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PREFACE

“In the twenty-first” century it is reasonable to expect that some of the most
important developments in science and engineering will come about through inter-
disciplinary research. Already in the making is surely one of the most interesting
and exciting development we are sure to see for a long time, quantum computation .
A merger of computer science and physics, quantum computation came into being
from two lines of thought. The first was the recognition that information is physical ,
which is an observation that simply states the obvious fact that information can’t
exist or be processed without a physical medium.

At the present time quantum computers are mostly theoretical constructs. How-
ever, it has been proved that in at least some cases quantum computation is much
faster in principle than any done by classical computer. The most famous algorithm
developed is Shor’s factoring algorithm, which shows that a quantum computer, if
one could be constructed, could quickly crack the codes currently used to secure
the world’s data. Quantum information processing systems can also do remarkable
things not possible otherwise, such as teleporting the state of a particle from one
place to another and providing unbreakable cryptography systems.

Our treatment is not rigorous nor is it complete for the following reason:
this book is aimed primarily at two audiences, the first group being undergradu-
ate physics, math, and computer science majors. In most cases these undergraduate
students will find the standard presentations on quantum computation and informa-
tion science a little hard to digest. This book aims to fill in the gap by providing
undergraduate students with an easy to follow format that will help them grasp
many of the fundamental concepts of quantum information science.

This book is also aimed at readers who are technically trained in other fields.
This includes students and professionals who may be engineers, chemists, or biolo-
gists. These readers may not have the background in quantum physics or math that
most people in the field of quantum computation have. This book aims to fill the
gap here as well by offering a more “hand-holding” approach to the topic so that
readers can learn the basics and a little bit on how to do calculations in quantum
computation.

Finally, the book will be useful for graduate students in physics and computer
science taking a quantum computation course who are looking for a calculationally
oriented supplement to their main textbook and lecture notes.

xvii



xviii PREFACE

The goal of this book is to open up and introduce quantum computation to
these nonstandard audiences. As a result the level of the book is a bit lower than
that found in the standard quantum computation books currently available. The
presentation is informal, with the goal of introducing the concepts used in the field
and then showing through explicit examples how to work with them. Some topics
are left out entirely and many are not covered at the deep level that would be
expected in a graduate level quantum computation textbook. An in-depth treatment
of adiabatic quantum computation or cluster state computation is beyond this scope
of this book. So this book could not be considered complete in any sense. However,
it will give readers who are new to the field a substantial foundation that can be
built upon to master quantum computation.

While an attempt was made to provide a broad overview of the field, the
presentation is weighted more in the physics direction.



1

A BRIEF INTRODUCTION TO
INFORMATION THEORY

In this chapter we will give some basic background that is useful in the study of
quantum information theory. Our primary focus will be on learning how to quantify
information. This will be done using a concept known as entropy , a quantity that
can be said to be a measure of disorder in physics. Information is certainly the
opposite of disorder, so we will see how entropy can be used to characterize the
information content in a signal and how to determine how many bits we need to
reliably transmit a signal. Later these ideas will be tied in with quantum information
processing. In this chapter we will also briefly look at problems in computer science
and see why we might find quantum computers useful. This chapter won’t turn you
into a computer engineer, we are simply going to give you the basic fundamentals.

CLASSICAL INFORMATION

Quantum computation is an entirely new way of information processing. For this
reason traditional methods of computing and information processing you are familiar
with are referred to as classical information. For those new to the subject, we begin
with a simple and brief review of how information is stored and used in computers.
The most basic piece of information is called a bit , and this basically represents a

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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2 A BRIEF INTRODUCTION TO INFORMATION THEORY

yes–no answer to a question. To represent this mathematically, we use the fact that
we’re dealing with a two-state system and choose to represent information using
base 2 or binary numbers. A binary number can be 0 or 1, and a bit can assume one
or the other of these values. Physically we can implement a bit with an electrical
circuit that is either at ground or zero volts (binary 0), or at say + 5 volts (binary 1).
The physical implementation of a computing system is not our concern in this book;
we are only worried about the mathematics and logic of the system. As a first step in
getting acquainted with the binary world we might want to learn how to count using
base 2.

Before we do that, we need to know that the number of bits required to represent
something can be determined in the following way: Suppose that some quantity can
assume one of m different states. Then

2n ≥ m (1.1)

for some n . The smallest n for which this holds tells us the number of bits we need
to represent or encode that quantity.

To see how this works, suppose that we want to represent the numbers 0, 1, 2,
3 in binary. We have four items, and 22= 4. Therefore we need at least two bits to
represent these numbers. The representation is shown in Table 1.1.

To represent the numbers 0 through 7, we have 23= 8, so we need three bits.
The binary representation of the numbers 0 through 7 is shown in Table 1.2.

INFORMATION CONTENT IN A SIGNAL

Now that we know how to encode information, we can start thinking about how to
quantify it. That is, given a message m , how much information is actually contained
in that message?

A clue about how this quantification might be done can be found by looking
at (1.1). Considering the case where we take the equal sign, let’s take the base two
logarithm of both sides. That is, we start with

m = 2n

TABLE 1.1 Binary
representation of
the numbers 0–3

Decimal Binary

0 00
1 01
2 10
3 11
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TABLE 1.2 Binary
representation of the
numbers 0–7

Decimal Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Taking the base 2 log of both sides, we find that

log2 m = n (1.2)

Equation (1.2) was proposed by Ralph Hartley in 1927. It was the first attempt
at quantifying the amount of information in a message. What (1.2) tells us is that
n bits can store m different messages. To make this more concrete, notice that

log2 8 = 3

That tells us that 3 bits can store 8 different messages. In Table 1.2 the eight
messages we encoded were the numbers 0 through 7. However, the code could
represent anything that had eight different possibilities.

You’re probably familiar with different measurements of information storage
capacity from your computer. The most basic word or unit of information is called
a byte. A byte is a string of eight bits linked together. Now

log2 256 = 8

Therefore a byte can store 256 different messages. Measuring information in terms
of logarithms also allows us to exploit the fact that logarithms are additive.

ENTROPY AND SHANNON’S INFORMATION THEORY

The Hartley method gives us a basic characterization of information content in a
signal. But another scientist named Claude Shannon showed that we can take things
a step further and get a more accurate estimation of the information content in a
signal by thinking more carefully. The key step taken by Shannon was that he asked
how likely is it that we are going to see a given piece of information? This is an
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important insight because it allows us to characterize how much information we
actually gain from a signal.

If a message has a very high probability of occurrence, then we don’t gain all
that much new information when we come across it. On the other hand, if a message
has a low probability of occurrence, when we are made of aware of it, we gain a
significant amount of information. We can make this concrete with an example.
A major earthquake occurred in the St. Louis area way back in 1812. Generally
speaking, earthquakes in that area are relatively rare—after all, when you think of
earthquakes, you think of California, not Missouri.

So most days people in Missouri aren’t waiting around for an earthquake.
Under typical conditions the probability of an earthquake occurring in Missouri
is low, and the probability of an earthquake not occurring is high. If our message
is that tomorrow there will not be an earthquake in Missouri, our message is a high
probability message, and it conveys very little new information—for the last two
hundred years day after day there hasn’t been an earthquake. On the other hand, if
the message is that tomorrow there will be an earthquake, this is dramatic news for
Missouri residents. They gain a lot of information in this case.

