in Tagging the Optimal Solution,
on page 107, as shown in the following circuit:

All |ki _ |mi |ki _ |mi

|ki : q[0] = |0i H • X • X |ki

|ki : q[1] = |0i H X X • X |ki

|mi : q[2] = |0i H • X • X |mi

|mi : q[3] = |0i H X X • X |mi

q[4] = |0i X •
|ki _ |mi

q[5] = |0i X •
|ki _ |mi

q[6] = |0i

(|ki _ |mi) ^ (|ki _ |mi)
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The first four qubits, q[0]–q[3], are the variables |k⟩, | k‾⟩, |m⟩, and |m‾⟩, respec-
tively. The H gates are, thus, applied to these four, as shown in the dashed
box on the left in the previous circuit.

Since the H gate splits each of these four qubits into a pentagon | 0⟩ and a
triangle | 1⟩ qubelet, the mega-qubit now contains all 24, or 16, qubelet com-
binations, each representing a possible set of | 0⟩ and | 1⟩ states that satisfies
the Boolean logic expressions.

Qubits q[4] and q[5] represent the contraints for the assignments at the Bellagio
on Days 1 and 2, respectively. These form the control qubits for the CCNOT
gate at the bottom right in the previous circuit. When a qubelet combination
satisfies these constraints, these controls are | 1⟩, which, in turn, makes its
target, qubit q[6], switch from | 0⟩ to | 1⟩.

These qubelet combinations—those that make q[6] | 1⟩—are the ones that
should be tagged. For the others, at least one of the constraints will not be
met. That is, one of q[4] or q[5] is | 0⟩. For these non-optimal qubelet combina-
tions, the target qubit, q[6], will remain | 0⟩. Thus, by applying a Z gate to q[6],
as shown in the following figure, only those qubelet combinations correspond-
ing to states that satisfy the Boolean logic expressions will have an inverted
triangle | 1⟩ qubelet in q[6]:

All |ki _ |mi |ki _ |mi

|ki : q[0] = |0i H • X • X |ki

|ki : q[1] = |0i H X X • X |ki

|mi : q[2] = |0i H • X • X |mi

|mi : q[3] = |0i H X X • X |mi

q[4] = |0i X •
|ki _ |mi

q[5] = |0i X •
|ki _ |mi

q[6] = |0i Z

(|ki _ |mi) ^ (|ki _ |mi)
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To complete the Tagging Circuit, following the explanation in Why the Second
X Gate?,  on page 305, and Disentangling the Bellagio Constraints, on page
133, you need to hook up quantum gates that mirror the Bellagio Constraints,
as shown in the following circuit:

Bellagio Constraints Bellagio Mirror

|ki : q[0] = |0i H • X • X X • X •

|ki : q[1] = |0i H X X • X X • X X

|mi : q[2] = |0i H • X • X X • X •

|mi : q[3] = |0i H X X • X X • X X

q[4] = |0i X • • X

q[5] = |0i X • • X

q[6] = |0i Z

The group of gates in the large dashed box on the left model the Bellagio
Constraints. The gates in the large dashed box on the right mirror those in
the left and are labeled Bellagio Mirror.

So that the circuit diagrams illustrate the essential structure of Grover’s
algorithm, from now on we’ll replace these two groups by blocks, as shown
in the following circuit:

|ki : q[0] = |0i H

Bellagio Constraints Bellagio Mirror

|ki : q[1] = |0i H

|mi : q[2] = |0i H

|mi : q[3] = |0i H

q[4] = |0i

q[5] = |0i

q[6] = |0i Z

Thus, without knowing what states or qubelet combinations satisfy the
Boolean logic expressions, the circuit shown in the previous figure will tag
the correct qubelet combinations in the mega-qubit. Next, you’ll design the
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circuit that removes the non-tagged qubelet combinations—the ones that
don’t lead to a valid schedule—from the mega-qubit.

Gates Are Easy to Misplace

In quantum computing you have to be extra careful when placing
gates in your circuit. Unlike classical programs, quantum programs
have several blocks of code that are similar, making it easy to
overlook or misplace a gate. Moreover, since the quantum program
deals with multiple qubelet combinations, inserting Measure gates
as watch points isn’t helpful. Incorrectly placed gates won’t result
in compile-time errors, so debugging gets unnecessarily tedious.

One way to mitigate the issue with multiple qubelet combinations
in the mega-qubit is to not generate all combinations with the H
gate at the beginning. This lets you start with a single state, letting
you more easily trace how it changes as it passes through the
circuit.

Completing the Program with the Canceling Circuit
To complete the quantum program, you need to add the Canceling Circuit to
the circuit we designed in the previous section. According to the Fundamental
Canceling Pattern, on page 318, the Canceling Circuit is just the Tagging Circuit
surrounded by H and X gates, as shown in the following figure:

Canceling Circuit

All Tagging Circuit Tagging Circuit

|ki : q[0] = |0i H

Bellagio Constraints Bellagio Mirror

H X

Bellagio Constraints Bellagio Mirror

X H

|ki : q[1] = |0i H H X X H

|mi : q[2] = |0i H H X X H

|mi : q[3] = |0i H H X X H

q[4] = |0i

q[5] = |0i

q[6] = |0i Z Z

Before writing a program for this circuit to obtain the assignment of the talk
show hosts, Kimmel and Maher, to the days they perform at the Bellagio, first
determine the number of iterations of the Tagging and Canceling circuits
needed. Since there are four primary application variables in q[0]–q[3], then
as stated in Multiple Iterations, on page 312, the number of iterations, n, is
given by:

Chapter 10. Quantum Search • 328

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


Number of Iterations ≈ O( n )
= O( 4 )
= 2

Thus, your final circuit will require another set of the Tagging Circuit followed
by the Canceling Circuit. That is, the quantum program will have the following
structure:

• H gates on the independent variables to generate all combinations.
• Tagging Circuit for Iteration 1.
• Canceling Circuit for Iteration 1.
• Tagging Circuit for Iteration 2.
• Canceling Circuit for Iteration 2.

The first few lines of the code with two such iterations is listed as follows:

Bellagio_Hotel_Scheduling_Problem_Final.qasm
// Initialize Quantum and Classical Registers
qreg q[7];
creg c[2];

// Generate All Combinations
h q[0];
h q[1];
h q[2];
h q[3];

//// ITERATION 1
// Constraints (to tag optimal solution)
x q[4];
x q[5];
cx q[0],q[1];
cx q[2],q[3];
x q[0];
x q[1];
x q[3];
x q[1];
x q[3];
ccx q[1],q[3],q[4];
x q[1];
x q[2];
x q[3];
ccx q[0],q[2],q[5];
x q[0];
x q[2];
ccx q[4],q[5],q[6];
x q[0];
x q[2];
z q[6];
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(You can get the complete code listing from the book’s page on the Pragmatic
Bookshelf’s website at https://pragprog.com/book/nmquantum/quantum-computing.)

The code includes the Measure gates for q[0] and q[2] only, the variables for
Kimmel and Maher, respectively. Measure gates aren’t needed for q[1] and q[3],
as these are the complements of the ones being measured.

The complete circuit for this code on the IBM Quantum Computer console is
shown in the following figure:

The solid vertical line roughly in the center of the figure demarks the two
iterations. Each iteration contains the Tagging and Canceling circuits.

When you run this program on the IBM Quantum Computer simulator, you’ll
get an output that’s similar to the following chart:

This program collapses to the quantum states associated with the two taller
middle bars most frequently—around 75%, or roughly three out of four shots.
The labels at the bottom of these bars are 01 on the left bar and 10 on the
right bar.

As the states reported by the IBM Quantum Computer are in the reverse order
of the way we denote them, the left bit on each state represents the collapse
of the |k⟩ qubit, and the right bit logs that of the |m⟩ qubit.

Thus, the taller left bar labeled 01 corresponds to the following solution:

k = 0 ↦ Jimmy Kimmel performs at Alladin on Day 1 and at Bellagio on Day 2
m = 1 ↦ Bill Maher performs at Bellagio on Day 1 and at Caesars on Day 2

(See Writing a System of Boolean Logic Expressions, on page 8, where these
variables have been defined.)

Likewise, the taller right bar labeled 10 correponds to the following solution:
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k = 1 ↦ Jimmy Kimmel performs at Bellagio on Day 1 and at Aladdin on Day 2
m = 0 ↦ Bill Maher performs at Caesars on Day 1 and at Bellagio on Day 2

Limiting our attention to just the Bellagio, these states translate to the follow-
ing assignments, respectively:

10 Solution01 Solution

KimmelMaherDay 1

MaherKimmelDay 2

Preparing Your Program for Running on a Real Quantum Computer

Before running your program on a real quantum computer, you can do a few
things to reduce the effect of noise when computing with real qubits. Specifi-
cally, consider the following ways to improve performance:

Remove Back-to-Back Gates
Back-to-back gates leave the state of a qubit unchanged. So removing
them has no effect on the final result.

Use Large Rotations of Qubelets
Where possible, rotate qubelets by half turns instead of quarter turns
when introducing quantum effects in your code. Larger rotations are less
susceptible to noise than rotating qubelets through smaller angles.

Test for Optimality
Despite all your efforts, when you run your quantum program on a real
computer, it’s quite likely that the qubits will collapse to incorrect states.
Thus, to make it easier to identify which states correspond to optimal
solutions and those that don’t, run your states through the quantum
gates that model the application’s constraints. That is, before the Measure
gates that collapse the qubits, insert the block of gates representing the
constraints. Finally, put a Measure gate on the qubit that indicates whether
all constraints are met. (For the Bellagio problem, this would be the q[6]
qubit.)

Then, on the output, consider as candidates for optimality only the states
that have logged a 1 in the corresponding bit. Confirm that they are indeed
optimal by plugging their states into constraints set up on a classical
computer.

Bottom Line
Generating all possible quantum states or rotating qubelets is well and good,
but eliminating qubelet combinations from the mega-qubit ups the ante on
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figuring the correct quantum effects to apply. Even though applications in
quantum cryptography deal with several qubits, the BB84 protocol is designed
around quantum effects applied to single qubits. The quantum effects in
search applications, though, are necessarily intertwined across multiple qubits
simultaneously. You need to tease out symmetries with combinations of gates
that may appear overly complicated but will become clear when you look at
gate matrices.

Our analysis of Grover’s algorithm continues a theme you saw in Design a
Teleporting Circuit, on page 256, where we used circuits of fewer qubits as
building blocks for larger circuits. Here, by studying quantum effects in
smaller circuits, we then generalized them for circuits with many more qubits.
Specifically, the Fundamental Circuit Pattern for Searching, on page 314, forms
a template that can be extended to search applications modeled as Boolean
logic expressions. As explained in Searching for an Optimal Schedule, on
page 324, by integrating the gates that model the logical constraints of the
application, you end up with a design that triggers quantum effects to get an
optimal solution.

A not-as-much-touted perk, but one that heightens the appeal of Grover’s
algorithm, is that you can use generic quantum principles—no customized
techniques specifically tuned for a particular application—to get optimal
solutions. For the Hotel Scheduling Problem, The Art of Computer Programming
[Knu11] describes a specialized technique. This technique, though, may not
work as well in other kinds of applications modeled as Boolean logic expres-
sions. Grover’s algorithm, on the other hand, is general purpose and can be
applied in the same way on many other types of applications modeled as
Boolean logic expressions.

In the next chapter, we’ll talk about how you can continue to expand your
learning of quantum computing.

Try Your Hand
Solutions to these exercises are given in Quantum Search Solutions, on
page 510.

For any code listing in the exercises, assume the following header lines:

OPENQASM 2.0;
include "qelib1.inc";

If you want to run any exercise, you must include them in the code you’d like
to execute.
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1. As you start designing your own quantum algorithms, you’ll need to figure
out what gates to use and where to place them in your circuit. To this
end, understanding how gates manipulate quantum states is crucial. To
strengthen your intuition when handling quantum gates, fluently rotating
the pentagon | 0⟩ and triangle | 1⟩ qubelets is helpful. The following exercises
relate mega-qubits with rotated qubelets and their corresponding quantum
states.

Write each of the following mega-qubits in terms of the idealized states.
In each case, identify the tagged qubelet combination, if any, and its cor-
responding quantum state:

a.

| 0i

| 1i

| 2i

|0i|0i

|0i|0i

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|0i |0i

|1i|1i

|1i|1i

|1i|1i

b.

| 0i

| 1i

|0i|0i

|0i|0i

|0i|0i

|1i |1i

|1i |1i

|0i |0i

|1i |1i

|1i |1i

c.

| 0i

| 1i

|0i |0i

|0i |0i

|0i |0i

|1i |1i

|1i|1i

|0i|0i

|1i |1i

|1i |1i

report erratum  •  discuss

Try Your Hand • 333

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


d.

| 0i

| 1i

|0i |0i

|0i |0i

|0i|0i

|1i |1i

|1i|1i

|0i |0i

|1i |1i

|1i|1i

2. In this problem, you’ll see the perils of rushing to conclusions. Rotating
and toggling qubelets do matter. A gate that rotates the triangle | 1⟩
qubelets by a quarter turn instead of switching it with the other type can
affect the behavior of a circuit even if the other gates in the circuit are
unchanged.

To illustrate the importance of carefully working out the precise quantum
effects you need to incorporate in your quantum program, you’ll analyze
a circuit to identify the missing quantum gate to tag the | 01⟩ quantum
state.

To this end, look at the following circuit:

All Combos. Tag |01i

|0i H •

|0i H S
† Z

Incomplete

The mega-qubit after each qubit is acted on by the H gate is shown in the
following figure:

Top Qubit

Bottom Qubit

All Combinations

|0i|0i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

a. What’s the difference between the X, S, and S† gates?
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b. Draw the mega-qubit after the S† gate acts on the bottom qubit. Write
the mega-qubit’s quantum state in terms of the idealized states.

c. Draw the mega-qubit after the CZ gate acts on the qubits. Write the
mega-qubit’s quantum state in terms of the idealized states.

d. What operations must be applied to the qubelets so that the | 01⟩
quantum state is tagged?

e. Using the Canceling Circuit, on page 304, write a quantum program
using your design in the previous part to eliminate the non-tagged
quantum states. Examine the output to confirm that your program
works correctly.

f. Alluding back to the introduction to this exercise, what are two morals
you can draw?

3. As you saw in Finding Asymmetry, on page 307, finding a column in the
AH2

 matrix for two stacked gates was crucial to building the Canceling
Circuit when working with two qubits. With three qubits and three stacked
H gates, as shown in the following circuit, what column in this circuit’s
matrix, AH3

, is symmetric?

|q0i H

|q1i H

|q2i H

4. In this exercise, you’ll start with the following Tagging Circuit:

Tagging Circuit

|0i H X • X

|0i H Z

a. Which quantum state is tagged? Confirm your answer by looking at
the Statevector on the IBM Quantum Computer.

b. Write the tagged state as a vector.

c. Feed your quantum state obtained in the previous part to the Cancel-
ing Circuit, on page 304. Using its matrix A

Canceling
, show that the non-

tagged states are eliminated. For your reference, A
Canceling

 is:
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A
Canceling

= 1

2 [ 1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

]
d. Append the Canceling Circuit, on page 304, to this Tagging Circuit and

write a program for the whole circuit. Remember to include Measure
gates to collapse the qubits and record their states in the classical
register.

e. Run your program and confirm that only the tagged state is recorded
in the classical registers.

5. Explain what’s wrong with each of the following circuit block’s depiction
of Grover’s algorithm:

a. Iteration 1 Iterations 2 to n

|q0i

All Combinations Tag the Best Cancel the Rest

• • •

Cancel the Rest

• • •

Cancel the Rest
|q1i • • • • • •

... ... ... ... ... ...

|qni • • • • • •

c • • • • • •

b. Iteration Mirror Iteration

|q0i

All Combinations Tag the Best Cancel the Rest Cancel the Rest Tag the Best
|q1i

... ... ... ... ... ...

|qni

c • • •

c. Iteration 1 Iteration 2

|q0i

All Combinations Tag the Best Cancel the Rest All Combinations Tag the Best Cancel the Rest
|q1i

... ... ... ... ... ... ...

|qni

c • • •

6. Following the Fundamental Circuit Pattern for Searching, on page 314, the
circuit shown in the following figure tags two qubits:

|x0i H X • • X H X • • X H

|x1i H • • H X • • X H

|p0i Z Z

c • •

c[0] c[1]
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a. Identify the All Combinations, Tagging Circuit, and Canceling Circuit
sections of the circuit.

b. Which state is tagged?

c. Write a program for this circuit.

d. Run your program and confirm that the state recorded in the final
register matches the one you identified as being tagged. (Since this
program has several qubits and gates, run your code on a simulator,
as you may find that running on today’s real quantum computers
leads to incorrect results.)

7. Consider the following circuit that’s modeled after the Fundamental Circuit
Pattern for Searching, on page 314:

All Tagging Circuit Canceling Circuit Measure

|x0i H • • H X • • X H

|x1i H • • H X • • X H

|x2i H • • H X • • X H

|x3i H • • H X • • X H

|p0i • • • •

|p1i • • • •

|p2i Z Z

c • • • •

c[0] c[1] c[2] c[3]

a. Identify where you need to insert X gates so that this circuit tags | 1011⟩
and eliminates the other states.

b. Write a program for your modified circuit.

c. Run your program on the IBM Quantum Computer simulator and
confirm that only the tagged state | 1011⟩ survives and the others are
eliminated.

d. What can you do to improve the odds of getting the qubits to collapse
to the tagged state?

e. Revise your program accordingly.

f. Run your revised program on the IBM Quantum Computer simulator
and see whether your suggestion does indeed improve the odds of
retaining the | 1011⟩ tagged state.
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CHAPTER 11

Now this is not the end. It is not even the beginning of the end. But
it is, perhaps, the end of the beginning.

  ➤  Sir Winston Churchill, at a 1942 speech at London’s
Mansion House

Where to Go from Here
We’ve obsessively focused on building your intuition for applying quantum
effects in code and designing practical quantum programs for your applica-
tions. Moreover, every time you were introduced to a new quantum effect, I
wanted to get you to see how it works in a quantum program—getting dazzled
by the strange ways that qubits behave takes a back seat to actually learning
how to capitalize on these phenomena. Quantum mechanics forces a wholly
different way of approaching problems than those of classical programming.
Topping your toolbox with the latest gizmo isn’t useful if you don’t know how
to use it. Thus, a major thrust of this book was to show you how to think
“quantum” so that you can develop your own algorithms.

In the rest of this chapter, we touch upon topics to continue your learning of
quantum computing. Think of this chapter as opening doors just enough to
glimpse what’s inside and whet your appetite.

Well-Known Algorithms
Although we have focused on ways that let you use quantum algorithms in
practical applications, you may find some other quantum algorithms inter-
esting:

• Deutsch-Jozsa algorithm
• Bernstein-Vazirani algorithm
• Simon’s algorithm
• Quantum Fourier transforms

The first three demonstrate that for a specialized class of problems, quantum
computing does indeed offer computational advantages over that of classical
computing. These are primarily of historical and theoretical interest. The
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fourth one, Quantum Fourier transforms, is the basis for Shor’s algorithm to
factor large numbers, thereby threatening modern-day cryptography.

We’ll only go through the fundamentals of the Deutsch-Jozsa algorithm, as
it gives another opportunity to see how to jump start an analysis of a quantum
circuit using qubelets. You can find more information on the others in many
textbooks on quantum computing.

Deutsch-Jozsa Algorithm
The Deutsch-Jozsa algorithm1 2 illustrates that for a special class of functions,
quantum computing identifies the function’s nature from a single measure-
ment rather than sampling it multiple times, as you’d have to do with a
classical approach. To demonstrate this feat, Deutsch-Jozsa restricted this
function F  to be one of the following two types:

Constant:  A constant function, F
C
, is one in which the output will always

be the same no matter what the input is. For two qubits, a constant
function could be, for example:

F
C( |q0 ⟩ , |q1 ⟩ ) = |0⟩

It always returns a | 0⟩ no matter what the states of the input qubits are.
In other words, the function F

C
 is:

F
C( |q0 ⟩ , |q1 ⟩ )|q

1
⟩|q0 ⟩

|0⟩|0⟩|0⟩
|0⟩|1⟩|0⟩
|0⟩|0⟩|1⟩
|0⟩|1⟩|1⟩

Alternatively, F
C
 could also be defined as:

F
C( |q0 ⟩ , |q1 ⟩ ) = |1⟩

In this case, the function F
C
 returns | 1⟩ for any combination of the input

qubits |q0 ⟩ and |q
1
⟩.

Balanced:  A balanced function, FB, is one where half the input combinations
return a | 0⟩ and the other half return a | 1⟩. For example, one such function
FB is shown in the table on page 341.

1. https://www.jstor.org/stable/52182?seq=1
2. https://en.wikipedia.org/wiki/Deutsch%E2%80%93Jozsa_algorithm
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FB( |q0 ⟩ , |q1 ⟩ )|q
1
⟩|q0 ⟩

|0⟩|0⟩|0⟩
|1⟩|1⟩|0⟩
|1⟩|0⟩|1⟩
|0⟩|1⟩|1⟩

The first and last input combinations return a | 0⟩ while the second and
third return a | 1⟩.

The Deustsch-Jozsa algorithm is merely concerned with figuring out whether
the function F  is constant or balanced—not the precise form of the function.
That is, it’s not concerned if the function F  returns, say, a | 0⟩ or | 1⟩ for a
particular set of inputs, but only whether it’s a constant or a balanced
function.

The problem, then, is:

Given:  For any combination of inputs, you’re told what the function returns
(but not the function F  itself).

Determine:  Whether the function F  is constant or balanced.

Solving on a Classical Computer

If you use a classical computer to establish the type of function, you’d need
to sample a significant number of input combinations.

Consider, again, the two-qubit example stated previously. Suppose you start
with |q0 ⟩ = |0⟩ and |q

1
⟩ = |0⟩; you’ll observe | 0⟩. Since both the constant

and balanced functions defined earlier return | 0⟩ for this set of inputs, you
need to check another set. Say you pick |q0 ⟩ = |1⟩ and |q

1
⟩ = |1⟩. This time,

again, you’ll observe | 0⟩ and won’t be able to say which type of function is
producing these values. Next, you pick |q0 ⟩ = |0⟩ and |q

1
⟩ = |1⟩. Again, the

output is | 1⟩. If the function was constant, you’d have seen | 0⟩ matching the
earlier outputs. Now you can conclude that the function is balanced.

Of course, you could get lucky by choosing |q0 ⟩ = |0⟩ and |q
1
⟩ = |0⟩ as your

first choice and |q0 ⟩ = |0⟩ and |q
1
⟩ = |1⟩ as your second choice. In this case,

since the outputs of each set are different, you’d conclude that the function
is not constant and, therefore, must be balanced. In the worst case, though,
you’ll need half the number of total combinations plus one more to establish
the nature of the function.
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A quantum computer, on the other hand, can tell you the type of function,
constant or balanced, from just one measurement. In the next section, you’ll
see how quantum computers can pull this off.

Solving on a Quantum Computer

The Deutsch-Jozsa algorithm prescribes how to get the type of function from
just one sample. This algorithm has two things going for it that gives it an
edge over classical computers:

• By putting qubits in superposition, quantum computers can implicitly go
through all cases simultaneously.

• Back-to-back H gates restore the mega-qubit to its original state.

To see how these two quantum effects are put to use, we’ll work with a simpler
case put forth by Deutsch.3

Deutsch’s Algorithm

In this simpler version, the function F  works on only a single qubit:

Function F  is Constant:
A constant function returns the same value for both states of the qubit.
For example, the following is a function F( |x⟩ ) that always returns a | 0⟩:

F ( |0⟩ ) = |0⟩
F ( |1⟩ ) = |0⟩

Function F  is Balanced:
A balanced function F( |x⟩ ) will return | 0⟩ for one state and | 1⟩ for the
other. For example,

F ( |0⟩ ) = |0⟩
F ( |1⟩ ) = |1⟩

Deutsch’s algorithm has three parts:

• Incorporate the function F .
• Embed the function F  in a quantum circuit.
• Collapse and measure the top qubit only. A 0 indicates a constant function

and a 1 points to a balanced function.

We’ll see how these parts work to identify whether the function is constant
or balanced.

3. https://arxiv.org/abs/quant-ph/9708016
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First, Deutsch assumed that the function F  could be incorporated in a
quantum circuit as follows:

|xi
UF

|xi

|yi |yi � F ( |xi)

The | x⟩ and |y⟩ qubits on the left are the inputs to the block UF . The top qubit
on the right of the block UF  is unchanged by the block. The bottom qubit, on
the other hand, has its state changed to |y⟩ ⊕ F ( |x⟩ ), as depicted. (The symbol
⊕ is the Exclusive-OR operator.)

So, if F  is the constant function, F ( |x⟩ ) = |0⟩, defined earlier, then the truth
table—which relates inputs and outputs—for the UF  block works out as follows
for the following set of inputs for | x⟩ and |y⟩:

|y⟩ ⊕ F ( |x⟩ )F ( |x⟩ )|y⟩|x⟩
|0⟩|0⟩|0⟩|0⟩
|1⟩|0⟩|1⟩|0⟩
|0⟩|0⟩|0⟩|1⟩
|1⟩|0⟩|1⟩|1⟩

To figure out the gates for UF  corresponding to this truth table, first work out
its matrix for these inputs:

Input: | x⟩ = |0⟩ |y⟩ = |0⟩
For this input combination, the outputs | x⟩ and |y⟩ ⊕ F ( |x⟩ ) written as a
two-qubit quantum state is:

| 00⟩ ↦ |00⟩

Writing this state as a vector:

( 100
0
)

This vector becomes the first column of the matrix for UF .

Input: | x⟩ = |0⟩ |y⟩ = |1⟩
For this input combination, the outputs | x⟩ and |y⟩ ⊕ F ( |x⟩ ) written as a
two-qubit quantum state is:

| 01⟩ ↦ |01⟩
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Writing this state as a vector:

( 010
0
)

This vector becomes the second column of the matrix for UF .

Input: | x⟩ = |1⟩ |y⟩ = |0⟩
For this input combination, the outputs | x⟩ and |y⟩ ⊕ F ( |x⟩ ), written as
a two-qubit quantum state, is:

| 10⟩ ↦ |10⟩

Writing this state as a vector:

( 001
0
)

This vector becomes the third column of the matrix for UF .

Input: | x⟩ = |1⟩ |y⟩ = |1⟩
For this input combination, the outputs | x⟩ and |y⟩ ⊕ F ( |x⟩ ) written as a
two-qubit quantum state is:

| 11⟩ ↦ |11⟩

Writing this state as a vector:

( 000
1
)

This vector becomes the fourth and last column of the matrix for UF .

Thus, the matrix AUF
 for the UF  block is:

AUF
= [ 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

]
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This matrix is just the identity matrix. In other words, the block UF  doesn’t
affect the states passed to it, as shown in the following circuit:

UF

|xi |xi

|yi |yi � F ( |xi)

If the function F  is a balanced function as defined previously, F ( |0⟩ ) = |0⟩
and F ( |1⟩ ) = |1⟩, the truth table for UF  is:

|y⟩ ⊕ F ( |x⟩ )F ( |x⟩ )|y⟩|x⟩
|0⟩|0⟩|0⟩|0⟩
|1⟩|0⟩|1⟩|0⟩
|1⟩|1⟩|0⟩|1⟩
|0⟩|1⟩|1⟩|1⟩

Following the steps to calculate the matrix for the constant function, you’ll
get the matrix corresponding to the preceding truth table for the balanced
function:

AUF
= [ 1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

]
The first two columns are the identity columns. That is, when the top qubit,
| x⟩, is | 0⟩, the output qubits, | x⟩ and |y⟩ ⊕ F ( |x⟩ ), are unchanged. On the
other hand, from the third and fourth columns, when the top qubit is | 1⟩, the
bottom qubit’s state is switched from what it was passed. In other words, this
matrix is that of the Controlled NOT (CNOT) Gate, on page 47, as shown in
the following circuit:

UF

|xi • |xi

|yi |yi � F ( |xi)
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Having worked out the circuit block UF  for different types of constant and
balanced functions, Deutsch then embedded it, as shown in the following
circuit:

|0i H

UF

H

|1i H

c •

Only the top qubit is measured. As you’ll see shortly, you only need to measure
it to determine the nature of the function.

Now although we won’t know what the function F  is, what we want to study
here is the response of this circuit—that is, what would the outputs look like
if the function F  is constant versus balanced.

The two H gates on the left put the qubits in superposition by splitting the
qubits and creating a mega-qubit with all possible states:

H |0⟩ ⊗ H |1⟩ = 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2
| 0⟩ ( |0⟩ − |1⟩ ) + |1⟩ ( |0⟩ − |1⟩ )

= 1

2
( |00⟩ − |01⟩ + |10⟩ − |11⟩ )

The corresponding mega-qubit that is then fed to the CNOT gate is shown in
the following figure:

|0i Split by Top H Gate

|0i|0i |1i|1i

|1i Split by Bottom H Gate

|0i|0i

|1i |1i

Mega-Qubit

|0i|0i

|0i|0i

|0i|0i

|1i |1i

|1i|1i

|0i|0i

|1i|1i

|1i |1i

The top H gate splits the | 0⟩ qubit into a pentagon | 0⟩ qubelet and a triangle
| 1⟩ qubelet. The bottom H gate splits the | 1⟩ qubit into a pentagon | 0⟩ qubelet
and an inverted triangle | 1⟩ qubelet. These qubelets then form the mega-qubit
shown on the right, where the bottom triangle | 1⟩ qubelets in the second and
fourth columns are inverted, or rotated by half a turn.
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If the F  is the constant function defined previously, F( |x⟩ ) = |0⟩, then as
explained earlier, Deutsch’s circuit boils down to the following figure:

UF is Constant

|0i H H

|1i H

c •

The UF  block is essentially a pass-through—it doesn’t affect the states of the
qubits. Thus, the back-to-back H gates operating on the top qubit restore it
back to its original state | 0⟩.

If the F  is the balanced function defined previously, then Deutsch’s circuit
for this function is shown in the following figure:

UF is Balanced

|0i H • H

|1i H

c •

In this case, as you saw earlier, the UF  block works out to a CNOT gate.

The mega-qubit formed by the H gate splitting the | 0⟩ and | 1⟩ qubits shown
earlier is fed to the CNOT gate, as shown in the following figure:

Mega-Qubit formed by splitting top and bottom qubits

|0i|0i

|0i|0i

|0i|0i

|1i |1i

|1i|1i

|0i|0i

|1i|1i

|1i |1i

H

+

The top qubelets are fed to the control qubit of the CNOT gate and the bottom
qubelets to its target qubit. The CNOT gate toggles its target qubit only when
its control is a triangle | 1⟩ qubelet for that combination. Thus, the mega-qubit
after the CNOT gate acts on it is shown in the figure on page 348.
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Mega-Qubit Before CNOT Gate

|0i|0i

|0i|0i

|0i|0i

|1i |1i

|1i|1i

|0i|0i

|1i|1i

|1i |1i

Mega-Qubit After CNOT Gate

|0i|0i

|0i|0i

|0i|0i

|1i |1i

|1i|1i

|1i|1i

|1i|1i

|0i |0i

The bottom qubelets in the third and the fourth qubelet combinations have
switched to a triangle | 1⟩ qubelet and an inverted pentagon | 0⟩ qubelet,
respectively. The corresponding quantum state is:

1

2
( |00⟩ − |01⟩ − |10⟩ + |11⟩ )

The H gate on the right of the CNOT gate splits the top qubelets in each combi-
nation stated previously. The bottom qubelets aren’t affected.

You can continue the analysis by splitting the top qubelets and working out
the new mega-qubit. Alternatively, you can also write the matrix for the section
of the circuit after the CNOT gate and then apply this quantum state to it. But
before going down any of these paths, see if you can rewrite the quantum
state in a way that suggests how the H gate modifies this state. Since the
second qubit is unaffected, write the quantum state by grouping the combi-
nations based on the second qubit. That is, the first and third terms are
grouped together, and the second and fourth, as shown here:

1

2
( |00⟩ − |01⟩ − |10⟩ + |11⟩ ) = 1

2
( |0⟩ − |1⟩ ) |0⟩ − 1

2
( |0⟩ − |1⟩ ) |1⟩

= 1

2

|0⟩ − |1⟩

2
| 0⟩ − 1

2

|0⟩ − |1⟩

2
| 1⟩

The first, or the top, qubit in both terms is:

| 0⟩ − |1⟩

2

This quantum state is what you would have got by splitting a | 1⟩ qubit with
an H gate. Thus, if this top qubit is split again by the H gate, then it’s as if
back-to-back H gates are applied to a | 1⟩ qubit. To put it another way, if the
quantum state after the CNOT gate has its top qubit split by an H gate, then
the algebra will work out to:

1

2
| 1⟩ |0⟩ − 1

2
| 1⟩ |1⟩
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So if you now measure the top qubit, you’ll find that it always collapses to | 1⟩
and records 1 in the classical register.

In other words, measuring the top qubit in Deutsch’s circuit gives a different
result for a constant versus a balanced function. In particular, when the top
qubit is measured:

• A | 0⟩ indicates the function F  is constant.
• A | 1⟩ indicates the function F  is balanced.

So regardless of what the function |F⟩ is, a single measurement of the top
qubit will tell you its type.

Know How the H Gate Splits | 0⟩ and | 1⟩ Qubits

In quantum computing, it’s a good idea to keep in mind the
asymmetric way the H splits | 0⟩ and | 1⟩ qubits:

H |0⟩ = 1

2
| 0⟩ + 1

2
| 1⟩

H |1⟩ = 1

2
| 0⟩ − 1

2
| 1⟩

The triangle | 1⟩ qubelet when the H gates splits a | 1⟩ qubit is
inverted, or rotated by a half turn.

You’ll find many occasions where knowing how the H gate works
algebraically greatly simplifies your analysis. And with a little
practice, you’ll find that you’ll be able to do the analysis shown
here in your head.

For a single qubit function, Deutsch’s algorithm shows how to embed the
function within a circuit that lets you determine the type of function from
just one measurement. The Deutsch-Jozsa algorithm extends this idea to
functions of many qubits.

For example, for a five-qubit function F( |q0 ⟩ , |q1 ⟩ , |q2 ⟩ , |q3 ⟩ , |q4 ⟩ ), the
possibilities are:

• The function is constant and returns a | 0⟩ for all 25, or 32, states.
• The function is constant and returns a | 1⟩ for all 25, or 32, states.
• The function is balanced and returns a | 0⟩ for half the states and | 1⟩ for

the other half.

For this function, using a classical computer, in the worst case, you would
need 16 + 1 = 17 samples to establish its type—constant or balanced. But,
with the Deutsch-Jozsa circuit, you’ll just need one measurement.
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In general, for an n-qubit function F , the Deutsch-Jozsa circuit is shown in
the following figure:

|x0i = |0i H

UF

H

|x1i = |0i H H

...
...

...

|xn�1i = |0i H H

|1i H

c • • •

As in the Deutsch circuit, the n qubits are initialized to | 0⟩ and split by an H
gate. The bottom qubit is initialized to | 1⟩. These (n + 1) qubits are then passed
to the UF  block. Finally, the top n qubits are split again by H gates and then
measured.

In this case, if the top n collapsed qubits each record a 0 in the classical reg-
ister, then the function F  is constant, otherwise it’s balanced. So, here again,
a single measurement, albeit of n qubits, is all that’s needed to establish the
type of function.

Repeating the Same Assignment of Gates

You’ll frequently find that the splitting of the top n qubits by the
stacked H gates is written as:

H |0⟩ ⊗ H |0⟩ ⊗ ··· ⊗ H |0⟩ = H⊗n | 0⟩

This shortcut carries over to drawing quantum circuits too. For
example, the Deutsch-Jozsa circuit with (n + 1) qubits can be
redrawn as follows:

|0i⌦n /
n

H
⌦n

UF

H
⌦n

|1i H

c •
c[0]� c[n]

The slash-n on the top line indicates that it actually represents n
qubits, all getting split by the H gate.
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Even though you only needed one measurement for both Deutsch’s circuit
for a single-qubit function and the Deutsch-Jozsa circuit for a multi-qubit
function, you didn’t just sample the function directly. The circuits were made
up of several gates. But the number of gates increases in linear proportion
to the number of qubits, while the number of cases to sample in a classical
algorithm increases exponentially. So the computational complexity of the
Deutsch-Jozsa circuit dramatically improved from that of classical algorithms.

Other Algorithms
We went through the Deutsch algorithm in a fair amount of detail, as I
wanted to give you a taste of the types of analysis that researchers historically
undertook to establish that quantum computing is a high-powered alternative
to classical computing. The problem that Deutsch and Deutsch-Jozsa consid-
ered may not be immediately applicable, but as we’ve seen in this book, the
ideas embodied in these algorithms are used to solve practical applications.

The Bernstein-Vazirani and Simon algorithms are in a similar vein—using
highly specialized functions, they demonstrate that quantum computing offers
faster ways to implement them than classical computing.

Another class of quantum algorithm is the Quantum Fourier transforms.
These are the quantum analogs of the classical Fourier transforms and are
concerned with finding periods, or repetitions, in a function. Shor’s algorithm,
which is based on Quantum Fourier transforms, took on heightened signifi-
cance since it could factor—essentially repetitions—large numbers. And since
the current cryptographic standards rely on the difficulty of factoring large
numbers using classical techniques, quantum computing makes these cryp-
tographic methods breakable. Ironically, though, as important as Shor’s
algorithm is, unless you have a need to factor large numbers, it’s value is
more as a deterrent—the fact that you can factor large numbers and break
current cryptographic methods forces cryptography to be based on different
methods, as described in Chapter 9, Alice in Quantumland—Quantum
Cryptography, on page 279.

If you’re interested to learn more about these algorithms, several descriptions,
which you can find to suit the level of rigor you want, are freely available on
the internet.
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Joe asks:

How Did Google Show Superiority of Quantum
Computers over Classical Computers?

Google demonstrated a computation on a quantum computera b that took three
minutes, twenty seconds, which they estimate would take 10,000 years on a classical
supercomputer.

How did they do it?

Google generated a quantum circuit whose gates, such as Controlled Z, S, and T, are
prescribed according to a randomized algorithm—one that randomly selects the type
of gates. Unlike a well-know algorithm such as the Deutsch-Jozsa circuit that solves
a highly contrived problem, the Google circuit isn’t aimed at any particular problem.
It’s just a pseudo-random quantum circuit. Consequently, the quantum states of the
qubits at the end of the program can be estimated in one of two ways:

1. By a classical computer using the matrix techniques you’ve seen in earlier
chapters.

2. Running the circuit on a quantum computer and measuring the quantum states.

The Google team compared the results from the two computations—classical matrix
calculations versus executing on quantum hardware—and ensured that the quantum
machine was producing the right results. Then the team amped up the circuit beyond
the computational limits of classical computers. Since quantum computers handle
multiple states simultaneously, their circuit ran for less than three and a half minutes.

Because of the way that qubits encode a quantum state, storing them using 64-bit
floating point numbers rapidly jacks up the memory requirements on classical
hardware. To get a sense for how quickly the memory escalates, recall from Rotating
Qubelets Through Any Angle, on page 150, that a quantum |ψ ⟩ is specified as:

|ψ ⟩ = cos θ

2
| 0⟩ + e

iφ
sin θ

2
| 1⟩

Thus, you need two quantities to define a state: the angle θ, which relates to the ratio
of pentagon | 0⟩ and triangle | 1⟩ qubelets in the quantum state; and φ, which is the
difference in rotations between the triangle | 1⟩ qubelet and the pentagon | 0⟩ qubelet.
In terms of the Bloch sphere, these angles are the “longitudes” and “latitudes,”
respectively, of the state on the sphere.