Shannon quantified this by taking the base 2 logarithm of the probability of a
given message occurring. That is, if we denote the information content of a message
by I , and the probability of its occurrence by p, then

I = − log2 p (1.3)

The negative sign ensures that the information content of a message is positive,
and that the less probable a message, the higher is the information content. Let’s
suppose that the probability of an earthquake not happening tomorrow in St. Louis
is 0.995. The information content of this fact is

I = − log2 0.995 = 0.0072

Now the probability that an earthquake does happen tomorrow is 0.005. The
information content of this piece of information is

I ′ = − log2 0.005 = 7.6439

So let’s summarize the use of logarithms to characterize the information content in
a signal by saying:

• A message that is unlikely to occur has a low probability and therefore has
a large information content.

• A message that is very likely to occur has a high probability and therefore
has a small information content.

Next let’s develop a more formal definition. Let X be a random variable char-
acterized by a probability distribution �p, and suppose that it can assume one of
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the values x 1, x 2, . . . , xn with probabilities p1, p2, . . . , pn. Probabilities satisfy
0 � pi � 1 and

∑
i pi = 1.

The Shannon entropy of X is defined as

H(X) = −
∑

i

pi log2 pi (1.4)

If the probability of a given x j is zero, we use 0 log 0= 0. Notice that if we are
saying that the logarithm of the probability of x gives the information content,
we can also view the Shannon entropy function as a measure of the amount of
uncertainty or randomnessin a signal.

We can look at this more concretely in terms of transmitted message signals as
follows: Suppose that we have a signal that always transmits a “2,” so that the signal
is the string 22222222222 . . . . What is the entropy in this case? The probability of
obtaining a 2 is 1, so the entropy or disorder is

H = − log2 1 = 0

The Shannon entropy works as we expect—a signal that has all the same characters
with no changes has no disorder and hence no entropy.

Now let’s make a signal that’s a bit more random. Suppose that the probability
of obtaining a “1” is 0.5 and the probability of obtaining a “2” is 0.5, so the signal
looks something like 11212221212122212121112. . . with approximately half the
characters 1’s and half 2’s. What is the entropy in this case? It’s

H = −1

2
log2

1

2
− 1

2
log2

1

2
= 1

2
+ 1

2
= 1

Suppose further that there are three equally likely possibilities. In that case we would
have

H = −1

3
log2

1

3
− 1

3
log2

1

3
= 0.528+ 0.528+ 0.528 = 1.585

In each case that we have examined here, the uncertainty in regard to what
character we will see next in the message has increased each time—so the entropy
also increases each time. In this view we can see that Shannon entropy measures
the amount of uncertainty or randomness in the signal. That is:

• If we are certain what the message is, the Shannon entropy is zero.
• The more uncertain we are as to what comes next, the higher the Shannon

entropy.

We can summarize Shannon entropy as

Decrease uncertainty ⇒ Increase information

Increase uncertainty ⇒ Increase entropy
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Now suppose that we require l i bits to represent each x i in X . Then the average bit
rate required to encode X is

RX =
n∑

i=1

lipi (1.5)

The Shannon entropy is the lower bound of the average bit rate

H(X) � RX (1.6)

The worst-case scenario in which we have the least information is a distribution
where the probability of each item is the same—meaning a uniform distribution.
Again, suppose that it has n elements. The probability of finding each x i if the
distribution is uniform is 1/n . So sequence X with n elements occurring with uniform
probabilities 1/n has entropy −∑ 1

n
log2

1
n
=∑ 1

n
log n = log n. This tells us that

the Shannon entropy has the bounds

0 � H(X) � log2 n (1.7)

The relative entropy of two variables X and Y characterized by probability
distributions p and q is

H(X‖Y ) =
∑

p log2
p

q
= −H(X)−

∑
p log2 q (1.8)

Suppose that we take a fixed value y i from Y . From this we can get a conditional
probability distribution p(X |yi) which are the probabilities of X given that we have
yi with certainty. Then

H(X|Y ) = −
∑

j

p(xj |yi) log2(p(xj |yi)) (1.9)

This is known as the conditional entropy . The conditional entropy satisfies

H(X|Y ) � H(X) (1.10)

To obtain equality in (1.10), the variables X and Y must be independent. So

H(X, Y ) = H(Y )+H(X|Y ) (1.11)

We are now in a position to define mutual information of the variables X and
Y . In words, this is the difference between the entropy of X and the entropy of X
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given knowledge of what value Y has assumed, that is,

I (X|Y ) = H(X)−H(X|Y ) (1.12)

This can also be written as

I (X|Y ) = H(X)+H(Y )−H(X, Y ) (1.13)

PROBABILITY BASICS

Before turning to quantum mechanics in the next chapter, it’s a good idea to quickly
mention the basics of probability. Probability is heavily used in quantum theory to
predict the possible results of measurement.

We can start by saying that the probability pi of an event x i falls in the range

0 � pi � 1 (1.14)

The two extremes of this range are characterized as follows: The probability of an
event that is impossible is 0. The probability of an event that is certain to happen
is 1. All other probabilities fall within this range.

The probability of an event is simply the relative frequency of its occurrence.
Suppose that there are n total events, the jth event occurs nj times, and we have∑∞

j=1 nj = n. Then the probability that the jth event occurs is

pj = nj

n
(1.15)

The sum of all the probabilities is 1, since

∞∑
j=1

pj =
∞∑

j=1

nj

n
= 1

n

∞∑
j=1

nj = n

n
= 1 (1.16)

The average value of a distribution is referred to as the expectation value in quantum
mechanics. This is given by

〈j 〉 =
∞∑

j=1

jnj

n
=

∞∑
j=1

jpj (1.17)

The variance of a distribution is

〈(�j)2〉 = 〈j 2〉 − 〈j 〉2 (1.18)
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Example 1.1

A group of students takes an exam. The number of students associated with each score is

Score Students

95 1
85 3
77 7
71 10
56 3

What is the most probable test score? What is the expectation value or average score?

Solution

First we write down the total number of students

n =
∑

nj = 1+ 3+ 7+ 10+ 3 = 24

The probability of scoring 95 is

p1 = n1

n
= 1

24
= 0.04

and the other probabilities are calculated similarly. The most probable score is 71 with proba-
bility

p4 = n4

n
= 10

24
= 0.42

The expectation value is found using (1.17):

〈j〉 =
∑

j pj = 95(0.04)+ 85(0.13)+ 77(0.29)+ 71(0.42)+ 56(0.13) = 74.3

In the next chapter we will see how to quantum mechanics uses probability.

EXERCISES

1.1. How many bits are necessary to represent the alphabet using a binary code if
we only allow uppercase characters? How about if we allow both uppercase and
lowercase characters?
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1.2. Describe how you can create an OR gate using NOT gates and AND gates.

1.3. A kilobyte is 1024 bytes. How many messages can it store?

1.4. What is the entropy associated with the tossing of a fair coin?

1.5. Suppose that X consists of the characters A, B, C, D that occur in a signal with
respective probabilities 0.1, 0.4, 0.25, and 0.25. What is the Shannon entropy?

1.6. A room full of people has incomes distributed in the following way:

n(25.5) = 3

n(30) = 5

n(42) = 7

n(50) = 3

n(63) = 1

n(75) = 2

n(90) = 1

What is the most probable income? What is the average income? What is the variance
of this distribution?
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QUBITS AND QUANTUM
STATES

In this chapter we will expand on our discussion of the qubit and learn some basic
facts and notation that are necessary when learning how to work with quantum
states.