Assuming that each angle is stored as a floating point number of 8 bytes or 64 bits,c

the total number of bytes per quantum state is:

number of bytes = 2 angles per quantum state × 8 bytes per sngle

= 2 angles per quantum state × 23 bytes per angle

= 24 bytes per quantum state

Chapter 11. Where to Go from Here • 352

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


For a quantum circuit of n qubits, there will be 2n quantum states. That is, the vector
to hold the idealized states will have 2n elements. Thus, the number of bytes to hold
these 2n states in memory is:

number of bytes for n-qubit circuit = 2n quantum states × 24 bytes per quantum state

= 2n+4 bytes

Google’s circuit used 53 qubits. Thus, for a classical computer to reproduce the cal-
culations of the quantum circuit, it would require the following amount of memory:

number of bytes on a classical computer = 253+4

≈ 1.44 × 1017 bytes
≈ 144 petabytes

(1 petabyte is 1015 bytes)

This is just the memory to hold the idealized states. The gate matrices will need to
be stored too. And even though these are sparse—few nonzero entries—with such
large dimensions, they add up pretty quickly too.

By comparison, the Summit Supercomputer,d among the world’s fastest, at the U.S.
Department of Energy’s Oak Ridge National Laboratory (ORNL), holds about 250 PB.
To put it another way, a puny 53-qubit quantum computer rivals one of the fastest
supercomputers in operation today. And just a slightly larger quantum circuit, using
less than, say, 100 qubits, will be beyond the reach of any classical computer.

Thus, despite the arbitrariness of Google’s quantum circuit, I believe that their
experiment is encouraging. (And, in fact, there are even some real-life applications
for it.e) Quantum computing is still a relatively young field and this result is akin to
the first powered flight of the airplane by Orville and Wilbur Wright, a distance that
is less than the walk on the jetbridge to board a modern jetliner. It bristles with the
promise of quantum feats still to come.

a. https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
b. https://www.nature.com/articles/s41586-019-1666-5
c. https://en.wikipedia.org/wiki/IEEE_754
d. https://www.olcf.ornl.gov/summit/
e. https://www.nytimes.com/2019/10/30/opinion/google-quantum-computer-sycamore.html

Programming with Qiskit
Although we’ve used the QASM language to program our quantum circuits
on the IBM Quantum Computer, the primary way we coded the circuits was
by dragging and dropping gates from the gates palette onto the Composer.
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This drag-and-drop process results in the circuits being programmed in the
QASM language.

But QASM is a low-level assembly language that we can’t integrate with other
systems, such as a database to pull in data to build circuits. Dragging and
dropping gates lets us learn about quantum concepts without getting distract-
ed by classical language-specific constructs. In practice, though, you’ll want
to invoke quantum phenomena in conventional programming languages. In
this section, you’ll learn to incorporate quantum effects in classical languages.
You’ll still design quantum algorithms using the techniques you’ve learned
in this book, but you’ll use classical languages to program and execute them
on real quantum computers.

Quantum Information Science Kit, or Qiskit (pronounced kiss-kit), is a Python
framework that IBM has contributed to the open source community. Using
Qiskit,4 you can use all the quantum effects you’ve learned in this book but
program them in Python, although the code is executed on the IBM Quantum
Computer or a simulator. While the drag-and-drop way of programming
quantum computers is good when learning about quantum concepts, Qiskit
comes packed with goodies that let you write industrial-grade quantum code.
I’ll first introduce you to the basics of using Qiskit and then show you things
you can do only with it.

Quantum Programming Is Not Python Specific

With Qiskit, you’ll program quantum effects using Python, but
quantum computing isn’t Python specific. Quantum concepts are
independent of any language. You’ll still design quantum algo-
rithms using the techniques you’ve learned in this book—Qiskit
is an alternative way to trigger them on IBM’s quantum hardware,
using Python instead of the QASM assembly language. Later in
this section, you’ll see that these same quantum effects can be
triggered on quantum hardware of other vendors, such as Amazon,
Google, and Microsoft.

To use the programs in this section, you should, nonetheless,
know Python,5 6 including working with arrays and complex
numbers and opening and navigating your way in Jupyter Note-
books7 on your local machine.

4. https://qiskit.org/
5. https://pragprog.com/book/gwpy3/practical-programming-third-edition
6. https://pragprog.com/book/dzpyds/data-science-essentials-in-python
7. https://jupyter.org/try
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You can use Qiskit in one of two ways:

• On the IBM Quantum Experience website, using Jupyter Notebooks.
• Locally on your machine by writing Python programs or coding in Jupyter

Notebooks.

We’ll briefly go over getting started with both ways. Then you can choose
whichever mode you prefer to program with Qiskit.

Using the IBM Quantum Experience
To use Qiskit on the IBM Quantum Experience, you can click the Qiskit
Notebook icon on the left margin, as shown in the following figure:

You’ll be taken to a page where you can create a new Jupyter Notebook or
open one that you created previously.
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On the IBM Quantum Experience, new notebooks have the statements to
import the Qiskit libraries as well as configure the notebook to access the
methods to run on a real quantum computer. For now, you can delete these
lines. I’ll show you what you need to import to run the programs in this section.
(If you choose to leave them in, then make sure you include any specific ones
I highlight in the programs.)

Working Locally
To work in Jupyter Notebooks locally, first install Qiskit on your computer,
from here,8 9 and follow the instructions for your operating system. Note that
to run Qiskit, Python 3 is required.

To make sure you’ve installed Qiskit correctly, you can check its version by
opening a new Python 3 Jupyter Notebook and typing in the following lines
in a code cell. Then hit Shift-Enter  to execute them:

import qiskit
from qiskit import *

qiskit.__qiskit_version__

You’ll see a list of the various components that make up Qiskit and their
respective versions.

Now you’re ready to write your first quantum program with Qiskit.

Jupyter Notebooks

We’ll use Python 3 Jupyter Notebooks in this section so they can
be used interchangeably on both the IBM Quantum Experience
and on your local machine.

Hello Qiskit
To get started with Qiskit, consider the following quantum circuit that has
just a single qubit which is immediately collapsed by the Measure gate shown
in the figure on page 357.

The Python code for this circuit follows the same general structure of the
programs written earlier but also includes the instructions to execute the
circuit on quantum hardware:

8. https://developer.ibm.com/technologies/quantum-computing/videos/programming-on-quantum-computers-pt-2/
9. https://qiskit.org/documentation/install.html
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|q0i = |0i

c •
c[0]

• Declare quantum and classical registers to hold the qubits and their col-
lapsed states, respectively.

• Declare the quantum gates that act on the qubits.

• Collapse the qubits using the Measure gates, and log their states in the
classical register.

• Specify how many shots, or the number of times you want to run the
circuit.

• Run the circuit.

• View the results.

These general steps translate to the following Python code:

import numpy as np❶
import math
from qiskit import(
QuantumCircuit,
QuantumRegister,
ClassicalRegister,
execute,
Aer)
from qiskit.visualization import plot_histogram

circuit = QuantumCircuit()❷

q = QuantumRegister(1,'qreg')❸
circuit.add_register( q )

c = ClassicalRegister(1,'creg')❹
circuit.add_register(c)

circuit.measure(0,0)❺

circuit.draw(output='mpl')❻

backend = Aer.get_backend('qasm_simulator')❼

job = execute( circuit, backend, shots=1024 )❽

hist = job.result().get_counts()❾
plot_histogram( hist )

report erratum  •  discuss

Programming with Qiskit • 357

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


❶ The NumPy library will let you handle arrays of qubits in your applications.
The math library lets you use mathematical functions in your programs.
To use Qiskit, you need to import the Qiskit libraries. The other libraries
are related to the Qiskit objects you’ll use in your programs. As you get
more familiar with Qiskit, you’ll understand which ones you’ll need. For
now, you can just copy and paste these.

❷ Define a circuit object to which gates will be added.

❸ Declare and add the quantum register to hold the qubits in the circuit.

The first argument is the length of the register and the second is its label.
In this case, there’s only a single qubit in the circuit. All qubits are initial-
ized to | 0⟩.

❹ Declare and add the classical register to record the collapsed states of
the qubits in the circuit.

The first argument is the length of the register and the second is its label.
In this case, there’s only a cell to record the solitary qubit in the circuit.

❺ Declare the Measure gate. The first argument is the index of the qubit in
the quantum register you want to collapse; the second is the index in the
classical register where you want to log the state. For this circuit, the
collapsed state of q[0] is recorded in c[0].

❻ This command draws the quantum circuit. When working in Jupyter
Notebooks, you may want to periodically draw the circuit as you’re building
it to make sure it’s correct.

The argument refers to the style of the circuit layout. The mpl option uses
Python’s Matplotlib visualization library to draw the circuit that closely
resembles the circuits on the Composer. Leaving this argument blank
uses the default library on the machine where your notebook is executing.
On the IBM Quantum Experience, the default option is mpl. So you can
invoke the draw method with no arguments.

❼ Identify the quantum machine, or backend you want this code to run on.
In this case, we’re using the qasm_simulator, which isdefined in the Aer object,
to run the circuit.

Aer10 is Qiskit’s simulator framework that lets you simulate the noisy
behavior of real quantum devices. In addition, using the statevector_simulator,

10. https://qiskit.org/aer/
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it calculates the Statevector of the circuit and, with the unitary_backend, the
matrix for the complete circuit.

❽ Run the code on the selected backend or quantum machine. You pass
the quantum circuit in the first argument, specify the backend in the
second, and the number of shots in the third.

❾ Tally up the number of times each quantum state the qubits collapse to
and plot as a histogram.

Pasting Code in Jupyter Notebooks

Before pasting code into Jupyter Notebooks, make sure you’ve
imported the Qiskit and relevant Python libraries, such as NumPy
and math:

from qiskit import(
QuantumCircuit,
QuantumRegister,
ClassicalRegister,
execute,
Aer)
from qiskit.visualization import plot_histogram
You can directly copy and paste the code you’ll see in this chapter
into Python 3 Jupyter Notebooks. You can paste into a single code
cell or split it across as many cells as you’d like. To run the code
in a code cell, click Shift-Enter .

Be aware that the code you enter is cumulative. That is, any new
gates you declare are added to the circuit previously defined. Thus,
you may end up with a circuit that you didn’t intend.

You’ll follow this basic structure to declare and run other quantum circuits
on quantum computers—you’ll just have more gates.

Quantum Gates in Qiskit
In Qiskit, each gate is a method of the circuit object. Thus, to declare a gate,
you’d invoke the appropriate method followed by the qubits it operates on as
arguments for the method. The following is a partial list to show you the
general pattern for declaring gates in your circuit:

H Gate:
To use an H gate acting on the qubit in register q[0], declare it as follows:

circuit.h( q[0] )
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S Gate:
To use an S gate acting on, for example, the qubit in register q[1], declare
it as follows:

circuit.s(q[1])

T† Gate
To use a T† gate acting on, for instance, the qubit in register q[2], declare
it as follows:

circuit.tdg(q[2])

Notice how the “dagger” symbol is abbreviated to “dg” when declaring
these types of gates.

CNOT Gate
To use a CNOT gate whose control bit is, for example, the qubit in register
q[3] and whose target qubit is in register q[4], declare is as follows:

circuit.cnot(q[3],q[4])

U3 Gate
To use a U3 gate that’s defined using three parameters, θ, φ, and λ, which
operates on, say, the qubit in q[3], declare it as follows:

circuit.u3(0,math.pi,0,q[3])

Here, the U3 gate’s parameters are set to θ = 0, φ = π, and λ = 0. (Recall
from U3 Gate, on page 203, that these parameters only affect the triangle
| 1⟩ qubelet by inverting it, or rotating it by half a turn.)

Measure Gate
To measure, for instance, the qubit in register q[0] and record its state in
classical register c[0], declare it as follows:

circuit.measure(q[0],c[0])

The first argument refers to the qubit, and its collapsed state is logged in
the classical register in the second argument.

To use these gates, you should have previously declared the circuit object as,
for example, circuit = QuantumCircuit() and also the qubits as q = QuantumRegis-
ter(5,'qreg'), a quantum register holding five qubits, followed by circuit.add_register(q)
to add the qubits to the circuit.

Consider, again, the Qiskit program for the quantum circuit in Intuition
Behind Entanglement, on page 120, shown in the figure on page 361.
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The Qiskit program is listed here:

# Header lines - import librariesLine 1

import numpy as np-

import math-

from qiskit import(-

QuantumCircuit,5

QuantumRegister,-

ClassicalRegister,-

execute,-

Aer)-

from qiskit.visualization import plot_histogram10

-

# Define circuit-

circuit = QuantumCircuit()-

-

# Declare and add quantum and classical registers15

q = QuantumRegister(2,'qreg') # 2 Qubits Register-

circuit.add_register( q )-

-

c = ClassicalRegister(2,'creg') # 2 Bits Classical Register-

circuit.add_register(c)20

-

# Declare the H Gate-

circuit.h(q[0])-

-

# Declare the CNOT Gate25

circuit.cnot(q[0],q[1])-

-

# Collapse Qubits-

circuit.measure(q[0],c[0])-

circuit.measure(q[1],c[1])30

-

# Draw the circuit-

circuit.draw(output='mpl')-

-

# Use simulator to run the circuit35

backend = Aer.get_backend('qasm_simulator')-

-

# Define the run parameters and execute-

job = execute( circuit, backend, shots=1024 )-

40

# Tally the results-

hist = job.result().get_counts()-

-
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# Plot the histogram of quantum states-

plot_histogram( hist )45

The H, CNOT, and the two Measure gates are declared on lines 23–30. The rest
of the program is similar to that listed previously.

When you run this program, you’ll see the output states, | 00⟩ and | 11⟩, appear
with roughly equal probabilities. (These states are entangled because once you
observe one, the other’s state is known even if the other qubit isn’t measured.)

Qiskit Shortcuts
If you’re not picky about labeling your quantum and classical registers and
can work with a single register of each, you can declare quantum circuits
and the gates as follows:

Declaring Circuit and Quantum Register
You can declare the QuantumCircuit object and the quantum register by
passing in the length of register, or the number of qubits in the circuit,
as an argument to the QuantumCircuit object as follows:

circuit1 = QuantumCircuit(5)

This statement declares a circuit with five qubits.

Declaring Circuit with Both Quantum and Classical Registers
To set up a circuit with both quantum and classical registers, pass the
length of both registers, respectively, as follows:

circuit2 = QuantumCircuit(3,2)

The first argument is the number of qubits in the circuit, and the second
is the number of bits in the classical register. In this case, the circuit has
three qubits and two bits in the classical register.

Declaring Gates
To declare gates and the qubits they act on, you can specify just the index
of the qubit in the quantum register. For example, to declare an H gate
that operates on, say, the qubit in q[2], declare it as follows:

circuit1.h(2)

Arrays as Arguments
Qiskit also lets you pass in arrays as arguments for the gates to create
multiple gates. To create an H gate on all four qubits of circuit2 defined
earlier, pass the array of qubits, using Python’s built-in range function,
for instance, as follows:

Chapter 11. Where to Go from Here • 362

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


circuit2.h(range(3))

You can even pass in arrays as arguments for the Measure gate. For
example, you can declare Measure gates on qubits q[0] and q[2] that log their
states in the classical register cells c[0] and c[1], as follows:

circuit2.measure([0,2],[0,1])

The previous two statements set up the following quantum circuit:

|q0i = |0i H

|q1i = |0i H

|q2i = |0i H

c • •
c[0] c[1]

Running on an Actual Quantum Computer
Running your programs on an actual quantum computer follows the same
basic steps as that of using the simulator, except for a few minor differences,
which I’ll discuss in this section:

API Token:  Include the API token in your code, which lets you execute your
programs on an actual quantum computer.

Backend to Run Code:  Replace the code to run on the simulator with one of
the actual quantum computers.

Viewing the Results:  Because running code on a quantum computer doesn’t
take place immediately, due to other programs ahead of yours, you have
to break up your program into two parts: one to set up the quantum circuit
and invoke the quantum computer and the second to view the results of
your run later.

Saving the API Token for Working Locally

If you’d like to run your Qiskit programs on a real quantum computer but
trigger it locally, you need to first save an API token on your local machine.11

(When running Jupyter Notebooks from your account on the IBM Quantum

11. https://qiskit.org/documentation/install.html#access-ibm-quantum-systems
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Experience, you don’t need to save it. You only need to include it, as shown
in the following description.)

The API token is listed under your account information on the home page of
the IBM Quantum Experience. To get the API token, go to your user profile
by either clicking the See more link or the user icon on the top right, as shown
in the following figure:

Then, click the Copy token link as shown in the figure on page 365.

Next, on your local machine, open a new Jupyter Notebook, type in the follow-
ing lines, and paste the API token as shown:

from qiskit import IBMQ

IBMQ.save_account('«API Token»')
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To save the API token to your machine, execute the cell by pressing Shift-Enter .
You only need to save it once.

If you have an API token from a version of Qiskit older than 0.11, update your
token as follows:

IBMQ.update_account()

Backend to Run Code

To set up your quantum circuit to run on a real quantum computer, you follow
the same steps to define your quantum circuit. But instead of selecting the
simulator, pick one of the real quantum computers, as shown here:

from qiskit import(
QuantumCircuit,
QuantumRegister,
ClassicalRegister,
execute,
Aer,
IBMQ)❶
from qiskit.providers.ibmq import least_busy❷
from qiskit.visualization import plot_histogram

provider = IBMQ.load_account()❸

«Set up Quantum Circuit»
real_devices = provider.backends(simulator=False, operational=True)❹
backend = least_busy(real_devices)

job = execute( circuit, backend, shots=1024 )❺

❶ Import Qiskit, including the IBMQ library, to access the methods to run on
a real quantum computer. Also, import the least_busy library to identify the
real quantum computer with the lightest load.
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❷ To run your code on the quantum computer that has the fewest jobs in
queue, select the least busy backend.

❸ Define a provider object by loading it with the saved API token. You’ll need
this when running Jupyter Notebooks on the IBM Quantum Experience
or locally.

❹ Filter the list of available backends to those that are real quantum com-
puters and currently operational. From this list, select the one that has
the fewest number of jobs.

❺ Just as with the simulator, run your program with the backend selected in
the previous step. Depending on the number of jobs ahead of yours, you
may have to come back later to view the results.

To run your program on a specific quantum computer, get the list of available
backends:

provider.backends()

Then, use the get_backend() method on the provider object and pass in the name
of the quantum computer, as follows:

backend = provider.get_backend('ibmq_16_melbourne')

In this case, we’ve selected the 16-qubit quantum computer in Melbourne.
Execute your circuit on this backend.

To learn about other things you can do with the provider object, go here.12

Viewing the Results

To view the results of running your program on a real quantum computer,
get the Job ID of the execution from the IBM Quantum Experience website,
as shown in the figure on page 367.

Copy the Job ID onto the clipboard.

Unless you’ve left your notebook running, open a new notebook, import the
standard Qiskit libraries, and define a provider object with your API token.
Then, specify the backend on which you ran your code and paste the Job ID,
as shown next:

provider = IBMQ.load_account()
backend = provider.get_backend('«Backend»')
job = backend.retrieve_job('«Job ID»')

12. https://quantum-computing.ibm.com/jupyter/tutorial/fundamentals/3_the_ibmq_account.ipynb (You’ll need
to log in to the IBM Quantum Experience.)
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This gets the job object, just as when you ran a quantum program on the
simulator. Access the results and tally them up by how many times each
state is logged. Finally, plot the counts as a histogram chart, shown as follows:

hist = job.result().get_counts()
plot_histogram( hist )

Now that you’ve seen how to build and run your quantum programs on a
simulator as well as on real quantum hardware—including using shortcuts
to declare mulitple gates in a single statement—in the rest of this section,
you’ll see a few features that you can only use with Qiskit and not in the drag-
and-drop programs created with the IBM Quantum Experience.
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Creating Larger Circuits from Smaller Circuits
As your programs get larger, you’ll find it helpful to write modular code. That
is, you’ll want to define chunks or groups of gates that you can use in many
places in your circuit as a unit without having to individually insert the gates
that make up the block. You can do this two ways:

User-Defined Gates:  Create groups of gates that collectively perform some
operation such as swapping the quantum states of two qubits, or the
Boolean logic operations such as OR.

Partial Circuits:  Create partial circuits that you can then hook up to make
a larger circuit. For example, you make a partial circuit that generates
all combinations of quantum states. You can then plug this circuit into
another one that, say, implements Boolean logic expressions.

User-Defined Gates

Qiskit lets you group gates and then refer to them as a single unit in your
circuit. To specify these user-defined gates,13 follow these steps:

• Define the configuration of gates as a circuit object, as explained earlier.
• Make these gates an instruction.
• To use it in your circuit as a single unit, Append it to the main circuit object.

Consider, for example, an OR gate, defined in OR Gate, on page 59, and shown
in the figure below:

To define this configuration of the CCNOT gate and the associated NOT (X) gates
as an or_gate gate in your Python code, start by setting up these gates as an
or_gate_circuit object:

or_gate_circuit = QuantumCircuit(3, name=' OR ')Line 1

or_gate_circuit.x(range(3))2

or_gate_circuit.ccx(0,1,2)3

or_gate_circuit.x(range(2))4

or_gate = or_gate_circuit.to_instruction()5

13. https://qiskit.org/documentation/tutorials/circuits_advanced/1_advanced_circuits.html#Composite-Gates
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Declare the circuit object for the OR gate with three qubits, as shown on line 1.
The name parameter is the label for this group of gates when the circuit is
displayed. Notice how we’ve padded the label with a space on either side of
the text. This puts some margin on either side of the label in the box for the
gate when it’s shown in the circuit.

If you don’t plan on viewing the circuit, you can leave it blank; the system
will assign a generic label.

Declare the gates that make up the OR gate on lines 2–4. Notice how the X
gates are declared by passing in the appropriate array as the argument. For
example, to create the two NOT (X) gates on the right, the argument for the NOT
(X) gate on line 4 is an array formed by range(2).

The way we’ve set up the OR gate implies that the input qubits are in q[0] and
q[1] and the result of the logical OR operation is reflected in the qubit in q[3].
The order of the qubits—q[0], q[1], and q[2]—define the arguments for this
group of gates.

Finally, on line 5, convert this group of gates to an Instruction so that it can be
inserted in the main circuit as just another gate.

For example, look at a circuit in which the OR gate is hooked up as follows:

|q0i = |0i

OR Gate

|q1i = |0i X

|q2i = |0i

|q3i = |0i

c • • •
c[0] c[1] c[2]

The OR gate operates on the qubits in q[0] and q[1] and puts the results of the
operation in the qubit in q[3]. Since the qubit in q[1] is first acted on by the
NOT (X) gate, its state is changed to | 1⟩.

The Qiskit code for this circuit is as follows:

main_circuit = QuantumCircuit(4,3)Line 1

main_circuit.x(1)2

main_circuit.append(or_gate, [0,1,3])3

main_circuit.measure([0,1,3],[0,1,2])4
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On line 1, declare the main_circuit using four qubits and three classical registers.
On line 2, set the qubit in q[1] to | 1⟩ with an NOT (X) gate. On line 3, add the
OR gate you configured previously to the main_circuit. The first argument is the
circuit object for the group of gates for the OR gate. The qubits in q[0] and q[1]
are the inputs, and the qubit in q[3] holds the result of the logical OR operations.
This set of qubits is passed in as an array as the second argument of the
append() method. Lastly, on line 4 declare the Measure gates. The qubits being
measured, q[0], q[1], and q[3], are passed in as array in the first argument.
And the classical registers that log their collapsed states are also passed in
as an array in the second argument to the Measure gate’s method.

If you’d like to see the OR Gate block replaced with the actual gates that make
it up, use the decompose() method of the circuit object, as follows:

decomposed_circuit = main_circuit.decompose()

You’ll see the following circuit:

OR Gate

|q0i = |0i X • X

|q1i = |0i X X • X

|q2i = |0i

|q3i = |0i X

c • • •
c[0] c[1] c[2]

The dashed box is only to illustrate to you the new gates shown. It’s not drawn
by Qiskit. Notice that even though the target qubit of the CNOT gate was
specified right below its second control qubit, in the actual circuit it’s two
qubits below, as was defined in the second argument of the append().

Partial Circuits

Qiskit lets you break up your circuits into functional units and build each
separately. Then, you can simply hook them up one after another by “adding”
them. The circuits should have the same number of qubits.
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For example, consider the following circuit that generates all combinations
of three qubit states:

|q0i H

|q1i H

|q2i H

You can set these gates in an all_combinations_circuit as follows:

all_combinations_circuit = QuantumCircuit(3)
all_combinations_circuit.h(range(3))

Likewise, you can set up a measure_circuit that has the same number of qubits
but only two classical registers:

measure_circuit = QuantumCircuit(3,2)

And you can define the Measure gates to record the states of qubits in q[0] and
q[2] as follows:

measure_circuit.measure([0,2],[0,1])

The quantum state of the qubit in q[0] is logged to c[0] and that of the qubit
in q[2] to c[1].

Now, “add” the two circuits, stated as follows:

new_circuit = all_combinations_circuit + measure_circuit

This creates the following circuit:

All Measure

|q0i H

|q1i H

|q2i H

c • •

c[0] c[1]
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Output States as an Array
In all the quantum programs you’ve seen in this book, the output is reported
as a histogram of quantum states. When writing applications for real world
problems, though, you may want the results in a form that you can do some
further processing on.

After executing the circuit, the metrics for that run are held in the Result object.
Use the get_counts() to pull out the tallies of each of the idealized states as an
array, shown as follows:

«Import Qiskt, other libraries»
«Set up Quantum Circuit»
# Use simulator to run the circuit
backend = Aer.get_backend('qasm_simulator')

# Define the run parameters and execute
job = execute( circuit, backend, shots=1024 )

# Tally the results
collapsed_states_array = job.result().get_counts()➤

print(collapsed_states_array)

The system will return a dictionary of name-value pairs, as shown here:

{'01': 520, '10': 504}

Each name-value entry corresponds to an idealized state. The name is the
state and the value is the number of times that state was seen in the execu-
tion. In this example, the 01 state appeared 520 times out of 1,024 shots.

You can now extract these states and their counts from the array and use
them in your application.

Displaying the Statevector
To display the Statevector, the quantum state vector, you have to use the
statevector_simulator backend, shown as follows:

«Import Qiskt, other libraries»
«Set up Quantum Circuit»
backend = Aer.get_backend('statevector_simulator')➤

job = execute(circuit, backend)
result = job.result()
statevector = result.get_statevector(decimals=3)➤

print(statevector)

Then, as highlighted in the code, use the get_statevector() method on the result
object to get the quantum state as a Python array.
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For example, consider the quantum state |φ0 ⟩:

|φ0 ⟩ =
1

2
| 01⟩ + 1

2
| 10⟩

The corresponding vector is:

|φ0 ⟩ = ( 0121
2
0

)
Qiskit would return this vector as the following Python array where each entry
is written up to three decimal places:

[0. +0.j 0.707+0.j 0.707+0.j 0. +0.j]

Each element is stated as a complex number using j instead of i (both are
mathematically equivalent).

Circuit Matrices
Qiskit also gives you the matrix for your quantum circuit. To get this matrix,
you have to run your circuit on the unitary_simulator backend, as the following
shows:

«Import Qiskt, other libraries»
«Set up Quantum Circuit»
# Run the quantum circuit on a unitary simulator backend
backend = Aer.get_backend('unitary_simulator')➤

job = execute(circuit, backend)
result = job.result()

# Show the results
print(result.get_unitary(circuit, decimals=3))➤

Then, as highlighted in the code, use the get_unitary() method on the result object
to get the matrix of the circuit as an “array of arrays.”

Setting Up Arbitrary Quantum States
In all the circuits you’ve seen so far, the qubits are initialized to | 0⟩. Qiskit
gives you a mechanism to initialize the amplitudes14 of the idealized states
to any value provided the respective probabilites—square of the ampli-
tudes—add up to 1.

14. https://qiskit.org/documentation/tutorials/circuits/3_summary_of_quantum_operations.html#Arbitrary-initialization
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For example, suppose you want to set the initial quantum state |φ0 ⟩ of a two-
qubit system to:

|φ0 ⟩ =
3

2
| 10⟩ + + 1

2
| 11⟩

Writing |φ0 ⟩ as a vector:

|φ0 ⟩ = ( 03201
2

)
Remember that when programming the IBM Quantum Computer, the right-
most bit refers to |q0⟩. Thus, the | 10⟩ quantum state is actually the | 01⟩ state
for the IBM Quantum Computer. Hence, the second element is 3 / 2 in the
quantum state vector stated above. The first and third elements are 0 as they
correspond to states that are not present in the initial quantum state.

Set up this vector in Python as an array labeled input_quantum_state:

«Import Qiskt, math, NumPy libraries»
# Define the input quantum state
input_quantum_state = [0,

math.sqrt(3)/2*complex(1,0),
0,
1/2 * complex(1,0)]

The array has the four elements corresponding to the vector |φ0 ⟩.

Next, initialize the quantum circuit with this quantum state, as follows:

# Initialize circuitLine 1

q = QuantumRegister(2)2

c = ClassicalRegister(2)3

circuit = QuantumCircuit(q,c)4

circuit.initialize(input_quantum_state, q)5

Set up a two-qubit quantum circuit with two classical registers on lines 2–4. Ini-
tialize the circuit on line 5 with the initialize() method that takes in two arguments:
the initial quantum state vector and the quantum register array q.
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You can check that the circuit is indeed initialized with this quantum state
by looking at its Statevector:

backend = Aer.get_backend('statevector_simulator')
job = execute(circuit, backend)
result = job.result()
statevector = result.get_statevector(decimals=3)
print(statevector)

Running these lines returns the following array:

[0. +0.j 0.866+0.j 0. +0.j 0.5 +0.j]

This array corresponds to the quantum state vector |φ0 ⟩.

Gates from Matrices
In Chapter 7, Small Step for Man—Single Qubit Programs, on page 173, you
learned that when quantum states are represented by vectors, the operation
of a gate can be modeled by matrices. Using Qiskit you can go the other way.
When designing quantum algorithms, you know the way you want to manip-
ulate quantum states. With Qiskit, you can define the corresponding matrix,
and the system generates the implied circuit internally. Think of this feature
as a many-qubits Universal gate.

The matrix you define must be unitary, as explained in Can the Quantum
Gate Matrix Be Anything?, on page 187.

To use these user-defined matrices in your code, do the following:

Import the Operator Library:  To use your matrix as a gate in your code, import
the library shown in the highlighted line in the following:

import numpy as np
import math
from qiskit import(
QuantumCircuit,
QuantumRegister,
ClassicalRegister,
execute,
Aer)
from qiskit.visualization import plot_histogram
from qiskit.quantum_info.operators import Operator➤

Define the Gate Matrix:  The matrix is defined as a standard Python list of
lists: each row of the matrix is a list. For example, consider the 4 × 4
matrix for a two-qubit gate defined as follows:
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[ 3

2
0 1

2
0

0
3

2
0 1

2
1

2
i 0 −

3

2
i 0

0 1

2
i 0 −

3

2
i
]

This matrix is represented as a list of lists and passed in as the argument
to the Operator() method, shown as follows:

my_gate_2 = Operator([
[math.sqrt(3)/2, 0, 1/2, 0],
[0, math.sqrt(3)/2, 0, 1/2],
[1/2*complex(0,1), 0, -math.sqrt(3)/2*complex(0,1),0],
[0,1/2*complex(0,1),0, -math.sqrt(3)/2*complex(0,1)]

])

Define Matrices Using IBM’s Convention for Writing Quantum States

When specifying the matrix for the gate in Qiskit, define the
matrix using IBM’s convention for writing the quantum state
with the q[0] qubit in the least significant place or in the rightmost
spot. For example, |q0q1 ⟩ = |01⟩ would actually be written as
|q
1
q0 ⟩ = |10⟩ when specifying the matrix in Qiskit. To put it

another way, the second column, say, in a 2 × 2 matrix for a two-
qubit gate will still correspond to the | 01⟩ state but is defined as
|q
1
q0 ⟩. So when working out the matrix, make sure you’re cor-

rectly lining up the quantum states in your circuit so that the
state in qubit q[0] is in the rightmost spot, and so on.

Before using this gate in your code, it’s a good idea to check whether it’s
unitary by calling the is_unitary() method, as follows:

# Check unitary
print('Operatator is unitary:', my_gate_2.is_unitary())

If it’s not unitary, fix the matrix; otherwise, you’ll get errors when trying
to run your program.

Using the Matrix in a Circuit: To use this matrix in a circuit, use the append() on
the circuit object passing in the matrix as the first argument and the array of
qubits the gate acts on in your circuit as the second argument, shown here:

circuit.append(my_gate_2, [0,1])
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In this case, the first qubit that the two-qubit gate acts on is q[0] and the
second is q[1].

Qiskit offers a rich set of functions for matrix operations, such as computing
their tensor products. You can find more information here.15

Circuit Metrics
Qiskit’s circuit object has several attributes and properties that give you infor-
mation and metrics about your circuit.16 We’ll use the following circuit as a
reference:

|q0i H •

|q1i

|q2i H S

c • •

c[0] c[1]

Here’s the Qiskit code to set up this circuit:

«Import Qiskt, math, NumPy libraries»
circuit = QuantumCircuit(3,2)
circuit.h([0,2])
circuit.s(2)
circuit.cx(0,1)
circuit.measure([0,2],[0,1])

Following is a list of some of this circuit’s metrics (all metrics are either
attributes or methods of the circuit object):

Number of Quantum Registers
To get the number of quantum registers, look at the qregs attribute:

circuit.qregs

For the previous circuit, this number is the following:

[QuantumRegister(3, 'q')]

The first argument is the number of quantum registers.

15. https://qiskit.org/documentation/tutorials/circuits_advanced/2_operators_overview.html#Combining-Operators
16. https://qiskit.org/documentation/apidoc/circuit.html?highlight=quantum%20circuit%20depth#supplementary-

information
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You can also directly get the number of qubits with the n_qubits attribute:

circuit.n_qubits

Number of Classical Registers
To get the number of classical registers, look at the cregs attribute:

circuit.cregs

For the previous circuit, this number is the following:

[ClassicalRegister(2, 'c')]

Width or the Number of Quantum and Classical Bits
The width of a quantum circuit refers to the number of quantum bits as
well as the number of classical bits making up the classical register. To
get this count, use the width() method:

circuit.width()

Having three qubits and a two-bit classical register, the width of this circuit
is 5.

Number of Gates by Type
Qiskit can also tally up the number of gates of each type in a circuit by
using the count_ops() method, or the number of operations on qubits by the
gates:

circuit.count_ops()

For the previous circuit, this works out to the following:

OrderedDict([('h', 2), ('measure', 2), ('s', 1), ('cx', 1)])

You get an ordered dictionary in which each element’s key is the gate and
value is the number of gates of that type. For example, the first element,
('h',2) indicates that the previous circuit has two H gates.

Number of Operations
To get a count of the total number of operations on qubits by all gates in
the circuit, use the size():

circuit.size()

For the previous circuit, the there are six operations: two for the H gates,
two for the Measure, one for the S, and one for the CNOT gate. Notice that
even though the CNOT gate acts on two qubits, it’s counted as a single
operation, as it operates on them as a unit.
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Depth or the Number of Simultaneous Operations
Generally speaking, a vertical slice through any circuit shows you the
gates that can operate simultaneously on the qubits. Consequently, the
number of these vertical slices translates to the amount of time a quantum
program takes to run. The number of vertical slices, or layers, is called
the depth of the quantum circuit.

Consider, again the quantum circuit shown earlier but, this time, with
dotted boxes around the gates, representing the vertical slices, as shown
in the following circuit:

#1 #2 #3 #4 #5 #6

|q0i H •

|q1i

|q2i H S

c • •

c[0] c[1]

Looking at these vertical slices, it seems that it has six layers. But you
can “squeeze” some layers together, making the gates in them operate on
the qubits at the same time without affecting the overall working of the
circuit. That is, the circuit shown previously can be squeezed to that
shown in the following figure:

#1 #2 #3

|q0i H •

|q1i

|q2i H S

c •

c[0], c[1]

This circuit has only three layers.
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Qiskit can figure this out for your circuit by using the depth() method, as
stated here:

circuit.depth()

Number of Independent Sets of Qubits
The quantum circuit shown in the beginning of this section has three
qubits—that is, its mega-qubit will have three cells in each qubelet com-
bination. But, while the first two qubits, q[0] and q[1], are tightly coupled,
or entangled, by the CNOT gate, the third qubit, q[2], is on its own. In other
words, from a computational standpoint, you could technically first run
the circuit with only the first two qubits and then combine the result with
that of the run from the circuit with the third qubit. That is, this circuit
has two independent sets of qubits: (q[0],q[1]), and (q[2]).

Using the num_unitary_factors() method, Qiskit will return the number of
independent sets of qubits:

circuit.num_unitary_factors()

More Commands
We’ve just mentioned a tiny fraction of Qiskit’s vast and rich features. Its
documentation is comprehensive and easy to explore. By poking around,
you’ll come across other features that may interest you, such as displaying
the outputs of several runs side by side,17 showing the qubit on the Bloch
sphere,18 and seeing amplitudes in 3D.19 Qiskit also lets you simulate the
decoherence, or noise, of actual quantum computers in your simulations.20

Amazon, Google, and Microsoft’s Quantum Computers
The quantum concepts and circuits you’ve seen in this book are
portable—there’s nothing unique to IBM’s Quantum Computer—and you can
program them on the quantum computers from other vendors. In the next
section, we point out the ones from Amazon, Google, and Microsoft, where
you can run these circuits.

17. https://qiskit.org/documentation/tutorials/circuits/2_plotting_data_in_qiskit.html#Options-when-plotting-a-his-
togram

18. https://qiskit.org/documentation/tutorials/circuits/2_plotting_data_in_qiskit.html#Plot-Bloch-Vector
19. https://qiskit.org/documentation/tutorials/circuits/2_plotting_data_in_qiskit.html#Plot-State
20. https://qiskit.org/documentation/tutorials/simulators/3_building_noise_models.html
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Amazon’s Braket
Amazon’s quantum computing initiative is called Braket.21 Like IBM’s Qiskit,
you write Python programs for your quantum circuits in Jupyter Notebooks.
The programming methodology, too, is similar to Qiskit.22

Amazon lets you run your programs on quantum hardware from several
vendors.23

Google’s Cirq
Google’s quantum computer library is Cirq.24 Although it’s a Python-based
framework to program quantum circuits, Cirq uses a slightly different
methodology to model circuits, driven by the way their quantum processor
is built to be noise tolerant. Specifically, the two main concepts25 are:

Moments:  Moments are groups of gates that act on qubits at the same time.
Make a vertical slice through the circuit and group all the gates in each
slice as a Moment.

Initializing Qubits:  Google’s quantum computer lets you position your qubits
on a 2D grid so that you can keep your qubits far enough away to reduce
decoherence or interference.

Consider again the entanglement circuit shown in the following figure:

To run this circuit on Cirq, first download and install Cirq for your machine.26

Then open a new Python3 Jupyter Notebook and enter the following code,
splitting it across as many cells as you’d like:

21. https://aws.amazon.com/braket/
22. https://aws.amazon.com/blogs/aws/amazon-braket-get-started-with-quantum-computing/
23. https://aws.amazon.com/braket/hardware-providers/
24. https://cirq.readthedocs.io/
25. https://cirq.readthedocs.io/en/latest/circuits.html
26. https://cirq.readthedocs.io/en/latest/install.html
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import cirq❶
from cirq.ops import CNOT, H

q = [cirq.GridQubit(i, 0) for i in range(2)]❷

circuit = cirq.Circuit()❸
circuit.append([H(q[0]),CNOT(q[0], q[1])])

# Measure Gates
circuit.append(cirq.measure(*q, key='m'))❹

print(circuit)

# Get a simulator to execute the circuit
simulator = cirq.Simulator()❺
# Simulate the circuit several times
result = simulator.run(circuit, repetitions=5)

# Print the results
print("Results:")❻
print(result)

# Show as histogram
print("\nMeasurements:")
print(result.histogram(key="m"))

❶ Import the cirq library.

Also, import the gates you’ll use in the circuit from the cirq.ops library. This
will let you refer to the gates as, say, H and CNOT, instead of cirq.H and
cirq.CNOT, respectively.

❷ The big difference with other vendors is how Google’s Cirq lets you place
qubits on a 2D grid. Here, we define an array, q, that holds the coordinates
of the qubits.

❸ Declare the circuit object and use the append() to add gates to the circuit.
The gates are added in accordance with a policy27 that dictates the
Moments—that is, which operate simultaneously on the qubits. We’re
inserting the gates in the same order we would for circuits on IBM’s
Quantum Computer.

❹ When passing in an array of qubits to the Measure gate, use the asterisk.
If you wanted to put the Measure gate on a specific qubit, for instance the
first qubit, pass in q[0].

❺ Declare the Simulator and run the circuit on it. The number of shots is set
by the repetitions parameter in the argument.

27. https://cirq.readthedocs.io/en/stable/circuits.html#insertstrategies

Chapter 11. Where to Go from Here • 382

report erratum  •  discuss

https://cirq.readthedocs.io/en/stable/circuits.html#insertstrategies
http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


❻ The run() method returns an array in which each element is a string of the
states recorded by the Measure gates associated with the corresponding
index. This is the array for this program:

m=11110, 11110

By lining up the two elements in this array, you’ll see that in these five
shots, the qubits collapse to either 11 or 00, just as when this circuit was
executed on the IBM Quantum Computer.

The histogram() method tallies up the corresponding states and presents
the counts of each state. The recorded state is reported in decimal form.
So, the 11 state in binary is 3 in decimals:

Counter({3: 4, 0: 1})

The state 3, or 11, is seen four times, and the state 0, or 00, is seen once.

Cirq also allows you to import the quantum circuits built using drag-and-
drop on IBM’s Quantum Computer Console. That is, it imports the code
written in QASM.28 To use this feature, you need to first install Python Lex-
Yacc (ply) library using pip install ply==x.y, where x.y is the latest version number.
(To find the latest stable version, go here.29)

For example, import the previous circuit’s program written in QASM, as
stated here:

import cirq
from cirq.contrib.qasm_import import circuit_from_qasm

circuit = circuit_from_qasm("""
OPENQASM 2.0;
include "qelib1.inc";

qreg q[2];
creg c[2];

h q[0];
cx q[0],q[1];

measure q[0] -> c[0];
measure q[1] -> c[1];

""")
print(circuit)

28. https://cirq.readthedocs.io/en/stable/circuits.html#importing-cirq-circuit-from-qasm-format
29. https://www.dabeaz.com/ply/
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# Get a simulator to execute the circuit
simulator = cirq.Simulator()
# Simulate the circuit several times
result = simulator.run(circuit, repetitions=10)
# Print the results
print("Results:")
print(result)

Using the circuit object’s circuit_from_qasm() method, pass in the entire QASM code
as a string. Note the escaped double quotes surrounding the code to handle
double quotes in the QASM code. Once the circuit is set up, the rest of the code
follows the same pattern you saw in the previous code listing.

Cirq, like Qiskit, offers a vast and deep set of ways to set up and solve quan-
tum circuits on a real quantum computer. My intention here was just to show
you that quantum effects are language and vendor neutral—the same quantum
circuit can be programmed on quantum computers built by different organi-
zations. That is, while the specific quantum program may differ when you
write for one quantum computer versus another, you’ll still design the quan-
tum algorithms regardless of which hardware you end up running them on.

Microsoft’s Q#
Microsoft’s quantum initiative30 is integrated with Azure Cloud Service31 and
introduced a new language, Q#, to program quantum circuits.32 Although not
Python but more along the lines of C#, you can program the same quantum
circuits you’ve worked with in this book.

Bottom Line
Although the state of the art of quantum computers is not on par with that
of classical computers, quantum computers have already taken root in the
computing landscape. As engineers in many organizations worldwide work
on the problem of decoherence—making quantum computers less susceptible
to noise—the primary challenge for their uptake will shift to programming
them. As you’ve seen in this book, quantum computing introduces an
entirely new paradigm for designing algorithms. Thus, learning these new
concepts and getting familiar with thinking in “quantum” terms will set you
up for unleashing the tremendous power of quantum computers.

30. https://www.microsoft.com/en-us/quantum/
31. https://azure.microsoft.com/en-us/services/quantum/
32. https://www.microsoft.com/en-us/quantum/development-kit
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Try Your Hand
Solutions to these exercises are given in Where to Go from Here Solutions,
on page 527.

1. Consider the UF  block used in Deutsch’s circuit shown in the following
circuit:

|xi
UF

|xi

|yi |yi � F ( |xi)

Suppose the function F ( |x⟩ ) is constant that always returns a | 1⟩.

a. Write the truth table for UF .

b. Draw Deutsch’s circuit with gates that represent UF .

c. Write a Qiskit program to simulate this circuit using a single shot.
What state is recorded by the Measure gate that collapses the | x⟩ qubit?

d. Write a Cirq program to simulate this circuit using a single shot. Place
the qubits diagonally across.

e. Does the quantum circuit simulated on IBM’s Quantum Computer
behave as the one simulated on Google’s Quantum Computer?

2. This exercise is similar to the previous one but uses a balanced function,
F ( |x⟩ ), defined as follows:

F ( |0⟩ ) = |1⟩
F ( |1⟩ ) = |0⟩

a. Write the truth table for UF .

b. Draw Deutsch’s circuit with gates that represent UF . (Hint: use a
combination of CNOT and X gates.)

c. Write a Qiskit program to simulate this circuit using a single shot.
What state is recorded by the Measure gate that collapses the | x⟩ qubit?

d. Write a Cirq program to simulate this circuit using a single shot. Place
the qubits 2 units apart one below the other.

e. Does the quantum circuit simulated on IBM’s Quantum Computer
behave as the one simulated on Google’s Quantum Computer?
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3. In this exercise you’ll write a Qiskit program to implement Deutsch-Jozsa’s
algorithm for a two-qubit function, F( | x0 ⟩ , |x1 ⟩ ), defined as follows:

F( | x0 ⟩ , |x1 ⟩ )| x
1
⟩|x0 ⟩

|0⟩|0⟩|0⟩
|0⟩|1⟩|0⟩
|1⟩|0⟩|1⟩
|1⟩|1⟩|1⟩

a. Function F  is what type: constant or balanced? Using a classical
algorithm, how many samples of F  do you need to classify its type?

b. Draw the UF  block that is embedded in the Deutsch-Jozsa algorithm.

c. Write the truth table for UF .

d. Draw the quantum circuit for the Deutsch-Jozsa algorithm, embedding
the UF  block from the previous part.

e. Calculate the matrix AUF
 for the UF  block, corresponding to the truth

table you computed in the previous part. Use the IBM convention to
write the matrix.

f. Write a quantum program for this circuit using Qiskit. Use the Operator()
method to specify the matrix for the UF  block. Set the program to run
just one shot. Report the result as an array.

g. Does the output match the type of the function you deduced in the
first part?

4. In each of the cases below, identify the correct Qiskit statements to set
up the respective gates:

a. |0i⌦3
/
3

H
⌦3

i. circuit = QuantumCircuit(3,3)
circuit.h(range(3))

ii. circuit = QuantumCircuit(3,3)
circuit.h(3)

iii. circuit = QuantumCircuit(3,3)
circuit.h(0,1,2)

iv. circuit = QuantumCircuit(3,3)
circuit.h(range(2))
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b.
q[0] = |0i H

q[1] = |0i H

c • •
c[1] c[0]

i. circuit = QuantumCircuit(2,2)
circuit.h(range(2))
circuit.measure(range(2),range(2))

ii. circuit = QuantumCircuit(2,2)
circuit.h(2)
circuit.measure(2,2)

iii. circuit = QuantumCircuit(2,2)
circuit.h(range(2))
circuit.measure(1,0)

iv. circuit = QuantumCircuit(2,2)
circuit.h(range(2))
circuit.measure(range(2),[1,0])

5. Consider a quantum gate G that acts on the | 0⟩ and | 1⟩ qubits as follows:

| 0⟩ ↦
3

2
| 0⟩ + i

2
| 1⟩

|1⟩ ↦ 1

2
| 0⟩ − i 3

2
| 1⟩

a. Which description best fits this gate?

i. Splitter.

ii. Rotates pentagon | 0⟩ qubelets.

iii. Rotates triangle | 1⟩ qubelets.

iv. Toggles qubelets. That is, a pentagon | 0⟩ qubelet is switched to a
triangle | 1⟩ qubelet, and vice versa.

v. Only splits a qubit when it acts on the | 1⟩ state.

vi. Splitter and rotates triangle | 1⟩ qubelets.

b. When this gate acts on a | 0⟩ qubit, are the triangle | 1⟩ qubelets rotated?
If so, by how much? What’s the probability that the | 1⟩ qubit collapses
to | 1⟩?
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c. When this gate acts on a | 1⟩ qubit, are the triangle | 1⟩ qubelets rotated?
If so, by how much? What’s the probability that the | 1⟩ qubit collapses
to | 1⟩?

d. Write a matrix A
G
 that describes the behavior of this gate.

e. Is this matrix unitary? Use Qiskit’s Operator class’s is_unitary() to check.

Use Qiskit’s Operator class to convert this matrix into a gate you can
use in a circuit.

f. Write a Qiskit program to insert this gate in the following circuit:

q[0] = |0i G •

q[1] = |0i X

c • •
c[0] c[1]

g. Run this circuit on the simulator and write the output states as an
array.

h. Other than using Qiskit’s Operator class to define this gate, is there
any other way you could have defined this gate?

6. Consider the following circuit in which the first two qubits are initialized
to the quantum state |φ0 ⟩:

H • H
8
>><

>>:
| 0i

q[2] = |0i H •

c • • •
c[0] c[1] c[2]

The quantum state |φ0 ⟩ is:

|φ0 ⟩ = |00⟩ − 2 |01⟩ + 3 |10⟩ − i |11⟩
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a. Is |φ0 ⟩ a valid quantum state? If not, how can you make it valid?

b. Write a Qiskit program that initializes the circuit with the quantum
state you determined in the previous part.

c. How many independent sets of qubits does this circuit have?

d. Run this quantum circuit on the simulator. Write the output as an
array.

7. List the quantum effects you’ve learned in this book.
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APPENDIX 1

Mathematical Review
Understanding quantum computing requires some complex mathematical
and computer science concepts. We’ve tried to make the book as readable as
possible and present the concepts with explanation and models, rather than
relying directly on the math. Some of these concepts are simply unavoidable.
If you haven’t heard of—or need a refresher on—logic gates and Boolean
algebra, or vectors and matrices, you’ll find a crash course in this appendix.
This appendix isn’t a substitute for a full course on these topics, however.
For some good and accessible resources, see here.1,2

Classical Logic Gates and Circuits
In conventional computers, all information and data are stored as bits that
are either a 1 (true) or 0 (false) state. Bits are switched from one state to
another by devices called gates3 that turn designated bits, called the output
bits, to 1s or 0s, depending on the states of other bits, called the input bits.
For instance, the following figure shows an AND gate that has 2 input bits and
1 output bit:

1. Complex numbers: https://en.wikipedia.org/wiki/Complex_number, https://en.wikipedia.org/wiki/Com-
plex_conjugate and https://en.wikipedia.org/wiki/Euler%27s_formula#Applications_in_complex_number_theory.

2. Trigonometric identities: https://en.wikipedia.org/wiki/List_of_trigonometric_identities
3. https://en.wikipedia.org/wiki/Logic_gate
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The outputs for all possible combinations of inputs to a gate is encapsulated
as a truth table.

The truth table for the AND gate, whose single output bit is a 1 if and only if
all its input bits are 1 is:

OutputInput 2Input 1

000
010
001
111

Others, such as the OR gate, turn a single output bit to 1 if at least one of the
input bits is 1. All the possible cases for a two-input OR gate are listed in the
following truth table:

OutputInput 2Input 1

000

110

101

111

Still others, like the NOT gate, toggle the input bit: it sets the output bit to 1
if the input bit is 0, and the output to 0 if the input is 1. The truth table for
the single-input NOT gate is:

OutputInput

10

01

Although gates manipulate bits, they give rise to the standard programming
statements. For example, the last row of the truth table for the AND gate
expresses an if-then statement (in a C-based language such as C#):

if (inputA == 1) && (inputB == 1) then {
output = 1

}

Thus, gates are just commonplace programming statements in disguise.

A gate by itself does a simple job; it’s the collection of these simple gates that,
when properly coupled, forms a program of instructions that orchestrates the
switching of bits to successfully undertake complicated tasks.
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Although each gate does a simple job, the entire circuit can make complex
decisions. The collection of gates that make logic decisions by applying bit-
level operations can be represented in the language of electronic circuits,
called logic circuit diagrams.

Boolean Logic Expressions
The following is a list of frequently used Boolean algebraic expressions:

CommentsBoolean Expression

a ∧ 0 = 0
a ∧ 1 = a
a ∨ 0 = a
a ∨ 1 = 1

Double Negation⌐ ⌐ a = a
Commutativity of ∧a ∧ b = b ∧ a
Commutativity of ∨a ∨ b = b ∨ a
Associativitya ∨ (b ∨ c) = (a ∨ b) ∨ c
Associativitya ∧ (b ∧ c) = (a ∧ b) ∧ c
Distributivitya ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
Distributivitya ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
De Morgan’s Law⌐ (a ∧ b) = ( ⌐ a) ∨ ( ⌐ b)
De Morgan’s Law⌐ (a ∨ b) = ( ⌐ a) ∧ ( ⌐ b)
Exclusive ORx⊕y = x ∧ ( ⌐ y) ∨ ( ⌐ x) ∧ y

The symbols a, b, c, ··· represent either TRUE or FALSE, classical binary states
1 and 0, quantum states | 1⟩ and | 0⟩, or logical propositions (Boolean expressions
that evaluate to TRUE/FALSE, 1/0, or | 1⟩/| 0⟩). Using these equations, you can
reformulate any Boolean expression so that it uses only NOT, AND, and OR
gates.

You can prove each equation by writing the truth tables for both sides of the
equation and verifying that they are the same. (See Section 7.1.1 of Knuth
[Knu11].) For example, we’ll prove one of De Morgan’s Laws by writing the
truth tables for both sides of the following Boolean expression:

⌐ (a ∧ b) = ( ⌐ a) ∨ ( ⌐ b)
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In the table, the truth values for the left-hand side are listed in column 6 and
those for the right-hand side are in column 7, the last column:

( ⌐ a) ∨ ( ¬ b)⌐ (a ∧ b)a ∧ b⌐ b⌐ aba
1101100

1100110

1101001

0010011

The truth values in columns 6 and 7 are identical, thus proving that the left-
hand side and right-hand side Boolean expressions evaluate to the same
value for all combinations of a and b.

Working with Matrices and Vectors
In quantum mechanics, we frequently multiply matrices as well as matrices
with vectors. As shown in "Fundamental Theorem of Linear Algebra" [Str93],
although the mechanics of these types of multiplications may seem arbitrary,
they offer a point of view that gives us a way to represent the operation of
gates on quantum states. (For a lucid description of linear algebra in a prac-
tical setting, especially the discussion relating to the columns of a matrix,
which is of the most interest to us, see Foundations of Network Optimization
and Games [FB16].)

A matrix is an array of numbers arranged as follows:

[ 1 0
−1 −1 ]

In this matrix, the numbers are organized in two rows and two columns.
Although in quantum computing we’ll deal with square matrices in which the
number of rows are the same as that for columns, here we’ll work with rect-
angular matrices, where the number of rows differs from that for columns,
to emphasize that there’s nothing special about square matrices in this regard.

It’ll be more instructive to talk about matrices whose elements are represented
symbolically, as shown here:

A = [ a11 a
12

··· a
1N

a
21

a22 ··· a2N
⋮ ⋮
aM1 aM2 ··· aMN

]
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(The “···” is just a shortcut to indicate that the matrix contains other elements
or numbers that are labeled in the same way.) The elements, or numbers,
amn, where m ∈ 1, 2, ··· , M and n ∈ 1, 2, ··· , N, of the matrix are laid out in an
array of M rows and N columns. The first subscript m is the index of the row,
and the second subscript n is the index of the column in the array. Thus, the
element a

12
 refers to the number in the first row and second column of the

matrix. The number of rows and columns of the array are the dimensions of
the matrix, which we’ll write as M × N.

A vector x is a matrix with just one column:

x = ( x1x2⋮
xN
)

This vector has N rows or elements and is an N × 1 vector.

Multiplying the M × N matrix A with the N × 1 vector x, we get:

Ax = [ a11 a
12

··· a
1N

a
21

a22 ··· a2N
⋮ ⋮
aM1 aM2 ··· aMN

]( x1x2⋮xN )
The product will be an M × 1 vector of M elements, as shown here:

Ax = [ a
11
x
1
+ a

12
x2 + ··· + a

1NxN
a
21
x
1
+ a22x2 + ··· + a2NxN

⋮
aM1x1 + aM2x2 + ··· + aMNxN

]
Each element in this vector is obtained by multiplying term-by-term the i-th
row with the elements of the vector x. Thus, for the second element in this
vector, we multiplied each term in the second row with the corresponding ele-
ments in the x vector. (Because each term in a row of the matrix A is multiplied
by the corresponding element in the vector x, the number of columns in the
matrix A has to equal the number of elements of the vector x.)
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Key Step
The critical step is to group the terms associated with each xn, n ∈ 1, 2, ··· , N
as a sum of vectors, as follows:

Ax = [ a
11
x
1
+ a

12
x2 + ··· + a

1NxN
a
21
x
1
+ a22x2 + ··· + a2NxN

⋮
aM1x1 + aM2x2 + ··· + aMNxN

] = ( a11a21⋮
aM1

)x1 + ( a12a22⋮
aM2

)x2 + ··· + ( a1Na2N⋮
aMN

)xN
Each column of the matrix is multiplied by the corresponding element of the
vector x. In other words, vectors can be interpreted as a way of extracting just
the column we want from a matrix.

To see how vectors act like column selectors, consider the following N × 1
vector whose second element is a 1, and the others are 0:

x = ( 010⋮
0
)

Substituting this vector in the previous equation, we get:

( a11a21⋮
aM1

) 0 + ( a12a22⋮
aM2

) 1 + ··· + ( a1Na2N⋮
aMN

) 0 = ( a12a22⋮
aM2

)
That is, only the second column is multiplied by 1, the other columns are
multiplied by 0. In other words, we have effectively pulled out the second
column of the matrix A.

Multiplying Matrices
The idea of using vectors as selectors can be applied to multiplying matrices
as well:

• Treat the second matrix as a collection of columns or vectors.
• Then, obtain each column of the product by multiplying the first matrix

by the corresponding column of the second matrix.

For example, suppose you’re multiplying the following matrices:

Appendix 1. Mathematical Review • 396

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


[ 1 0
−1 2 ][ 3 5

4 6 ]
Think of the second matrix as a collection of the following columns or vectors:

( 34 ), ( 56 )
The first column of the product is:

[ 1 0
−1 2 ]( 34 ) = 3 · ( 1

−1 ) + 4 · ( 02 ) = ( 3 + 0
−3 + 8 ) = ( 35 )

The second column of the product is:

[ 1 0
−1 2 ]( 56 ) = 5 · ( 1

−1 ) + 6 · ( 02 ) = ( 5 + 0
−5 + 12 ) = ( 57 )

To get the product of the matrices, put the two columns together:

[ 1 0
−1 2 ][ 3 5

4 6 ] = [ 3 5
5 7 ]

If you’re not in the business of multiplying matrices, the method described
here may be at odds with the traditional way in which each element of the
product matrix is calculated by doing an element-by-element multiplication
of each row of the first matrix by each column of the second matrix and then
summing each individual multiplication. The method described in this section
moves the focus from individual elements and puts the emphasis on columns,
a view that mathematicians prefer, as it gives a physical interpretation instead
of merely a bunch of calculations. You’ll find this meaning of the vector for
the qubits as a column selector more fitting when modeling quantum gates
and analyzing quantum circuits.

Using a Computer Algebra System for Multiplying
Matrices and Vectors

When analyzing and building algorithms for quantum computers, you’ll multiply
matrices and vectors. To avoid tediously multiplying these by hand, especially as the
number of matrices and their sizes gets large, you can use an online mathematical
system such as Sage Mathematical Software Systema or SageMath. SageMath has a
web-based interface called SageMathCellb which lets you perform quick calculations
by directly entering your equations on a web page.
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In computer algebra systems, matrices are defined as an array of arrays. That is, the
matrix is an array whose elements are arrays themselves. Each array element corre-
sponds to a row of the matrix. For example, consider the 3 × 4 matrix here:

A = [ 1 2 0 −3
4 −5 1 2
2 6 7 9 ]

To enter this matrix in SageMathCell, define an array in which each element is
another array, one for each of the three rows as follows:

A = matrix ([[1, 2, 0, −3], [4, −5, 1, 2], [2, 6, 7, 9]])

The function matrix() then converts the array of arrays to a matrix for the computer
algebra system.

Likewise, consider the following vector:

( 201
0
)

You would enter this vector in SageMathCell as follows:

x = vector ([2, 0, 1, 0])

The function vector() converts this array into a vector for the computer algebra system.

To multiply the matrix A with the vector x, you enter A* x. (Note that you must use
the * operator to indicate multiplication.) SageMathCell then returns the vector
(2, 9, 11).

Several other functions, such as inverting matrices, are available. Check out the
quick-reference wiki for a list of the commonly used functions.c

a. https://www.sagemath.org
b. https://sagecell.sagemath.org/
c. https://wiki.sagemath.org/quickref
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APPENDIX 2

From Qubelets to the Bloch Sphere
The Bloch sphere is a geometrical device to plot quantum states. Historically,
it’s always been closely associated with quantum bits. In fact, several quantum
gates derive their names from how they move quantum states around the
sphere. But when using quantum computers to solve hard problems that
require multiple qubits, using the Bloch sphere to visualize how the qubits
interact with each other and figuring out where to introduce quantum effects
can be frustrating.

The Qubelets Model on page 20 is an alternative to toying with the Bloch
sphere. But to use it confidently, it’s important to show that the two are
equivalent.

In Chapter 6, Designer Genes—Custom Quantum States, on page 141, we used
the Bloch sphere without explaining where it comes from, so this is supple-
mentary information for those who want to know the details.

Deriving the Bloch sphere entails a Rube Goldberg-esque chain of mathemat-
ical ideas from trigonometry, complex numbers, and Euler’s formula to work
out how the orientations of the pentagon | 0⟩ and triangle | 1⟩ qubelets accu-
rately describe quantum states of the qubit.

Visualizing the Qubit in 3D Space
To understand the roots of the Bloch sphere and how it relates to qubelets,
we’ll work with the following qubit:
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This qubit has three pentagon | 0⟩ qubelets, each rotated 20° clockwise, and
two triangle | 1⟩ qubelets, each rotated 30° anticlockwise.

To draw the qubit in 3D space, we could use the standard Cartesian or recti-
linear coordinate system that measures displacement along three orthogonal
axes. But in situations dealing with angles, mathematicians find it more
convenient to use polar coordinates.1

Start out with the array of pentagon | 0⟩ qubelets in the quantum state lying
along the X-axis as shown here:

The length, r
|0⟩

, of this array is the amplitude associated with the pentagon
| 0⟩ qubelets. In this example, with three pentagon | 0⟩ and two triangle | 1⟩
qubelets, the length is 

3

32 + 22
= 3

13
.

Swing the pentagon | 0⟩ qubelets within the XY-plane by an angle α equal to
the orientation of the pentagon | 0⟩ qubelets, as in the following figure:

1. https://en.wikipedia.org/wiki/Polar_coordinate_system#Complex_numbers
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The projections of these pentagon | 0⟩ qubelets along the X and Y axes,
respectively, are as follows:

Along the X-axis: = r
|0⟩
cos α

Along the Y-axis: = r
|0⟩
sin α

Using Euler’s formula,2,3 we write these projections in a single equation as:

r
|0⟩
(cos α + i sin α) = r

|0⟩
eiα

In this equation, i is the complex or imaginary number −1 .

Next, pull the triangle | 1⟩ qubelets up (or down) so that the tip of the topmost
triangle makes an angle, β, with the Z-axis, as shown here:

The orientation of the triangle | 1⟩ qubelets determines the angle, β, with the
Z-axis. The length, r

|1⟩
, of this array of qubelets is the amplitude associated

with the triangle | 1⟩ qubelets. In this example, the length is 
2

32 + 22
= 2

13
.

The projections along a set of orthogonal axes or planes are as follows:

Along the Z-axis: = r
|1⟩
cos β

Along the XY-plane: = r
|1⟩
sin β

Once again, using Euler’s formula, we write these projections in a single
equation as:

r
|1⟩
(cos β + i sin β) = r

|1⟩
e
iβ

2. https://en.wikipedia.org/wiki/Euler%27s_formula#Applications_in_complex_number_theory
3. https://www.youtube.com/watch?v=v0YEaeIClKY
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The following figure shows how the qubit will end up oriented in 3D space:

The thick arrow represents the resulting quantum state |q⟩.

Writing the Quantum State Using Polar Coordinates
The quantum state resulting from arbitrary rotations of the pentagon | 0⟩ and
triangle | 1⟩ qubelets can, thus, be written by combining the previous equations
for each respective rotation as follows:

r
|0⟩
eiα | 0⟩ + r

|1⟩
e
iβ
| 1⟩

In the example, the pentagon | 0⟩ qubelets are rotated 20°, so θ is
20π / 180 = π / 9 radians. Likewise, the triangle | 1⟩ qubelets are turned 30°, or
β is 30π / 180 = π / 6 radians. Thus, the quantum state is:

3

13
e
iπ
9 | 0⟩ + 2

13
e
iπ
6 | 1⟩

Although the quantum state is defined using complex numbers, there’s
nothing imaginary about them: quantum computing works in the physical
realm, albeit at tiny scales. The complex numbers are a mathematical artifact
that give us a way to express 3D rotations of qubits.

Quantum State in a Transformed Space
The general quantum state with complex numbers written in the previous
equation is expressed with four real parameters: r

|0⟩
, α, r

|1⟩
, and β.

Next, we’ll go through the following sequence of mathematical transformations
to rewrite the quantum state with four parameters to a form with two:
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• Focus on the measurable aspect of a quantum state to write the quantum
state using three parameters.

• Constrain the probabilities of the qubit collapsing to sum to 1, forcing
the qubit to lie on a sphere.

• This leads to a transformed space where the quantum state is expressed
with two real parameters.

While working through these mathematical operations, we’ll switch between
different coordinate systems to make the rationale behind the calculations
clearer. In practice, though, when you’re designing quantum algorithms, you’ll
rarely need to context-switch so frequently. But you’ll often see parts of this
analysis in the literature, so it’s handy to have it in the back of your mind.

Focus on the Measurable Aspects of a Quantum State
The quantum state of a qubit can only be surmised. The moment we attempt
to inspect it, the qubit will collapse to one of the two classical states. We’ll
use this fact to trim the number of parameters needed to specify a quantum
state.

The only measurable quantities are the probabilities of the qubit collapsing
to | 0⟩ or | 1⟩, or the squares of the respective amplitudes of | 0⟩ and | 1⟩:

Probability of collapsing to |0⟩ = | r|0⟩eiα |
2

Probability of collapsing to |1⟩ = | r|1⟩e
iβ |2

When calculating the magnitude of a complex number, a + i b, we have to use
its complex conjugate4 in which the imaginary part is opposite in sign from
the original complex number, a − i b. When you multiply both, you get:

(a + i b)(a − i b) = a2−i2b2 = a2 + b2

Hence, the right-hand side is a sum of two squares and can never be negative.
Thus, multiplying a complex number by its conjugate is a measure of its
magnitude.

The complex conjugate of the complex number eix = cos x + i sin x is (eix)* and
is written as follows:

(eix)* = cos x − i sin x = e−ix

4. https://en.wikipedia.org/wiki/Complex_conjugate
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The asterisk, *, indicates that the sign of the imaginary part of the number
in parenthesis is flipped.

To calculate the probability of the qubit collapsing to | 0⟩, we multiply the
amplitude of | 0⟩ by its complex conjugate as follows:

| r
|0⟩
eiα|2 = r

|0⟩
eiα × r

|0⟩
(eiα)* = r

|0⟩
2 × eiαe−iα = r

|0⟩
2

Likewise, the probability of the qubit collapsing to | 1⟩ is:

| r
|1⟩
e
iβ
|2 = r

|1⟩
e
iβ
× r

|1⟩
(e
iβ
)* = r

|1⟩
2 × e

iβ
e
−iβ
= r

|1⟩
2

Both these probabilities are independent of the angles α and β. Simply put,
these angles don’t affect the likelihoods of the qubit collapsing to | 0⟩ or | 1⟩,
the only observable measurement we can make.

Consequently, we can multiply each amplitude term in the equation for the
complex quantum state without altering the probabilities. Specifically, we’ll
multiply by e−iα and simplify the equation for the quantum state as follows:

r
|0⟩
eiαe−iα | 0⟩ + r

|1⟩
e
iβ
e−iα | 1⟩ = r

|0⟩
| 0⟩ + r

|1⟩
e
i(β−α)

| 1⟩

As a result, the quantum state can be written using three real parameters:
r
|0⟩

, r
|1⟩

, and φ, where φ = β − α.

In the example, φ is π / 6 − π / 9 = π / 18 radians (or 10°). So, the quantum state
now works out to:

3

13
| 0⟩ + 2

13
e
iπ
18 | 1⟩

For all intents and purposes, this quantum state is identical to the one
specified earlier with four real parameters since both states correspond to
the classical states 0 and 1 with the same probabilities.

Constrain Qubit Collapsing Probabilities
Recognizing that the only thing that matters is what can be measured, we
reduced the number of parameters to define a quantum state from four to
three. We now take it one step further by constraining the probabilities to
add up to 1. Recall that the quantum state defined with three parameters is:

r
|0⟩
| 0⟩ + r

|1⟩
e
iφ
| 1⟩
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The amplitude of | 1⟩ is:

r
|1⟩
e
iφ

This amplitude is written in polar coordinates and represents a point, say,
(u, v), which can also be stated as (u + i v). Thus, the quantum state is:

r
|0⟩
| 0⟩ + (u + i v) |1⟩

For a legal quantum state, the probabilities, or the sum of the squares of its
amplitudes, must add up to 1. Thus,

1 = | r
|0⟩
|2 + | u + i v|2

= r
|0⟩
2 + (u + i v)(u + i v)*

= r
|0⟩
2 + (u + i v)(u − i v)

= r
|0⟩
2 + u2 + v2

The final equation represents a unit sphere in a different Cartesian coordinate
system (W, U, V), where we’ve renamed r

|0⟩
 to W without any loss of generality.

That is, in this new or transformed space, the qubit is represented as an
arrow from the origin to the surface of the unit sphere, as shown in the fol-
lowing figure:

The angle φ is the difference (in radians) between the rotations of the pentagon
| 0⟩ and the triangle | 1⟩ qubelets.
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So in this transformed space, recall that the quantum state of the qubit con-
taining the three pentagon | 0⟩ qubelets rotated 30° and the two triangle | 1⟩
qubelets rotated 20° is as shown here:

3

13
| 0⟩ + 2

13
e
iπ
18 | 1⟩

So the quantum state in the transformed space looks like this:

Sphere Leads to Two Parameters
We’ve established that in a transformed coordinate system, the tip of the qubit
arrow can’t float anywhere in 3D space—it’s constrained to lie on a unit sphere
in the Cartesian coordinate system (W, U, V). The quantum state in this new
space is, thus, written as:

w |0⟩ + (u + i v) |1⟩

Since the tip of the qubit arrow is on a unit sphere, we use spherical coordi-
nates5 to represent its orientation, or its quantum state.

The spherical coordinate system is essentially the polar coordinates upgraded
for 3D space: the Cartesian coordinates (W, U, V) are related to the spherical
coordinates (r, θ, φ), as shown in the figure on page 407.

5. https://en.wikipedia.org/wiki/Spherical_coordinate_system#Cartesian_coordinates
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The projection of the solid arrow on the W-axis is r cos θ and in the UV-plane
is r sin θ. Resolving the latter along the U and V axes, respectively, and noting
that the radius r is constrained to 1, we get the following equations that relate
the spherical coordinates to the Cartesian coordinates:

u = sin θ cos φ
v = sin θ sin φ
w = cos θ

The component, w, of the unit radius along the vertical W-axis is r
|0⟩

, which
in turn is cos θ and u2 + v2 = r

|1⟩
2 .

Using theses spherical coordinates, we can write the quantum state as:

ψ = w |0⟩ + (u + i v) |1⟩
= cos θ |0⟩ + sin θ (cos φ + i sin φ) |1⟩

= cos θ |0⟩ + e
iφ
sin θ |1⟩

(The last equation is simplified using Euler’s formula.)

This equation for the quantum state only has two parameters: the angles φ
and θ. It’s in this space that the quantum state can be represented with two
parameters even though the actual qubit is oriented in 3D space.

Recall that the angle φ is the difference between β, the rotation of the triangle
| 1⟩ qubelets, and α, the rotation of the pentagon | 0⟩ qubelets. Thus, for a qubit
whose quantum state has three pentagon | 0⟩ qubelets rotated 20° and two
triangle | 1⟩ qubelets rotated 30°, the angle φ is:

φ = π

18
radians
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And we can compute the angle θ as follows:

cos θ = 3

13

θ = cos−1 3

13
= 0.588 radians

Or, φ is 10° and θ is 33.69°.

From Sphere to Hemisphere: The True Space
Although we’ve found a form in which the quantum state is specified with
two parameters, there’s one more aspect to discuss before we can use quantum
states defined in this way in our programs.

Imagine the sphere to be a globe and consider a quantum state that is
pointing from its center to New York. A state that is opposite to it will point
about midway between the western tip of Australia and the South Pole.
Mathematically, though, we first reflect the quantum state through the plane
of the equator so that the reflected state now points to the tip of Chile, as
shown in the following figure:

The angle this state makes with the W-axis is π − θ radians.

Then we spin this reflected quantum state by π radians or 180° about the
W-axis so that it’s directly opposite the state pointing to New York.
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Thus, for this opposite quantum state, ψ′, we replace θ by π − θ and φ by
π + φ in the equation for the quantum state, as shown here:

ψ′ = cos (π − θ) |0⟩ + e
i(π+φ)

sin (π − θ) |1⟩

= −cos θ |0⟩ − e
iφ
sin θ |1⟩

= −ψ

The equation for the quantum state can be simplified because cos (π − θ) =
−cos θ and sin (π − θ) = sin θ. And, using Euler’s formula, e

i(π+φ)
= eiπe

iφ
 can

be written as e
iφ
(cos π + i sin π). And, since sin π = 0,

eiπe
iφ
= −e

iφ

Thus, the amplitudes for the quantum state in the bottom half of the sphere
differ from those in the top half of the sphere in sign only. As we square the
amplitudes to obtain the probabilities of collapsing to the two classical states,
respectively, the quantum states in the bottom half will be indistinguishable
from those in the top half.

Let’s work out the values of the angles φ and θ that give the quantum states
ψ0 = |0⟩ and ψ

1
= |1⟩. Setting θ = 0, and noting that cos 0 = 1 and sin 0 = 0,

we get:

ψ0 = |0⟩ + e
iφ
· 0 · |1⟩ = |0⟩

Similarly, setting θ = π

2
 radians, or 90°, and φ = 0, and noting that cos π

2
= 0

and sin π

2
= 1, the resulting quantum state is:

ψ
1
= 0 · |0⟩ + e

iφ
| 1⟩ = e

iφ
| 1⟩

The angle φ has no discernible effect on which state the quantum state col-
lapses to—it always collapses to | 1⟩ no matter what the value of φ is, as shown
in this equation:

Probability of collapsing to |1⟩ = | eiφ |2 = eiφe−iφ = 1
(Note that when squaring a complex number, we multiply by its complex
conjugate.)

But, different values of φ trace out quantum states on the equator.

Thus, we get all quantum states for the qubit as θ varies from 0 to 
π

2
 radians,

or 90°. In effect, every quantum state of the qubit lands on the top half of the
unit sphere—the bottom hemisphere isn’t needed.
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We don’t, however, live on half an earth or play tennis with half a ball. We
find it more convenient to think of the entire sphere instead of just a hemi-
sphere. So we map the hemisphere onto a full sphere by multiplying the angle
each point makes with the W-axis by 2. That is, define an angle θ′ such that
θ′ = 2θ or θ = θ′

2
. With this substitution, we can write the quantum state with

the new angle, θ′, as follows:

ψ = cos θ′

2
| 0⟩ + e

iφ
sin θ′

2
| 1⟩

The points on this unit sphere, called the Bloch sphere, then correspond to
the different states of the qubit.

There are two points on the Bloch sphere, corresponding to the | 0⟩ and | 1⟩
quantum states, respectively, that you should know. The first point is when
θ = 0 and φ = 0 radians; its quantum state is:

ψ = cos 0

2
| 0⟩ + ei 0sin 0

2
| 1⟩ = |0⟩

And for the second point, when θ = π radians, or 180°, and φ = 0, the quantum
state is:

ψ = cos π

2
| 0⟩ + ei 0sin π

2
| 1⟩ = |1⟩

That is, the | 0⟩ quantum state points straight up while the | 1⟩ quantum state
is directed vertically down, as shown in the following figure:
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We’ve labeled the axes using (U′, V′, W′) to emphasize that these quantum
states are in the transformed space. You can, of course, relabel these axes to
the more conventional (X, Y, Z) coordinate system. For now, though, we’ll
retain the (U′, V′, W′) system to emphasize that the Bloch sphere is in a dif-
ferent coordinate system than the one of our everyday experience. (For more
details on the Bloch sphere, see Section 1.3.3 of Explorations in Quantum
Computing [Wil11].)

Note a few points in the previous picture:

• The latitudes are measured from the north pole towards the equator,
unlike those on a globe. So, the north pole is at the 0° latitude. These
latitudes are associated with the angle θ′ that measures how much the
magnitude | r

|0⟩
| swings away from the W′-axis.

• All quantum states on a given latitude differ only in e
iφ

, where φ is the
difference between the rotations of the triangle | 1⟩ qubelets and the pen-
tagon | 0⟩ qubelets. Since | e

iφ
|2 = e

iφ
e
−iφ

= 1, the probabilities of all quantum
states on the same latitude collapsing to | 0⟩ or | 1⟩ are the same.

• The longitudes measure the angle φ that’s swept by the magnitude | r
|1⟩
|

in the plane of the equator. This angle is the difference between the rota-
tions of the pentagon | 0⟩ and triangle | 1⟩ qubelets.