THE QUBIT

In the last chapter we saw that the basic unit of information processing in a
modern-day computer is the bit, which can assume one of two states that we label
0 and 1. In an analogous manner, we can define a basic unit of information pro-
cessing that can be used in quantum computation. This basic unit of information
in quantum computing is called the qubit , which is short for quantum bit . While
a qubit is going to look in some way superficially similar to a bit, we will see as
we go along that it is fundamentally different and that its fundamental difference
allows us to do information processing in new and interesting ways.

Like a bit, a qubit can also be in one of two states. In the case of a qubit, for
reasons that for the moment will seem utterly obscure, we label these two states

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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12 QUBITS AND QUANTUM STATES

by |0〉 and |1〉. In quantum theory an object enclosed using the notation | 〉 can be
called a state, a vector , or a ket .

So how is a qubit any different than an ordinary bit? While a bit in an ordinary
computer can be in the state 0 or in the state 1, a qubit is somewhat more general.
A qubit can exist in the state |0〉 or the state |1〉, but it can also exist in what we
call a superposition state. This is a state that is a linear combination of the states
|0〉 and |1〉. If we label this state |ψ〉, a superposition state is written as

|ψ〉 = α|0〉 + β|1〉 (2.1)

Here α, β are complex numbers. That is, the numbers are of the form z = x + iy ,
where i = √−1.

While a qubit can exist in a superposition of the states |0〉 and |1〉, whenever
we make a measurement we aren’t going to find it like that. In fact, when a qubit is
measured, it is only going to be found to be in the state |0〉 or the state |1〉. The laws
of quantum mechanics tell us that the modulus squared of α, β in (2.1) gives us the
probability of finding the qubit in state |0〉 or |1〉, respectively. In other words:

|α|2: Tells us the probability of finding |ψ〉 in state |0〉
|β|2: Tells us the probability of finding |ψ〉 in state |1〉

The fact that probabilities must sum to one puts some constraints on what the
multiplicative coefficients in (2.1) can be. Since the squares of these coefficients
are related to the probability of obtaining a given measurement result, α and β are
constrained by the requirement that

|α|2 + |β|2 = 1 (2.2)

Generally speaking, if an event has N possible outcomes and we label the prob-
ability of finding result i by pi, the condition that the probabilities sum to one is
written as

N∑
i=1

pi = p1 + p2 + · · · + pN = 1 (2.3)

When this condition is satisfied for the squares of the coefficients of a qubit, we
say that the qubit is normalized .

We can calculate the modulus of these numbers in the following way:

|α|2 = (α)(α∗)

|β|2 = (β)(β∗)

where α* is the complex conjugate of α and β* is the complex conjugate of β. We
recall that to form the complex conjugate of z = x + iy , we let i →−i. Therefore
the modulus of a complex number z is
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|z|2 = (x + iy)(x − iy) = x2 + ixy − ixy + y2

⇒ |z| =
√

x2 + y2

Right now, it might seem as if we have traded in the reliability of a classical
computer for a probabilistic guessing game. Later we will see that this isn’t the
case and that these strange propeies actually make a qubit an asset, rather than a
liability, in information processing. For now let’s look at a couple of examples to
reinforce the basic ideas.

Example 2.1

For each of the following qubits, if a measurement is made, what is the probability that we find
the qubit in state |0〉? What is the probability that we find the qubit in the state |1〉?

(a) |ψ〉 = 1√
3
|0〉 +

√
2

3
|1〉

(b) |φ〉 = i

2
|0〉 +

√
3

2
|1〉

(c) |χ〉 = (1+ i)√
3
|0〉 − i√

3
|1〉

Solution

To find the probability that each qubit is found in the state |0〉 or the state |1〉, we compute the
modulus squared of the appropriate coefficient.

(a) In this case the probability of finding |ψ〉 in state |0〉 is∣∣∣∣ 1√
3

∣∣∣∣
2

= 1

3

The probability that we find |ψ〉 in state |1〉 is∣∣∣∣∣
√

2√
3

∣∣∣∣∣
2

= 2

3

When doing calculations in quantum mechanics or quantum computation, it is always a good
idea to verify that the probabilities you find add to 1. We can label the probability that the
system is in state |0〉 p0 and the probability that the system is in state |1〉 p1. In the context of
this example p0= 1/3 and p1 = 2/3, hence

∑
pi = p0 + p1 = 1

3
+ 2

3
= 1



14 QUBITS AND QUANTUM STATES

(b) The next state has coefficients that are complex numbers. Remember we need to use the
complex conjugate when calculating the modulus squared. We find that the probability
of the system being in state |0〉 is

|φ〉 = i

2
|0〉 +

√
3

2
|1〉,⇒ p0 =

∣∣∣∣ i2
∣∣∣∣
2

=
(

i

2

)∗ (
i

2

)
=
(−i

2

)(
i

2

)
= 1

4

The probability that the system is in state |1〉 is∣∣∣∣∣
√

3

2

∣∣∣∣∣
2

= 3

4

Again, we check that the probabilities sum to one:

∑
pi = p0 + p1 = 1

4
+ 3

4
= 1

(c) Finally, for the last state, the probability the system is in state |0〉 is∣∣∣∣1+ i√
3

∣∣∣∣
2

=
(

1− i√
3

)(
1+ i√

3

)
= 1− i + i + 1

3
= 2

3

The probability that the system is in state |1〉 is∣∣∣∣−i√
3

∣∣∣∣
2

=
( −i√

3

)∗ (−i√
3

)
=
(

i√
3

)(−i√
3

)
= 1

3

Again, these probabilities sum to 1:

p0 + p1 = 2

3
+ 1

3
= 1

VECTOR SPACES

While the basic unit of information in quantum computation is the qubit, the arena
in which quantum computation takes place is a mathematical abstraction called a
vector space. If you’ve taken elementary physics or engineering classes, then you
know what a vector is. It turns out that quantum states behave mathematically in
an analogous way to physical vectors—hence the term vector space. This type of
space is one that shares with physical vectors the most basic properties that vectors
have—for example, a length. In this section we are going to look at state vectors
more generally and talk a little bit about the spaces they inhabit. We aren’t going to
be rigorous here, the purpose of this section is just to introduce some basic ideas and
terminology. To avoid further confusion, let’s just get down to the basic definitions.
A vector space V is a nonempty set with elements u , v called vectors for which
the following two operations are defined:

1. Vector addition: An operation that assigns the sum w = u + v , which is also an
element of V ; in other words, w is another vector belonging to the same space
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2. Scalar multiplication: Defines multiplication of a vector by a number α such
that the vector αu ∈V

In addition the following axioms hold for the vector space V :

Axiom 1: Associativity of addition. Given vectors u , v , and w ,

(u+ v)+w = u+ (v + w)

Axiom 2: There is a vector belonging to V called the zero vector that satisfies

u+ 0 = 0+ u = u

for any vector u ∈V .
Axiom 3: For every u ∈V there exists an additive inverse of u such that

u+ (−u) = (−u)+ u = 0

Axiom 4: Addition of vectors is commutative:

u+ v = v + u

There are other axioms that apply to vectors spaces, but these should suffice for
most of our purposes.

One particular vector space that is important in quantum computation is the
vector space C

n, which is the vector space of “n-tuples” of complex numbers.
When we say “n-tuple” this is just a fancy way of referring to an ordered collection
of numbers. Following the notation we have introduced for qubits, we label the
elements of Cn by |a〉, |b〉, |c〉. Then we write down an element of this vector
space as an n-dimensional column vector or simply a list of numbers a1, a2, . . . ,
an arranged in the following way:

|a〉 =

⎛
⎜⎜⎜⎝

a1

a2
...

an

⎞
⎟⎟⎟⎠ (2.4)

This type of notation can be used with qubits. Look back at the general nota-
tion used for qubit given in (2.1). We write this in a column vector format by
putting the coefficient of |0〉 in the first row and the coefficient of |1〉 in the second
row:

|ψ〉 =
(

α

β

)
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For a more concrete example, let’s take a look back at the qubits we examined
in Example 2.1. The first qubit was

|ψ〉 = 1√
3
|0〉 +

√
2

3
|1〉

Hence the column vector representation of this qubit is

|ψ〉 =

⎛
⎜⎜⎜⎝

1√
3√
2

3

⎞
⎟⎟⎟⎠ = 1√

3

(
1√
2

)

In general, the numbers ai in (2.4), which we call the components of the vector,
are complex—something we’ve already mentioned.

Multiplication of a vector by a scalar proceeds as

α|a〉 = α

⎛
⎜⎜⎜⎝

a1

a2
...

an

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

αa1

αa2
...

αan

⎞
⎟⎟⎟⎠ (2.5)

It’s easy to see that this produces another column vector with n complex numbers,
so the result is another element in Cn. So Cn is closed under scalar multiplication.

Vector addition is carried out component by component, producing a new, third
vector:

|a〉 + |b〉 =

⎛
⎜⎜⎜⎝

a1

a2
...

an

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a1 + b1

a2 + b2
...

an + bn

⎞
⎟⎟⎟⎠ (2.6)

This should all be pretty straightforward, but let’s illustrate it with an example.

Example 2.2

We want to define the vectors

|u〉 =
⎛
⎝−1

7i

2

⎞
⎠, |v〉 =

⎛
⎝0

2
4

⎞
⎠

and then compute 7|u〉+ 2|v〉.
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Solution

First we compute 7|u〉 by multiplying each of the components of the vector by 7:

7|u〉 = 7

⎛
⎝−1

7i

2

⎞
⎠ =

⎛
⎝−7

49i

14

⎞
⎠

Next we compute the scalar multiplication for the other vector:

2|v〉 = 2

⎛
⎝0

2
4

⎞
⎠ =

⎛
⎝0

4
8

⎞
⎠

Now we follow the vector addition rule, adding the vectors component by component:

7|u〉 + 2|v〉 =
⎛
⎝−7

49i

14

⎞
⎠+

⎛
⎝0

4
8

⎞
⎠ =

⎛
⎝−7+ 0

49i + 4
14+ 8

⎞
⎠ =

⎛
⎝ −7

4+ 49i

22

⎞
⎠

LINEAR COMBINATIONS OF VECTORS

In the previous example we calculated an important quantity, a linear combination
of vectors. Generally speaking, let αi be a set of complex coefficients and |v i〉 be a
set of vectors. A linear combination of these vectors is given by

α1|v1〉 + α2|v2〉 + · · · + αn|vn〉 =
n∑

i=1

αi |vi〉 (2.7)

We’ve seen a linear combination before, when we considered a superposition state
of a qubit.

Now, if a given set of vectors |v 1〉, |v 2〉, . . . , |vn〉 can be used to represent any
vector |u〉 that belongs to the vector space V , we say that the set {|v i〉} spans the
given vector space. For example, consider the three-dimensional vector space C

3.
We can write any three-dimensional column vector in the following way:

|u〉 =
⎛
⎝α

β

γ

⎞
⎠ =

⎛
⎝α

0
0

⎞
⎠+

⎛
⎝0

β

0

⎞
⎠+

⎛
⎝0

0
γ

⎞
⎠ = α

⎛
⎝1

0
0

⎞
⎠+ β

⎛
⎝0

1
0

⎞
⎠+ γ

⎛
⎝0

0
1

⎞
⎠

Therefore we see that the set of vectors defined as

|v1〉 =
⎛
⎝1

0
0

⎞
⎠ , |v2〉 =

⎛
⎝0

1
0

⎞
⎠ , |v3〉 =

⎛
⎝0

0
1

⎞
⎠
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Spans the space C
3. We’ve already seen a spanning set for qubits when we consid-

ered the basic states a qubit can be found in, {|0〉, |1〉}. Recall from (2.1) that an
arbitrary qubit can be written as

|ψ〉 = α|0〉 + β|1〉

Writing this in column vector notation, and then using the properties of vector
addition and scalar multiplication, we have

|ψ〉 =
(

α

β

)
=
(

α

0

)
+
(

0
β

)
= α

(
1
0

)
+ β

(
0
1

)

This allows us to identify the vectors |0〉 and |1〉 as

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

An important notion involving the linear combination of a set of vectors is that
of linear independence. If

α1|v1〉 + α2|v2〉 + · · · + αn|vn〉 = 0

and at least one of the αi �= 0, we say the set {|v i〉} is linearly dependent. Another way
of saying this is that if one vector of the set can be written as a linear combination
of the other vectors in the set, then the set is linearly dependent .

Example 2.3

Show that the set

|a〉 =
(

1
2

)
, |b〉 =

(−1
1

)
, |c〉 =

(
5
4

)

is linearly dependent; that is, one of the vectors can be written as a linear combination of the
other two.

Solution

We can show that |c〉 can be expressed as a linear combination of the other two vectors. Let’s
start out by writing |c〉 as some arbitrary combination of the other two vectors:(

5
4

)
= α

(
1
2

)
+ β

(−1
1

)
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Now we actually have two equations. These are

α − β = 5, ⇒ β = α − 5

2α + β = 4

Substitution of β=α− 5 into the second equation gives

2α + (α − 5) = 3α − 5 = 4,⇒ α = 3

So immediately we see that β =− 2. Using these results, we see that the following relationship
holds, demonstrating the linear dependence of this set of vectors:

3|a〉 − 2|b〉 + |c〉 = 0

UNIQUENESS OF A SPANNING SET

A spanning set of vectors for a given space V is not unique. Once again, consider the
complex vector space C

2, consisting of column vectors with two elements. Earlier
we saw that we can write any arbitrary column vector with two elements in the
following way: (

α

β

)
=
(

α

0

)
+
(

0
β

)
= α

(
1
0

)
+ β

(
0
1

)

And therefore the set

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

spans C
2, the vector space in which qubits live. Now consider the set:

|u1〉 =
(

1
1

)
, |u2〉 =

(
1

−1

)

This set also spans the space C
2, and this means that we can also use these vectors

to represent qubits. We can write any element of this space in terms of these vectors:

|ψ〉 =
(

α

β

)

=
(

α

0

)
+
(

0
β

)
= 1

2

(
α + α

α − α

)
+ 1

2

(
β − β

β + β

)

= 1

2

(
α

α

)
+ 1

2

(
α

−α

)
+ 1

2

(
β

β

)
− 1

2

(
β

−β

)
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Now we use the scalar multiplication rule to pull the constants α, β outside of
the vectors:

1

2

(
α

α

)
+ 1

2

(
α

−α

)
+ 1

2

(
β

β

)
− 1

2

(
β

−β

)

= α

2

(
1
1

)
+ α

2

(
1

−1

)
+ β

2

(
1
1

)
− β

2

(
1

−1

)