• Since we’re working with a unit sphere using spherical coordinates, we
only need the angles φ and θ′ to plot a quantum state. Thus, we don’t
need the standard Cartesian coordinate axes.

When writing quantum programs, you’ll refer to a quantum state using two
parameters, θ and φ, that define a point on the surface of the Bloch sphere.
So while you won’t need to derive its equation, recalling how these parameters
relate to a quantum state is helpful when manipulating them in your pro-
grams. Thus, in the table on page 412, we summarize the key steps, starting
from a general quantum state in four parameters and paring it down to two:

Going forward, we’ll find it more convenient to relabel θ′ to θ, but it’ll still
represent the tilt from the vertical on the Bloch sphere. So the quantum state
|ψ⟩ will be written as:

|ψ0⟩ = cos
θ

2
| 0⟩ + e

iφ
sin θ

2
| 1⟩
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Quantum StateComments

re
iγ

, where r ∈ { r|0⟩, r|1⟩ }
and γ ∈ { α, β } are the

Each qubelet type, the pentagon | 0⟩ qubelet and tri-
angle | 1⟩ qubelet, is independently expressed in polar
coordinates.

radius and angle of rota-
tions of the pentagon | 0⟩
and triangle | 1⟩ qubelets,
respectively.

r
|0⟩
eiα | 0⟩ + r

|1⟩
e
iβ
| 1⟩Quantum state with four parameters.

| reiγ |2 = r2Only probabilities, which are the squares of the
respective amplitudes, can be directly observed.

That is, e
iγ

 doesn’t affect
the probability.

r
|0⟩
| 0⟩ + r

|1⟩
e
i(β−α)

| 1⟩Thus, multiplying each term by eıα won’t change the
probability of the qubit collapsing to | 0⟩ and | 1⟩ from
this quantum state. Quantum state using

three parameters, r
|0⟩

,
r
|1⟩

, and e
iφ

, where
φ = β − α.

| r|0⟩ |
2 + | r|1⟩ei(β−α) |

2
= 1The amplitude of r

|1⟩
 is a polar coordinate in a 2D

system. By treating r
|0⟩

 as a third coordinate and
recognizing that the sum of the squares of the ampli-
tudes is the probability of the qubit collapsing to | 0⟩ or
| 1⟩ , we see that their sum must add up to 1. Thus,
the quantum states lie on a unit sphere.

Points in the lower hemisphere map to points in the
upper hemisphere, so we just need half the unit
sphere to map all quantum states of a qubit.

cos θ′

2
| 0⟩ + e

ıφ
sin θ′

2
| 1⟩But since it’s easier to picture a full sphere, we dou-

ble every angle that a point on the upper hemisphere
makes with the vertical axis and, hence, blow it up
to a full unit sphere called the Bloch sphere.

The equation for the quantum state can be written
with two parameters.

On the Bloch sphere, the | 0⟩ quantum state is at
the north pole and the | 1⟩ quantum state is at the
south pole.
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Equivalence of Qubelets and Bloch Sphere
Consider a qubit containing three pentagon | 0⟩ qubelets rotated 30° clockwise
and two triangle | 1⟩ qubelets rotated 20° anticlockwise, as shown below:

The corresponding angles in radians on the Bloch sphere are:

φ =
30 − (−20)

180
= 5π

18
radians

θ = 2 × 0.588 = 1.176 radians
Or, θ is 67.38° and φ is 50° as shown below:

The three pentagon | 0⟩ qubelets rotated 20° clockwise and the two triangle
| 0⟩ qubelets rotated 30° anticlockwise fall on upper hemisphere of the Bloch
sphere on the 67.38° latitude and the 50° longitude. (Even though, we’ve
shown the qubelets as a patch, in reality, the quantum state is a point on
the surface of the Bloch sphere.)

Since this quantum state is in the upper hemisphere, but not too far from
the equator, it has a tendency to collapse more often to | 0⟩ than | 1⟩. We expect
this tendency since the number of pentagon | 0⟩ qubelets is just a shade more
than the triangle | 1⟩ ones.

Thus, a qubit’s quantum state depicted using pentagon | 0⟩ and triangle | 1⟩
qubelets maps to points on the Bloch sphere.
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APPENDIX 3

Quantum Mechanics with Qubelets
Quantum computing is rooted in and matured under the umbrella of quantum
mechanics: the one can’t be divorced from the other. The quantum concepts
that drive quantum computers, such as collapsing qubits, canceling qubelets,
and splitting and inverting them, are derived from the laws of quantum
mechanics. In this section, you’ll see the close connections between quantum
computing and quantum mechanics. In particular, you’ll learn to explain
quintessential quantum effects using the Qubelets Model on page 20.

Unlike Einstein’s special theory of relativity, which changed our perception
of space and time with the publication of a single masterpiece, or later his
general theory. which also burst upon the scene and fixed a gap in our
understanding of the cosmos, quantum mechanics grew out of attempts to
explain what started out as commonplace experiments and then meandered
its way to a coherent theory. One after another, experiments that hardly bore
the hallmarks of disproving conventional wisdom failed when scientists
tweaked them. Compared with the hunt for the Higgs-Boson,1 a subatomic
particle that’s responsible for mass in the universe, which involved multi-year
efforts, cost several million dollars, and included hundreds of scientists around
the globe, these humdrum experiments were like a middle school football
team that somehow ended up in the Super Bowl. Yet they racked up deviations
from expected behavior that could no longer be dismissed as minor aberra-
tions. Physicists were forced to abandon classical theory and develop new
ways to describe how our world works.

We’ll examine one such experiment and show its close relationship with
quantum computing.

1. https://home.cern/science/physics/higgs-boson
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Mach-Zehnder Interferometer
The Mach-Zehnder interferometer2 is a light beam splitting apparatus that’s
frequently used to demonstrate quantum effects. It’s easy to set up and easy
to explain the experimental thesis. But what actually gets observed doesn’t
conform to classical analysis.

In this experiment, start by shining a laser beam toward a beam splitter as
shown here:

The beam splitter reflects part of the beam, or light wave, which heads toward
the mirror on the bottom left of the figure, and transmits the other part,
which is directed towards the mirror shown on the top right. (We’ve implicitly
assumed that the beam splitter reflects as much as it transmits. But this
assumption isn’t germane to the discussion that follows. Beam splitters that
are biased more toward one or the other way of changing the path of the
light wave work equally well for the experiment we’re about to outline.) The
beam that’s reflected off the top mirror, the top path, lights up sensor S

1
.

Similarly, the beam that bounces off the bottom mirror, the bottom path,
lights up sensor S2.

Next, introduce a second beam splitter that recombines the beam from the
top and bottom path. According to classical theory, the beams should light
up both sensors, as shown in the figure on page 417.

2. https://www.youtube.com/watch?v=CR-eOhdxbes
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But what physicists saw was that only sensor S
1
 got lit—sensor S2 remained

dark. That is, the beams followed the paths as shown as shown in the next
figure:

At first scientists argued that the crests of the light wave that moves along
the bottom path and is transmitted through the second beam splitter are
directly opposed to the troughs of the light wave on the top path that is
reflected from the second splitter. As a result, the two light beams headed
toward the right sensor, S2, cancel each other out due to destructive interfer-
ence and, hence, the sensor remains unlit.

Continue to reduce the intensity of the laser so that it emits fewer and fewer
photons. Each time, sensor S2 remains dark. Eventually, we’ll reach a point
where the laser emits only a single photon.
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Single Photon Beam
At this stage, in keeping with classical theory, when it reaches the second
beam splitter, it would continue on either of the following two paths:

• Reflected toward sensor S
1
 at the bottom.

• Transmitted toward sensor S2 to the right.

For example, if the photon is reflected toward sensor S
1
, then the single photon

follows the dotted path, as shown here:

Likewise, if the photon is transmitted by the second beam splitter, it would
hit sensor S2, as shown in the next figure:
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The situation with the photon following the top path after being transmitted
by the top beam splitter is analogous. When the photon is also transmitted
from the second beam splitter, it’ll reach the bottom sensor, S

1
, as follows:

And when it’s reflected from the bottom beam splitter, it’ll head to sensor S2
on the right, as shown in the next figure:

Thus, every time the laser shoots a single photon, unlike the case with multiple
photons, either sensor gets randomly lit. In practice, that’s not what happens.
The photon only ever reaches S

1
, which can’t be explained by classical

mechanics.

In the next section, we’ll describe how the Qubelets Model on page 20 resolves
this dilemma and correctly show that, even with single photons, only sensor
S
1
 is lit while sensor S2 always remains dark.
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Single Photon Interference
The breakdown of classical theory to explain experiments such as the Mach-
Zehnder interferometer with single photons paved the way for quantum
mechanics. In this section, we’ll work with qubelets to explain the observed
results. Although qubelets are fictional constructs, they nonetheless help us
apply the laws of quantum mechanics correctly.

Specifically, we’ll start by modeling a photon as a | 0⟩ qubit containing a pen-
tagon | 0⟩ qubelet, as shown here:

When this photon-qubit reaches the beam splitter, the pentagon | 0⟩ qubelet
is split into another pentagon | 0⟩ qubelet and a triangle | 1⟩ qubelet, just like
when it’s acted on by an H gate, as described in Putting Qubits in Blended
States, on page 82:

Thus far you’ve seen new concepts such as qubelets but nothing that jars
common sense for which quantum mechanics is so notorious. This view of a
logical universe is about to change. All along we’ve assumed that qubelets
can’t be isolated from the qubit. But now we’ll direct the pentagon | 0⟩ qubelet
to follow the bottom path and the triangle | 1⟩ qubelet to the top path, as shown
in the figure on page 421.
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That is, the reflected qubelet is the same type as the incident one, and the
transmitted one is of the other type. Thus, the pentagon | 0⟩ qubelet is
reflected off the beam splitter and the triangle | 1⟩ qubelet is transmitted.

It may seem that we’re breaking up the qubit and violating the no-separating-
the-qubelet-from-qubit restriction we’ve imposed on it. But, in accordance
with quantum mechanics, both paths are actually part of the same sys-
tem—they’re not distinct as we’ve drawn them. If this notion is confusing,
remember that, in reality, the only thing we know for sure is when the photon
is detected by the sensors, S

1
 or S2: for all we know, the photon could have

circled Mars after leaving the laser before reaching one of the sensors. The
classical alternative of considering separate paths and assuming destructive
interferences is a bigger headache as it violates the conservation of energy
principle—where does the energy of canceled waves go? Thus, physicists have
grudgingly accepted the quantum mechanical way of explaining the world,
as bizarre as it may appear, so as long as the predictions from the theory
matches the observed results.

The pentagon | 0⟩ and triangle | 1⟩ qubelets after the beam splitter aren’t
enclosed in a box but are left “floating” to indicate that they’re part of the
same state and not two photon-qubits.

Thus, we let the pentagon | 0⟩ qubelet follow the bottom path to the second
beam splitter and the triangle | 1⟩ qubelet the top path to the second splitter.
The second beam splitter also splits the qubelets just like an H gate, as shown
in the figure on page 422.
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The qubelets drawn without a border are split from the pentagon | 0⟩ qubelet
traveling along the bottom path, while the qubelets with a border are from
the triangle | 1⟩ qubelet along the top path.

The pentagon | 0⟩ qubelet along the bottom path is split into a pentagon | 0⟩
qubelet and reflected toward the bottom sensor, S

1
, and a triangle | 1⟩ qubelet

which is transmitted through the beam splitter toward sensor S2.

Likewise, the triangle | 1⟩ qubelet traveling on the top path is split into a pen-
tagon | 0⟩ qubelet that is transmitted toward the bottom sensor, S

1
, and an

inverted triangle | 1⟩ qubelet that is headed toward sensor S2 on the right.

The two pentagon | 0⟩ qubelets moving toward the bottom sensor, S
1
, are, in

effect, a single qubelet. When this qubelet reaches sensor S
1
, it’ll light it. (Don’t

assume that the the | 0⟩ state is an “off” state and the detector won’t activate.
The | 0⟩ is just an arbitrary label and indicates the presense of a qubelet.)

The non-inverted and inverted triangle | 1⟩ qubelets headed toward sensor S2
cancel each other out. In this case, no qubelet is directed toward sensor S2.
Hence, it always remains dark, as observed in the experiment, and it is never
lit in some cases as classical theory would suggest. It’s as if the single photon
is interfering with itself, a conclusion that’s absurd in classical physics.

Note that we began by assuming that the photon is like a | 0⟩ qubit. We could
equally well have started with a | 1⟩ qubit or even a qubit in a blended state
and still would have ended showing that it’s only sensor S

1
 that lights up in

every instance. It doesn’t matter whether a pentagon | 0⟩ or a triangle | 1⟩
qubelet reaches the sensor. Either type will activate it. The only time a sensor
is not lit is when no qubelet hits it, either because they’ve all canceled out or
because none went toward it.
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This analysis with qubelets, which were used to model quantum computing,
demonstrates the close relationship with quantum mechanics even though
at times it may seem that the world of atoms and photons is far removed from
the 1s and 0s of the digital world.

Analysis Is Heuristic

The material in this section is not rigorous. It’s just a heuristic
way to give you a taste for the weirdness of quantum mechanics.
Don’t go waving this to your physics professors. But, by all means,
use it to help you understand your homework problems and to
frame your answers. I’ve successfully used this approach to solve
many problems from graduate-level texts in quantum mechanics.
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APPENDIX 4

Solutions to Exercises
This appendix contains the solutions to all the Try Your Hand exercises in
the book.

Quantum Bits Solutions
Solutions for the exercises in Try Your Hand, on page 39.

1. Since it’s only the ratio of pentagon | 0⟩ qubelets to triangle | 1⟩ qubelets
that matter, we can halve the qubelets of each type, as shown here:

a.

b. i. False. This qubit has both pentagon | 0⟩ and triangle | 1⟩ qubelets.
Thus, when it’s measured, any of these types of qubelets can be
randomly selected. Hence, it could collapse to either of the | 0⟩ or
| 1⟩ idealized states.

ii. True. Since the ratio of pentagon | 0⟩ qubelets to triangle | 1⟩
qubelets is 3 : 1, we expect to see the pentagon | 0⟩ qubelets 3 times
more than the triangle | 1⟩ qubelets. Hence, we’ll see the correspond-
ing binary state 0 times as often as the 0 state.

iii. False. Once a qubit is measured by selecting a qubelet from its
quantum state, the rest of the qubelets vanish.

iv. False. Once a qubit is measured by selecting a qubelet from its
quantum state, the rest of the qubelets vanish. Thus, if it’s mea-
sured again, the same qubelet is selected again. Thus, it’ll never
collapse to a different idealized quantum state.
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2. Not much—all you can say is that the qubit had at least one triangle | 1⟩
qubelet in its quantum state.

3. | 0⟩ is a qubit and 0 is one of the classical binary states. The | 0⟩ qubit can
be nudged to other blended states while the 0 bit can only be switched to
the 1 bit.

4. The Measure would record the classical state 1. That is,

| 1⟩ → 1

5. No. The Measure gate records only the specific idealized state the qubit
collapses to when it was probed. So, conceivably, if the quantum circuit
was run again, the qubit that the Measure gate is inspecting can collapse
to another idealized state. But in each case, only a single value will be
recorded by the Measure gate in the classical register.

Quantum Logic Gates Solutions
Solutions for the exercises in Try Your Hand, on page 70.

1. The code for the quantum circuit is:

Measuring_Two_Qubits_on_a_Real_Computer.qasm
qreg q[5];
creg c[5];

measure q[0] -> c[0];
measure q[2] -> c[2];

a. The concatenated string of measured states is 00000.

b. Output on a simulator will look like this:

The output on a simulator is exact: only the 00000 state is seen.

c. Output on a real quantum computer will look something like the
output shown on page 427.
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We see that the 00000 state is observed most often. But other states
such as 00100 are also seen, albeit with tiny probabilities. (Your output
may differ, but the 00000 will appear most often.)

2. NOT_NOT_Measure.qasma.
qreg q[1];
creg c[1];

x q[0];
x q[0];
measure q[0] -> c[0];

b. Yes, the state at point A is blended.

c. The state at point A is | 0⟩.

d. No, you can’t directly observe the state at point A. We surmise that
it’s a | 0⟩ quantum state. But the moment we try and confirm our guess,
the quantum state will collapse into one of the idealized quantum
states, | 0⟩ or | 1⟩.

So if we can’t physically verify a quantum state, how can we be sure
whether our conjecture of the quantum state is correct? This inability
to physically confirm our suspicions is one of the ironies of quantum
mechanics. But as long as the consequences of our theories lead to
things we can predict and physically examine, we should be content
with the models devised to explain the behavior of subatomic particles.

e. The Measure gate collapses the qubit at point A and records the corre-
sponding binary value as 0, a classical binary state.

f. Output A. The measured value recorded in the classical register, 0, is
shown at the base of the blue bar. The height of the blue bar is 1.000,
indicating that the 0 state will always be recorded, at least in the
simulator.
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3. The quantum circuit is shown here:

4. The circuit to initialize a qubit to | 1⟩ is shown here:

The corresponding code is:

x q[0];

5. The Measure gate has been placed incorrectly. Hence, it’s an invalid circuit
and no code can be written.

6. The quantum circuit is obtained by switching the | 0⟩ state to a | 1⟩
before feeding it to the CNOT gate’s control, as shown here:

a.

b. The quantum program is:

CNOT_Gate_Triggered_on_0.qasm
qreg q[2];
creg c[2];

x q[0];
x q[1];
cx q[0],q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

c. The values in the classical registers when the program terminates are:

c[0] = 1
c[1] = 0
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7. The quantum program is:a.

CNOT_Control_on_1.qasm
qreg q[2];
creg c[2];

x q[0];
x q[1];
cx q[1],q[0];
measure q[0] -> c[1];
measure q[1] -> c[0];

b. The values in the classical registers are:

c[0] = 1
c[1] = 0

8. The quantum states | a⟩, | b⟩, | c⟩, |d⟩, | e⟩, and | f⟩ for different values of
| x⟩ and |y⟩ are shown in the following table:

a.

| f⟩|e⟩|d⟩|c⟩|b⟩|a⟩|y⟩|x⟩
|0⟩|0⟩|0⟩|0⟩|0⟩|0⟩|0⟩|0⟩
|0⟩|1⟩|1⟩|1⟩|1⟩|0⟩|1⟩|0⟩
|1⟩|0⟩|1⟩|0⟩|1⟩|1⟩|0⟩|1⟩
|1⟩|1⟩|0⟩|1⟩|0⟩|1⟩|1⟩|1⟩

Notice that in each case, the quantum states in | e⟩ and | f⟩ are swapped
from those of | x⟩ and |y⟩.

b. The quantum program is:

SWAP_Gate.qasm
qreg q[2];
creg c[2];

x q[0];
cx q[0],q[1];➤

cx q[1],q[0];➤

cx q[0],q[1];➤

measure q[0] -> c[0];
measure q[1] -> c[1];

The highlighted section is the SWAP gate made up three CNOT gates.

i. The concatenated value is c[1]c[0] = 10.
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9. The quantum circuit to copy a | 1⟩ qubit is:a.

b. The corresponding quantum program is:

Fan_Out_Circuit.qasm
qreg q[2];
creg c[2];

x q[0];
cx q[0],q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

10. In the ORgate configuration on page 59, the target qubit fed to the CCNOT
gate is | 1⟩. Thus, its value after the CCNOT operation is:

| 1⟩ ⊕ ( ⌐ |a⟩ ∧ ⌐ |b⟩ )

Using De Morgan’s law, this expression can be rewritten as:
| 1⟩ ⊕ ⌐ ( |a⟩ ∨ |b⟩ )

Applying the expansion for the exclusive-OR operation:
| 1⟩ ∧ ¬ ⌐ ( |a⟩ ∨ |b⟩ ) ∨ |0⟩ ∧ lnot( |a⟩ ∨ |b⟩ )

This simplifies to:
( |a⟩ ∨ |b⟩ ) ∨ |0⟩

The | 0⟩ is redundant as it doesn’t affect the logical truth of the expression
and can be dropped, giving the OR operation:

| a⟩ ∨ |b⟩

11. The quantum circuit is:a.
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b. The program is:

Bellagio_Constraints_k_1_m_1.qasm
OPENQASM 2.0;
include "qelib1.inc";

qreg q[7];
creg c[3];
x q[0];➤

x q[2];➤

cx q[0],q[1];
x q[1];
cx q[2],q[3];
x q[3];
x q[1];
x q[3];
x q[4];
ccx q[1],q[3],q[4];
x q[1];
x q[3];
x q[0];
x q[2];
x q[5];
ccx q[0],q[2],q[5];
x q[0];
x q[2];
ccx q[4],q[5],q[6];
measure q[6] -> c[0];
measure q[0] -> c[1];
measure q[2] -> c[2];

The highlighted lines set |k⟩ = |1⟩ and |m⟩ = |1⟩.

c. When you run this program on a simulator, the concatenated string
of the values in the classical register on termination is 110. This corre-
sponds to the following truth values:

Bellagio Constraint truth value c[0] = 0
k: c[1] = 1
m: c[2] = 1

d. The value recorded in c[0] is 0, which indicates that the truth value of
the Bellagio Constraint is false. Thus, the condition represented by
|k⟩ = |1⟩ (Keller performing at Bellagio on Day 1) and |m⟩ = |1⟩ (Maher
performing at Bellagio on Day 1) clearly doesn’t lead to a valid
schedule.
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12. The logic expression preventing scheduling conflicts at Aladdin is:a.

( |k⟩ ∨ | n‾⟩ ) ∧ ( | k‾⟩ ∨ |n⟩ ) = |1⟩

b. The quantum circuit for the logic expression for preventing conflicts
for Aladdin is:

The classical register c[0] records the truth value of the Aladdin Con-
straint, c[1] records the state of the value representing Kimmel, and
c[2] records the state of the value representing Noah.

c. The quantum program is:

Aladdin_Constraints_k_1_n_1.qasm
OPENQASM 2.0;
include "qelib1.inc";

qreg q[7];
creg c[3];

x q[0];
x q[2];
cx q[0],q[1];
x q[1];
cx q[2],q[3];
x q[3];
x q[0];
x q[3];
x q[4];
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ccx q[0],q[3],q[4];
x q[0];
x q[3];
x q[1];
x q[2];
x q[5];
ccx q[1],q[2],q[5];
x q[1];
x q[2];
ccx q[4],q[5],q[6];
measure q[6] -> c[0];
measure q[0] -> c[1];
measure q[2] -> c[2];

d. Yes, as seen by the state recorded in c[0], the values for |k⟩ and ⎹n⟩
correspond to a valid schedule. Noah performs on the first day and
Kimmel performs on the second.

13. The logic expression preventing scheduling conflicts at Caesars is:a.

( |m⟩ ∨ |n⟩ ) ∧ ( |m‾⟩ ∨ | n‾⟩ ) = |1⟩

b. The quantum circuit for the logic expression for preventing conflicts
for Caesars is:

The classical register c[0] records the truth value of the Caesars Con-
straint, c[1] records the state of the value representing Maher, and c[2]
records the state of the value representing Noah.
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c. The quantum program is:

Caesars_Constraints_m_1_n_1.qasm
OPENQASM 2.0;
include "qelib1.inc";

qreg q[7];
creg c[3];

x q[0];
x q[2];
cx q[0],q[1];
x q[1];
cx q[2],q[3];
x q[3];
x q[0];
x q[2];
x q[4];
ccx q[0],q[2],q[4];
x q[0];
x q[2];
x q[1];
x q[3];
x q[5];
ccx q[1],q[3],q[5];
x q[1];
x q[3];
ccx q[4],q[5],q[6];
measure q[6] -> c[0];
measure q[0] -> c[1];
measure q[2] -> c[2];

d. The state recorded in c[0] is | 0⟩. Thus, the initial quantum states of | 1⟩
and | 1⟩ for the variables |m⟩ and ⎹n⟩, representing when Maher and
Noah, respectively, perform at Caesars don’t give a valid schedule.

e. By experimenting with different initial quantum states for |m⟩ and
⎹n⟩, you’ll find that you get a valid schedule when |m⟩ is | 0⟩ and ⎹n⟩
is | 1⟩. These values imply that Maher performs at Caesars on Day 1
and Noah on Day 2.

Quantum Superposition Solutions
Solutions for the exercises in Try Your Hand, on page 101.

1. The operation of the NOT gate on the | 0⟩ qubit in terms of qubelets looks
like the figure on page 435.
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2. The inverted triangle | 1⟩ qubelet will become an inverted pentagon | 0⟩
qubelet after it’s been operated on by a NOT gate:

a.

b. The inverted pentagon | 0⟩ qubelet would collapse to | 0⟩, and the corre-
sponding binary value, 0, is recorded in the classical register.

3. The | 0⟩ qubit after it’s been operated on by the X and H gates, respec-
tively, will have the following qubelets:

a.

The | 0⟩ qubit on the left, containing a pentagon | 0⟩ qubelet, is operated
on by the NOT gate. This puts the qubit in the | 1⟩ quantum state contain-
ing a triangle | 1⟩ qubelet, as shown in the middle qubit. The middle
qubit, in turn, is operated on by the H gate, which splits its triangle | 1⟩
qubelet into a pentagon | 0⟩ qubelet and an inverted triangle | 1⟩ qubelet.

b. The qubelets in the qubit are:

In this case, the | 0⟩ qubit on the left is first operated on by the H gate.
This splits its pentagon | 0⟩ qubelet into a pentagon | 0⟩ qubelet and a
triangle | 1⟩ qubelet. The X gate then switches each qubelet in the middle
qubit and puts the qubit in the quantum state shown on the right.

c. No. Even though the orientation of the triangle qubelets in the qubits
are different in the two circuits, when each qubit is measured, there’s
no statistical difference between the outputs of both circuits.
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4. The simplified qubit is obtained by halving the number of pentagon
| 0⟩ and triangle | 1⟩ qubelets, as shown here:

a.

The probabilities of picking a pentagon | 0⟩ qubelet or a triangle | 1⟩
qubelet remain the same.

b. Two of the pentagon | 0⟩ qubelets and the triangle | 1⟩ qubelets cancel
out. Further, the qubit with the remaining two pentagon | 0⟩ qubelets
is equivalent to a qubit with a single pentagon | 0⟩ qubelet, as shown
in the following figure:

5. The inverted triangle qubelets don’t affect the probability of collapsing to
the binary states. The likelihood of the qubit collapsing to | 0⟩ versus | 1⟩
is based on the ratio of the number of pentagon | 0⟩ qubelets versus that
of the triangle | 1⟩ qubelets:

Number of pentagon |0⟩ qubelets : Number of triangle |1⟩ qubelets = 4 : 6 = 2 : 3

So, the qubit is 1.5 times more likely to collapse to the | 1⟩ state than the
| 0⟩ state, which intuitively matches our expectations since the qubit has
more triangle | 1⟩ qubelets.

6. In the left qubit, all three triangle | 1⟩ qubelets are effectively a single tri-
angle | 1⟩ qubelet. And in the right qubit, the triangle | 1⟩ qubelets cancel
out. So, the quantum operation takes a | 1⟩ qubit and modifies it to a single
inverted pentagon | 0⟩ qubelet, as shown here:

Thus, the following is a possible sequence of quantum operations to apply
on the qubit to transform its state on the left to the one on the right:

• Invert the triangle | 1⟩ qubelet.
• Apply the NOT gate to switch the inverted triangle | 1⟩ qubelet to an

inverted pentagon | 0⟩ qubelet.
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In Pauli-Z (Z) Gate, on page 109, you’ll learn how to invert triangle | 1⟩
qubelets in a quantum program.

7. To simulate a coin toss on a quantum computer, we just need to have
an H gate operate on a | 0⟩ qubit as shown in the following quantum
circuit:

a.

Here’s the code:

Coin_Toss.qasm
qreg q[1];
creg c[1];

h q[0];
measure q[0] -> c[0];

b. Since we’re only interested in a single coin toss at a time, we specify
just a single shot run.

8. The qubelet diagram for back-to-back H gates being applied to | 1⟩ follows:

When the middle qubit is operated on by the second H gate, the inverted
triangle | 1⟩ qubelet is split into an inverted pentagon | 0⟩ qubelet and an
inverted inverted triangle | 1⟩ qubelet. The inverted inverted triangle | 1⟩
qubelet is just a triangle | 1⟩ qubelet that goes back to the non-inverted
orientation.

The non-inverted and inverted pentagon | 0⟩ qubelets will cancel, leaving
the two non-inverted triangle | 1⟩ qubelets. The latter is equivalent to a
triangle | 1⟩ qubelet. Thus, the quantum state of the qubit after it’s operated
on by both H gates is | 1⟩. If this state is measured, the | 1⟩ qubit will, of
course, collapse to | 1⟩ and the binary state 1 will be recorded in the clas-
sical register.
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9. Two back-to-back H gates return the qubit to its original state, | 0⟩.
The third H gate operates on this | 0⟩ qubit and puts it into the blended
state shown here:

a.

If this qubit is measured, it would collapse to the idealized states, | 0⟩
or | 1⟩, with equal probability.

b. The quantum program for three back-to-back H gates acting on q[0]
is as follows:

H_H_H_Measure.qasm
qreg q[1];
creg c[1];

h q[0];
h q[0];
h q[0];
measure q[0] -> c[0];

c. The output of this quantum circuit is shown here:

Three back-to-back H gates are equivalent to a single H gate.

10. One way to cancel out the pentagon | 0⟩ qubelet is to first pass it to the H
gate. The H gate acts on the qubelets in the left qubit as follows:

• Splits the inverted pentagon | 0⟩ qubelet to another inverted pentagon
| 0⟩ qubelet and an inverted triangle | 1⟩ qubelet. (The triangle | 1⟩ is
inverted because the pentagon | 0⟩ qubelet it acts on is also inverted.
The H gate doesn’t invert qubelets when acting on a | 0⟩ qubit.)

• Splits the inverted triangle | 1⟩ qubelet to an inverted pentagon | 0⟩
qubelet and a non-inverted triangle | 1⟩ qubelet. (The triangle | 1⟩ is non-
inverted because the triangle | 1⟩ qubelet it acts on is inverted. The H
gate inverts the triangle | 1⟩ qubelet when acting on a | 1⟩ qubit.)
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Thus, when the H gate acts on the blended qubit, it puts the blended qubit
on the left to the state on the right, shown as follows:

The non-inverted and inverted triangle | 1⟩ qubelets on the right qubit
cancel each other out, leaving a single inverted pentagon | 0⟩ qubelet in
its quantum state.

Next, apply a NOT (X) gate to switch the inverted pentagon | 0⟩ qubelet to
an inverted triangle | 1⟩ qubelet, as shown here:

Thus, the required sequence of quantum gates you’d use to take the
original blended state to one with an inverted triangle | 1⟩ qubelet is an H
gate followed by an X gate.

11. The transformed qubit is the following:

12. The inversions don’t affect the probabilities of picking the qubelet combi-
nations. Thus, the ⎹00⟩ qubelet combination has a greater probability of
being selected. Hence, the 00 state is the most likely state that’s recorded
in the classical register.

13. Each qubelet combination is formed by taking a qubelet from each of the
three qubits in turn. This gives 2 × 2 × 2 = 23 = 8 qubelet combinations in
the mega-qubit, as shown in the next figure:
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14. The triangle | 1⟩ qubelet in the top qubit pairs up with the qubelets in
the bottom qubit forming the mega-qubit with the two qubelet combi-
nations, shown in the following figure:

a.

The top qubelet corresponds to the qubit in q[0] and the bottom qubelet
to the qubit in q[1]. We represent these combinations by writing the
top qubelet followed by the bottom qubelet. So the left qubelet combi-
nation is ⎹10⟩ and the right combination is ⎹11⟩.

b. In this circuit, the top qubelet in each combination is a triangle | 1⟩
qubelet. This triangle | 1⟩ qubelet is fed to the control bit of the CNOT
gate. Thus, the qubit passed to the target of the CNOT gate is switched,
as shown in the following figure:

The ⎹10⟩ becomes ⎹11⟩, and the ⎹11⟩ combination turns into ⎹10⟩.

c. When the mega-qubit is measured, the following two classical states
are recorded in the c[1]c[0] elements of the classical register:

ProbabilityState
1

211

1

201

Note that the elements in the classical register are written as c[1]c[0]—in
reverse order of how the qubits were written earlier.
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d. If the bottom qubit collapses to | 0⟩, then the right qubelet combination
in the mega-qubit was selected. Thus, the top qubit will collapse to | 1⟩.

e. The code is as follows:

CNOT_with_H_on_Target.qasm
qreg q[2];
creg c[2];

x q[0];
h q[1];
cx q[0],q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

And this is the output:

The states shown at the bottom of the two blue bars represent the
string c[1]c[0]—in which the state of the bottom qubit is associated
with the first character and the state of the top qubit is the second
character. Thus, these states match those on the mega-qubit.

15. Place the H gates on the q[0] and q[2] qubits, representing |k⟩ and |n⟩,
respectively, as shown here:

a.
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b. The code to place the H gates in this circuit is at the beginning, right
after you declare the quantum and classical arrays:

Aladdin_Constraints_k_h_n_h.qasm
qreg q[7];
creg c[3];

h q[0];
h q[2];

And the output is as follows:

Note that even though we measured three qubits, since the circuit
has seven qubits, the state at the bottom of each bar is a string of
length 7. We’re only interested in the states corresponding to the three
positions from the right where the Measure gates record the collapses
of the three qubits in the circuit.

We see four states in the output with equal probability. This circuit
doesn’t yet collapse with a large likelihood to a state that satisfies the
constraints.

16. This is the corresponding quantum circuit:

Quantum Tagging and Entangling Solutions
Solutions for the exercises in Try Your Hand, on page 136.

1. The quantum circuit that mimics the Z gate but inverts the | 0⟩ qubit
while leaving the | 1⟩ qubit alone is shown here:

a.
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b. i. The qubelets at various stages when the circuit is initialized with
a | 0⟩ qubit is shown in the following figure:

The first X gate switches the | 0⟩ qubit to a | 1⟩ qubit containing a
triangle | 1⟩ qubelet. The Z gate inverts this triangle | 1⟩ qubelet,
and the right X gate switches this inverted triangle | 1⟩ to an
inverted pentagon | 0⟩ qubelet. As a result, the entire circuit inverts
a | 0⟩ qubit.

ii. The qubelets at various stages when the circuit is initialized with
a | 1⟩ qubit is shown next:

The first X gate switches the | 1⟩ qubit to a | 0⟩ qubit holding a
pentagon | 0⟩ qubelet. The Z gate leaves this qubelet alone. The X
gate on the right then switches this pentagon | 0⟩ qubelet to a tri-
angle | 1⟩ qubelet. Effectively, the entire circuit leaves the | 1⟩ qubit
unmodified.

2. The following is the code for this circuit:a.

x q[1];Line 1

h q[1];2

cx q[0],q[1];3

h q[1];4

x q[1];5

b. The H and CNOT gates implement the CZ gate, as shown in the dashed
box in the following figure:

CZ Gate

ctrl •

targ X H H X

Lines 2–4 in the program in the previous part implement the CZ gate.
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This circuit behaves like a CZ gate except that it inverts pentagon | 0⟩
qubelets on the target when its control is | 1⟩. (The CZ inverts triangle
| 1⟩ qubelets when its control is | 1⟩.)

3. The code for the circuit is listed here:a.

// AND Gate
ccx q[0],q[1],p[0];
ccx q[2],p[0],p[1];

ccx q[3],p[1],p[2];
cx p[2],p[3];

ccx q[3],p[1],p[2];
ccx q[2],p[0],p[1];

ccx q[0],q[1],p[0];

b. The complete code, including initializing qubits |q0 ⟩–|q3 ⟩ to | 1⟩ as well
as the Measure gates is listed next:

// Initialize 2 Quantum Registers, q and p, and Classical RegisterLine 1

qreg q[4];-

qreg p[4];-

creg c[5];-

5

// Initialize q[0]-q[3] to |1>-

x q[0];-

x q[1];-

x q[2];-

x q[3];10

-

// AND Gate-

ccx q[0],q[1],p[0];-

ccx q[2],p[0],p[1];-

ccx q[3],p[1],p[2];15

cx p[2],p[3];-

ccx q[3],p[1],p[2];-

ccx q[2],p[0],p[1];-

ccx q[0],q[1],p[0];-

20

// Collapse Qubit and Measure their States-

measure q[0] -> c[0];-

measure q[1] -> c[1];-

measure q[2] -> c[2];-

measure q[3] -> c[3];25

measure p[3] -> c[4];-

The qubits are initialized on lines 7–10, and the Measure gates are
declared on lines 22–26.

The c[4] register records the collapsed value of the |p3 ⟩ qubit, which
will be 1 as qubits |q0 ⟩–|q3 ⟩ are | 1⟩.
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4. The missing qubelets are shown with a thicker outline in the figure
below:

a.

b. The qubits are not entangled. The state of either qubit can’t be deduced
by knowing the state of the other.

5. The mega-qubit is shown in the following figure:a.

b. Looking at the mega-qubit after the application of the H gates, we see
each qubit can collapse to both the 0 and 1 states independent of the
collapsed state of the other qubit. That is, neither qubit is forced to
collapse to any state by the other. Thus, the qubits are not entangled.

c. The quantum program for this circuit is listed here:

H_on_Control_and_Target_of_CNOT.qasm
qreg q[2];
creg c[2];

h q[0];
h q[1];
cx q[0],q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

The output of this program is shown in the following figure:
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The output shows that the qubits in this circuit collapse roughly
equally to all four states. Thus, no particular state is favored, as would
be the case if the qubits were entangled.

6. Since none of the qubits are split, each qubit is in a single state
determined by the quantum logic gates. Thus, the mega-qubit will
have only one qubelet combination, as shown in the following figure:

a.

|ki = q[0]

|ki = q[1]

|mi = q[2]

|mi = q[3]

q[4]

q[5]

q[6]

Mega-Qubit After Z Gate

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|1i|1i

|1i|1i

|1i� |1i

The qubelet in the bottom cell, corresponding to q[6], indicates that
all constraints are met. Thus, the Z gate inverts its triangle | 1⟩ qubelet
by 180° or a half turn.

b. The quantum program is listed as follows:

Bellagio_Constraints_k_1_m_0_with_Z_Gate.qasm
// Initialize Quantum and Classical RegistersLine 1

qreg q[7];-

creg c[3];-

-

// Set k to |1>5

x q[0];-

-

// Bellagio Constraints-

cx q[2],q[3];-

x q[4];10

x q[5];-
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cx q[0],q[1];-

x q[3];-

x q[0];-

x q[1];15

x q[3];-

x q[1];-

ccx q[1],q[3],q[4];-

x q[1];-

x q[2];20

x q[3];-

ccx q[0],q[2],q[5];-

x q[0];-

x q[2];-

ccx q[4],q[5],q[6]; // if q[6] = |1>, all constraints are met25

// End of Bellagio Constraints-

-

// Rotate q[6]'s triangle |1> qubelet by 180 degrees-

z q[6];-

30

// Collapse and Measure Qubits-

measure q[0] -> c[0]; // k-

measure q[2] -> c[1]; // m-

measure q[6] -> c[2]; // c[2] = 1 indicates all constraints ok-

On line 6, an X gate sets |k⟩ to | 1⟩. The Bellagio Constraints are speci-
fied on lines 9–25. The CCNOT gate whose target qubit q[6] switches to
| 1⟩ if both the constraints are met is declared on line 25. The Z gate
on line 29 inverts the triangle | 1⟩ qubelet by a half turn. Finally, the
Measure gates are declared on lines 32–34. If all constraints are met,
c[2] logs a 1.

c. When you run this program on the IBM Quantum Computer’s simu-
lator, it’ll return a result as shown in the following chart:

The label at the bottom of the bar is 101. Noting that the IBM Quantum
Computer reverses the order of the bits, this string represents the
bits in the classical register as shown in the table on page 448.
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Value LoggedQubit MeasuredClassical Register

1q[0] = |k⟩c[0]

0q[2] = |m⟩c[1]

1q[6]c[2]

Since c[2] is 1, the values of |k⟩ = |1⟩ and |m⟩ = |0⟩ satisfy the Boolean
logic expressions.

d. The code with the disentangling gates is listed as follows:

Bellagio_Constraints_k_1_m_0_with_Z_Gate_Disentangling.qasm
// Initialize Quantum and Classical RegistersLine 1

qreg q[7];-

creg c[3];-

-

// Set k to |1>5

x q[0];-

-

// Bellagio Constraints-

cx q[2],q[3];-

x q[4];10

x q[5];-

cx q[0],q[1];-

x q[3];-

x q[0];-

x q[1];15

x q[3];-

x q[1];-

ccx q[1],q[3],q[4];-

x q[1];-

x q[2];20

x q[3];-

ccx q[0],q[2],q[5];-

x q[0];-

x q[2];-

ccx q[4],q[5],q[6];25

x q[0];-

x q[2];-

// End of Bellagio Constraints-

-

z q[6];30

-

// Disentangle the Bellagio Constraints-

ccx q[4],q[5],q[6];-

ccx q[0],q[2],q[5];-

x q[0];35

x q[1];-

x q[2];-

x q[3];-

x q[5];-
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ccx q[1],q[3],q[4];40

x q[1];-

x q[3];-

x q[4];-

x q[1];-

x q[3];45

cx q[0],q[1];-

cx q[2],q[3];-

-

// Collapse and Measure Qubits-

measure q[0] -> c[0]; //k50

measure q[2] -> c[1]; // m-

measure q[6] -> c[2]; // c[2] = 1 indicates all constraints ok-

The Bellagio Constraints are disentangled on lines 33–47. The Z gate
on line 30 isn’t part of the disentangling gates.

e. When you run this program on the IBM Quantum Computer simulator,
your output will be as shown in the following chart:

This time the label at the bottom of the bar is 001. As in the earlier
part of this exercise, this string corresponds to the following values
in the classical register:

Value LoggedQubit MeasuredClassical Register

1q[0] = |k⟩c[0]

0q[2] = |m⟩c[1]

0q[6]c[2]

That is, the value logged in the classical register c[2] is 0 despite all
the constraints being met. The reason why a 0 is recorded is that by
adding the disentangling gates, q[6] is restored to its original | 0⟩ value.

Importantly, although you can’t see it in the output, the pentagon | 0⟩
qubelet in qubit q[6] is really inverted, or rotated by a half turn, by the
Z gate, whose action isn’t reversed. In Chapter 10, Quantum Search, on
page 295, you’ll learn ways to introduce quantum effects in your code to
exploit this rotation of the pentagon | 0⟩ qubelet to find optimal solutions.
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Custom Quantum States Solutions

Quantum States, Amplitudes, and Probabilities Solutions
Solutions for the exercises in Try Your Hand, on page 149.

1. The qubit has five inverted pentagon | 0⟩ pentagon and three inverted
triangle | 1⟩ qubelets. Thus, its quantum state is:

a.

− 5

52 + 32
| 0⟩ − 3

52 + 32
| 0⟩

= − 5

5.8309
| 0⟩ − 3

5.8309
| 1⟩

= −0.8575 |0⟩ − 0.5145 |1⟩

b. Probability of collapsing to |0⟩ = ( 5

52 + 32
)2 = 0.7353

Probability of collapsing to |1⟩ = ( 3

52 + 32
)2 = 0.2647

As a check, the sum of these probabilities add up to 1:

0.7353 + 0.2647 = 1

2. For |ψ⟩ to be a valid quantum state, the squares of the amplitudes
sum up to 1:

a.

(−0.35
N
)2 + ( 0.28

N
)2 = 1

Thus,

N = 0.352 + 0.282

The quantum state |ψ⟩ is:

|ψ⟩ = −0.35

0.352 + 0.282
| 0⟩ + 0.28

0.352 + 0.282
| 1⟩ = −0.35

0.4482
| 0⟩ + 0.28

0.4482
| 1⟩

b. For the quantum state |ψ⟩, the amplitudes are:

ω0 = −0.35

0.4482

ω
1
= 0.28

0.4482

The absolute ratio of the amplitudes are:

| ω0 |

| ω
1
|
= 0.35

0.28
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This simplies to:

0.35

0.28
= 1.25

= 125

100

= 5

4

Since the amplitude of | 0⟩ in the quantum state is negative, this qubit
has five inverted pentagon | 0⟩ and four triangle | 1⟩ qubelets:

3. For a valid quantum state, the sum of the squares of the amplitudes must
add up to 1.

In this case, the amplitudes are:

ω0 = 0.2523
ω
1
= −0.7517

The squares of the amplitudes, the probabilities of collapsing to 0 and 1, are:

ω0
2 = 0.25232 = 0.064

ω
1
2 = (−0.7517)2 = 0.5651

Since the sum of the probabilities 0.064 + 0.5651 doesn’t equal 1, the given
expression doesn’t represent a valid quantum state.

4. The amplitude ω
1
 is determined by the following steps:a.

(−0.4472)2 + ω
1
2 = 1

ω
1
2 = 1 − (−0.4472)2 = 0.8000

ω
1
= 0.8000

ω
1
= 0.8944

b. To calculate the number of pentagon | 0⟩ and triangle | 1⟩ qubelets, we
first calculate the absolute ratio of the amplitudes:

| ω0 |

| ω
1
|
= 0.4472

0.8944
= 0.5 = 1

2
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That is, the qubit will hold one pentagon | 0⟩ qubelet and two triangle
| 1⟩ qubelets. Because the sign of ω

1
 is negative, the pentagon | 0⟩

qubelet will be inverted, as shown here:

5. If the qubit contains no triangle | 1⟩ qubelets, then ω
1
= 0. Thus, the qubit

can only collapse to 0. As a result, the probability of selecting the pentagon
| 0⟩ qubelet is 1. The pentagon | 0⟩ qubelet, however, could be inverted. So,
ω0 = ± 1.

6. The following figure shows the qubelets after each gate:a.

b. The quantum states after each gate operates on the qubit are shown
next:

After X Gate
| 1⟩

After Z Gate
− |1⟩

After H Gate
After the H gate operates on the qubit, the qubit contains one
inverted pentagon | 0⟩ qubelet and one triangle | 1⟩ qubelet. Thus,
the amplitudes are:

ω0 = − 1

12 + 12
= − 1

2

ω
1
= 1

12 + 12
= 1

2

The quantum state is:

− 1

2
| 0⟩ + 1

2
| 1⟩

c. The probabilities of collapsing to | 0⟩ and | 1⟩, respectively, are:

Probability of collapsing to |0⟩ = ω0
2 = ( − 1

2
)2 = 1

2

Probability of collapsing to |1⟩ = ω
1
2 = ( 1

2
)2 = 1

2

Appendix 4. Solutions to Exercises • 452

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


d. The quantum program for the previous circuit is as follows:

0_X_Z_H_Measure.qasm
qreg q[1];
creg c[1];

x q[0];
z q[0];
h q[0];
measure q[0] -> c[0];

e. The output of the quantum program is the following:

The probabilities of the qubit collapsing to | 0⟩ and | 1⟩ are each 0.5 or
50%. Thus, the probabilities of seeing the classical states 0 and 1 are
also 0.5 or 50%. These match the probabilities computed earlier from
the final quantum state.

Rotating Qubelets Through Any Angle Solutions
Solutions for the exercises in Try Your Hand, on page 156.

1. Since the quantum state is specified using two pentagon | 0⟩ and six
triangle | 1⟩ qubelets, it’ll have a greater probability to collapse to 1

a.

than 0. Thus, it’ll be in the lower hemisphere where the south pole is
the quantum state | 1⟩.

b. Since the triangle | 1⟩ qubelets are 3 times more than the pentagon | 0⟩
qubelets, the quantum state leans more toward | 1⟩ than | 0⟩. Thus, it’ll
be closer to the south pole than the equator.

2. This qubit has roughly the same number of pentagon | 0⟩ and triangle | 1⟩
qubelets. So its quantum state will be around the equator on the Bloch
sphere, which corresponds most closely to patch A. Patch B is associated
with a state that would have far more pentagon | 0⟩ qubelets than triangle
| 1⟩ qubelets, while patch C would have more triangle | 1⟩ than pentagon
| 0⟩ qubelets.
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3. The quantum state represented by the patch favors the | 1⟩ state and,
thus, the second qubit best matches it. The first qubit’s quantum state
falls in the upper hemisphere and leans toward collapsing to 0. The last
qubit’s quantum state falls exactly on the south pole.

4. The equation for the quantum state, |ψ⟩, of a qubit is:a.

|ψ⟩ = cos θ′

2
| 0⟩ + e

iφ
sin θ′

2
| 1⟩

The angle that the magnitude | r
|0⟩
| makes with the vertical W′-axis is

θ′, and the angle that the magnitude | r
|1⟩
| sweeps out in the equatorial

plane is φ. This angle is the difference between the rotations of the
triangle | 1⟩ and pentagon | 0⟩ qubelets.

Since this qubit has just one pentagon | 0⟩ and one triangle | 1⟩ qubelet,
the amplitudes are as follows:

Magnitude of amplitude of |0⟩ = 1

2

Magnitude of amplitude of |1⟩ = 1

2

Thus,

cos θ′

2
= 1

2

= cos π

4

= cos
π

2

2

Thus, θ′ = π

2

That is, this quantum state lies at 90°, or on the equator.

The pentagon | 0⟩ qubelet is rotated 90° anticlockwise, and the triangle
| 1⟩ qubelet is turned 90° clockwise. Thus, the difference in their rota-
tions is 90 − (−90) = 180°. Hence, the quantum state is:

1

2
| 0⟩ + eiπ 1

2
| 1⟩

Noting that eiπ = cos π + isin π, and that cos π = −1 and sin π = 0, the
quantum state of this qubit is:

1

2
| 0⟩ − 1

2
| 1⟩
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b. The quantum state is identical to a | 1⟩ qubit split by an H gate.

In both cases, the difference in angles between the triangle | 1⟩ qubelets
and pentagon | 0⟩ qubelets is 180° or π radians.

This example underscores the criteria that it’s only the difference in
angles between the pentagon | 0⟩ and triangle | 1⟩ qubelets that matters
and not their individual orientations.

c. The difference in rotation angles between the pentagon | 0⟩ qubelets
and triangle | 1⟩ qubelets is 225 − 45 = 180°. Thus, its state would be
identical to the original qubit.

Universal Gates Solutions
Solutions for the exercises in Try Your Hand, on page 169.

1. The quantum program for this circuit is as follows:a.

0_X_U2_Phi_0_Lambda_180_H_Measure.qasm
qreg q[1];Line 1

creg c[1];2

3

x q[0];4

u2(0,pi) q[0];5

h q[0];6

measure q[0] -> c[0];7

The U2 gate acts on a | 1⟩ qubit. Thus, on line 4 we need to declare a
NOT (X) gate to switch the q[0] qubit from its initial | 0⟩ state to the
required | 1⟩ state.

b. The output for this circuit is shown here:

The value recorded in the classical register is always 1 suggesting that
the q[0] qubit consistently collapses to | 1⟩. This circuit mimics back-
to-back H gates.
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c. When you run this circuit, you get an output that is similar to the
following:

This output shows that the classical register records 0 and 1 each
approximately half the time, suggesting that the q[0] qubit collapses
to | 0⟩ and | 1⟩ with the same frequency. In other words, gates in this
sequence don’t neutralize each other as the back-to-back H gates
would.

The qubit doesn’t go back to its original state because the U2 (π / 2, π)
gate doesn’t produce qubelets that cancel out when acted on by the
H gate like the U2 (0, π) gate does.

2. No. Having the qubit acted on by another H gate wouldn’t help since
back-to-back H gates don’t affect the qubit. It’s as if the H gates were

a.

not there at all, effectively resetting the circuit, and the qubit is only
operated on by the U3 (π / 3, π / 6, 0) gate.

b. i. The quantum program is listed here:

0_U3_Theta_60_Phi_30_H_U3_Theta_60_H_Measure.qasm
qreg q[1];
creg c[1];

u3(pi/3,pi/6,0) q[0];
h q[0];
u3(pi/3,0,0) q[0];➤

h q[0];
measure q[0] -> c[0];

The second U3 (π / 3, 0, 0) gate sandwiched between the two H gates
is highlighted.

ii. The output of this program will be similar to the figure on page 457.
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The probability of the q[0] qubit collapsing to | 0⟩ has improved so
that the frequency of seeing 0 recorded in the classical register is
roughly 96%.

3. The equation for the quantum state is:a.

|ψ⟩ = cos θ

2
| 0⟩ + e

iφ
sin θ

2
| 1⟩

The angle θ is the tilt from the vertical or Z-axis and the angle φ is
the difference in the rotation angles between the triangle | 1⟩ and
pentagon | 0⟩ qubelets.

The right qubit has one pentagon | 0⟩ qubelet and two triangle | 1⟩
qubelets. Thus, the amplitude of the pentagon | 0⟩ qubelet is:

Amplitude of |0⟩ = cos θ

2
= 1

12 + 22
= 1

5

From cos θ / 2, sin θ / 2 is calculated using Euler’s formula:

sin2 θ
2
= 1 − cos2 θ

2

= 1 − ( 1

5
)2

= 4

5

sin θ

2
= 2

5

Thus, the angle θ / 2 is:

θ

2
= arccos 1

5
= 1.1071 radians

And θ is 2.2142 radians or 126.86°.
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The triangle | 1⟩ qubelets are rotated 30° anticlockwise. So the angle
φ is:

|ψ⟩ = π

6
radians

Angles are measured positively in the anticlockwise direction.1 So 30°
anticlockwise is a positive angle.

Thus,

e
iπ
6 = cos π

6
+ i sin π

6

=
3

2
+ i 1

2

The quantum state for the right qubit is:

|ψ⟩ = 1

5
| 0⟩ + ( 3

2
+ i 1

2
) 2

5
| 1⟩

= 1

5
| 0⟩ + ( 3

5
+ i 1

5
) | 1⟩

b. Since the angle θ is greater than π / 2 radians or 90°, this quantum
state falls in the lower half of the Bloch sphere, as shown in the fol-
lowing figure:

You could also have deduced that the quantum state falls in the bot-
tom hemisphere since the qubit has more triangle | 1⟩ qubelets than
pentagon | 0⟩ qubelets and would, thus, lie closer to the | 1⟩ state than
the | 0⟩ state.

1. https://en.wikipedia.org/wiki/Angle#Positive_and_negative_angles
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c. Calculate the probabilities by multiplying each amplitude by its
complex conjugate, respectively. The probability of the right qubit
collapsing to | 0⟩ is:

Probability of collapsing to |0⟩ = ( 1

5
)2

= 1

5

Similarly, the probability of this qubit collapsing to | 1⟩ is:

Probability of collapsing to |1⟩ = ( 3

5
+ i 1

5
)( 3

5
− i 1

5
)

= ( 3
5
+ 1

5
)

= 4

5

d. The quantum circuit that puts a | 0⟩ into the state computed in the
previous exercise is:

e. The quantum program, excluding the header, is listed here:

One_Pentagon_2_Triangles_30_Degrees.qasm
qreg q[1];
creg c[1];
u3(2.2142,pi/6,0) q[0];➤

measure q[0] -> c[0];

The U3 Universal gate is highlighted and declared with θ = 2.2142 radians
(corresponding to 126.87°), φ = π / 6, and λ = 0.

f. The output after running this program is shown in the following figure:

The probabilities of collapsing to 0 and 1 matches the earlier calculations.
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Single Qubit Programs Solutions

Quantum Gates as Matrices Solutions
Solutions for the exercises in Try Your Hand, on page 183.

1. The amplitude ω0 = 0.7071. Thus, the probability of the qubit collapsing
to 0 is ω0

2 = 0.70712 = 0.4999.
a.

The amplitude ω
1
= −0.2929. So the probability of the qubit collapsing

to 1 is ω
1
2 = (−0.2929)2 = 0.0858.

The sum of these probabilities is 0.4999 + 0.0858 = 0.5857. Since the
sum is less than 1, the vector doesn’t represent a valid quantum state.

b. The amplitude ω0 = −0.8062. Thus, the probability of the qubit collaps-
ing to 0 is ω0

2 = (−0.8062)2 = 0.6499.

The amplitude ω
1
= −0.5916. So the probability of the qubit collapsing

to 1 is ω
1
2 = (−0.5916)2 = 0.3499.

The sum of these probabilities is 0.6499 + 0.3499 = 0.9998. Since the
sum is, for all intents and purposes, 1, the vector represents a valid
quantum state.

2. The qubelets before and after the Z gate are shown here:a.

The Z gate inverts only the triangle | 1⟩ qubelet.

b. The left qubelet only has a triangle | 1⟩ qubelet. Thus, ω
1
= 1. And the

quantum state of the qubit before the Z gate acts on it is:

( 01 )
After the Z gate acts on the qubit, the triangle | 1⟩ qubelet is inverted.
So ω

1
= −1. And the quantum state after the Z gate acts on it is:

( 0
−1 )
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3. The qubelets before and after the H gate acts on the qubit is shown
in the following figure:

a.

The H gate splits the triangle | 1⟩ qubelet into a pentagon | 0⟩ qubelet
and an inverted triangle | 1⟩ qubelet.

b. The left qubelet only has a triangle | 1⟩ qubelet. Thus, ω
1
= 1. And the

quantum state of the qubit before the H gate acts on it is:

( 01 )
After the H gate acts on the qubit, the triangle | 1⟩ qubelet is split into
a pentagon | 0⟩ qubelet and an inverted triangle | 1⟩ qubelet. The
amplitudes are:

ω0 = 1

12 + 12
= 1

2

ω
1
= − 1

12 + 12
= − 1

2

Wrting the amplitudes in vector form, we get:

( 1

2

− 1

2

)
4. a. The operation is:i.

A
NOT ( 10 ) = ( 01 )

ii. The first column of the A
NOT

 matrix is:

A
NOT

= [ 0 *
1 * ]

b. The operation is:i.

A
NOT ( 01 ) = ( 10 )
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ii. The complete A
NOT

 matrix is:

A
NOT

= [ 0 1
1 0 ]

c. i. This qubit has two pentagon | 0⟩ qubelets and one inverted triangle
| 1⟩ qubelet. Thus, its normalized quantum state is:

2

22 + 12
| 0⟩ − 1

22 + 12
| 1⟩ = 0.8944 |0⟩ − 0.4472 |1⟩

The negative sign for the amplitude associated with | 1⟩ indicates
that the triangle qubelet is inverted.

The vector for this quantum state is:

1

22 + 12
( 2
−1 ) or ( 0.8944

−0.4472 )
The probabilities of the qubit collapsing to 0 and 1 are:

Probability of collapsing to 0 = ( 2

22 + 12
)2 = 22

22 + 12
= 0.8

Probability of collapsing to 1 = (− 1

22 + 12
)2 = 12

22 + 12
= 0.2

ii. When the NOT gate acts on the qubit with two pentagon | 0⟩ qubelets
and an inverted triangle | 1⟩ qubelet, it switches the two pentagon
| 0⟩ qubelets to two triangle | 1⟩ qubelets, and it switches the
inverted triangle | 1⟩ qubelet to an inverted pentagon | 0⟩ qubelet,
as shown in the following figure:

|0i|0i |0i|0i

|1i� |1i
|1i|1i |1i|1i

|0i� |0iNOT

The normalized quantum state of the blended qubit on the right is:

− 1

12 + 22
| 0⟩ + 2

12 + 22
| 1⟩

(Note the inverted pentagon | 0⟩ qubelet drawn on the right of the
right qubit. This placement reflects that the NOT gate switched the
inverted triangle | 1⟩ qubelet in the left qubit.)
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Writing this quantum state in vector form, we get:

1

5
(−12 )

The probabilities of the qubit collapsing to 0 and 1 are:

Probability of collapsing to 0 = (− 1

5
)2 = 12

5
= 0.2

Probability of collapsing to 1 = ( 2

5
)2 = 22

5
= 0.8

The probabilities of the qubit collapsing to 0 and 1, respectively,
get switched after the NOT gate acts on the qubit. In other words,
when a NOT gate acts on a blended qubit, the probabilities of col-
lapsing to the classical states 0 or 1 are switched.

iii. To calculate the quantum state of the qubit after the NOT gate acts
on it, multiply the A

NOT
 matrix by the vector for the initial quan-

tum state as follows:

A
NOT

1

5
( 2
−1 ) = 1

5 [ 0 1
1 0 ]( 2

−1 ) = 1

5
(−12 )

This quantum state is identical to the one obtained by analyzing
the NOT gate operation using qubelets.

5. a. The operation is:i.

AZ ( 10 ) = ( 10 )
ii. The first column of the AZ matrix is:

AZ = [ 1 *
0 * ]

b. The operation is:i.

AZ ( 01 ) = ( 0
−1 )

ii. The complete AZ matrix is:

AZ = [ 1 0
0 −1 ]
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c. i. This qubit has one pentagon | 0⟩ qubelet and two inverted triangle
| 1⟩ qubelets. Thus, it’s normalized quantum state is:

1

12 + 22
| 0⟩ − 2

12 + 22
| 1⟩

The negative size for the amplitude associated with | 1⟩ indicates
that the triangle qubelet is inverted.

The vector for this quantum state is:

1

5
( 1
−2 )

ii. When the Z gate acts on the qubit with one pentagon | 0⟩ qubelet
and two inverted triangle | 1⟩ qubelets, it’ll leave the pentagon
qubelet alone but will switch the triangle qubelets, as shown in
the following figure:

|0i|0i

|1i� |1i |1i� |1i |0i|0i |1i|1i |1i|1iZ

The normalized quantum state of the blended qubit on the right is:

1

5
| 0⟩ + 2

5
| 1⟩

Writing this quantum state in vector form, we get:

1

5
( 12 )

iii. To calculate the quantum state of the qubit after the Z gate acts
on it, multiply the AZ matrix by the vector for the initial quantum
state, as follows:

AZ
1

5
( 1
−2 ) = 1

5 [ 1 0
0 −1 ]( 1

−2 ) = 1

5
( 12 )

This quantum state is identical to the one obtained by analyzing
the Z gate operation using qubelets.

Gate Matrix Restrictions Solutions
Solutions for the exercises in Try Your Hand, on page 192.
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1. To determine the Hermitian matrix, first get its transpose, A
G
T , by

switching the matrix’s rows and columns:
a.

A
G
T = [ 1 i

−1 −i ]
Next, replace each element with its complex conjugate:

A
G
† = [ 1 −i

−1 i ]
b. To check if this matrix represents a quantum gate, first calculate the

product matrix, A
G
†A

G
:

A
G
†A

G
= [ 1 −i

−1 i ] [ 1 −1
i −i ]

To multiply these matrices, we’ll use the method described in Multi-
plying Matrices, on page 396. According to this method, we’ll get the
product matrix by working out each column of the product individu-
ally. The first column of the product matrix is:

[ 1 −i
−1 i ] ( 1i ) = 1 · ( 1

−1 ) + i · (−ii ) = ( 1 − i2

−1 + i2 ) = ( 2
−2 )

The second column of the product is:

[ 1 −i
−1 i ] (−1−i ) = −1 · ( 1

−1 ) + −i · (−ii ) = (−1 + i21 − i2 ) = (−22 )
Arrange these columns to get the product:

A
G
†A

G
= [ 2 −2

−2 2 ]
Since the product A

G
†A

G
 isn’t the identity matrix, A

G
 isn’t a valid

quantum gate matrix.

2. To determine the Hermitian matrix, first get its transpose, A
S†
T , by

switching the matrix’s rows and columns:
a.

A
S†
T = [ 1 0

0 −i ]
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Next, replace each element with its complex conjugate:

A
S†
† = [ 1 0

0 i ]
This matrix for the S† gate is identical to the A

S
 matrix for the S gate.

b. To see if this matrix represents a quantum gate, first calculate the
product matrix, A

S†
* A

S†
:

A
S†
* A

S†
= [ 1 0

0 i ][ 1 0
0 −i ]

To multiply these matrices, we’ll use the method described in Multi-
plying Matrices, on page 396. According to this method, we’ll get the
product matrix by working out each column of the product individu-
ally. The first column of the product matrix is:

[ 1 0
0 i ]( 10 ) = 1 · ( 10 ) + 0 · ( 0i ) = ( 10 )

The second column of the product matrix is:

[ 1 0
0 i ]( 0−i ) = 0 · ( 10 ) − i · ( 0i ) = ( 0

−i2 ) = ( 01 )
Arrange these columns to get the product:

A
S†
* A

S†
= [ 1 0

0 1 ]
Since the product is the identity matrix, it represents a quantum gate.
In fact, the S† gate is one of the predefined gates in the IBM Quantum
Computer.

3. To determine the Hermitian matrix, first get its transpose, AH
T , by

switching the matrix’s rows and columns:
a.

AH
T = [ 1

2

1

2
1

2
− 1

2
]
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Since each element of the matrix is real, this matrix is the conjugate
transpose. In other words,

AH
† = AH

b. To see if this matrix represents a quantum gate, first calculate the
product matrix AH

† AH:

AH
† AH = [ 1

2

1

2
1

2
− 1

2
] [ 1

2

1

2
1

2
− 1

2
]

To multiply these matrices, we’ll use the method described in Multi-
plying Matrices, on page 396. According to this method, we’ll get the
product matrix by working out each column of the product individu-
ally. The first column of the product matrix is:

[ 1

2

1

2
1

2
− 1

2
] ( 1

2
1

2
) = 1

2
· ( 1

2
1

2
) + 1

2
· ( 1

2

− 1

2
) = ( 12 + 1

2
1

2
− 1

2
) = ( 10 )

The second column of the product matrix is:

[ 1

2

1

2
1

2
− 1

2
] ( 1

2

− 1

2
) = 1

2
· ( 1

2
1

2
) − 1

2
· ( 1

2

− 1

2
) = ( 12 − 1

2
1

2
+ 1

2
) = ( 01 )

Arrange these columns to get the product:

AH
† AH = [ 1 0

0 1 ]
Since this product is the identity matrix, the AH matrix represents
the H gate.
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4. To get the AU matrix for U3(π / 3, π / 2, −π / 2), set θ = π / 3, φ = π / 2,
and λ = −π / 2:

a.

AU = [ cos θ

2
−eiλ sinθ

2

e
iφ
sin θ

2
e
i(λ+φ)

cos θ

2

] = [ cos
π

3

2
−e

−iπ
2 sin

π

3

2

e
iπ
2 sin

π

3

2
e
i(π
2
−π
2
)
cos

π

3

2
]

Noting that sin π / 6 = 1 / 2, cos π / 6 = 3 / 2, the above matrix sim-
plifies to:

AU = [ 3

2
−e

−iπ
2 1

2

e
iπ
2 1

2
e
i(−π

2
+π
2
) 3

2
]

Using Euler’s formula:

e
−iπ

2 = cos π

2
− i sin π

2
= −i

And,

e
iπ
2 = cos π

2
+ i sin π

2
= i

Substituting these terms back in the matrix AU:

AU = [ 3

2

i

2
i

2

3

2
]

b. To determine the Hermitian matrix, first get its transpose:

AU
T = [ 3

2

i

2
i

2

3

2
]
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Next, replace each element of the matrix with its conjugate:

AU
† = [ 3

2
− i

2

− i

2

3

2
]

c. To check if the AU matrix is unitary, first calculate the product matrix
AU
†AU:

AU
† AU = [ 3

2
− i

2

− i

2

3

2
] [ 3

2

i

2
i

2

3

2
]

To multiply these matrices, we’ll use the method described in Multi-
plying Matrices, on page 396. According to this method, we’ll get the
product matrix by working out each column of the product individu-
ally. The first column of the product matrix is:

[ 3

2
− i

2

− i

2

3

2
] ( 3

2
i

2
) = 3

2
· ( 3

2

− i

2
) + i

2
· (− i

2
3

2
) = ( 3

4
− i2

4

−
3

2

i

2
+ i

2

3

2
) = ( 10 )

The second column of the product matrix is:

[ 3

2
− i

2

− i

2

3

2
] ( i

2
3

2
) = i

2
· ( 3

2

− i

2
) + 3

2
· (− i

2
3

2
) = ( i2 3

2
−

3

2

i

2

− i
2

2
+ 3

4
) = ( 01 )

Arrange these columns to get the product:

AU
†AU = [ 1 0

0 1 ]
Since the product is the identity matrix, matrix AU is unitary.

report erratum  •  discuss

Single Qubit Programs Solutions • 469

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


d. To determine the parameters for the Universal gate, U3(θ, φ, λ), associ-
ated with AU

† , equate the U3(θ, φ, λ) matrix with that of AU
† :

[ cos θ

2
−eiλ sinθ

2

e
iφ
sin θ

2
e
i(λ+φ)

cos θ

2
] = [ 3

2
− i

2

− i

2

3

2
]

The idea in these types of matrix equations is to compare the respective
elements in the matrix on the left to the one on the right. Start with
the element on the right that has the fewest parameters. Thus, looking
at the top left element from both matrices:

cos θ

2
=

3

2
θ

2
= cos−1

3

2

= π

6

θ = π

3

Next, equate the bottom left (second row, first column) elements in
both matrices:

e
iφ
sinθ

2
= − i

2

e
iφ
sinπ

6
= − i

2

e
iφ 1

2
= − i

2

e
iφ

= −i
cos φ + i sin φ = −i

Since the imaginary part on the right is −1, the imaginary part on the
left, sin φ, must also be −1. The smallest such angle is 270° or:

φ = 3π

2

This value also makes the real part, cos φ = 0.

Finally, to compute λ, compare the top right (first row, second column)
terms from both matrices:
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−eiλ sin θ

2
= − i

2

−eiλ sin π

6
= − i

2

−eiλ 1

2
= − i

2

eiλ = i
cos λ + i sin λ = i

Since the real part on the right is 0, the real part on the left, cos λ, is
also 0:

cos λ = 0
λ = cos−10
λ = π

2

A quick check confirms that this value of λ makes the imaginary part
on the right, sin λ = sin π / 2, equal to 1 as required.

Note that we only needed three of the four element comparisons to
get the three parameters for the U3(θ, φ, λ) gate. You can verify,
though, that these three values correctly equate to the fourth element
on the bottom right of the right matrix stated earlier.

The Universal gate that implements the AU
†  matrix is U3†(π / 3, 3π / 2, π / 2).

e. To compute the quantum state when the U3(π / 3, 3π / 2, π / 2) gate
acts on the | 0⟩ qubit, calculate the following:

i.

AU ( 10 ) = [ 3

2

i

2
i

2

3

2
] ( 10 )

= ( 3

2
i

2
)

Or, writing the quantum state as an equation:

3

2
| 0⟩ − i

2
| 1⟩

ii. To compute the probabilities of the qubit collapsing to the idealized
states, take the squares of the amplitudes but use the conjugate
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complexes, as explained in Measuring Magnitudes of Complex
Numbers,  on page 167:

Probability of collapsing to |0⟩ =
3

2

3

2

= 3

4

And,

Probability of collapsing to |1⟩ = i

2

−i

2

= −i2

4
= 1

4

iii. The quantum program is listed here:

0_U3_60_90_270_Measure.qasm
qreg q[1];
creg c[1];

u3(pi/3,pi/2,-pi/2) q[0];
measure q[0] -> c[0];

iv. The output of this program is shown in the following figure:

Yes, the likelihoods of finding 0 or 1 in the classical registers is
roughly 75% or 25%, respectively. These match the probabilities
of the q[0] qubit collapsing to | 0⟩ or | 1⟩, respectively, as calculated
earlier.

f. The quantum program for the circuit with back-to-back Universal
gates is listed here:

i.

Back_to_Back_U3_Gates.qasm
qreg q[1];Line 1

creg c[1];2

3

u3(pi/3,pi/2,-pi/2) q[0];4

u3(pi/3,3*pi/2,pi/2) q[0];5

measure q[0] -> c[0];6

The U3(π / 3, 3π / 2, π / 2) gate is declared on line 5.
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ii. The output of this program is shown in the following figure:

The U3(π / 3, 3π / 2, π / 2) gate restores the quantum state of the
q[0] back to | 0⟩. In other words, since this gate is the Hermitian
matrix of the U3(π / 3, π / 2, −π / 2) gate, it reverses the action on
the qubit and puts it back to the original state before these gates
acted on it. Thus, the concept of back-to-back gates defined by
matrices that are Hermitians of each other is similar to what you
saw earlier in Back-to-Back H Gates: The First Hint of Taming
Randomness, on page 88.

g. i. The quantum program for this circuit is as follows:

0_U3_U3_Measure.qasm
qreg q[1];
creg c[1];
u3(pi/3,pi/2,-pi/2) q[0];
u3(pi/3,pi/4,-pi/2) q[0];
measure q[0] -> c[0];

ii. The output of this program is shown here:

In this case, the q[0] qubit isn’t restored to its original | 0⟩ state as
in the previous part. Both U3 gates have the same θ = π / 2, which
determines the numbers of pentagon | 0⟩ and triangle | 1⟩ qubelets
in the quantum state, and the same λ = π / 2. But they have differ-
ent values for the second parameter, φ, which measures the rela-
tive difference between the orientations of the pentagon | 0⟩ and
triangle | 1⟩ qubelets. Because the second U3 gate’s φ angle doesn’t
exactly “twist back” the effect of the first gate on the qubelets, the
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quantum state isn’t restored. Hence, the qubit doesn’t go back to
| 0⟩ after the second U3 gate and remains in a blended state. When
this blended qubit is measured, it collapses to either | 0⟩ or | 1⟩. As
a result, the classical register records both the 0 and 1 states.

5. Let ψ
Before

 be the quantum state of the qubit before it’s acted on by the S†

gate. Then, the following matrix equation defines how the S† gates modifies
this quantum state:

A
S†
ψ
Before

= ( 1

2

− 1

2
i )

To get ψ
Before

, pre-multiply both sides by the A
S†

 matrix’s Hermitian, A
S†
† :

(AS†
† A

S†)ψBefore = AS†
† ( 1

2

− 1

2
i )

Note that A
S†
† = A

S
. Thus, A

S†
† A

S†
= I, the identity matrix. As a result, the

left-hand side simplifies to ψ
Before

. After substituting A
S
 for A

S†
†  on the

right-hand side, the above equation reduces to:

ψ
Before

= [ 1 0
0 i ] ( 1

2

− 1

2
i ) = ( 1

2

−i2 1

2
) = ( 1

2
1

2
)

Thus, the original quantum state before the S† gate operates on it is:

ψ
Before

= ( 1

2
1

2
)

Analyzing Quantum Gate Matrices Solutions
Solutions for the exercises in Try Your Hand, on page 200.
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1. The equation for the given quantum state, ψ, is:a.

ψ = 1

2
| 0⟩ + i 1

2
| 1⟩

Compare this equation with that of the general quantum state:

cos θ

2
| 0⟩ + e

iφ
sin θ

2
| 1⟩

The e
iφ

 term injects the complex number into the equation for the
state. To determine the value of φ, relate the corresponding terms in
the general equation with that of the given quantum state ψ:

e
iφ
= cos φ + i sin φ = i

The real term, cos φ, must be 0 since the right-hand side is a pure
complex number:

φ = cos−1 0

= π

2

Further, i sin φ = i sin π / 2 = i confirms that the calculations for φ are
right. Thus, the angle φ, the relative difference between the orienta-
tions of the pentagon | 0⟩ and triangle | 1⟩ qubelets, is 90°.

To calculate θ, the angle which the quantum state vector leans away
from the vertical on the Bloch sphere, compare the amplitudes for | 0⟩
and | 1⟩ in the general equation for the quantum state with that for ψ:

Amplitude for |0⟩ = cos θ

2
= 1

2

Amplitude for |1⟩ = e
iφ
sin θ

2
= i 1

2

Calculate θ from the amplitude for | 0⟩ as follows:

θ

2
= cos−1 1

2

= π

4

θ = 2 × π

4

= π

2

Setting θ = π / 2 in the amplitude for | 1⟩, i sinθ / 2, gives i / 2 , validating
that our calculations are correct.
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Thus, the parameters for the U3(θ, φ, λ) gate are:

θ = π

2

φ = π

2
λ = 0

Since we are working on | 0⟩, we only need to look at the first column
of the gate matrix for U3 which doesn’t rely on λ. So, any value of λ
can be used as it’ll not affect the behavior of the gate on | 0⟩.

Recall from Number of Qubelets Define the Amplitudes, on page 145,
the number of pentagon | 0⟩ and triangle | 1⟩ qubelets in the qubit are
related as follows:

Number of pentagon |0⟩ qubelets : Number of triangle |1⟩ qubelets = cos θ

2
: sin θ

2

= 1

2
: 1

2
= 1 : 1

These parameters for the U3(θ, φ, λ) gate puts the | 0⟩ qubit in the
quantum state ψ having an equal number of pentagon | 0⟩ and triangle
| 1⟩ qubelets, with the triangle | 1⟩ qubelets rotated 90° anticlockwise,
as shown in the following figure:

|0i|0i |1
i

|1
i

This quantum state is identical to the one worked out in the previous
section using the qubelets approach.

The probabilities of the qubit collapsing to | 0⟩ or | 1⟩, respectively, is
the “square” of the amplitudes:

Probability of qubit collapsing to |0⟩ = ( 1

2
)2 = 1

2

Probability of qubit collapsing to |1⟩ = i

2

−i

2

= −i2 1
2

= 1

2

Notice that to compute the probability of collapsing to | 1⟩, the ampli-
tude is a complex number, so we multiply by its complex conjugate.
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b. The quantum circuit is shown here:

q[0] = |0i U3(⇡2 ,
⇡
2 , 0)

c •
c[0]

The quantum program is the following:

U3_90_90_0_Measure.qasm
qreg q[1];
creg c[1];

u3(pi/2,pi/2,0) q[0];
measure q[0] -> c[0];

The output of this program is shown in the following figure:

The classical registers won’t log the angles of the pentagon | 0⟩ and
triangle | 1⟩ qubelets. But the classical states recorded match the
probabilities of the qubit collapsing to | 0⟩ or | 1⟩, respectively, calculated
in the previous part.

c. The quantum program is as follows:

U3_90_90_0_S_Measure.qasm
qreg q[1];
creg c[1];

u3(pi/2,pi/2,0) q[0];
s q[0];
measure q[0] -> c[0];

The output of this program is shown on page 478.

Since the S gate only rotates the pentagon | 1⟩ qubelets but doesn’t
split any qubelets, the relative number of pentagon | 0⟩ and | 1⟩ qubelets
remains the same. Consequently, the probabilities of the qubit collaps-
ing to | 0⟩ or | 1⟩ don’t change and, hence, the classical states recorded
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in the classical registers will also be similar to what was recorded in
the previous part.

d. No, you can’t confirm whether the pentagon | 1⟩ qubelets are rotated
since the gates didn’t change the relative number of pentagon | 0⟩ and
triangle | 1⟩ qubelets. (In later sections you’ll learn to write programs
that validate the qubelet rotations.)