Rearranging a bit, we find that(
α + β

2

)(
1
1

)
+
(

α − β

2

)(
1

−1

)
=
(

α + β

2

)
|u1〉 +

(
α − β

2

)
|u2〉

BASIS AND DIMENSION

When a set of vectors is linearly independent and they span the space, the set is
known as a basis . We can express any vector in the space V in terms of a linear
expansion on a basis set. Moreover the dimension of a vector space V is equal to
the number of elements in the basis set. We have already seen a basis set for C

2,
with the qubit states |0〉 and |1〉:

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

As we have shown, any vector in C
2 can be written as a linear combination of these

two vectors; hence they span the space. It is also pretty easy to show that these two
vectors are linearly independent. Therefore they constitute a basis of C

2.
A vector space can have many basis sets. We have already seen another basis

set that can be used for C2 (and hence for qubits):

|u1〉 =
(

1
1

)
, |u2〉 =

(
1

−1

)

In term of basis vectors, quantum states in n dimensions are straightforward gener-
alizations of qubits. A quantum state |ψ〉 can be written as a linear combination of
a basis set |v i〉 with complex coefficients of expansion ci as

|ψ〉 =
n∑

i=1

ci |vi〉 = c1|v1〉 + c2|v2〉 + · · · + cn|vn〉 (2.8)

The modulus squared of a given coefficient ci gives the probability that measurement
finds the system in the state |v i〉.
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INNER PRODUCTS

To compute the length of a vector, even if it’s a length in an abstract sense, we
need a way to find the inner product . This is a generalization of the dot product
used with ordinary vectors in Euclidean space as you may already be familiar with.
While the dot product takes two vectors and maps them into a real number, in our
case the inner product will take two vectors from C

n and map them to a complex
number. We write the inner product between two vectors |u〉, |v〉 with the notation
〈u|v〉. If the inner product between two vectors is zero,

〈u|v〉 = 0

We say that |u〉, |v〉 are orthogonal to one another. The inner product is a complex
number. The conjugate of this complex number satisfies

〈u|v〉∗ = 〈v|u〉 (2.9)

We can use the inner product to define a norm (or length)—by computing the inner
product of a vector with itself:

‖u‖ =
√
〈u|u〉 (2.10)

Notice that the norm is a real number, and hence can define a length. For any vector
|u〉 we have

〈u|u〉 ≥ 0 (2.11)

with equality if and only if |u〉= 0. When considering the inner product of a vector
with a superposition or linear combination of vectors, the following linear and
anti-linear relations hold:

〈u|αv + βw〉 = α〈u|v〉 + β〈u|w〉
〈αu+ βv|w〉 = α∗〈u|w〉 + β∗〈v|w〉 (2.12)

To compute the inner product between two vectors, we must calculate the
Hermitian conjugate of a vector

(|u〉)† = 〈u|
In quantum physics 〈u| is sometimes called the dual vector or bra corres-
ponding to |u〉.

If a ket is a column vector, the dual vector or bra is a row vector whose elements
are the complex conjugates of the elements of the column vector. In other words, when
working with column vectors, the Hermitian conjugate is computed in two steps:

1. Write the components of the vector as a row of numbers.
2. Take the complex conjugate of each element and arrange them in a row vector.
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Generally, we have ⎛
⎜⎜⎜⎝

a1

a2
...

an

⎞
⎟⎟⎟⎠

†

= (a∗1 a∗2 . . . a∗n
)

(2.13)

With qubits, this is fairly easy. Let’s go back to the state

|φ〉 = i

2
|0〉 +

√
3

2
|1〉

The column vector representation of this state is

|φ〉 =

⎛
⎜⎜⎝

i

2√
3

2

⎞
⎟⎟⎠

The bra or dual vector is found by computing the complex conjugate of each
element and then arranging the result as a row vector. In this case

〈φ| =
(
− i

2

√
3

2

)

Using the dual vector to find the inner product makes the calculation easy. The
inner product 〈a|b〉 is calculated in the following way:

〈a|b〉 = (a∗1 a∗2 . . . a∗n
)
⎛
⎜⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎟⎠ = a∗1b1 + a∗2b2 + · · · + a∗nbn =

n∑
i=1

a∗i bi

(2.14)

Example 2.4

Two vectors in C
3 are given by

|a〉 =
⎛
⎝−2

4i

1

⎞
⎠ , |b〉 =

⎛
⎝1

0
i

⎞
⎠

Find

(a) 〈a|, 〈b|
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(b) 〈a|b〉, 〈b|a〉
(c) |c〉 = |a〉+ 2|b〉, 〈c|a〉

Solution

(a) We consider |a〉 first. Begin by rewriting the elements in a row vector format. This is
known as the transpose operation:

(|a〉)T = (−2 4i 1)

The Hermitian conjugate is then found by computing the complex conjugate of each
element:

〈a| = (|a〉)† = (|a〉T )∗ = (−2 −4i 1)

A similar procedure for |b〉 yields

〈b| = (1 0 −i)

(b) The inner product, from (2.14), is given by

〈a|b〉 = (−2 4i 1)

⎛
⎝1

0
i

⎞
⎠ = −2∗1+ 4i∗0+ 1∗i = −2+ i

Remember, the inner product on a complex vector space obeys 〈a|b〉= 〈b|a〉∗; therefore we
should find 〈b|a〉=− 2− i . We verify this with an explicit calculation

〈b|a〉 = (1 0 −i)

⎛
⎝−2

4i

1

⎞
⎠ = 1∗ − 2+ 0∗4i + (−i)∗1 = −2− i

(c) We apply the rules of vector addition and scalar multiplication to obtain

|c〉 = |a〉 + 2|b〉 =
⎛
⎝−2

4i

1

⎞
⎠+ 2

⎛
⎝1

0
i

⎞
⎠ =

⎛
⎝−2

4i

1

⎞
⎠+

⎛
⎝ 2

0
2i

⎞
⎠ =

⎛
⎝−2+ 2

4i + 0
1+ 2i

⎞
⎠ =

⎛
⎝ 0

4i

1+ 2i

⎞
⎠

Therefore the inner product is

〈c|a〉 = (0 −4i 1− 2i)

⎛
⎝−2

4i

1

⎞
⎠ = 0∗(−2)+ (−4i)(4i)+ (1− 2i)∗1

= 16+ 1− 2i = 17− 2i

As an exercise, verify that the form of 〈c| is correct by computing the Hermitian conjugate
of |c〉.
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Example 2.5

Compute the norm of the following vectors:

|u〉 =
(

2
4i

)
, |v〉 =

⎛
⎝−1

3i

i

⎞
⎠

Solution

We start by computing the Hermitian conjugate of each vector. Remember, first take the trans-
pose of the vector and write the list of numbers as a row; then compute the complex conjugate
of each element:

(|u〉)T = (2 4i), ⇒ 〈u| = (|u〉)† = (|u〉T )∗ = (2 −4i)

〈v| = (−1 3i i)∗ = (−1 −3i −i)

We find that

〈u|u〉 = (2 −4i)

(
2
4i

)
= 2 ∗ 2+ (−4i)∗4i = 4+ 16 = 20

〈v|v〉 = (−1 −3i −i)

⎛
⎝−1

3i

i

⎞
⎠ = −1∗(−1)+ (−3i) ∗ 3i + (−i) ∗ i = 1+ 9+ 1 = 11

The norm is found by taking the square root of these quantities:

‖u‖ =
√
〈u|u〉 =

√
20

‖v‖ =
√
〈v|v〉 =

√
11

ORTHONORMALITY

When the norm of a vector is unity, we say that vector is normalized . That is, if

〈a|a〉 = 1

then we say that |a〉 is normalized. If a vector is not normalized, we can generate a
normalized vector by computing the norm (which is just a number) and dividing the
vector by it. For the vectors in the previous example, |u〉, |v〉 are not normalized,
since we found that ‖u‖ = √

20 and ‖v‖ = √
11. But the vectors
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|ũ〉 = |u〉
‖u‖ =

1√
20
|u〉

|ṽ〉 = |v〉
‖v‖ =

1√
11
|v〉

are normalized. This is easy to see. Check the first case:

〈ũ|ũ〉 =
(

1√
20
〈u|
)(

1√
20
|u〉
)
= 1

20
〈u|u〉 = 20

20
= 1

If each element of a set of vectors is normalized and the elements are orthogonal
with respect to each other, we say the set is orthonormal . For example, consider
the set {|0〉, |1〉}. Remember, we have the following definition:

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

Therefore, using (2.14), we have

〈0|0〉 = (1 0)

(
1
0

)
= 1 ∗ 1+ 0 ∗ 0 = 1

〈0|1〉 = (1 0)

(
0
1

)
= 1 ∗ 0+ 0 ∗ 1 = 0

〈1|0〉 = (0 1)

(
1
0

)
= 0 ∗ 1+ 1 ∗ 0 = 0

〈1|1〉 = (0 1)

(
0
1

)
= 0 ∗ 0+ 1 ∗ 1 = 1

By showing that 〈0|0〉= 〈1|1〉= 1, we showed the vectors are normalized, while
showing that 〈0|1〉= 〈1|0〉= 0, we showed they were orthogonal. Hence the set
is orthonormal. Earlier we saw that any qubit could also be written as a linear
combination of the vectors:

|u1〉 =
(

1
1

)
, |u2〉 =

(
1

−1

)

Is this set orthonormal? Well the vectors are orthogonal, since

〈u1|u2〉 = (1 1)

(
1

−1

)
= 1− 1 = 0

But the vectors are not normalized. It’s easy to see that ‖u1‖ = ‖u2‖ =
√

2. We
can create an orthonormal set from these vectors by normalizing them. We denote



26 QUBITS AND QUANTUM STATES

these vectors by | + 〉 and | − 〉. Therefore another orthonormal basis set for C
2 (and

hence for qubits) is

|+〉 = 1√
2

(
1
1

)
, |−〉 = 1√

2

(
1

−1

)

GRAM-SCHMIDT ORTHOGONALIZATION

An orthonormal basis can be produced from an arbitrary basis by application of
the Gram-Schmidt orthogonalization process. Let {|v1〉, |v 2〉, . . . }|vn〉, be a basis
for an inner product space V . The Gram-Schmidt process constructs an orthogonal
basis |wi〉 as follows:

|w1〉 = |v1〉

|w2〉 = |v2〉 − 〈w1|v2〉
〈w1|w1〉 |w1〉

...

|wn〉 = |vn〉 − 〈w1|vn〉
〈w1|w1〉 |w1〉 − 〈w2|vn〉

〈w2|w2〉 |w2〉 − · · · − 〈wn−1|vn〉
〈wn−1|wn−1〉 |wn−1〉

To form an orthonormal set using the Gram-Schmidt procedure, divide each
vector by its norm. For example, the normalized vector we can use to construct
|w2〉 is

|w2〉 = |v2〉 − 〈w1|v2〉|w1〉
‖|v2〉 − 〈w1|v2〉|w1〉‖

Many readers might find this a bit abstract, so let’s illustrate with a concrete example.

Example 2.6

Use the Gram-Schmidt process to construct an orthonormal basis set from

|v1〉 =
⎛
⎝ 1

2
−1

⎞
⎠ , |v2〉 =

⎛
⎝ 0

1
−1

⎞
⎠ , |v3〉 =

⎛
⎝ 3
−7

1

⎞
⎠

Solution

We use a tilde character to denote the unnormalized vectors. The first basis vector is

|w̃1〉 = |v1〉
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Now let’s normalize this vector

〈v1|v1〉 = (1 2 −1)

⎛
⎝ 1

2
−1

⎞
⎠ = 1 ∗ 1+ 2 ∗ 2+ (−1) ∗ (−1) = 1+ 4+ 1 = 6

⇒ |w1〉 = |w̃1〉√〈v1|v1〉
= 1√

6

⎛
⎝ 1

2
−1

⎞
⎠

Looking back at the algorithm for the Gram-Schmidt process, we construct the second vector
by using the formula

|w̃2〉 = |v2〉 − 〈w̃1|v2〉
〈w̃1|w̃1〉 |w̃1〉

First we compute

〈w̃1|v2〉 = (1 2 −1)

⎛
⎝ 0

1
−1

⎞
⎠ = [1 ∗ 0+ 2 ∗ 1+ (−1) ∗ (−1)] = 3

We already normalized |w 1〉, and so

|w̃2〉 = |v2〉 − 〈w̃1|v2〉
〈w̃1|w̃1〉 |w̃1〉 =

⎛
⎝ 0

1
−1

⎞
⎠− 3

6

⎛
⎝ 1

2
−1

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝
−1

2

0

−1

2

⎞
⎟⎟⎟⎟⎠

Now we normalize this vector

〈w̃2|w̃2〉 =
(
−1

2
0 −1

2

)
⎛
⎜⎜⎜⎜⎝
−1

2

0

−1

2

⎞
⎟⎟⎟⎟⎠ =

1

4
+ 0+ 1

4
= 1

2

So a second normalized vector is

|w2〉 = 1√〈w̃2|w̃2〉
|w̃2〉 =

√
2

⎛
⎜⎜⎜⎜⎝
−1

2

0

−1

2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
− 1√

2
0

− 1√
2

⎞
⎟⎟⎟⎟⎠
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We check to see that this orthogonal to |w 1〉:

〈w1|w2〉 = 1√
6
(1 2 −1)

⎛
⎜⎜⎜⎜⎝
− 1√

2
0

− 1√
2

⎞
⎟⎟⎟⎟⎠ =

1√
6

[
− 1√

2
+ 1√

2

]
= 0

Finally, the third vector is found from

|w̃3〉 = |v3〉 − 〈w̃1|vn〉
〈w̃1|w̃1〉 |w̃1〉 − 〈w̃2|v3〉

〈w̃2|w̃2〉 |w̃2〉

Now we have

〈w̃2|v3〉 =
(
−1

2
0 −1

2

)⎛⎝ 3
−7

1

⎞
⎠ = −3

2
− 1

2
= −4

2
= −2

Therefore

|w̃3〉 = |v3〉 − 〈w̃1|v3〉
〈w̃1|w̃1〉 |w̃1〉 − 〈w̃2|v3〉

〈w̃2|w̃2〉 |w̃2〉 =
⎛
⎝ 3
−7

1

⎞
⎠+ 12

6

⎛
⎝ 1

2
−1

⎞
⎠+ 2(

1

2

)
⎛
⎜⎜⎜⎜⎝
−1

2

0

−1

2

⎞
⎟⎟⎟⎟⎠

=
⎛
⎝ 3
−7

1

⎞
⎠+

⎛
⎝ 2

4
−2

⎞
⎠+

⎛
⎝−2

0
−2

⎞
⎠ =

⎛
⎝ 3
−3
−3

⎞
⎠

Normalizing, we find that

〈w̃3|w̃3〉 = (3 −3 −3)