2. The vector for the general quantum state ψ is:

ψ = ( cos θ

2

e
iφ
sin θ

2
)

The φ parameter, which measures the relative difference in orientations
between the pentagon | 0⟩ and the triangle | 1⟩ qubelets, is associated with
the triangle | 1⟩ qubelets. Thus, turning both qubelets by the same angle
doesn’t change the quantum state. Redraw the qubit on the right so that
the pentagon | 0⟩ qubelet is rotated back to the non-rotated state by
turning both qubelets 90° clockwise, as shown in the following figure:

|0i|0i |1i|1i |0i|0i

|1i
|1i?

The required gate leaves the pentagon | 0⟩ qubelet alone. Thus, the top left
element of the gate’s matrix must be 1:

[ 1 *
* * ]

The * indicates that those corresponding terms aren’t yet known.
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This gate doesn’t take a qubelet of one type and change it to the other
type by splitting or switching the qubelet. As a result, the non-diagonal
terms in the gate’s matrix are 0:

[ 1 0
0 * ]

(If the gate were to split qubelets, for example, then the non-diagonal
terms would be nonzero.)

The triangle | 1⟩ qubelet is rotated 90° clockwise. This rotation is governed
by the following equation:

e
iφ
= cos φ + i sin φ

Substitute −π / 2 for φ (the sign is negative because the rotation is
clockwise):

e
−i

pi

2 = cosπ
2
− i sin π

2
= −i

Thus, the gate matrix is:

[ 1 0
0 −i × something ]

Since this matrix must be Hermitian for a quantum gate, you can confirm
that something is 1. Hence, this matrix matches that of the S† gate.

Although this problem is ostensibly about rotating a pentagon | 0⟩ qubelet,
it’s actually equivalent to rotating the triangle | 1⟩ qubelet.

Solutions: Quantum Gates and How to Use Them
Solutions for the exercises in Try Your Hand, on page 216.

1. False. The Y gate switches and rotates qubelets. That is, when it acts
on, say, a triangle | 1⟩ qubelet, it’ll switch it to a pentagon | 0⟩ qubelet

a.

and rotate it. But it won’t split qubelets. Hence, it doesn’t take an
idealized quantum state and put it in a blended state.

b. False. Both the S† and T gates leave the | 0⟩ qubelets alone but rotate
the triangle | 1⟩ qubelets. So they’ll have no effect on the | 0⟩ qubit but
will rotate the triangle | 1⟩ qubelets in the | 1⟩ qubit.
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c. True. The S gate rotates the triangle | 1⟩ qubelets 90°, or a quarter turn
anticlockwise. The T† gate rotates the triangle | 1⟩ qubelets 45°, or a
one-eighth turn clockwise. Both leave the pentagon | 0⟩ qubelets alone.
Thus, two T† gates rotate the triangle | 1⟩ qubelets by 90°, or a quarter
turn clockwise, reversing the action of the S gate.

d. True. The S gate rotates the triangle | 1⟩ qubelets 90°, or a quarter turn
anticlockwise. The T gate rotates the triangle | 1⟩ qubelets by 45°, or a
one-eighth turn anticlockwise. Thus, when both gates operate on the
triangle | 1⟩ qubelets, the total rotation is 90 + 45 = 135° anticlockwise.

e. True. The Rx(θ) gate splits qubelets like the H gate, although asymmet-
rically. Nonetheless, it puts an idealized qubit, | 0⟩ or | 1⟩, into a
blended state.

2. The quantum state after the Y gate acts on the | 0⟩ qubit is shown in
the following figure:

a.

|0i|0i |0i|1i|1
iY

b. If the NOT (X) gate were to act on the | 0⟩ qubit, the pentagon | 0⟩ qubit
would be switched to a triangle | 1⟩ qubit but wouldn’t be rotated, as
shown in the next figure:

|0i|0i |0i|1i|1iX

c. Regardless of how the triangle | 1⟩ qubelet is rotated, it’ll always col-
lapse to the idealized | 1⟩ qubit, which logs a 1 in the classical register.
Thus, in both cases, the outputs will be identical.

3. As each gate acts on the | 0⟩ qubit, it affects the qubelets as follows:

First X Gate
Switches the | 0⟩ qubit to | 1⟩. The qubit will contain only a triangle | 1⟩
qubelet.
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T Gate
Rotates the triangle | 1⟩ qubelet by 45°, or a one-eighth turn anticlock-
wise.

Second X Gate
Switches the | 1⟩ qubit to | 0⟩. The 45°-rotated triangle | 1⟩ qubelet is
switched to a 45°-rotated pentagon | 0⟩ qubelet.

The action of these three gates is summarized in the following figure:

q[0] = |0i X
Switch to |1i

T
Turn Triangle |1i Qubelets

X
Switch to |0i

Pentagon |0i Qubelets Rotated

Thus, this circuit rotates the pentagon | 0⟩ qubelet.

4. The program for this circuit is as follows:a.

0_H_SDag_H_Measure.qasm
qreg q[1];
creg c[1];

h q[0];
sdg q[0];
h q[0];
measure q[0] -> c[0];

b. The output of this program is shown in the following figure:

The output shows a 0 or 1 logged in the classical register with about
the same probabilities. This distribution indicates that the q[0] qubit
collapses about equally to the idealized qubits, | 0⟩ or | 1⟩. This suggests
that the q[0] qubit was in a blended state before it was collapsed by
the Measure gate. Had the second H gate reversed the effect of the first
H gate, the q[0] qubit would be put back to | 0⟩.

The reason why the second H gate, despite being its own adjoint,
doesn’t reverse the effect of the first H gate on the qubit is that the S†

gate spins the triangle | 1⟩ qubelets by –90°, or a quarter turn clockwise.
As a direct result of this extra rotation, the triangle | 1⟩ qubelets are
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no longer aligned with the pentagon | 0⟩ qubelets, as shown in the fol-
lowing figure:

|0i|0i |1i|1i |0i|0i |1i

|1i
|1iS†

When the right qubit gets split by the second H gate, the triangle | 1⟩
qubelets can’t cancel out, thereby leaving the qubit in a blended state,
as shown in the next figure:

|0i|0i

|1i
|1i |0i|0i |1i|1i

|0i |0i |1
i

|1
iSecond

H Gate

This is the first time you’re seeing a quantum state where the qubelets
of the same type have different angles. In the next section, you’ll learn
how to deal with such quantum states. For now, it’s enough to recog-
nize that the triangle | 1⟩ qubelets can’t cancel out to give an idealized
state. Thus, the qubit remains in a blended state.

c. The quantum program for this circuit is listed as follows:

0_H_SDag_S_H_Measure.qasm
qreg q[1];
creg c[1];

h q[0];
sdg q[0];
s q[0];➤

h q[0];
measure q[0] -> c[0];

This program is the same as that in the previous part other than
declaring the S gate as highlighted.

You should get an output for this program that is similar to the one
shown on page 483.

This time, the classical register only logs 0, indicating that the second
H gate successfully put the q[0] qubit in its original idealized state, | 0⟩.
The reason for this is that the S gate spun the triangle | 1⟩ qubelets
back by 90°, or a quarter turn anticlockwise, and aligned them. As a
result, the second H gate could cancel out the triangle | 1⟩ qubelets
from the quantum state.
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5. The code listing for this circuit is as follows:a.

Rx_60_Gate.qasm
qreg q[1];
creg c[1];

rx(pi/3) q[0];
measure q[0] -> c[0];

b. The vector for the | 0⟩ qubit in q[0] is:

| 0⟩ ≡ ( 10 )
Thus, the quantum state |ψ⟩ after the Rx(π / 3) acts on the | 0⟩ qubit is:

|ψ⟩ = ARx
(π
3
) ( 10 )

= [ cos
π

3

2
−i sin

π

3

2

−i sin
π

3

2
cos

π

3

2
]( 10 )

= ( cos π

6

−i sin π

6
) = ( 3

2

−i 1
2
)

c. The vector for |ψ⟩ is:

|ψ⟩ ≡ ( 3

2

−i 1
2
)

Thus, the ratio of pentagon | 0⟩ to triangle | 1⟩ qubelets is 3 : 1.
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d. To get the angles of rotation of the qubelets, compare the vector for
|ψ⟩ with that for the general quantum state. Thus, the pentagon | 0⟩
qubelets aren’t rotated, but the triangle | 1⟩ qubelets are rotated by
–90°, or a quarter turn clockwise.

e. Probability of |ψ⟩ collapsing to the idealized states is the squares of
their respective amplitudes. Thus, the probability of |ψ⟩ collapsing to
| 0⟩ is:

Probability of collapsing to |0⟩ = ( 3

2 )
2
= 3

4

Similarly, the probability of |ψ⟩ collapsing to | 1⟩ is:

Probability of collapsing to |1⟩ = (−i 1
2
)(i 1

2
) = 1

4

Because the amplitude for | 1⟩ is a complex number, we multiply it by
its complex conjugate instead of directly squaring it.

f. The output of running this program should be similar to the following
figure:

The probabilities of recording the 0 and 1 bits in the classical register,
about 75% and 25%, respectively, match those calculated in the pre-
vious part.

Sequence of Gates as Matrix Multiplication Solutions
Solutions for the exercises in Try Your Hand, on page 223.

1. No. The correct way to multiply the gate matrices is:a.

|ψ ⟩ = A
S†
AH | 0⟩

The gate matrices are written in the reverse direction from the order
in which the gates act on the qubit.
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b. Yes. The T† gate reverses the action of the T gate so, in effect, the qubit
isn’t affected by those gates. In terms of matrices, the |ψ ⟩ state is
calculated as follows:

|ψ ⟩ = AYAT†
ATAH | 0⟩

= AYAH | 0⟩

Note that A
T†

 is the Hermitian of AT. So, A
T†
AT = I, resulting in the

simplification of the previous equation.

c. Yes. The Hermitian of the A
S†

 matrix, A
S†
† , is just A

S
. So the given

matrix multiplication works out as follows:

|ψ ⟩ = A
S†
† AH | 0⟩

= A
S
AH | 0⟩

This equation represents the circuit in which the H gate first acts
on the | 0⟩ qubit followed by the S gate, as shown in the figure for
this part.

d. Yes. The S gate rotates the triangle | 1⟩ qubelets by a quarter turn
anticlockwise. The T† gate then rotates the triangle | 1⟩ qubelets a one-
eighth turn clockwise. Thus, the net rotation of the triangle | 1⟩ qubelets
is a one-eighth turn anticlockwise. This rotation corresponds to just
applying the T gate in place of the S and T† gates.

We can also show this mathematically in terms of matrices. Start with
the following equation, which directly uses the gate matrices as the
gates appear in the circuit but in the reverse order:

|ψ ⟩ = A
T†
A
S
AH | 0⟩

Next, recognize that the AT matrix is the square root of the A
S
 matrix.

Thus, replace A
S
 with ATAT in the previous equation:

|ψ ⟩ = A
T†
A
S
AH | 0⟩

= A
T†
ATATAH | 0⟩

= ATAH | 0⟩

The last equation was simplified by noticing that A
T†
AT = I.

e. Yes. The matrix multiplications for this sequence of gates to compute
the final state |ψ ⟩ is:

|ψ ⟩ = AHAZAH | 0⟩

report erratum  •  discuss

Single Qubit Programs Solutions • 485

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


Writing out the actual gate matrices for the H and Z gates, the previous
equation becomes:

|ψ ⟩ = [ 1

2

1

2
1

2

−1

2
] [ 1 0
0 −1 ] [ 1

2

1

2
1

2

−1

2
] | 0⟩

= [ 0 1
1 0 ] | 0⟩

The matrix in the previous equation corresponds to the NOT (X) gate.
Thus, the final quantum state can be written as:

|ψ⟩ = AX | 0⟩

2. No. This circuit won’t return anything since the qubit isn’t collapsed.a.

To get this circuit to run on a quantum computer, add a classical
register and a Measure gate, as shown in the following figure:

|0i H S
† Rx(

⇡
6 ) T Rx(

⇡
2 )

c •
c[0]

b. The quantum program for the circuit in the previous part is listed here:

0_H_SDag_Rx_30_T_Rx_90.qasm
qreg q[1];
creg c[1];

h q[0];
sdg q[0];
rx(pi/6) q[0];
t q[0];
rx(pi/2) q[0];
measure q[0] -> c[0];

c. The probabilities of the qubit collapsing to the idealized states are
calculated by multiplying the respective amplitudes by their conjugate
complexes as follows:

Appendix 4. Solutions to Exercises • 486

report erratum  •  discuss

http://media.pragprog.com/titles/nmquantum/code/0_H_SDag_Rx_30_T_Rx_90.qasm
http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


Probability of collapsing to |0⟩ = (−0.0794593 − i 0.4330127)(−0.0794593 + i 0.4330127)

= 0.07945932−i2 0.43301272
= 0.0063138 + 0.1875
= 0.1938138

And,

Probability of collapsing to |1⟩ = (0.4330127 − i 0.7865661)(0.4330127 + i 0.7865661)

= 0.43301272−i2 0.78656612
= 0.1875 + 0.6186862
= 0.8061862

As an additional check, these probabilities add up to 1, indicating that
the qubit collapses to either one of these two idealized states.

d. The output of running this program should be similar to the following
figure:

The probabilities of recording 0 and 1 bits in the classical register,
about 23% and 76%, respectively, match those calculated in the pre-
vious part.

3. The quantum state |ψ⟩ is:a.

|ψ⟩ = AHAS
AH | 0⟩

= [ 1

2

1

2
1

2

−1

2
] [ 1 0
0 i ] [ 1

2

1

2
1

2

−1

2
] | 0⟩

= [ 0.5 + i 0.5 0.5 − i 0.5
0.5 − i 0.5 0.5 + i 0.5 ] ( 10 )

= ( 0.5 + i 0.50.5 − i 0.5 )
b. The quantum state vector in the Visualizations tab is identical to

what’s calculated in the previous part.
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c. The probabilities of the qubit collapsing to the idealized states are
calculated by multiplying the respective amplitudes by their complex
conjugates as follows:

Probability of collapsing to |0⟩ = (0.5 + i 0.5)(0.5 − i 0.5)

= 0.52−i2 0.52
= 0.25 + 0.25
= 0.5

And,

Probability of collapsing to |1⟩ = (0.5 − i 0.5)(0.5 + i 0.5)

= 0.52−i2 0.52
= 0.25 + 0.25
= 0.5

d. The code listing for this circuit is the following:

0_H_S_H_Measure.qasm
qreg q[1];
creg c[1];

h q[0];
s q[0];
h q[0];
measure q[0] -> c[0];

e. The output of running this program should be similar to the following
figure:

The probabilities of recording 0 and 1 bits in the classical register,
each about 50%, match those calculated in earlier.

Multi-Qubit Programs Solutions
Solutions for the exercises in Try Your Hand, on page 273.
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1. The amplitude for | 01⟩ is the second element of the vector:a.

ω
01
= 1

2

b. The amplitude for | 00⟩ is the first element of the vector:

ω00 =
−i

2

2. No. The columns of a matrix for a quantum gate correspond to the ideal-
ized states. The number of idealized states is a power of 2. Since 3 is not
a power of 2, a 3 × 3 matrix can’t be a quantum gate matrix.

3. The correct expression is c. This is a single qubit with two pentagon | 0⟩
qubelets and a single triangle | 1⟩ qubelet rotated a quarter turn anticlock-
wise. Thus, the correct way to express it is:

2

22 + 1
| 0⟩ + i

22 + 1
| 1⟩ = 2

5
| 0⟩ + i

5
| 1⟩

4. Probability of collapsing to each of the four idealized states is calcu-
lated in the following table:

a.

Probability of CollapsingConjugate
of

Amplitude

AmplitudeIdealized
State

2 / 5 × 2 / 5 = 4 / 252 / 52 / 5|00⟩
4i / 5 × − 4i / 5 = −16i2 / 25 = 16 / 25−4i / 54i / 5|01⟩

−i / 5 × i / 5 = −i2 / 25 = 1 / 25i / 5−i / 5|10⟩
2 / 5 × 2 / 5 = 4 / 252 / 52 / 5|11⟩

b. For the classical register to record a 1 when you collapse the second
qubit means that the quantum state had to collapse to either a | 01⟩
or a | 11⟩ state. Thus, from the probabilities calculated in the previous
part, the probability of logging a 1 is:

Probability of collapsing to 1 = Probability of collapsing to |01⟩ +
Probability of collapsing to |11⟩

= 16

25
+ 4

25

= 20

25
= 0.8

c. Yes, the quantum state of the system will change.
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Since the second qubit collapses to | 1⟩, the new state of the system
can only have the | 01⟩ and | 11⟩ states. These must be normalized as
follows to get the new state, |ψ

1
⟩:

|ψ
1
⟩ =

4i

5
| 01⟩ + 2

5
| 11⟩

−4i

5

4i

5
+ 2

5

2

5

=
4i

5
| 01⟩ + 2

5
| 11⟩

2

5

=
5

2

4i

5
| 0⟩ +

5

2

2

5
| 1⟩

= 2i

5
| 0⟩ + 1

5
| 1⟩

In other words, |ψ⟩ ≠ |ψ
1
⟩, and the state before and after the mea-

surement of the second qubit are different.

This example shows that the act of measuring a qubit changes the
state of the system. This effect, in fact, is a key defining feature of
quantum mechanics and underpins Heisenberg’s uncertainty
principle.2

Thus, if you arbitrarily place Measure gates in your code to help you
see whether it’s behaving as expected, you’ll end up actually destroying
the effect you’re trying to see.

5. This matrix describes a quantum operation that is like a Controlled S† gate
as shown by the following circuit:

Control •

Target S†

When the control qubit is | 0⟩, any pentagon | 0⟩ qubelets in the target
qubit’s state are left alone but the triangle | 1⟩ qubelets are given a quarter
turn clockwise.

6. Since this gate works on three qubits, its gate matrix’s dimensions
will be 8 × 8.

a.

b. The quantum states on the bottom two qubits are swapped only when
|ψ0⟩ is | 1⟩. That is,

| 1ψ
1
ψ2⟩ ↦ |1ψ2ψ1⟩

2. https://en.wikipedia.org/wiki/Uncertainty_principle
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Specifically, only the following states are affected by this gate:

| 101⟩ ↦ |110⟩
|110⟩ ↦ |101⟩

Even though the control qubit is | 1⟩ in | 100⟩ and | 111⟩, swapping the
second and third states doesn’t change the overall quantum state.
For all other cases, the control qubit is | 0⟩, and hence, the gate doesn’t
modify any of those states. Thus, the gate matrix is:

[ 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

]
7. Since this circuit has two qubits, it’ll have a 4 × 4 gate matrix. To

obtain the gate matrix, recall that the H gate splits the | 0⟩ and | 1⟩
qubits as follows:

a.

H |0⟩ = 1

2
( |0⟩ + |1⟩ )

H |1⟩ = 1

2
( |0⟩ − |1⟩ )

In these equations, H |0⟩ and H |1⟩ are the actions of the H gate on the
| 0⟩ and | 1⟩ qubits, respectively.

Now, work out what this circuit does to each of the four idealized
states, | 00⟩, | 10⟩, | 10⟩, and | 11⟩:

| 00⟩ Idealized State:
Both the top and bottom H gates split the | 0⟩ qubit.

Thus, the mega-qubit formed by this idealized state is:

H |0⟩ ⊗ H |0⟩ = 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ )

= 1

2
( |00⟩ + |01⟩ + |10⟩ + |11⟩ )
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This state corresponds to the following vector:

1

2 ( 111
1
)

| 01⟩ Idealized State:
The top H gate splits the | 0⟩ qubit, and the bottom H gate splits
the | 1⟩ qubit.

Thus, the mega-qubit formed by this idealized state is:

H |0⟩ ⊗ H |1⟩ = 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2
( |00⟩ − |01⟩ + |10⟩ − |11⟩ )

This state corresponds to the following vector:

1

2 ( 1
−1
1
−1
)

| 10⟩ Idealized State:
The top H gate splits the | 1⟩ qubit, and the bottom H gate splits
the | 0⟩ qubit.

Thus, the mega-qubit formed by this idealized state is:

H |1⟩ ⊗ H |0⟩ = 1

2
( |0⟩ − |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ )

= 1

2
( |00⟩ + |01⟩ − |10⟩ − |11⟩ )

This state corresponds to the following vector:

1

2 ( 1
1
−1
−1
)

| 11⟩ Idealized State:
Both the top and bottom H gates split the | 1⟩ qubit.

Thus, the mega-qubit formed by this idealized state is:
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H |1⟩ ⊗ H |1⟩ = 1

2
( |0⟩ − |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2
( |00⟩ − |01⟩ − |10⟩ + |11⟩ )

This state corresponds to the following vector:

1

2 ( 1
−1
−1
1
)

The previous four vectors correspond to the columns of the matrix
representing this circuit:

1

2 [ 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

]
b. While the S gate rotates triangle | 1⟩ qubelets a quarter turn anticlock-

wise, the S† gate rotates the triangle | 1⟩ qubelets clockwise. Both gates
leave pentagon | 0⟩ qubelets alone.

Thus, to obtain the gate matrix for the given circuit, replace i with −i:

A
S†
= [ 1 0 0 0

0 −i 0 0
0 0 1 0
0 0 0 −i ]

8. To calculate the matrix for this circuit, start by breaking it up as
shown in the following figure:

a.

G1 CNOT G2

H • H

H H

Then the matrix A for the entire circuit is calculated as follows:

A = A
G2
× A

CNOT
× A

G
1
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A
CNOT

 is the matrix for the CNOT gate. A
G
1
 and A

G2
 are the matrices

for the part of the circuit where each qubit is operated on by an H
gate, respectively.

The matrix for the CNOT gate is:

A
CNOT

= [ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
The A

G
1
 and A

G2
 matrices were obtained in the previous part. That is,

A
G
1
= A

G2
= 1

2 [ 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

]
Thus, the matrix A for the entire circuit is:

A = A
G2
× A

CNOT
× A

G
1

= 1

2 [ 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

] × [ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] × 1

2 [ 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

]
= [ 1 0 0 0

0 0 0 1
0 0 1 0
0 1 0 0

]
This circuit, then, modifies the idealized states as follows:

| 00⟩ ↦ |00⟩
|01⟩ ↦ |11⟩
|10⟩ ↦ |10⟩
|11⟩ ↦ |01⟩

It leaves the | 00⟩ and | 10⟩ states alone but affects the | 01⟩ and | 11⟩ states.
Specifically, when the second qubit is | 1⟩, it switches the first qubit.

This circuit acts like an upside down CNOT gate where the first qubit is
the target and the second qubit is the control, as shown here:

Target

Control •
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b. To calculate the matrix for this circuit, start by breaking it up as
shown in the following figure:

H1 Upside Down CNOT H2

H H

•

Thus, the matrix A for the entire circuit can be calculated as follows:

A = AH2
× Aχ × AH

1

Aχ is the matrix for the upside down CNOT gate calculated in the pre-
vious part:

Aχ = [ 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

]
The AH

1
 and AH2

 are the matrices for the pass-through H gate. This
matrix was calculated in Working with Blended States: Mega-Qubit
as a Tensor, on page 248:

AH
1
= AH2

= 1

2 [ 1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

]
Thus, the matrix A for the entire circuit is:

A = AH2
× Aχ × AH

1

= 1

2 [ 1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

] × [ 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

] × 1

2 [ 1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

]
= [ 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1

]
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This is the matrix for the Control Z gate shown in the following figure:

Control •

Target Z

This gate leaves the | 00⟩, | 01⟩, and | 10⟩ alone but inverts the triangle
| 1⟩ qubelets in the target qubit if the control qubit is | 1⟩. That is:

| 11⟩ ↦ − |11⟩

9. The triangle | 1⟩ qubelet in the bottom cell of the qubelet combination
on the left is rotated 90° anticlockwise but non-inverted in the bottom

a.

cell of that on the right. That is, the bottom triangle | 1⟩ qubelet on the
left is rotated 90° clockwise on the right. So for the qubelet combina-
tion on the right to have the same quantum state as that on the left,
the top triangle | 1⟩ qubelet in the right combination must be rotated
90° anticlockwise, as shown in the following figure:

i |11i

|1i|1i

|1
i

|1
i

i |11i

|1i|1
i

|1
i

|1
i|1i|1i

b. The triangle | 1⟩ qubelet in the bottom cell of the qubelet combination
on the left is inverted but non-inverted in the bottom cell of that on
the right. So that the right combination has the same quantum state
as that on the left, the triangle | 1⟩ qubelet in the top cell of the left
combination is given a 180° rotation, as shown in the following figure:

�i |101i

|1
i

|1
i

|0i|0i

|1i |1i

�i |101i

|1
i|1i

|1i

|0i|0i

|1i

|1i|1i
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10. Expand the tensor product to get the quantum state as follows:a.

| 1⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |1⟩ ⊗ |0⟩ = |10110⟩

This corresponds to a quantum state vector having 25 = 32 elements.
All the elements are 0 except its twenty-third element which is 1.

The associated mega-qubit is:

Mega-Qubit for |10110i

|1i|1i

|0i|0i

|1i|1i

|1i|1i

|0i|0i

The mega-qubit contains just a single qubelet combination. Thus,
even an idealized state can be expressed as a tensor product.

b. Expand the tensor product to get the quantum state, as follows:

1

2
( |0⟩ + i |1⟩ ) ⊗ |0⟩ = 1

2
( |00⟩ + i |10⟩ )

This corresponds to the following vector:

1

2 ( 10i
0
)

The associated mega-qubit is shown in the figure on page 498.
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|0i|0i |1
i

|1
i

|0i|0i

Mega-Qubit

|0i|0i

|0i|0i

|1
i

|1
i

|0i|0i

The triangle | 1⟩ qubelet in the second qubelet combination is rotated
90° due to the amplitude of | 10⟩ being i.

c. Expand the tensor product to get the quantum state as follows:

1

2
( |0⟩ − i |1⟩ ) ⊗ 1

2
( |0⟩ + i |1⟩ ) = 1

2
| 0⟩ 1

2
( |0⟩ + i |1⟩ ) − i

2
| 1⟩ 1

2
( |0⟩ + i |1⟩ )

= 1

2
| 00⟩ + i

2
| 01⟩ − i

2
| 10⟩ + 1

2
| 11⟩

This corresponds to the following vector:

1

2 ( 1i−i
1
)

The associated mega-qubit is the following:

|0i|0i

|1i
|1i

|0i|0i |1
i

|1
i

Mega-Qubit

|0i|0i

|0i|0i

|0i|0i

|1
i

|1
i

|1i
|1i

|0i|0i

|1i
|1i

|1
i

|1
i

The anticlockwise quarter-turn triangle | 1⟩ qubelet in the second
qubelet combination contributes eiπ/2 = i to its amplitude coefficent.
That is, ω

01
= i. Likewise, the clockwise quarter-turn triangle | 1⟩ qubelet

in the third qubelet combination contributes e−iπ/2 = −i to its amplitude
coefficient. That is, ω

10
= −i.

In the last qubelet combination, top triangle | 1⟩ qubelet contributes
e−iπ/2 = −i and the bottom triangle | 1⟩ qubelet contributes eiπ/2 = i. That
is, the overall amplitude coefficient is the product of these terms:
−i × i = −i2 = 1. In other words, the fourth qubelet combination is
equivalent to one where both triangle | 1⟩ qubelets are not rotated. You
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can also see this by giving both qubelets the same rotation but in
opposite directions so that any sign changes are canceled out: rotate
the top triangle | 1⟩ qubelet a quarter turn anticlockwise and the bottom
triangle | 1⟩ qubelet a quarter turn clockwise.

Thus, the mega-qubit can also be drawn as in the following figure:

|0i|0i

|1i
|1i

|0i|0i |1
i

|1
i

Mega-Qubit

|0i|0i

|0i|0i

|0i|0i

|1
i

|1
i

|1i
|1i

|0i|0i

|1i|1i

|1i|1i

In this figure, the fourth qubelet combination has non-rotated triangle
| 1⟩ qubelets.

d. The H gate splits the | 0⟩ qubit, and the X gate switches the | 1⟩ qubit
as follows::

H |0⟩ = 1

2
( |0⟩ + |1⟩ )

X |1⟩ = |0⟩

Thus, the given tensor product is:

| 1⟩ ⊗ X |1⟩ ⊗ H |0⟩ = |1⟩ ⊗ |0⟩ ⊗ 1

2
( |0⟩ + |1⟩ )

Expand this tensor product to get the quantum state as follows:

| 1⟩ ⊗ |0⟩ ⊗ 1

2
( |0⟩ + |1⟩ ) = |10⟩ ⊗ 1

2
( |0⟩ + |1⟩ )

= 1

2
| 100⟩ + 1

2
| 101⟩

This corresponds to the following vector:

1

2 ( 000011
0
0

)
This 8 × 1 vector has a 1 in the fifth and sixth positions, and 0 elsewhere.
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The associated mega-qubit is:
Mega-Qubit for 1p

2
|100i + 1p

2
|101i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|0i|0i

|1i|1i

11. To see whether the two qubits are entangled, try factoring the quantum
state as follows:

a.

|ψ⟩ = 3

10
| 00⟩ + 1

10
| 01⟩ − 9

10
| 10⟩ − 3

10
| 11⟩

= 1

10
( 3

10
| 00⟩ + 1

10
| 01⟩ ) − 3

10
( 3

10
| 10⟩ + 1

10
| 11⟩ )

= 1

10
| 0⟩ ( 3

10
| 0⟩ + 1

10
| 1⟩ ) − 3

10
| 1⟩ ( 3

10
| 0⟩ + 1

10
| 1⟩ )

= ( 1

10
| 0⟩ − 3

10
| 1⟩ ) ⊗ ( 3

10
| 0⟩ + 1

10
| 1⟩ )

This quantum state can be factored as the tensor product of two
quantum states. Hence, the qubits are not entangled.

b. The given quantum state can’t be factored as a product of tensor
products. Hence, the qubits are entangled.

You can also directly see this from the quantum state itself. If the first
qubit collapses to, say, | 0⟩, then the quantum state has collapsed to
| 01⟩. Thus, the second qubit is forced to collapse to | 1⟩. An analogous
result holds if the first qubit collapses to | 1⟩. Furthermore, you’ll see
the same behavior had you collapsed the second qubit before the first.

12. To identify the three missing qubelets, first expand the tensor product of
the three qubits to obtain the quantum state of the mega-qubit, as follows:

1

2
( |0⟩ + i |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ ) = 1

2
( |00⟩ + |01⟩ + i |10⟩ + i |11⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2 2
( |000⟩ − |001⟩ + |010⟩ − |011⟩ +

i |100⟩ − i |101⟩ + i |110⟩ − i |111⟩ )
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The missing qubelet is in the bottom cell of the fourth qubelet combination
which corresponds to the − |011⟩ term in the quantum state specified in
the above equation. This combination is formed by taking the pentagon
| 0⟩ qubelet from the top qubit, the triangle | 1⟩ qubelet from the middle
qubit, and the inverted triangle | 1⟩ qubit from the bottom qubit. The
inverted qubelet gives the negative sign associated with this combination.
Thus, the first missing qubelet is an inverted triangle | 1⟩ qubelet.

The missing qubelet is in the top cell of the sixth qubelet combination,
which corresponds to the −i |101⟩ term in the quantum state specified in
the equation for this exercise. This combination is formed by taking the
90°-rotated triangle | 1⟩ qubelet in the first qubit, the pentagon | 0⟩ qubelet
from the middle qubit, and the inverted triangle | 1⟩ qubelet from the bottom
qubit. The inverted qubelet gives the negative sign and the 90°-rotated
top qubelet gives the complex number i associated with this combination.
Thus, the second missing qubelet is a triangle | 1⟩ qubelet rotated a quarter
turn anticlockwise.

The missing qubelet is in the top cell of the last qubelet combination,
which corresponds to the −i |111⟩ term in the quantum state specified in
this equation. This combination is formed by taking the the 90°-rotated
triangle | 1⟩ qubelet in the first qubit, the triangle | 1⟩ qubelet from the
middle qubit, and the inverted triangle | 1⟩ qubelet from the bottom qubit.
The inverted qubelet gives the negative sign and the 90°-rotated top qubelet
gives the complex number i associated with this combination. Thus, this
qubelet combination should be drawn as in the following figure:

�i |111i

|1
i

|1
i

|1i|1i

|1i |1i

But the qubelet combination shown in the given mega-qubit has an unrotated
triangle | 1⟩ qubelet in the middle and bottom cells. Hence, we need to bring
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the qubelet combination shown in the previous figure to the desired form by
rotating qubelets without modifying the combination’s quantum state.
Specifically, invert the bottom triangle | 1⟩ qubelet so it’s unrotated, while
simultaneously rotating the top qubelet 180° so the top triangle | 1⟩ qubelet
is now rotated a quarter turn clockwise, as shown in the following figure:

�i |111i

|1
i

|1
i

|1i|1i

|1i |1i

�i |111i

|1
i|1i

|1i

|1i|1i

|1i

|1i|1i

The quantum state of the qubelet combination on the right is still −i |111⟩.
(The faded qubelets in the top and bottom cells indicate the original
position of those qubelets, respectively.)

The final mega-qubit is shown in the following figure:

1p
2
(|0i + i |1i)

|0i|0i |1
i

|1
i

1p
2
(|0i + |1i)

|0i|0i |1i|1i

1p
2
(|0i � |1i)

|0i|0i

|1i |1i

Mega-Qubit: 1
2
p
2
(|000i � |001i + |010i � |011i + i |100i � i |101i + i |110i � i |111i)

|0i|0i

|0i|0i

|0i|0i

|0i|0i

|0i|0i

|1i |1i

|0i|0i

|1i|1i

|0i|0i

|0i|0i

|1i|1i

|1i |1i

|1
i

|1
i

|0i|0i

|0i|0i

|1
i

|1
i

|0i|0i

|1i |1i

|1
i

|1
i

|1i|1i

|0i|0i

|1i
|1i

|1i|1i

|1i|1i

13. This mega-qubit can collapse in the following four ways:a.

State Logged in Classical registerProbabilityCollapsed Quantum State

001

4
| 00⟩

011

4
i |01⟩

101

4
| 10⟩

111

4
i |11⟩
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Notice that no rotation information is recorded in the classical register.

b. Since the probability of each collapsed state is 1 / 4, the magnitude of
each amplitude is the square root of 1 / 4. Thus, the quantum state
for the mega-qubit is:

|ψ⟩ = |ψ0ψ1⟩ =
1

2
| 00⟩ + i

2
| 01⟩ + 1

2
| 10⟩ + i

2
| 11⟩

c. To write the quantum state as a tensor product, factor the previous
equation as follows:

|ψ⟩ = |ψ0ψ1⟩ = 1

2
| 00⟩ + i

2
| 01⟩ + 1

2
| 10⟩ + i

2
| 11⟩

= 1

2
| 0⟩ ( |0⟩ + i |1⟩ ) + 1

2
| 1⟩ ( |0⟩ + i |1⟩ )

= 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ + i |1⟩ )

= |ψ0⟩ ⊗ |ψ
1
⟩

d. The tensor product obtained in the previous part can be drawn as
shown in the following figure:

| 0i = 1p
2
(|0i + |1i)

|0i|0i |1i|1i

| 1i = 1p
2
(|0i + i |1i)

|0i|0i

|1
i

|1
i

| i = | 0i ⌦ | 1i = 1
2 (|00i + i |01i + |10i + i |11i)

|0i|0i

|0i|0i

|0i|0i

|1
i

|1
i

|1i|1i

|0i|0i

|1i|1i

|1
i

|1
i

The top qubit on the left, |ψ0⟩, can be obtained by splitting | 0⟩ using
an H gate.

The bottom qubit on the left, |ψ
1
⟩, has a 90°-rotated triangle | 1⟩

qubelet. Hence, after splitting | 0⟩ with an H gate, use an S gate to give
the triangle | 1⟩ qubelet a quarter turn anticlockwise.

The quantum circuit to create this mega-qubit is shown in the follow-
ing figure:

 0 H

 1 H S
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14. No. Once you teleport |ψ
1
⟩, the |keep⟩ and | send⟩ qubits collapse and are

no longer entangled. Furthermore, they are physically distant from each
other. Thus, this circuit can no longer teleport any more quantum
states—teleporting circuits are single-use circuits. Once they’re done
teleporting, the qubits are no longer useful. If you want to teleport
another state, you need another pair of |keep⟩ and | send⟩ qubits.

15. When the |ψ0⟩ and |keep⟩ qubits collapse, the | send⟩ qubit is:

| send⟩ = 1

2
| 0⟩ − i

2
| 1⟩

The | send⟩ qubit will have one pentagon | 0⟩ qubelet and a triangle | 1⟩
qubelet that is rotated a quarter turn clockwise.

Since |ψ0 keep⟩ = |10⟩, you’ll need to apply a Z gate to the | send⟩ qubit to
obtain the state that will be teleported.

The Z gate doesn’t affect the pentagon | 0⟩ gate but turns the triangle | 1⟩
qubelet 180° so that it ends up rotated a quarter turn anticlockwise. Thus,
the state that is teleported is:

1

2
| 0⟩ + i

2
| 1⟩

16. Yes, the circuit can be used to teleport a quantum state.

The Entangler and Loader blocks, together with the |keep⟩, | send⟩, and the
quantum state to be teleported, |ψ0⟩, are labeled as shown in the following
circuit:

Entangler

|sendi

|keepi H •

| 0i • H

Loader

Quantum Cryptography Solutions
Solutions for the exercises in Try Your Hand, on page 291.

1. a. False. 0000000 is just the initializing string for the quantum circuit.i.

ii. False. The secret key can’t be determined at this stage.

iii. False. The random key is explicitly set by Alice before putting the
qubits in a blended state.
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iv. True. The random key is the value of the qubits before applying
the H gates that put them in a blended state.

v. False. The secret key can’t be determined at this stage.

b. Bob’s circuit is shown in the following figure:

| 0i

| 1i H

| 2i H

| 3i H

| 4i

| 5i H

| 6i H

c • • • • • • •
c[0] c[1] c[2] c[3] c[4] c[5] c[6]

c. Over the classical channel, Alice and Bob declare the qubits on which
each used the H gates. So, Alice would say qubits 1, 3, 4, 6, and 7.
And, Bob would say qubits 2, 3, 4, 6, and 7.

If both report |ψ6 ⟩ = |1⟩, then they know they have a safe channel.

d. Since the seventh qubit was used to establish an enhanced level of
trust, it’s not used in the secret key.

Each then derives the secret key individually, as follows:

• Alice uses the third, fourth, and sixth bits from the random string
she generated: 101.

• Bob measures the values in the classical registers c[2], c[3], and
c[5], corresponding to measuring the third, fourth, and sixth qubits.
He, too, would come up with 101 for the secret key.

2. The quantum circuit is shown in the figure on page 506.a.

b. The random string generated by your machine is 1010101110.

c. Both your machine and the Pragamatic Bookshelf website apply H
gates on qubits 1, 4, and 7. Thus, the secret key derived by each is
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|0i X H | 0i

|0i H | 1i

|0i X | 2i

|0i H | 3i

|0i X H | 4i

|0i | 5i

|0i X H | 6i

|0i X | 7i

|0i X H | 8i

|0i | 9i

101, the values recorded in the classical registers when |ψ0 ⟩, |ψ3 ⟩,
and |ψ6 ⟩ collapse.

3. The BB84 mechanism is based on using consecutive gates such that the
second gate reverses the effect of the first. Thus, if the sender uses the S
gate to rotate qubits by a quarter turn anticlockwise, the receiver must
use the S† to rotate the qubits by a quarter turn clockwise.

4. Only the third state, 11100111, may be observed. The others don’t cor-
respond to any qubelet combination in the mega-qubit.

a.

b. To get the states that the receiver may observe, apply the H gate on
qubits 1, 2, 4, and 6 and then expand the resulting tensor product
as follows:

H |1⟩ ⊗H |1⟩ ⊗ |1⟩ ⊗H |0⟩ ⊗ |0⟩ ⊗H |1⟩ ⊗ |1⟩ ⊗ |1⟩

= 1

2
( |0⟩ − |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ ) ⊗ |1⟩ ⊗ 1

2
( |0⟩ + |1⟩ ) ⊗ |0⟩ ⊗ 1

2
( |0⟩ − |1⟩ ) ⊗ |1⟩ ⊗ |1⟩

= 1

4
( |00⟩ − |01⟩ − |10⟩ + |11⟩ ) ⊗ ( |10⟩ + |11⟩ ) ⊗ ( |00⟩ − |01⟩ ) ⊗ |11⟩

= 1

4
( |0010⟩ + |0011⟩ − |0110⟩ − |0111⟩ − |1010⟩ − |1011⟩ + |1110⟩ + |1111⟩ ) ⊗ ( |0011⟩ − |0111⟩ )

= 1

4
( |00100011⟩ − |00100111⟩ + |00110011⟩ − |00110111⟩ − |01100011⟩ + |01100111⟩ − |01110011⟩ + |01110111⟩

− |10100011⟩ + |10100111⟩ − |10110011⟩ + |10110111⟩ + |11100011⟩ − |11100111⟩ + |11110011⟩ − |11110111⟩ )

Thus, the possible states are any one of the sixteen individual terms
in the previous equation.
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c. i. When qubit 1 is used to establish an enhanced level of trust, both
the sender and receiver must agree on its state. So, the probabili-
ties of both of them agreeing to | 0⟩ or | 1⟩ are as follows:

Qubit 1 Collapsing to | 0⟩:
Qubit 1 will collapse to | 0⟩ in the following 8 out of 16 cases:

| 00100011⟩
− |00100111⟩
|00110011⟩

− |00110111⟩
− |01100011⟩
|01100111⟩

− |01110011⟩
|01110111⟩

Qubit 1 Collapsing to | 1⟩:
Qubit 1 will collapse to | 1⟩ in the following 8 out of 16 cases:

− |10100011⟩
|10100111⟩

− |10110011⟩
|10110111⟩
|11100011⟩

− |11100111⟩
|11110011⟩

− |11110111⟩

Thus, there is equal probability of the sender’s and receiver’s
qubits matching when the receiver gets the hacked message. In
other words, the probability of detecting an interceptor is 0.5.

ii. When qubits 1 and 2 are used to establish an enhanced level of
trust, the sender and receiver must agree on both their states. So
the probabilities of them agreeing to | 00⟩, | 01⟩, | 10⟩, or | 11⟩ are as
follows:

Qubits 1 and 2 Collapsing to | 00⟩:
Qubits 1 and 2 will collapse to | 00⟩ in the following 4 out of
16 cases:

| 00100011⟩
− |00100111⟩
|00110011⟩

− |00110111⟩
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Qubits 1 and 2 Collapsing to | 01⟩:
Qubits 1 and 2 will collapse to | 01⟩ in the following 4 out of
16 cases:

− |01100011⟩
|01100111⟩

− |01110011⟩
|01110111⟩

Qubits 1 and 2 Collapsing to | 10⟩:
Qubits 1 and 2 will collapse to | 10⟩ in the following 4 out of
16 cases:

− |10100011⟩
|10100111⟩

− |10110011⟩
|10110111⟩

Qubits 1 and 2 Collapsing to | 11⟩:
Qubits 1 and 2 will collapse to | 11⟩ in the following 4 out of
16 cases:

| 11100011⟩
− |11100111⟩
|11110011⟩

− |11110111⟩

Thus, the probability of the sender’s and receiver’s states matching
is 4/16 or 0.25 when the receiver gets the hacked message. In
other words, the probability of the sender and receiver having
mismatched two qubits is 0.75. Thus, the probability that an
interceptor is detected is 75%.

iii. When qubits 1, 2, and 4 are used to establish an enhanced level
of trust, the sender and receiver must agree on all three states.
So, the the probabilities of them agreeing to | 000⟩, | 001⟩, | 010⟩, | 011⟩,
| 100⟩, | 101⟩, | 101⟩, and | 111⟩ are as follows:

Qubits 1, 2, and 4 Collapsing to | 000⟩:
Qubits 1, 2, and 4 will collapse to | 000⟩ in the following 2 out
of 16 cases:

| 00100011⟩
− |00100111⟩
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Qubits 1, 2, and 4 Collapsing to | 001⟩:
Qubits 1, 2, and 4 will collapse to | 001⟩ in the following 2 out
of the 16 cases:

| 00110011⟩
− |00110111⟩

Qubits 1, 2, and 4 Collapsing to | 010⟩:
Qubits 1, 2, and 4 will collapse to | 010⟩ in the following 2 out
of 16 cases:

− |01100011⟩
|01100111⟩

Qubits 1, 2, and 4 Collapsing to | 011⟩:
Qubits 1, 2, and 4 will collapse to | 011⟩ in the following 2 out
of 16 cases:

− |011100111⟩
|01110111⟩

Qubits 1, 2, and 4 Collapsing to | 100⟩:
Qubits 1, 2, and 4 will collapse to | 100⟩ in the following 2 out
of 16 cases:

− |10100011⟩
|10100111⟩

Qubits 1, 2, and 4 Collapsing to | 101⟩:
Qubits 1, 2, and 4 will collapse to | 101⟩ in the following 2 out
of 16 cases:

− |10110011⟩
|10110111⟩

Qubits 1, 2, and 4 Collapsing to | 111⟩:
Qubits 1, 2, and 4 will collapse to | 111⟩ in the following 2 out
of 16 cases:

| 11110011⟩
− |11110111⟩

Thus, the probability of the sender’s and receiver’s states matching
is 2/16 or 0.125 when the receiver gets the hacked message. In
other words, the probability of the sender and receiver having
mismatched three qubits is 0.875. Thus, the probability that an
interceptor is detected is 87.5%.
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Thus, with increasing number of qubits to match, the probability of
detecting an interceptor increases. And with a sufficiently large
number of qubits, the chances of an interceptor lurking undetected
are virtually nil.

Quantum Search Solutions
Solutions for the exercises in Try Your Hand, on page 332.

1. In all qubelet combinations except for the second from right, the
pentagon | 0⟩ and triangle | 1⟩ qubelets aren’t inverted. In the second

a.

from right column, the pentagon | 0⟩ in the bottom cell is inverted while
the qubelets in the top two are not. The relative difference in the ori-
entations is 180° Thus, the mega-qubit is:

| 000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ − |110⟩ + |111⟩

The tagged state is the qubelet combination second from right that
has an inverted pentagon | 0⟩ qubelet in the bottom cell. This column
corresponds to the quantum state | 110⟩.

b. Except for the qubelet combination that is second from left, in all
other combinations, both the pentagon | 0⟩ and triangle | 1⟩ qubelets
are either both not inverted or both inverted. In other words, there’s
no relative difference between the pentagon | 0⟩ and triangle | 1⟩
qubelets. In the second column, the pentagon | 0⟩ qubelet isn’t inverted
while the triangle | 1⟩ is, so the relative difference between them is
180°. Thus, the mega-qubit is:

| 00⟩ − |01⟩ + |10⟩ + |11⟩

The tagged state is | 01⟩, which is the qubelet combination second from
left.

c. Even though the pentagon | 0⟩ and triangle | 1⟩ qubelets in the first,
second, and fourth columns are inverted, there’s no relative difference
between them. Likewise, both types of qubelets are also aligned in the
same direction in the third column. Thus, there’s no relative difference
between the pentagon | 0⟩ and triangle | 1⟩ qubelets in each qubelet
combination. As a result, the mega-qubit is:

| 00⟩ + |01⟩ + |10⟩ + |11⟩

All four idealized states have the same sign. Hence, no quantum state
is tagged.
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d. Even though both the pentagon | 0⟩ and triangle | 1⟩ qubelets in the
first column are inverted, there’s no relative difference between their
orientations. In the other three qubelet combinations, one qubelet
type is inverted and the other isn’t. Thus, the relative difference in
their orientations is 180°, making their amplitudes negative. The
mega-qubit is:

| 00⟩ − |01⟩ − |10⟩ − |11⟩

The first qubelet combination, | 00⟩, has a different sign than the others.
So it’s the one that is tagged.

2. The actions of the gates are briefly specified, as follows:a.

X Gate
The X gate toggles the qubelets: a pentagon | 0⟩ is switched to a
triangle | 1⟩ qubelet and a triangle | 1⟩ qubelet is switched to a
pentagon | 0⟩ qubelet. (See NOT (X) Gate, on page 205.)

S Gate
The S gate rotates the triangle | 1⟩ qubelets a quarter turn anticlock-
wise but leaves the pentagon | 0⟩ qubelets alone. (See S Gate, on
page 208.)

S† Gate
The S† gate rotates the triangle | 1⟩ qubelets a quarter turn clock-
wise but leaves the pentagon | 0⟩ qubelets alone. (See S-Dagger
Gate, on page 208.)

b. The mega-qubit after the S† gate acts on the bottom qubit is:

Top Qubit

Bottom Qubit

After S† Gate

|0i|0i

|0i|0i

|0i|0i

|1i
|1i

|1i|1i

|0i|0i

|1i|1i

|1i
|1i

The triangle | 1⟩ qubelets in the bottom cell of the second and fourth
qubelet combinations are rotated a quarter turn clockwise.
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The quantum state is:

1

2
| 00⟩ − i

2
| 01⟩ + 1

2
| 10⟩ − i

2
| 11⟩

c. If the control qubit of the CZ gate, the top one in this circuit, is a tri-
angle | 1⟩ qubelet, then it’ll rotate the triangle | 1⟩ qubelet in the target
qubit, the bottom qubit, by half a turn. In all other cases, the qubelets
are left alone.

Since the top qubit in the fourth colum is a triangle | 1⟩, the bottom
qubit is rotated by a half turn from its previous orientation. Thus, the
bottom triangle | 1⟩ qubelet in the fourth column is now a quarter turn
anticlockwise from the non-rotated position. Thus, the mega-qubit
after the CZ gate acts on the qubits is shown in the following figure:

Top Qubit

Bottom Qubit

After CZ Gate

|0i|0i

|0i|0i

|0i|0i

|1i
|1i

|1i|1i

|0i|0i

|1i|1i

|1
i

|1
i

The quantum state of the mega-qubit at this stage is:

1

2
| 00⟩ − i

2
| 01⟩ + 1

2
| 10⟩ + i

2
| 11⟩

d. To tag the | 01⟩ quantum state, the bottom triangle | 1⟩ qubelets in the
second and fourth columns must rotate by a quarter turn clockwise.
This will make the bottom triangle | 1⟩ qubelet inverted, or rotated by
a half turn, and will return the bottom | 1⟩ triangle qubelet in the fourth
column to its original non-rotated position, as shown in the following
figure:

Top Qubit

Bottom Qubit

Tagging |01i

|0i|0i

|0i|0i

|0i|0i

|1i |1i

|1i|1i

|0i|0i

|1i|1i

|1i|1i
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The quantum gate that rotates triangle | 1⟩ qubelets a quarter turn
clockwise while leaving the pentagon | 0⟩ qubelets alone is the S† gate.
This gate must be applied to the bottom qubit after the CZ gate, as
shown in the following circuit:

Tag |01i

|0i H •

|0i H S
† Z S

†

Notice that even though you’re restoring the bottom triangle | 1⟩ qubelet
to its original position, you need to use an S† gate again, and not the
S gate, to reverse the operation of the S† gate.

The quantum state of the mega-qubit is:

1

2
| 00⟩ − i

2
| 01⟩ + 1

2
| 10⟩ + 1

2
| 11⟩

e. Before writing the program, draw the the complete circuit to eliminate
the non-tagged states, as shown in the following figure:

All Tag |01i Canceling Circuit Measure

|q0i H • H X • X H

|q1i H S
† Z S

† H X Z X H

c • •
c[0] c[1]

The quantum program for this circuit is listed here:

Grover_Complete_Circuit_2_Qubits_Using_SDag_for_Tagging.qasm
// Initialize Quantum and Classical Registers
qreg q[2];
creg c[2];

// Generate All Combinations
h q[0];
h q[1];

// Tag |01>
sdg q[1];
h q[1];
cx q[0],q[1];
id q[0]; // Dummy gate for visually lining up circuit
h q[1];
id q[0]; // Dummy gate for visually lining up circuit
sdg q[1];
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// Canceling Circuit
h q[0];
h q[1];
x q[0];
x q[1];
h q[1];
cx q[0],q[1];
id q[0]; // Dummy gate for visually lining up circuit
h q[1];
x q[1];
x q[0];
h q[1];
h q[0];

// Collapse Qubits
measure q[0] -> c[0];
measure q[1] -> c[1];

When you run this program on a real quantum computer, you should
get an output similar to that shown in the following figure:

The bar with the 10 label is the tallest, indicating that this circuit
collapses to |q0⟩ = |0⟩ and |q

1
⟩ = |1⟩ most often. (On the IBM Quantum

Computer, |q0⟩ is reported as the rightmost bit and |q
1
⟩ is to the left

of |q0⟩.) Thus, this program collapses to the tagged state | 01⟩ most
frequently, confirming that the program works as designed.

f. The two morals are:

• You may be tempted to think that since you’re restoring most of
the qubelet combinations back to their original states, the gate
after the CZ gate should be the one that reverses the action of the
gate before the CZ gate. That is, you may think to apply the S gate
to reverse the action of the S† on the bottom qubit. As the analysis
shows, however, that’s not the case. The moral: don’t blindly apply
the back-to-back-gates-to-restore-state quantum concept.
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• Compare this circuit with that shown in Tagging the Best, on page
299, in which the S† gates are replaced by X gates. The circuit with
X gates tags | 10⟩, not | 01⟩, even though both circuits have the same
topology. The moral: don’t rush to design. Carefully analyze how
gates rotate qubelets.

3. To compute the AH3
 matrix for three stacked H gates, you have to compute

how it acts on the 23, or the 8, idealized states by taking the appropriate
tensor products as follows:

| 000⟩ Idealized State:
H |0⟩ ⊗ H |0⟩ ⊗ H |0⟩ = 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ )

= 1

2
( |00⟩ + |01⟩ + |10⟩ + |11⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ )

= 1

2 2
( |000⟩ + |010⟩ + |100⟩ + |110⟩ + |001⟩ + |011⟩ + |101⟩ + |111⟩ )

When represented as a vector, this state is the first column of AH3
:

( 111111
1
1

)
| 001⟩ Idealized State:

H |0⟩ ⊗ H |0⟩ ⊗ H |1⟩ = 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2
( |00⟩ + |01⟩ + |10⟩ + |11⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2 2
( |000⟩ + |010⟩ + |100⟩ + |110⟩ − |001⟩ − |011⟩ − |101⟩ − |111⟩ )

When represented as a vector, this state is the second column of AH3
:

( 1
−1
1
−1
1
−1
1
−1

)
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| 010⟩ Idealized State:
H |0⟩ ⊗ H |1⟩ ⊗ H |0⟩ = 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ )

= 1

2
( |00⟩ − |01⟩ + |10⟩ − |11⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ )

= 1

2 2
( |000⟩ − |010⟩ + |100⟩ − |110⟩ + |001⟩ − |011⟩ + |101⟩ − |111⟩ )

When represented as a vector, this state is the third column of AH3
:

( 1
1
−1
−1
1
1
−1
−1

)
| 011⟩ Idealized State:

H |0⟩ ⊗ H |1⟩ ⊗ H |1⟩ = 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2
( |00⟩ − |01⟩ + |10⟩ − |11⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2 2
( |000⟩ − |010⟩ + |100⟩ − |110⟩ − |001⟩ + |011⟩ − |101⟩ + |111⟩ )

When represented as a vector, this state is the fourth column of AH3
:

( 1
−1
−1
1
1
−1
−1
1

)
| 100⟩ Idealized State:

H |1⟩ ⊗ H |0⟩ ⊗ H |0⟩ = 1

2
( |0⟩ − |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ )

= 1

2
( |00⟩ + |01⟩ − |10⟩ − |11⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ )

= 1

2 2
( |000⟩ + |010⟩ − |100⟩ − |110⟩ + |001⟩ + |011⟩ − |101⟩ − |111⟩ )

When represented as a vector, this state is the fifth column of AH3
:
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( 1
1
1
1
−1
−1
−1
−1

)
| 101⟩ Idealized State:

H |1⟩ ⊗ H |0⟩ ⊗ H |1⟩ = 1

2
( |0⟩ − |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2
( |00⟩ + |01⟩ − |10⟩ − |11⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2 2
( |000⟩ + |010⟩ − |100⟩ − |110⟩ − |001⟩ − |011⟩ + |101⟩ + |111⟩ )

When represented as a vector, this state is the sixth column of AH3
:

( 1
−1
1
−1
−1
1
−1
1

)
| 110⟩ Idealized State:

H |1⟩ ⊗ H |1⟩ ⊗ H |0⟩ = 1

2
( |0⟩ − |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ )

= 1

2
( |00⟩ − |01⟩ − |10⟩ + |11⟩ ) ⊗ 1

2
( |0⟩ + |1⟩ )

= 1

2 2
( |000⟩ − |010⟩ − |100⟩ + |110⟩ + |001⟩ − |011⟩ − |101⟩ + |111⟩ )

When represented as a vector, this state is the seventh column of AH3
:

( 1
1
−1
−1
−1
−1
1
1

)
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| 111⟩ Idealized State:
H |1⟩ ⊗ H |1⟩ ⊗ H |1⟩ = 1

2
( |0⟩ − |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2
( |00⟩ − |01⟩ − |10⟩ + |11⟩ ) ⊗ 1

2
( |0⟩ − |1⟩ )

= 1

2 2
( |000⟩ − |010⟩ − |100⟩ + |110⟩ − |001⟩ + |011⟩ + |101⟩ − |111⟩ )

When represented as a vector, this state is the eighth column of AH3
:

( 1
−1
−1
−1
1
1
1
−1

)
Note that in each of these equations, H |0⟩ and H |1⟩ are as follows:

H |0⟩ = 1

2
( |0⟩ + |1⟩ )

H |1⟩ = 1

2
( |0⟩ − |1⟩ )

The matrix AH3
 made up of these columns is:

[ 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 −1
1 1 1 1 −1 −1 −1 1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

]
As with the AH2

, the only column that is symmetric is the first one associ-
ated with | 000⟩.

4. The | 01⟩ state is tagged.a.

To check the tagged state on the IBM Quantum Computer, drag and
drop the circuit’s gates on the Console and then go to the Statevector
section. You should see the chart on page 519.
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The lighter colored bar, second from right, is labeled 10. Since the IBM
Quantum Computer reports states in the reverse order from the way
we write it, the 10 state actually corresponds to 01.

b. The quantum state |φ
01
⟩ is:

|φ
01
⟩ = 1

2 ( 1
−1
1
1
)

c. To see how the Canceling Circuit removes the non-tagged quantum
states, multiply its matrix A

Canceling
 with the vector |φ

01
⟩ for the tagged

state:

A
Canceling

× |ψ
01
⟩ = 1

2 [ 1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

] × 1

2 ( 1
−1
1
1
)

= 1

4 ( 1
−1
−1
−1
) − 1

4 (−11−1
−1
) + 1

4 (−1−11
−1
) + 1

4 (−1−1−1
1
)

= 1

4 ( 1 + 1 − 1−1−1−1−1−1
−1 + 1 + 1 − 1
−1 + 1 − 1 + 1

)
= ( 0

−1
0
0
)
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That is,

A
Canceling

× |φ
01
⟩ = − |01⟩

Thus, the Canceling Circuit removes the non-tagged states from the
quantum state. When this state collapses, 01 will be recorded in the
classical registers.

d. The overall circuit with the Canceling Circuit appended to the Tagging
Circuit is shown in the following figure:

All Tag |10i Canceling Circuit Measure

|q0i H X • X H X • X H

|q1i H Z H X Z X H

c • •

c[0] c[1]

The code associated with this circuit is listed here:

Grover_01_Circuit.qasm
// Initialize Quantum and Classical RegistersLine 1

qreg q[2];-

creg c[2];-

-

// Generate All Combinations5

h q[0];-

h q[1];-

-

// Tag |01>-

x q[0];10

// Control-Z gate-

h q[1];-

cx q[0],q[1];-

h q[1];-

// End of Control-Z gate15

x q[0];-

-

// Canceling Circuit-

h q[0];-

h q[1];20

x q[0];-

x q[1];-

// Control-Z gate-

h q[1];-

cx q[0],q[1];25

h q[1];-
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// End of Control-Z gate-

x q[0];-

x q[1];-

h q[0];30

h q[1];-

// End of Canceling Circuit-

-

// Collapse Qubits-

measure q[0] -> c[0];35

measure q[1] -> c[1];-

As described in Putting the Quantum Effects Together, on page 313,
lines 12–14 and 24–26 implement the CZ gates in the Tagging and
Canceling circuits, respectively.

e. When you run your program on a real quantum computer, the output
will be similar to the following figure:

The bars represent the probability that each state is recorded in the
classical registers. The third bar, labeled 10 at the bottom, is the tallest
bar. Since the IBM Quantum Computer reverses the order of the states
from the way we write it, this state actually corresponds to 01. In
other words, this circuit eliminates or cancels out the non-tagged
states, leaving only the 01 state.

5. Each iteration of Grover’s Algorithm consists of a Tagging Circuit fol-
lowed by a Canceling Circuit, not a single Tagging Circuit sitting in
front of a sequence of Canceling Circuits.

a.

b. Within each Tagging Circuit and Canceling Circuit, sets of gates are
mirrored. But each iteration is always a Tagging Circuit followed by
a Canceling Circuit.

c. The All Combinations set of gates is only applied once at the beginning
of the algorithm to put the qubits in superposition. Each iteration
just includes the Tagging Circuit followed by a Canceling Circuit.
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6. The various sections of the circuit are annotated in the following figure:a.

All Tagging Circuit Canceling Circuit Measure

|x0i H X • • X H X • • X H

|x1i H • • H X • • X H

|p0i Z Z

c • •

c[0] c[1]

b. The tagged state is | 01⟩.

c. The code for the circuit is listed here:

Grover_Fundamental_Circuit_2_Qubits.qasm
// Initialize Quantum and Classical Registers
qreg q[3];
creg c[2];

// Generate All Combinations
h q[0];
h q[1];

// Tag |01>
x q[0];
ccx q[0],q[1],q[2];
z q[2];
ccx q[0],q[1],q[2];
x q[0];
id q[1]; // Dummy gate to visually line gates

// Canceling Circuit
h q[0];
h q[1];
x q[0];
x q[1];
ccx q[0],q[1],q[2];
z q[2];
ccx q[0],q[1],q[2];
x q[0];
x q[1];
h q[0];
h q[1];

// Collaspe Qubits
measure q[0] -> c[0];
measure q[1] -> c[1];

d. Since you used a simulator, the qubits will collapse to an exact result,
as shown in the figure on page 523.
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The solitary state is labeled 10. Because the IBM Quantum Computer
reverses the order of the states, the collapsed state actually corre-
sponds to 01, which matches the tagged state identified earlier.

7. To tag | 1011⟩, place the X gates on the | x
1
⟩ qubit, as shown in the fol-

lowing circuit:
a.

All Tagging Circuit Canceling Circuit Measure

|x0i H • • H X • • X H

|x1i H X • • X H X • • X H

|x2i H • • H X • • X H

|x3i H • • H X • • X H

|p0i • • • •

|p1i • • • •

|p2i Z Z

c • • • •

c[0] c[1] c[2] c[3]

b. The code for the circuit with the X gates inserted to tag | 1011⟩ is listed
here:

Grover_Fundamental_Circuit_4_Qubits_1_Iteration.qasm
// Initialize Quantum and Classical Registers
qreg q[7];
creg c[4];

// Generate All Combinations
h q[0];
h q[1];
h q[2];
h q[3];

// Tag |1011>
x q[1]; // X Gate on |x_1>
ccx q[0],q[1],q[4];
ccx q[2],q[4],q[5];
ccx q[3],q[5],q[6];
z q[6];
ccx q[3],q[5],q[6];
ccx q[2],q[4],q[5];
ccx q[0],q[1],q[4];
x q[1]; // X Gate on |x_1>
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// Canceling Circuit
h q[0];
h q[1];
h q[2];
h q[3];
x q[0];
x q[2];
x q[3];
x q[1];
ccx q[0],q[1],q[4];
ccx q[2],q[4],q[5];
ccx q[3],q[5],q[6];
z q[6];
ccx q[3],q[5],q[6];
ccx q[2],q[4],q[5];
ccx q[0],q[1],q[4];
x q[0];
x q[1];
x q[2];
x q[3];
h q[0];
h q[1];
h q[2];
h q[3];

// Collapse Qubits
measure q[0] -> c[0];
measure q[1] -> c[1];
measure q[2] -> c[2];
measure q[3] -> c[3];

c. When you run this program on the IBM Quantum Computer Simula-
tor, you’ll get an output similar to the one in the following figure:

The tallest bar is easily recognizable—the one labeled 1101. Since the
IBM Quantum Computer reverses the order of the states, this bar
actually corresponds to 1011, matching the tagged state.

The qubits collapse to this state in roughly 46% of the shots.
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d. Since this circuit has four independent qubits, you should run O( 4 ),
or 2 iterations.

e. The modified code with two iterations is listed here:

Grover_Fundamental_Circuit_4_Qubits_2_Iterations.qasm
// Initialized Quantum and Classical Registers
qreg q[7];
creg c[4];

// Generate All 2^4=16 Combinations
h q[0];
h q[1];
h q[2];
h q[3];

//// ITERATION 1
// Tag |1011>
x q[1]; // X Gate on |x_1> to tag |1011>
ccx q[0],q[1],q[4];
ccx q[2],q[4],q[5];
ccx q[3],q[5],q[6];
z q[6];
ccx q[3],q[5],q[6];
ccx q[2],q[4],q[5];
ccx q[0],q[1],q[4];
x q[1];

// Canceling Circuit
h q[0];
h q[1];
h q[2];
h q[3];
x q[0];
x q[2];
x q[3];
x q[1];
ccx q[0],q[1],q[4];
ccx q[2],q[4],q[5];
ccx q[3],q[5],q[6];
z q[6];
ccx q[3],q[5],q[6];
ccx q[2],q[4],q[5];
ccx q[0],q[1],q[4];
x q[0];
x q[1];
x q[2];
x q[3];
h q[0];
h q[1];
h q[2];
h q[3];
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//// ITERATION 2
// Tagging Circuit
x q[1];
ccx q[0],q[1],q[4];
ccx q[2],q[4],q[5];
ccx q[3],q[5],q[6];
z q[6];
ccx q[3],q[5],q[6];
ccx q[2],q[4],q[5];
ccx q[0],q[1],q[4];
x q[1];

// Canceling Circuit
h q[0];
h q[1];
h q[2];
h q[3];
x q[1];
x q[2];
x q[3];
x q[0];
ccx q[0],q[1],q[4];
ccx q[2],q[4],q[5];
ccx q[3],q[5],q[6];
z q[6];
ccx q[3],q[5],q[6];
ccx q[2],q[4],q[5];
ccx q[0],q[1],q[4];
x q[0];
x q[1];
x q[2];
x q[3];
h q[0];
h q[1];
h q[2];
h q[3];

// Collapse Qubits
measure q[0] -> c[0];
measure q[1] -> c[1];
measure q[2] -> c[2];
measure q[3] -> c[3];

f. When you run your code with two iterations of the Tagging and Can-
celing circuits, you’ll get an output that’ll be similar to the one shown
in the figure on page 527.

The tallest bar again is the one labeled 1101. Thus, with two iterations,
the collapsing of the qubits to the tagged state has surged to about
91%—roughly nine out of ten shots.
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Where to Go from Here Solutions
Solutions for the exercises in Try Your Hand, on page 385.

1. The truth table for the constant function F ( |x⟩ ) = |1⟩ is:a.

|y⟩ ⊕ F ( |x⟩ )F ( |x⟩ )|y⟩|x⟩
|1⟩|1⟩|0⟩|0⟩
|0⟩|1⟩|1⟩|0⟩
|1⟩|1⟩|0⟩|1⟩
|0⟩|1⟩|1⟩|1⟩

b. From the truth table in the previous part, when the bottom qubit |y⟩
is | 0⟩, the state |y⟩ ⊕ F ( |x⟩ ) is | 1⟩, and vice versa. In other words, the
UF  block is a pass-through for the top qubit and acts like a NOT (X)
gate for the bottom qubit. The resulting Deutsch circuit is shown in
the following figure:

UF

q[0] = |0i H H

q[1] = |1i H X

c •
c[0]

c. The Qiskit program for this circuit is listed below:

# import Qiskit and other librariesLine 1

import numpy as np-

import math-

from qiskit import(-

QuantumCircuit,5

QuantumRegister,-

ClassicalRegister,-

execute,-

Aer)-

from qiskit.visualization import plot_histogram10

-
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# Set up circuit with 2 qubits and 1 classical register-

circuit = QuantumCircuit(2,1)-

circuit.x(1)-

circuit.h(range(2))15

circuit.x(1)-

circuit.h(0)-

circuit.measure(0,0) # Measure gate on top qubit-

circuit.draw(output='mpl')-

20

# Get Backend and run circuit-

backend = Aer.get_backend('qasm_simulator')-

job = execute( circuit, backend, shots=1 )-

-

# plot results25

hist = job.result().get_counts()-

plot_histogram( hist )-

Note the NOT (X) gate on line 14 to set the bottom qubit to | 1⟩ before
splitting it by the H gate.

On line 23 the number of shots is set to 1.

After running this program, the Measure gate on the top qubit records
a 0 in the classical register indicating that the function F ( |x⟩ , |y⟩ )
is constant.

d. The Cirq program for this circuit is listed here:

# Import Cirq librariesLine 1

import cirq-

from cirq.ops import H, X-

-

# Declare the qubits - place diagonally: q[0] at (0,0), q[1] at (1,1)5

q = [cirq.GridQubit(i, i) for i in range(2)]-

-

# Set up Circuit-

circuit = cirq.Circuit()-

circuit.append([X(q[1]),H(q[0]), H(q[1]), X(q[1]), H(q[0])])10

circuit.append(cirq.measure(q[0], key='m'))-

-

print(circuit)-

-

# Get a simulator to execute the circuit15

simulator = cirq.Simulator()-

# Simulate the circuit several times-

result = simulator.run(circuit, repetitions=1)-

# Print the results-

print("Results:")20

print(result)-
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On line 6, declare the qubits and place them diagonally at (0,0) and
(1,1) on the grid.

On line 18, the number of shots is set to 1.

After running this program, you’ll find that the Measure gate on the top
qubit records a 0, indicating that the function is constant.

e. Both circuits return identical results when run on the IBM and Google
Quantum Computers, respectively. In each case, just a single shot
confirms that the function is constant.

2. The truth table for the balanced function F ( |x⟩ ) is:a.

|y⟩ ⊕ F ( |x⟩ )F ( |x⟩ )|y⟩|x⟩
|1⟩|1⟩|0⟩|0⟩
|0⟩|1⟩|1⟩|0⟩
|0⟩|0⟩|0⟩|1⟩
|1⟩|0⟩|1⟩|1⟩

b. To figure out the UF  block for this balanced function, first work out the
matrix based on the truth table you determined in the previous part.

The state of the qubits on the left of the UF , | x⟩ and |y⟩, map to those
on the right, | x⟩ and |y⟩ ⊕ F( |x⟩ ), as follows:

| 00⟩ ↦ |01⟩
|01⟩ ↦ |00⟩
|10⟩ ↦ |11⟩
|11⟩ ↦ |11⟩

In other words, the matrix AUF
 for UF  is:

AUF
= [ 0 1 0 0

1 0 0 0
0 0 1 0
0 0 0 1

]
With a little bit of experimentation, you’ll come up with the arrange-
ment of the CNOT and NOT (X) gates, as shown in the following figure:

UF

q[0] = |0i H • H

q[1] = |1i H X

c •
c[0]
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c. The Qiskit program for this circuit is listed here.

# import Qiskit and other librariesLine 1

import numpy as np-

import math-

from qiskit import(-

QuantumCircuit,5

QuantumRegister,-

ClassicalRegister,-

execute,-

Aer)-

from qiskit.visualization import plot_histogram10

-

# Set up circuit with 2 qubits and 1 classical register-

circuit = QuantumCircuit(2,1)-

circuit.x(1)-

circuit.h(range(2))15

circuit.cx(0,1)-

circuit.x(1)-

circuit.h(0)-

circuit.measure(0,0) # Measure gate on top qubit-

circuit.draw(output='mpl')20

-

# Get Backend and run circuit-

backend = Aer.get_backend('qasm_simulator')-

job = execute( circuit, backend, shots=1 )-

25

# plot results-

hist = job.result().get_counts()-

plot_histogram( hist )-

The bottom qubit is initialized to | 1⟩ by the X gate on line 14.

On line 24 the number of shots is set to 1.

After running this program, the Measure gate on the top qubit records
a 1 in the classical register, indicating that the function F ( |x⟩ , |y⟩ )
is balanced.

d. The Cirq program for this circuit is listed below:

# Import Cirq LibrariesLine 1

import cirq-

from cirq.ops import CNOT, H, X-

-

# Declare qubits-place one below the other: q[0] at (0,0) & q[1] at (1,0)5

q = [cirq.GridQubit(i, 0) for i in range(2)]-

-

# Set up Circuit-

circuit = cirq.Circuit()-

circuit.append([X(q[1]),H(q[0]), H(q[1]),10

CNOT(q[0],q[1]), X(q[1]), H(q[0])])-

Appendix 4. Solutions to Exercises • 530

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


circuit.append(cirq.measure(q[0], key='m'))-

-

print(circuit)-

15

# Get a simulator to execute the circuit-

simulator = cirq.Simulator()-

# Simulate the circuit several times-

result = simulator.run(circuit, repetitions=1)-

# Print the results20

print("Results:")-

print(result)-

On line 6, declare the qubits and place them one below the other at
(0,0) and (1,0) on the grid.

On line 19 the number of shots is set to 1.

After running this program, you’ll find that the Measure gate on the top
qubit records a 1, indicating that the function is balanced.

e. Both circuits return identical results when run on the IBM and Google
Quantum Computers, respectively. In each case, just a single shot
confirms that the function is balanced.

3. Since for half the input states, the function returns | 0⟩ and for the
other half returns | 1⟩, the function F  is balanced. You would need to
sample F  three times to establish its type.

a.

b. The UF  block is shown in the following figure:

|x0i

UF

|x0i

|x1i |x1i

|yi |yi � F ( |x0i , |x1i)

c. The truth table for UF  is as follows:

|y⟩ ⊕ F( | x0 ⟩ , |x1 ⟩ )F( | x0 ⟩ , |x1 ⟩ )|y⟩|x2 ⟩|x
1
⟩

|0⟩|0⟩|0⟩|0⟩|0⟩
|1⟩|0⟩|1⟩|0⟩|0⟩
|0⟩|0⟩|0⟩|1⟩|0⟩
|1⟩|0⟩|1⟩|1⟩|0⟩
|1⟩|1⟩|0⟩|0⟩|1⟩
|0⟩|1⟩|1⟩|0⟩|1⟩
|1⟩|1⟩|0⟩|1⟩|1⟩
|0⟩|1⟩|1⟩|1⟩|1⟩
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d. The quantum circuit for the Deutsch-Jozsa algorithm to test the type
of a two-qubit function is shown in the following figure:

q[0] : |x0i = |0i H

UF

H

q[1] : |x1i = |0i H H

q[2] : |1i H

c • •
c[0] c[1]

e. To figure out the matrix AUF
 for this truth table, work out the quantum

state vector for each of the idealized states, but label the states in the
IBM convention. That is, write the quantum state as a concatenated
string of the states in the quantum registers q[2]q[1]q[0]:

Idealized state |yx
1
x0 ⟩ = |000⟩:

The output quantum state is | 000⟩. In vector form:

( 100000
0
0

)
This vector is the first column of AUF

.

Idealized state |yx
1
x0 ⟩ = |001⟩:

The output quantum state is | 101⟩. In vector form:

( 000001
0
0

)
This vector is the second column of AUF

.
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Idealized state |yx
1
x0 ⟩ = |010⟩:

The output quantum state is | 010⟩. In vector form:

( 001000
0
0

)
This vector is the third column of AUF

.

Idealized state |yx
1
x0 ⟩ = |011⟩:

The output quantum state is | 111⟩. In vector form:

( 000000
0
1

)
This vector is the fourth column of AUF

.

Idealized state |yx
1
x0 ⟩ = |100⟩:

The output quantum state is | 100⟩. In vector form:

( 000010
0
0

)
This vector is the fifth column of AUF

.
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Idealized state |yx
1
x0 ⟩ = |101⟩:

The output quantum state is | 001⟩. In vector form:

( 010000
0
0

)
This vector is the sixth column of AUF

.

Idealized state |yx
1
x0 ⟩ = |110⟩:

The output quantum state is | 110⟩. In vector form:

( 000000
1
0

)
This vector is the seventh column of AUF

.

Idealized state |yx
1
x0 ⟩ = |111⟩:

The output quantum state is | 011⟩. In vector form:

( 000100
0
0

)
This vector is the eighth column of AUF

.
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Thus, the matrix AUF
 is:

AUF
= [ 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

]
f. The quantum program using Qiskit is listed here:

import numpy as npLine 1

import math-

from qiskit import(-

QuantumCircuit,-

QuantumRegister,5

ClassicalRegister,-

execute,-

Aer)-

from qiskit.visualization import plot_histogram-

from qiskit.quantum_info.operators import Operator10

-
-

U_F = Operator([-

[1,0,0,0,0,0,0,0],-

[0,0,0,0,0,1,0,0],15

[0,0,1,0,0,0,0,0],-

[0,0,0,0,0,0,0,1],-

[0,0,0,0,1,0,0,0],-

[0,1,0,0,0,0,0,0],-

[0,0,0,0,0,0,1,0],20

[0,0,0,1,0,0,0,0]-

])-

-
-

# Check unitary25

print('Operatator is unitary:', U_F.is_unitary())-

-

circuit = QuantumCircuit(3,2)-

circuit.x(2)-

circuit.h(range(3))30

circuit.append(U_F,[0,1,2])-

circuit.h(range(2))-

circuit.measure([0,1],[0,1])-

-

circuit.draw(output='mpl')35

-
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# Use simulator to run the circuit-

backend = Aer.get_backend('qasm_simulator')-

# Define the run parameters and execute-

job = execute( circuit, backend, shots=1 )40

# Tally the results-

collapsed_states_array = job.result().get_counts()-

print(collapsed_states_array)-

The matrix AUF
 is defined on lines 13–22 using Operator(). (To use this

method, you have to first import it on line 10.) Set up the circuit on
lines 28–33. The “gate” corresponding to the matrix AUF

 is appended to
the circuit on line 31. On line 38 select the simulator to run this
program. And on line 40, specify to run only once. Get the collapsed
state on line 42.

g. The output of this program is:

{'01': 1}

Since the output state isn’t 00, indicating that the function is not
constant, it, therefore, must be balanced.

4. The first choice correctly assigns H gates to all three qubits.a.

The second choice, circuit.h(3), throws an error as the system will try
to assign an H on q[3], which is out of range. The circuit was initialized
with three qubits: q[0], q[1], and q[2].