⎛
⎝ 3
−3
−3

⎞
⎠ = 9+ 9+ 9 = 27

Therefore

|w3〉 = 1√〈w̃3|w̃3〉
|w̃3〉 = 1√

27

⎛
⎝ 3
−3
−3

⎞
⎠ = 1

3
√

3

⎛
⎝ 3
−3
−3

⎞
⎠ = 1√

3

⎛
⎝ 1
−1
−1

⎞
⎠

BRA-KET FORMALISM

In quantum mechanics, once you have a state specified in terms of a basis it is
not necessary to work directly with the components of each vector. An alternative
way of doing calculations is to represent states in an orthonormal basis and do
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calculations using “bras” and “kets.” We are already familiar with this formalism,
remember a ket is just another label for the vector notation we have been using.
Examples of kets are

|ψ〉, |φ〉, |0〉

We saw above that “bras” or dual vectors are the Hermitian conjugates of the
corresponding kets. Abstractly, the bras corresponding to the kets above are

〈ψ |, 〈φ|, 〈0|

Let’s demonstrate how to work in this formalism using an example.

Example 2.7

Suppose that {|u1〉, |u2〉, |u3〉} is an orthonormal basis for a three-dimensional Hilbert space.
A system is in the state

|ψ〉 = 1√
5
|u1〉 − i

√
7

15
|u2〉 + 1√

3
|u3〉

(a) Is this state normalized?

(b) If a measurement is made, find the probability of finding the system in each of the states
{|u1〉, |u2〉, |u3〉}

Solution

(a) We know that {|u1〉, |u2〉, |u3〉} is an orthonormal basis. To do our calculations, we rely
on the following:

〈u1|u1〉 = 〈u2|u2〉 = 〈u3|u3〉 = 1

〈u1|u2〉 = 〈u1|u3〉 = 〈u2|u3〉 = 0

To show the state is normalized, we must show that

〈ψ|ψ〉 = 1

First we calculate the Hermitian conjugate of the ket |ψ〉:

|ψ〉† = 〈ψ| =
(

1√
5
|u1〉
)†

−
(

i

√
7

15
|u2〉
)†

+
(

1√
3
|u3〉
)†

= 1√
5
〈u1| −

(
−i

√
7

15

)
〈u2| + 1√

3
〈u3|
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Next we compute the inner product

〈ψ|ψ〉 =
(

1√
5
〈u1| + i

√
7

15
〈u2| + 1√

3
〈u3|
)(

1√
5
|u1〉 − i

√
7

15
|u2〉 + 1√

3
|u3〉
)

= 1

5
〈u1|u1〉 +

(
1√
5

)(
−i

√
7

15

)
〈u1|u2〉 +

(
1√
5

)(
1√
3

)
〈u1|u3〉

+
(

i

√
7

15

)(
1√
5

)
〈u2|u1〉 +

(
i

√
7

15

)(
−i

√
7

15

)
〈u2|u2〉

+
(

i

√
7

15

)(
1√
3

)
〈u2|u3〉 +

(
1√
3

)(
1√
5

)
〈u3|u1〉

+
(

1√
3

)(
−i

√
7

15

)
〈u3|u2〉 +

(
1

3

)
〈u3|u3〉

Because of the orthonormality relations the only terms that survive are

〈u1|u1〉 = 〈u2|u2〉 = 〈u3|u3〉 = 1

and so

〈ψ|ψ〉 = 1

5
〈u1|u1〉 +

(
i

√
7

15

)(
−i

√
7

15

)
〈u2|u2〉 + 1

3
〈u3|u3〉

= 1

5
+ 7

15
+ 1

3
= 3

15
+ 7

15
+ 5

15
= 15

15
= 1

Therefore the state is normalized. Another easy way to verify this is to check that the
probabilities sum to one.

(b) The probability that the system is found to be in state |u 1〉 upon measurement is

|〈u1|ψ〉|2

So we obtain

〈u1|ψ〉 = 〈u1|
(

1√
5
|u1〉 + i

√
7

15
|u2〉 + 1√

3
|u3〉
)

= 1√
5
〈u1|u1〉 + i

√
7

15
〈u1|u2〉 + 1√

3
〈u1|u3〉

= 1√
5
∗ 1+ i

√
7

15
∗ 0+ 1√

3
∗ 0 = 1√

5
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The probability is found by calculating the modulus squared of this term

p1 = |〈u1|ψ〉|2 =
∣∣∣∣ 1√

5

∣∣∣∣
2

= 1

5

For |u2〉 we obtain

〈u2|ψ〉 = 〈u2|
(

1√
5
|u1〉 + i

√
7

15
|u2〉 + 1√

3
|u3〉
)

= 1√
5
〈u2|u1〉 + i

√
7

15
〈u2|u2〉 + 1√

3
〈u2|u3〉

= 1√
5
∗ 0+ i

√
7

15
∗ 1+ 1√

3
∗ 0 = i

√
7

15

The probability is

p2 = |〈u2|ψ〉|2 =
∣∣∣∣∣i
√

7

15

∣∣∣∣∣
2

=
(
−i

√
7

15

)(
i

√
7

15

)
= 7

15

Finally, for |u3〉 we find that

〈u3|ψ〉 = 〈u2|
(

1√
5
|u1〉 + i

√
7

15
|u2〉 + 1√

3
|u3〉
)

= 1√
5
〈u3|u1〉 + i

√
7

15
〈u3|u2〉 + 1√

3
〈u3|u3〉

= 1√
5
∗ 0+ i

√
7

15
∗ 0+ 1√

3
∗ 1 = 1√

3

Therefore the probability the system is found to be in state |u 3〉 is

p3 = |〈u3|ψ〉|2 =
∣∣∣∣ 1√

3

∣∣∣∣
2

= 1

3

THE CAUCHY-SCHWARTZ AND TRIANGLE INEQUALITIES

Two important identities are the Cauchy-Schwarz inequality

|〈ψ |φ〉|2 ≤ 〈ψ |ψ〉〈φ|φ〉

and the triangle inequality√
〈ψ + φ|ψ + φ〉 ≤

√
〈ψ |ψ〉 +

√
〈φ|φ〉
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Example 2.8

Suppose
|ψ〉 = 3|0〉 − 2i|1〉, |φ〉 = |0〉 + 5|1〉

(a) Show that these states obey the Cauchy-Schwarz and triangle inequalities.

(b) Normalize the states.