The third choice, circuit.h(0,1,2), has three arguments. The h() method
only allows a single argument: either the index of the qubit on which
to place the H gate, or an array of qubits on which the H gates are
placed.

The fourth choice, h.(range(2)), will assign H gates to only the first and
second qubits, not all three.

b. The last choice correctly assigns H gates on both qubits and places
the Measure gates on the qubits.

The first choice, circuit.measure(range(2),range(2)), works out to circuit.mea-
sure([0,1],[0,1]). That is, the Measure gate on the first qubit records the
collapsed state in c[0], the first classical register, and the Measure on
the second qubit records it in c[1]. The given circuit has it the other
way around: the collapse of the first qubit is recorded in c[1], the sec-
ond classical register, and the collapse of the second qubit is recorded
in c[0], the first classical register.
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The second choice throws an out-of-range error as the assignments
of both the H gate and Measure gates use indices that are outside the
range declared.

The third choice only assigns a single Measure gate that records the
collapse of the second qubit in the first classical register. The circuit
has two Measure gates.

5. This gate splits and rotates the triangle | 1⟩ qubelets. So the last
description best describes the gate.

a.

b. Yes. The amplitude includes the complex number i, which indicates
that the triangle | 1⟩ qubelets are rotated 90° anticlockwise. (See
Rotating Qubelets Through Any Angle, on page 150, for the definition
of the quantum state.)

The probability that the | 0⟩ qubit collapses to | 1⟩ is calculated as shown
below:

Probability of collapsing to |1⟩ = i

2
× −i

2

= 1

4

c. Yes. The amplitude includes the complex number −i, which indicates
that the triangle | 1⟩ qubelets are rotated 90°clockwise. (See Rotating
Qubelets Through Any Angle, on page 150, for the definition of the
quantum state.)

The probability that the | 0⟩ qubit collapses to | 1⟩ is calculated as shown
below:

Probability of collapsing to |1⟩ = i 3

2
× − i 3

2

= 3

4

Notice that when working with complex numbers, “squaring the
amplitude” is replaced by multiplying it with its complex conjugate.

d. When this gate acts on the | 0⟩ qubit, the quantum state written as a
vector is:

| 0⟩ ↦
G ( 3

2
i

2

)
This vector becomes the first column of the gate’s matrix A

G
.
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When this gate acts on the | 1⟩ qubit, the quantum state written as a
vector is:

| 1⟩ ↦
G ( 1

2

−i 3

2

)
This vector becomes the second column of the gate’s matrix A

G
.

Thus, the matrix A
G
 for this gate is:

A
G
= [ 3

2

1

2
i

2
−i 3

2
]

e. To check whether the A
G
 matrix is unitary, write a program using

Qiskit as follows:

import numpy as npLine 1

import math-

from qiskit import(-

QuantumCircuit,-

QuantumRegister,5

ClassicalRegister,-

execute,-

Aer)-

from qiskit.visualization import plot_histogram-

from qiskit.quantum_info.operators import Operator10

-

A_G = [-

[math.sqrt(3)/2, 1/2*complex(0,1)],-

[1/2, -math.sqrt(3)/2*complex(0,1)]-

]15

-

gate_G = Operator(A_G)-

-

print('Operatator is unitary:', gate_G.is_unitary())-

On line 10, import the Operator library. Define the A
G
 matrix on line 12.

To make this matrix a quantum gate, pass it in an argument to the
Operator object on line 17. And then, on line 19, check whether the A

G
matrix is unitary.

Running this code will return True, indicating that the A
G
 matrix is

unitary and can be safely used as a gate in a quantum circuit.

Appendix 4. Solutions to Exercises • 538

report erratum  •  discuss

http://pragprog.com/titles/nmquantum/errata/add
http://forums.pragprog.com/forums/nmquantum


f. Add the following lines to the program in the previous part to set up
the circuit and run it on the simulator:

# Set up circuitLine 1

circuit = QuantumCircuit(2, 2)2

circuit.append(gate_G, [0],)3

circuit.x(1)4

circuit.cx(0,1)5

circuit.measure([0,1], [0,1])6

7

circuit.draw(output='mpl')8

On line 2, declare a circuit having two qubits and two classical regis-
ters. Then, on line 3 insert the G gate you just defined, followed by
the rest of the gates that make up the circuit.

g. To run the circuit on the simulator, append the following lines to the
Qiskit code in the previous part:

# Select SimulatorLine 1

backend = Aer.get_backend('qasm_simulator')2

3

# Define the run parameters and execute4

job = execute( circuit, backend, shots=1024 )5

6

# Tally the results7

collapsed_states_array = job.result().get_counts()8

print(collapsed_states_array)9

On lines 2–9, set the program to run on a simulator and print the
results as an array.

After you run this circuit on the simulator, the two qubits will collapse
roughly into the following two states:

{'10': 763, '01': 261}

In fact, these qubits are entangled. If you see 1 in c[0], you’re guaran-
teed to see 0 in the other classical register, and vice versa. As the
counts over the 1024 repetitions show, you’ll see 0 in c[0] about three
times as often you’ll see 1. (Remember that the order of the classical
registers in IBM’s Quantum Computer is reversed from the way we’ve
labeled them. That is, the right-most bit corresponds to c[0].)

h. Yes, you could have defined the matrix as a U3 Universal gate.
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6. No. The sum of probabilities of collapsing to the four idealized states is:a.

12 + (−2)2 + 32 + −i × i = 15 ≠ 1

Since this sum doesn’t add up to 1, the quantum state |φ0 ⟩ is not
valid.

To make this quantum state valid, normalize it as follows:

|φ0 ⟩ =
1

15
| 00⟩ − 2

15
| 01⟩ + 3

15
| 10⟩ − i

15
| 11⟩

b. The Qiskit program that initializes the circuit with |φ0 ⟩ is listed here:

import numpy as npLine 1

import math-

from qiskit import(-

QuantumCircuit,-

QuantumRegister,5

ClassicalRegister,-

execute,-

Aer)-

from qiskit.visualization import plot_histogram-

from qiskit.quantum_info.operators import Operator10

-

input_quantum_state = [ 1/math.sqrt(15),-

-2/math.sqrt(15),-

3/math.sqrt(15),-

-complex(0,1)/math.sqrt(15)15

]-

-

# Define circuit with 3 qubits and 3 classical registers-

q = QuantumRegister(3)-

c = ClassicalRegister(3)20

circuit = QuantumCircuit(q,c)-

circuit.initialize(input_quantum_state, [q[0],q[1]])-

-

circuit.h([q[0],q[2]])-

circuit.cx(0,1)25

circuit.h(0)-

circuit.cx(2,1)-

circuit.measure(q, c)-

-

circuit.draw(output='mpl')30

The quantum state |φ0 ⟩ is defined on line 12. On line 22 the circuit
is initialized with the quantum state |φ0 ⟩. The gates are declared on
lines 24–28.
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c. To determine the number of independent states, use the num_unitary_fac-
tors() of the circuit object:

circuit.num_unitary_factors()

Since, the two CNOT gates entangle all three qubits, there’s only a
single independent set of qubits.

d. To run the circuit on the simulator, append the following lines to the
Qiskit code in the previous part:

backend = Aer.get_backend('qasm_simulator')

# Define the run parameters and execute
job = execute( circuit, backend, shots=1024 )

# Tally the results
collapsed_states_array = job.result().get_counts()
print(collapsed_states_array)

The output of this circuit reported as an array will be similar to the
following:

{'001': 158, '111': 147, '101': 5, '000': 28, '100': 308, '011': 7,
'110': 36, '010': 335}

You can also plot these states as a histogram with the following line:

plot_histogram( collapsed_states_array )

7. The list of quantum effects includes the following:

• Superposition.
• Rotating pentagon | 0⟩ and triangle | 1⟩ qubelets.
• Canceling qubelet combinations.
• Entangling qubelets.
• Back-to-back H gates for restoring states.
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T-dagger gate, 213
U1 gate, 204
U2 gate, 204
U3 gate, 204
Universal gates, 204
viewing in IBM Q Experi-

ence, 12, 14
Y gate, 206
Z gate, 212

collapsing
Bellagio scheduling prob-

lem example, 99
declaring in Qiskit, 356
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see CNOT gate
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AND gate, 59
CCNOT gate, 57–62
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288–289
entanglement and, 290
experiments in, 290
public/private keys, 280
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forms and, 351
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350
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reversibility, 58, 191–

192, 305
rotating qubelets, 206–

213, 237
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running programs, steps

in, 84
splitting qubelets, 101
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stacked, shortcut for, 350
summary table, 62
superposition, 213–216
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qubit, 91–96, 101
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78, 100, 205–206, 236
understanding intuitively,

235–248
Universal, 158–171
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about, 20, 391–393
vs. quantum gates, 69
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Google
Cirq, 10, 354, 380–384
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to classical computing,
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code, 83, 216
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creating CZ gates, 111–
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dagger matrix and back-
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declaring in Qiskit, 359, 

362
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back-to-back, 346–351
Deutsch-Jozsa algorithm

with back-to-back, 342
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scheduling problem,
133–135

entanglement, under-
standing, 120–127

fundamental canceling
pattern for search,
318–321
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298
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matrix, 178–183, 214
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with Universal gates,
166–169
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gates from code, 314
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metry in, 349
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scheduling problem ex-
ample, 98

tagging in fundamental
search circuit pattern,
315–318

tagging when optimal so-
lution isn’t known,
325–328

tagging with Grover’s algo-
rithm, 302

teleporting example, 259–
260, 262

understanding, 82–88
as Universal gate, 164
using, 213

Hadamard, see Measure gate

Hadamard, Jacques, 83

handshake, BB84 key ex-
change, 283–289

hardware
classical computing, 20
quantum computers, 4, 

296

headers, 14, 32

Hermitian matrix, 190–191

Higgs-Boson, 415

histograms, 359, 367

I
i complex number

conjugate, 190
idealized state and, 232
inferring gate actions,

237–238
multiplication, 187
obtaining magnitude from

complex conjugate, 167
in quantum state equa-

tion, 152, 167
rotating with S gate, 197

IBM Q Experience, see al-
so Qiskit

about, 5, 9
API token and, 363
Bellagio scheduling prob-

lem, running simple
version, 12–18

CCNOT gate, adding, 60

circuit for Bellagio
scheduling problem,
330

circuit, fundamental, 323
circuits, creating, 10, 32–

33
CNOT gate, adding, 54
Composer interface, 9–12
conventions for state, 376
CZ gate, built-in, 117, 130
drag-and-drop in, 10, 

304, 353
entanglement example,

126
gate sequences in, 221
gates, adding, 12
H gate, adding, 83
ID gate in, 181
idealized state, verifying

collapsing in, 233
importing into, 14
Job ID, 366
labels on bar graphs,

314–315
Measure gate, adding, 31–

33
NOT (X) gate, adding, 45
output, 16–18
parameters, setting, 162
Qiskit results, viewing,

366–367
Qiskit, using on, 355
register, multi-bit, 56
registers, removing, 32
removing qubits, 32
Results section, 36
running programs in, 12, 

15, 34–39
set up, 9
specifying number of

shots, 35, 84
state vector, confirming,

301, 316
SWAP gate, built-in, 52
U3 gate, creating, 162
viewing code in, 12, 14
viewing results, 36
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IBMQ library, 365

ID gate, 181, 216
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importing
cirq library, 382
gates for Cirq, 382
into IBM Q Experience,
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input_quantum_state, 374
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interference, see canceling

interference and canceling,
80
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about, 79, 101
amplitudes and, 145
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with CZ gate, 109, 112, 

116
with H gate, 86–88, 90
negative sign for, 79, 86, 
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probability equations

and, 143
quantum state equation

and, 300
with Z gate, 96, 109

is_unitary(), 376

J
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Job ID, 366

job object, 367

Jupyter Notebooks
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rience, 355
API token and, 363–364, 
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Cirq and, 381
drawing circuit in, 358
pasting code into, 359
viewing Qiskit results,

366
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K
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187–191

tensors, 250

keys
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BB84 key exchange, 282–

291
public/private, 280
Quantum Key Distribu-

tion problem, 281
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283, 289
symmetric, 280–291

Knuth, Donald E., 6, 17

L
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controlling Universal gates
and, 160

defined, 159
setting on IBM Q Experi-

ence, 162
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Bloch sphere, 152, 411
parameters and, 159

least_busy library, 365
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beam splitter and Mach-
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416–423

polarized, 24, 81–82

loader block, implementing,
260–262

logging, 36
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tum logic

logic circuits, see circuits
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routing, 1

longitudes, Bloch sphere,
153, 411

Los Alamos National Labora-
tory, 290

M
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416–423

magnetic resonance images
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math library, 358–359

mathematics, see also multi-
plication; quantum state
equation; vectors

as basis for quantum
computing, x

challenges of quantum
mechanics, 22

with computer algebra
systems, 221, 397

inverse trigonometric
functions, 153

matrices, understanding,
175–187

modulo-2 addition, 281
need for understanding,

142
normalizing qubelet com-

binations, 232, 264
normalizing qubelets,

144, 153, 169
number of qubelets as

defining amplitude,
145

probability equations,
142–150

qubit addition, 143
resources on, 391, 394
review, 391–398
rotating qubelets through

any angle, 150–158
state transformations and

Bloch sphere, 402–411
Trigonometric identities,

159
trigonometric identities,

391

Matplotlib visualizations,
358–359

matrices
applying to blended

qubits, 181–183
CNOT gate, 238–248
compatibility, 243, 251, 

255
conjugate transpose, 190
conventions for state, 376
CZ gate, 240–243
dagger matrix, 191
defined, 394
defining in Qiskit, 375
deriving gates from in

Qiskit, 375–377
Deutsch’s algorithm, 343
generic, 311
H gate, 178–183, 214
Hermitian, 190–191
ID gate, 216
idealized state in, 231
identity matrix, 181, 190
loading circuit, 265
multiplication, 176, 178, 

181
multiplication order,

220, 242, 255
multiplication vs. quan-

tum computing, 242
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multiplication with
blended states, 249–
254

multiplication with ten-
sors, 83

multiplication, order of,
181

multiplication, review of
mathematics, 394–398

multiplication, sequence
of gates as, 219–224

multiplication, simplify-
ing notation, 311

multiplication, with com-
puter algebra systems,
221, 397

NOT (X) gate, 180, 205
in Qiskit, 373
rectangular, 394
restrictions, 187–195
review of mathematics,

394–398
Ry gate, 215
Rz gate, 212
S gate, 208, 243
S-dagger gate, 209
selecting gates with, 246
square, 178, 394
T gate, 210
T-dagger gate, 211
tensors, 251
U1 gate, 204, 215
U2 gate, 204
U3 gate, 204
understanding, 175–187
understanding intuitively,

195–202, 235–248
unitary, 191–192, 375–

377
Y gate, 206
Z gate, 181, 207

matrix() function, 398

Measure gate
adding gates after, 34
amplitude, understand-

ing, 148
Cirq, 382
code, 33
declaring in IBM Q Expe-

rience, 31–33
declaring in Qiskit, 356–

358, 360–362
Deutsch’s algorithm, 343
Deutsch-Jozsa algorithm,

350
disentanglement exam-

ple, 130
entanglement, under-

standing, 123

explicit measurement, 44
grouping gates in Qiskit,

370
in Grover’s algorithm,

297
multiplication vs. quan-

tum computing, 242
noise and, 331
partial circuits, 371
passing arrays as argu-

ments in Qiskit, 363
running Bellagio

scheduling problem
with combined gates,
67

running programs in IBM
Q Experience, 34–39

running programs, steps
in, 84

using, 30–39

measure_circuit, 371

measuring, see also Measure
gate

defined, 31
Deutsch’s algorithm and,

342
Deutsch-Jozsa algorithm,

350
explicit, 44
idealized state and, 234
latitudes on Bloch

sphere, 152
longitudes on Bloch

sphere, 153
mega-qubits, 93
in Qiskit, 360–362
understanding, 29–39

mega-qubits
advantages of, 101
BB84 key exchange, 283–

291
cryptography, 282
CZ gate, 111, 113–117
disentangling, 127–135
entanglement, under-

standing, 121–127
idealized state and, 231–

235
mega-qubit as quantum

state, 93
mindset, 248
misplacing gates and,

327
operations on, 94–95
programming to limit

numbers of, 95
rotating with blended

states, 254

superposition, Bellagio
scheduling problem ex-
ample, 97–100

superposition, under-
standing, 91–96, 101

tagging, 107–120, 131–
135

teleporting example,
evaluating circuit, 263–
268

teleporting example,
loader, 260–262

tensors, 248–256

metrics
Qiskit, 377–380
runtime, 36

Microsoft Q#, 10, 354, 380, 
384

modulo-2 addition, 281

Moments (Cirq), 381–382

mpl option, 358

MRI (magnetic resonance im-
ages), 1

multi-bit registers, 56, 234

multiplication
complex numbers and,

187
with computer algebra

systems, 221, 397
matrices, 176, 178, 181
matrices, blended states

and, 249–254
matrices, compatibility

and, 243, 251, 255
matrices, review of math-

ematics, 394–398
matrices, sequence of

gates as, 219–224
matrices, with tensors,

83
order of, 181, 220, 242, 

255
vs. quantum computing,

242
simplifying notation, 311
vectors, 395–398

N
n_qubits attribute, 378

name parameter, 369

names
gates, 203, 399
groupings of gates, 369
H gate, 83
variables, 9

Index • 552



National Institute for Stan-
dards and Technology
(NIST), 290

National Laboratory for
Quantum Information Sci-
ence, 2

negative sign
for amplitude, 145
for inverted qubelets, 79, 

86, 214

NIST (National Institute for
Standards and Technology),
290

noise
reducing, 331
running programs on

simulators vs. quan-
tum computers, 39, 
321

simulating in Qiskit, 380

nonzero probability, 163

normalizing
qubelet combinations,

232, 264
qubelets, 144, 153, 169

NOT, Boolean algebraic logic,
392–393

NOT (X) gate
algebraic logic, 44, 62
code, 44–47, 206
combining in Bellagio

scheduling problem,
63–68

connecting CZ gate, 117
disentanglement exam-

ple, 130
entanglement and, 135
establishing trust in

BB84 key exchange,
284, 286

fundamental canceling
pattern for search,
318–321

grouping gates in Qiskit
example, 368–370

matrix, 180, 205
post-processing with de-

terministic operations,
271

removing back-to-back
gates from code, 314

removing redundant, 135
selecting gates with matri-

ces example, 246
state, understanding ef-

fects on, 159

superposition example in
Bellagio scheduling
problem, 96–100

tagging in fundamental
search circuit pattern,
315–318

tagging solutions with
Grover’s algorithm,
302–304, 308

truth table, 44
understanding, 42–47, 62
as Universal gate, 164
uses, 62
using, 44–47, 205–206

num_unitary_factors(), 380

NumPy library, 358–359

O
Open Quantum Assembly

Language, see QASM

operations
compound, 82, 238
deterministic operations,

270
inverted qubelets, 79
mega-qubits, 94–95
on only one type of

qubelets, 80
understanding, 78–82, 

100
viewing number of in

Qiskit, 378
viewing number of simul-

taneous, 379

Operator library, 375

Operator() method, 376

OR, Boolean algebraic logic,
392–393

OR gate
combining in Bellagio

scheduling problem, 63
grouping gates in Qiskit

example, 368–370
reversibility and, 192
understanding, 59, 62

oracle, 297, 312, see also tag-
ging

output
probability, 147–148
Qiskit, 362, 372
viewing in IBM Q Experi-

ence, 16–18

output bits, 391

P
partial circuits, 368, 370

pass-through
Deutsch’s algorithm, 347
matrice compatibility

and, 243, 251, 255

Pauli gates
NOT (X) gate as, 42, 205
Y gate as, 206
Z gate as, 207

performance, preparing pro-
grams before running, 331

pharmaceuticals, 1

Phase gates, 206–213

phi angle
controlling Universal gates

and, 160
defined, 151, 153
pronunciation, 155
rotating qubelets through

any angle, 150–158
setting on IBM Q Experi-

ence, 162

plot, 359

polar coordinates, 400–402

polarized light, 24, 81–82

policies, 382

post-processing, 268–272

primary qubits, 96

probability
vs. amplitudes, 148, 165
back-to-back H gates, 88
in Bloch sphere, 153
vs. canceling, 169
CZ gate, 115
equations, 142–150
matrix restrictions, 187–

191
mega-qubit operations,

95
nonzero, 163
normalizing qubelet com-

binations, 232
normalizing qubelets,

144, 153, 169
output of programs, 147–

148
reducing with Universal

gates, 165–169
role of, 163
state transformations and

Bloch sphere, 402–411
superposition, Bellagio

scheduling problem ex-
ample, 99

provider object, 366
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public/private keys, 280

Python, see also Qiskit
Braket and, 381
libraries, 358–359
other language options,

354
programming with, 10
version, 356

Q
Q#, 10, 354, 380, 384

QASM
about, 10
limits of, 354
specifying version, 14, 32

QASM File button, 14

.qasm file extension, 10

qasm_simulator, 358

Qiskit
about, 10, 353
basics, 356–359
creating larger circuits

from smaller circuits,
368–372

deriving gates from matri-
ces, 375–377

features, 380
gates in, 359–362
importing libraries, 356, 

358–359
installing, 356
metrics, 377–380
output, 362, 372
partial circuits, 368, 370
resources on, 377
running on quantum

computer, 363–367
setting up arbitrary

states, 373
shortcuts, 362
using on IBM Q Experi-

ence, 355
version, 356
viewing results, 366–367

QKD, see Quantum Key Dis-
tribution

qreg, declaring quantum regis-
ter, 33

qregs attribute, 377

quantum bits, see qubits

quantum channels,
see channels

quantum circuits, see circuits

quantum computers, see al-
so backend; IBM Q Experi-
ence; Qiskit; simulators

adiabatic quantum com-
puters, 4

Braket, 10, 354, 380
Cirq, 10, 354, 380–384
hardware in, 4, 296
preparing programs be-

fore running, 331
Q#, 10, 354, 380, 384
quantum circuit comput-

ers, defined, 4
queues, 15
running Qiskit on, 363–

367
running programs on,

15, 321
types of, 3

quantum computing
advantages, 1, 18, 28, 

342
challenges of, x, 3, 304
vs. classical computing,

5, 14, 19, 25, 69, 341, 
352

development of, ix
fundamental tenets, 5
vs. matrice multiplica-

tion, 242
mindset, 14, 20, 248, 

311, 339
quantum speak, 20
research funding and in-

terest, 1–2
technology limits, 296
uses, 1
when to use, 7

quantum cryptography,
see cryptography

quantum effects
identification step, 256
implementation step,

256–268
refinement step, 256, 

268–272

Quantum Fourier transforms,
339, 351

quantum gates, see gates

Quantum Information Science
Kit, see Qiskit

Quantum Initiative Act, 2

Quantum Key Distribution
BB84 key exchange, 282–

291
problem, 281

quantum logic, see gates

quantum mechanics
challenges of, x–xi, 22, 

125
development of, ix, 415
entanglement, under-

standing, 120–127
group theory conjugates,

311
H gates, understanding,

91
Mach-Zehnder interferom-

eter, 416–423
with qubelets, 415–423
resources on, 144, 311
reversibility in, 58
wave mechanics, 144

quantum programs
defined, 28
headers, 32
idealized state and, 230–

235
importing into IBM Q Ex-

perience, 14
preparing before running,

331
quantum logic vs. assem-

bly language, 41
running in IBM Q Experi-

ence, 34–39
running on quantum

computers, 15, 321
running, steps in, 84
steps in, 17

quantum search, see search

quantum state, see state

quantum telescopes, 127

quantum wave mechanics,
144

qubelets, see also collapsing;
entanglement; inverting;
measuring; rotating; split-
ting

calculating orientations
intuitively, 199

canceling, understand-
ing, 80–82

canceling, with back-to-
back H gates, 88–91

classifying gates by type,
202–219

conjugates, 189
defined, 21
matrices, understanding,

175–187
model as equivalent to

Bloch sphere, 399, 413
model understanding,

20–29
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model vs. Bloch sphere,
151, 172, 298

normalizing, 144, 153, 
169

normalizing combina-
tions, 232, 264

polarized light visualiza-
tion, 24, 81–82

probability equations,
142–150

programming actions,
understanding, 28

quantum mechanics
with, 415–423

ratio of amplitude, 145
reducing probabilities

with Universal gates,
165–169

replacing, 78, 101
switching types, 78, 100, 

205–206
switching types, inferring

gate actions, 236
visualizing ratio of ampli-

tude, 145

qubits, see also carrier
qubits; collapsing; entangle-
ment; inverting; measuring;
mega-qubits; qubelets; ro-
tating; splitting; superposi-
tion

addition, 143
biased, 25
vs. classical bits, 25
connecting Measure gate

to, 33
copying with FAN-OUT gate,

51
declaring in Qiskit, 360–

362
defined, 20
equivalent, 25
idealized or pure, 38, 43, 

228–235
initializing in Cirq, 381
matrice compatibility

and, 243, 251, 255
matrices and blended

qubits, 181–183
matrices, understanding,

175–187
measuring, 29–39
modeling with qubelets,

20–29
primary/independent, 96
probability equations,

142–150
putting in blended states,

82–88, 213–216

removing, 32
resetting after unintend-

ed entanglement, 59
reversing in cryptogra-

phy, 289
running programs on

simulators vs. quan-
tum computers, 37–39

understanding actions,
28

viewing number of in
Qiskit, 378

viewing number of inde-
pendent, 380

visualizing in 3D space,
399–402

working/secondary, 96

R
radar, 127

radians vs. degrees, 152

range, 369

receivers, BB84 key ex-
change, 283–291

reflection and amplification,
see canceling

registers
CCNOT gate, 61
CNOT gate, 55
combining gates, Bellagio

scheduling problem,
63–68

connecting, 33
declaring, 33
declaring in Qiskit, 357–

358, 360–362
Measure gate, 30–39
multi-bit, 56, 234
order in, 56, 234
setting when adding NOT
(X) gate, 45

steps in running pro-
grams, 84

superposition, Bellagio
scheduling problem ex-
ample, 99

swapping values with
SWAP gate, 52

viewing number of in
Qiskit, 377

registers, classical
CCNOT gate, 61
circuit width and, 378
CNOT gate, 55
connecting, 33
declaring, 33, 56
declaring in Qiskit, 357–

358, 362

entanglement, under-
standing, 123–124

Measure gate, 30
order in, 234
partial circuits, 371
removing, 32
role in classical comput-

ing, 20
setting when adding NOT
(X) gate, 45

single-use key creation,
289

steps in running pro-
grams, 84

superposition, Bellagio
scheduling problem ex-
ample, 99

viewing number of in
Qiskit, 378

replacing, qubelets, 78, 101

resources
Bellagio scheduling prob-

lem code, 330
Bloch sphere, 411
Boolean logic, 7, 58
complex numbers, 391
computer algebra sys-

tems, 398
linear algebra, 394
mathematics, 391, 394
Qiskit, 377
quantum mechanics, 311
quantum wave mechan-

ics, 144
source code for this book,

xv
trigonometric identities,

391

Result object, 372

reversibility
gates, 58, 191–192, 305
reversing bits in cryptog-

raphy, 289
search and, 192

rotating
adjusting orientation in
Universal gates, 159

calculating orientations
intuitively, 199

checking results with,
269

deterministic operations,
270

fundamental tenet of
quantum computing, 5

gates for, 206–213
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matrices, understanding
intuitively example,
196–200

mega-qubits with blended
states, 254

noise and, 331
parameters and, 159
qubelets, 79, 206–213
qubelets, in Grover’s algo-

rithm, 297–304
qubelets, inferring gate

actions, 237
qubelets, through any

angle, 150–158
relative difference be-

tween rotations, 154
relative number of

qubelets and rotating
at any angle, 154

with Rz gate, 211
with S gate, 208
with S-dagger gate, 208
with T gate, 209
with T-dagger gate, 210
with Y gate, 205, 238
with Z gate, 207

Rotation family of gates, 212, 
215

RSA, 280

run(), 383

running, see also shots
in Cirq, 382
with combined gates, 66
in IBM Q Experience, 12, 

15, 34–39
preparing programs be-

fore, 331
Qiskit basics, 357, 359
Qiskit on quantum com-

puter, 363–367
simulators vs. quantum

computers, 37–39
steps in, 84

runtime metrics, 36

Rx gate, 214

Ry gate, 215

Rz gate, 211

S
S gate

calculating actions intu-
itively, 199–200

code, 212
declaring in Qiskit, 360
inferring gate actions ex-

ample, 243–247
matrix, 208, 243

understanding matrices
intuitively example,
196–200

using, 208

S-dagger gate, 208, 213

Sage Mathematical Software
System, 397

SageMath, 397

satellites, 141

saving, in IBM Q Experience,
12, 15

scheduling problem, see Bel-
lagio scheduling problem

Schrödinger’s cat, 21

Schur, Issai, 83

search
about, 295
Bellagio scheduling prob-

lem, 324–331
entanglement and, 127
fundamental canceling

pattern, 318–321
fundamental circuit pat-

tern, 314–324
Grover’s algorithm, 296–

314
reversibility and, 192
tagging when optimal so-

lution isn’t known,
325–328

secondary qubits, 96

senders, BB84 key exchange,
283–291

Shor’s algorithm, 339, 351

shots
defined, 35
need for multiple, 85
running programs on

simulators vs. quan-
tum computers, 37–39

specifying number of, 84
specifying number of in

Cirq, 382
specifying number of in

IBM Q Experience, 35, 
84

specifying number of in
Qiskit, 357

steps in, 84
superposition, Bellagio

scheduling problem ex-
ample, 99

Simon’s algorithm, 339, 351

simulators
Aer, 358
declaring in Cirq, 382

limits of, 16
running programs on,

37–39, 321
selecting in IBM Q Experi-

ence, 15, 35
selecting in Qiskit, 358

size(), 378

solutions
finding optimal with

Grover’s algorithm,
296–314

tagging when optimal so-
lution isn’t known,
325–328

tagging with CZ gate, 107–
120, 131–135

testing, 331

splitting qubelets
about, 78, 101
applying matrices and,

182
in canceling circuit, 306
gates for, 213–216
with H gate, 82–88, 101, 

213, 349
inferring gate actions

and, 237
splitting amplitudes, 147

state, see also collapsing;
state equation, quantum

arbitrary states in Qiskit,
373

being in all states at
once, 6

bias, understanding, 25
blended, putting qubits

in, 213–216
blended, understanding,

20–21, 23
blended, working with

tensors, 248–256
conventions for state, 376
design and specific vs.

general state, 271
Deutsch’s algorithm ex-

ample, 348
fundamental tenets, 5
H gate matrix and, 182
H gate, generating all

states with, 298
idealized or pure, 228–

235
loading in teleporting ex-

ample, 257, 260–262, 
265–268

mathematical transforma-
tions, 402–411
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matrices, restrictions,
187–195

mega-qubit as quantum
state, 93

modeling with qubelets,
20–29

parameters in state vs.
parameters in gates,
159

probability equations,
142–150

programming actions,
understanding, 28

state vector, confirming
on IBM Q Experience,
301, 316

tagging non-tagged
states, 306

understanding, 20
understanding effects of

gate actions, 158–160
Universal gates and, 158–

171
writing with polar coordi-

nates, 402

state equation, quantum
conjugates and, 189
idealized state and, 228
intuitively analyzing, 197
inversions and, 300
remembering, 155
understanding, 152–156, 

407–413
vector form, 174, 177, 

189, 199–200, 229

Statevector
IBM Q Experience, 301, 

316
in Qiskit, 358, 372

statevector_simulator, 358, 372

subatomic particles, 5

Summit Supercomputer, 353

superposition
back-to-back H gates, 88–

91
Bellagio scheduling prob-

lem example, 96–100
CZ gate, 112
defined, 77
Deutsch-Jozsa algorithm

and, 342
gates, 91–96, 213–216
Grover’s algorithm, 298
importance of, 77
multi-qubit, 91–96, 101
operations, on mega-

qubits, 94–95

operations, understand-
ing, 78–82, 100

parallel H gates, 91–93
putting qubits in, 77
putting qubits in blended

state with H gate, 82–88
simulators and, 16
understanding, 91–96

SWAP gate, 52, 62

switching
qubelet types, 78, 100, 

205–206
qubelets, inferring gate

actions, 236

T
T gate, 209, 213

T-dagger gate
code, 213
declaring in Qiskit, 360
matrix, 211
using, 210

tagging
Bellagio scheduling prob-

lem, 108, 325–329
CZ gate, 299–304
fundamental search cir-

cuit pattern, 315–318
gates for, 206–213
non-tagged states, 306
NOT (X) gate, 308
solutions with CZ gate,

107–120, 131–135
solutions with Grover’s

algorithm, 296–314
terms for, 297
when optimal solution

isn’t known, 325–328

targets
AND gate, 58
CCNOT gate, 57–62
CNOT gate, 47–56, 121
combining gates, 66
CZ gate, 110–117
defined, 47
disentanglement and,

129
FAN-OUT gate, 51
mega-qubit operations,

95
OR gate, 59

teleporting
about, 51, 256–257
carrier qubits, defined,

257
carrier qubits, evaluating

circuit, 262–268

carrier qubits, implement-
ing, 258–262

deterministic operations,
270

entanglement and, 127, 
257

evaluating circuit, 262–
268

quantum effects, identifi-
cation step, 256

quantum effects, imple-
mentation step, 256–
268

refinement step, 256, 
268–272

tensors
development of, 83
operator ⊗, 249
teleporting example, 265
understanding, 250–251
using, 248–256

testing, solutions, 331

The Theory of Groups and
Quantum Mechanics, 311

theta angle
amplitudes association,

212
calculating, 153
controlling Universal gates

and, 160
defined, 151–152
in Google demonstration

of quantum vs. classi-
cal computing, 352

pronunciation, 155
rotating qubelets through

any angle, 150–158
setting on IBM Q Experi-

ence, 162

Toffoli gate, see CCNOT gate

transformations, 311

transistors, 20

transpiled circuit, 36

transportation-routing, 1

trigonometric functions, in-
verse, 153

Trigonometric identities, 159

trigonometric identities, 391

trust, BB84 key exchange,
283–289

truth tables
AND gate, 392
Boolean algebraic logic,

393
CCNOT gate, 57
CNOT gate, 50
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CZ gate, 111
defined, 392
Deutsch’s algorithm,

343, 345
NOT (X) gate, 44
NOT gate, 392
OR gate, 392
review of, 392

twisting, gates for, 206–213

two-step handshake, BB84
key exchange, 283–289

U
U gate, see Universal gates

U1 gate
code, 204
matrix, 204, 215
understanding, 160
using, 204

U2 gate
code, 204
matrix, 204
understanding, 160
using, 165, 204

U3 gate
code, 204
declaring in Qiskit, 360
matrix, 204
understanding, 160–171
using, 160–163, 165, 

203–205

Uf block, Deutsch’s algorithm,
343–351

unitary matrices, 191–192, 
375–377

unitary_backend, 359

unitary_simulator, 373

Universal gates
code, 204
deriving gates from matri-

ces in Qiskit, 375–377
reducing probabilities

with, 165–169
standard gates as, 164
types of, 203–205
understanding state in,

158–171

V
values, swapping, 52

variables
arrays in IBM Q Experi-

ence, 12
names, 9

vector() function, 398

vectors
with –1 value, 242
calculating actions intu-

itively, 199–200
compatibility and ten-

sors, 251
defined, 395
dropping notation when

multiplying matrices,
219

idealized state of mega-
qubits, 232

matrices, multiplication,
176, 178, 181

multiplication, 395–398
multiplication vs. quan-

tum computing, 242
quantum state equation,

174, 199–200, 229–230
review of mathematics,

394–398
square matrices and, 178
state vector, confirming

on IBM Q Experience,
301, 316

using, 174, 177
visualizing, 175

version
Python, 356
QASM, 14, 32
Qiskit, 356

visualizations, see also cir-
cuits

Qiskit, 357–359, 363, 
366–367

sequences of gates, 219–
224

W
What is Quantum Mechanics,

144

width(), 378

working qubits, 96

X
X gate, see NOT gate

XOR gate, CNOT gate as, 50

Y
Y gate

about, 42
code, 206
inferring compound oper-

ations example, 238
matrix, 206
using, 205–206

Z
Z gate

about, 42, 82
code, 212
fundamental canceling

pattern for search,
318–321

fundamental search cir-
cuit pattern, 315, 317–
321

inverting and canceling
with, 96

matrix, 181, 207
post-processing with de-

terministic operations,
271

tagging for Bellagio
scheduling problem,
326

understanding, 109
as Universal gate, 164
using, 207
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A Common-Sense Guide to Data Structures and Algorithms,
Second Edition
If you thought that data structures and algorithms
were all just theory, you’re missing out on what they
can do for your code. Learn to use Big O Notation to
make your code run faster by orders of magnitude.
Choose from data structures such as hash tables,
trees, and graphs to increase your code’s efficiency
exponentially. With simple language and clear dia-
grams, this book makes this complex topic accessible,
no matter your background. This new edition features
practice exercises in every chapter, and new chapters
on topics such as dynamic programming and heaps
and tries. Get the hands-on info you need to master
data structures and algorithms for your day-to-day
work.

Jay Wengrow
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Coding is awesome. So is being outside. With location-
based iOS apps, you can combine the two for an en-
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Build Websites with Hugo
Rediscover how fun web development can be with
Hugo, the static site generator and web framework that
lets you build content sites quickly, using the skills
you already have. Design layouts with HTML and share
common components across pages. Create Markdown
templates that let you create new content quickly.
Consume and generate JSON, enhance layouts with
logic, and generate a site that works on any platform
with no runtime dependencies or database. Hugo gives
you everything you need to build your next content
site and have fun doing it.

Brian P. Hogan
(154 pages) ISBN: 9781680507263. $26.95
https://pragprog.com/book/bhhugo

Practical Microservices
MVC and CRUD make software easier to write, but
harder to change. Microservice-based architectures
can help even the smallest of projects remain agile in
the long term, but most tutorials meander in theory
or completely miss the point of what it means to be
microservice based. Roll up your sleeves with real
projects and learn the most important concepts of
evented architectures. You’ll have your own deployable,
testable project and a direction for where to go next.

Ethan Garofolo
(290 pages) ISBN: 9781680506457. $45.95
https://pragprog.com/book/egmicro
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Real-Time Phoenix
Give users the real-time experience they expect, by
using Elixir and Phoenix Channels to build applications
that instantly react to changes and reflect the applica-
tion’s true state. Learn how Elixir and Phoenix make
it easy and enjoyable to create real-time applications
that scale to a large number of users. Apply system
design and development best practices to create appli-
cations that are easy to maintain. Gain confidence by
learning how to break your applications before your
users do. Deploy applications with minimized resource
use and maximized performance.

Stephen Bussey
(326 pages) ISBN: 9781680507195. $45.95
https://pragprog.com/book/sbsockets

Programming Machine Learning
You’ve decided to tackle machine learning — because
you’re job hunting, embarking on a new project, or
just think self-driving cars are cool. But where to start?
It’s easy to be intimidated, even as a software develop-
er. The good news is that it doesn’t have to be that
hard. Master machine learning by writing code one
line at a time, from simple learning programs all the
way to a true deep learning system. Tackle the hard
topics by breaking them down so they’re easier to un-
derstand, and build your confidence by getting your
hands dirty.

Paolo Perrotta
(340 pages) ISBN: 9781680506600. $47.95
https://pragprog.com/book/pplearn
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The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/nmquantum
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.
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support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:
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