Solution
(a) First we compute 〈ψ|ψ〉, 〈φ|φ〉:

〈ψ| = (3)∗〈0| + (−2i)∗〈1| = 3〈0| + 2i〈1|
⇒ 〈ψ|ψ〉 = (3〈0| + 2i〈1|)(3|0〉 − 2i|1〉)

= 9〈0|0〉 + (2i)(−2i)〈1|1〉
= 9+ 4 = 13

For |φ〉 we obtain

〈φ| = 〈0| + 5〈1|
⇒ 〈φ|φ〉 = (〈0| + 5〈1|)(|0〉 + 5|1〉)

= 〈0|0〉 + 25〈1|1〉
= 1+ 25 = 26

The inner product 〈ψ|φ〉 is given by

〈ψ|φ〉 = (3〈0| + 2i〈1|)(|0〉 + 5|1〉)
= 3〈0|0〉 + (2i)(5)〈1|1〉
= 3+ 10i

⇒ |〈ψ|φ〉|2 = 〈ψ|φ〉〈ψ|φ〉∗ = (3+ 10i)(3− 10i) = 9+ 100 = 109

Now we have

〈ψ|ψ〉〈φ|φ〉 = (13)(26) = 338 > 109

Therefore the Cauchy-Schwarz inequality is satisfied. Next we check the triangle inequality:

√
〈ψ|ψ〉 +

√
〈φ|φ〉 =

√
13+

√
26 ∼= 8.7

For the left side we have

|ψ + φ〉 = 3|0〉 − 2i|1〉 + |0〉 + 5|1〉 = (3+ 1)|0〉 + (5− 2i)|1〉 = 4|0〉 + (5− 2i)|1〉
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The bra corresponding to this ket is

〈ψ + φ| = 4〈0| + (5− 2i)∗〈1| = 4〈0| + (5+ 2i)〈1|

Then the norm of the state is found to be

〈ψ + φ|ψ + φ〉 = [4〈0| + (5+ 2i)〈1|][4|0〉 + (5− 2i)|1〉]
= 16〈0|0〉 + (5+ 2i)(5− 2i)〈1|1〉
= 16+ 10+ 4 = 30

With this result in hand we find that

√
〈ψ + φ|ψ + φ〉 =

√
30 � 5.5 < 8.7

Therefore the triangle inequality is satisfied.

(b) The inner products of these states are

〈ψ|ψ〉 = 13, ⇒ ‖|ψ〉‖ =
√
〈ψ|ψ〉 =

√
13

〈φ|φ〉 = 26, ⇒ ‖|φ〉‖ =
√
〈φ|φ〉 =

√
26

So we obtain the normalized states

|ψ̃〉 = |ψ〉√〈ψ|ψ〉 =
1√
13

(3|0〉 − 2i|1〉) = 3√
13
|0〉 − 2i√

13
|1〉

|φ̃〉 = |φ〉√〈φ|φ〉 =
1√
26

(|0〉 + 5|1〉) = 1√
26
|0〉 + 5√

26
|1〉

Example 2.9

The qubit trine is defined by the states

|ψ0〉 = |0〉

|ψ1〉 = −1

2
|0〉 −

√
3

2
|1〉

|ψ2〉 = −1

2
|0〉 +

√
3

2
|1〉

Find states |ψ0〉, |ψ1〉, |ψ2〉 that are normalized, superposition states of {|0〉, |1〉}, and orthog-
onal to |ψ0〉,|ψ1〉,|ψ2〉, respectively.
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Solution

We write the states as superpositions with unknown coefficients

|ψ0〉 = α0|0〉 + β0|1〉

|ψ1〉 = α1|0〉 + β1|1〉

|ψ2〉 = α2|0〉 + β2|1〉

For the first of these states, the requirement that it be orthogonal to |ψ 0〉 allows us to write

〈ψ0|ψ0〉 = (α∗0 〈0| + β∗0 〈1|)(|0〉) = α∗0 〈0|0〉 = α∗0

The requirement that 〈ψ0|ψ0〉 = 0 tells us that α0= 0. So we have reduced the state
|ψ0〉 to

|ψ0〉 = β0|1〉

The states are normalized, and we obtain

1 = 〈ψ0|ψ0〉 = β∗0 〈1|(β0|1〉) = |β0|2〈1|1〉 = |β0|2

⇒ β0 = 1

The orthogonality requirement for |ψ 1〉 gives us

〈ψ1|ψ1〉 = (α∗1 〈0| + β∗1 〈1|)
(
−1

2
|0〉 −

√
3

2
|1〉
)

= −α∗1
2
〈0|0〉 − β∗1

√
3

2
〈1|1〉

= −α∗1
2
− β∗1

√
3

2

This term must be zero, so

α∗1 = −
√

3β∗1

The requirement that the state be normalized gives

1 = 〈ψ1|ψ1〉 = (α∗1 〈0| + β∗1 〈1|)(α1|0〉 + β1|1〉)

= |α1|2〈0|0〉 + |β1|2〈1|1〉

= |α1|2 + |β1|2

α∗1 = −
√

3β∗1 ,⇒ α1 = −
√

3β1

1 = 3|β1|2 + |β1|2 = 4|β1|2
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We take

β1 = −1

2

So the state is

|ψ1〉 =
√

3

2
|0〉 − 1

2
|1〉

For the final state the orthogonality requirement gives us

〈ψ2|ψ2〉 = (α∗2 〈0| + β∗2 〈1|)
(
−1

2
|0〉 +

√
3

2
|1〉
)

= −α∗2
2
〈0|0〉 + β∗2

√
3

2
〈1|1〉

= −α∗2
2
+ β∗2

√
3

2

Again, if these states are orthogonal, this term must be equal to zero

−α∗2
2
+
√

3

2
β∗2 = 0

⇒ α∗2 =
√

3β∗2

From normalization we find that

1 = 〈ψ2|ψ2〉 = (α∗2 〈0| + β∗2 〈1|)(α2|0〉 + β2|1〉)

= |α2|2〈0|0〉 + |β2|2〈1|1〉

= |α2|2 + |β2|2

α∗2 =
√

3β∗2 , ⇒ α2 =
√

3β2

1 = 3|β2|2 + |β2|2 = 4|β2|2

Because β2 = 1
2 , the state is

|ψ2〉 =
√

3

2
|0〉 + 1

2
|1〉

SUMMARY

In this chapter we introduced the notion of a quantum state, with particular attention
paid to the two-state system known as a qubit. An arbitrary qubit can be written as
a superposition of the basis states |0〉 and |1〉 as |ψ〉=α|0〉+β|1〉, where |α|2 gives
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the probability of finding |ψ〉 in the state |0〉 and |β|2 gives the probability of finding
the system in the state |1〉. We then learned what a spanning set was and when a
set of vectors is linearly independent and constitutes a basis. In the next chapter
we will see how to work with qubits and other quantum states by considering the
notion of operators and measurement.

EXERCISES

2.1. A quantum system is in the state

(1− i)√
3
|0〉 + 1√

3
|1〉

If a measurement is made, what is the probability the system is in state |0〉 or in state
|1〉?
2.2. Two quantum states are given by

|a〉 =
(−4i

2

)
, |b〉 =

(
1

−1+ i

)

(A) Find |a+ b〉.
(B) Calculate 3|a〉− 2|b〉.
(C) Normalize |a〉, |b〉.

2.3. Another basis for C
2is

|+〉 = |0〉 + |1〉√
2

, |−〉 = |0〉 − |1〉√
2

Invert this relation to express {|0〉, |1〉} in terms of {|+ 〉, | − 〉}.
2.4. A quantum system is in the state

|ψ〉 = 3i|0〉 + 4|1〉
5

(A) Is the state normalized?
(B) Express the state in the | + 〉, | − 〉 basis.

2.5. Use the Gram-Schmidt process to find an orthonormal basis for a subspace of
the four-dimensional space R4spanned by

|u1〉 =

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ , |u2〉 =

⎛
⎜⎜⎝

1
2
4
5

⎞
⎟⎟⎠ , |u3〉 =

⎛
⎜⎜⎝

1
−3
−4
−2

⎞
⎟⎟⎠
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2.6. Photon horizontal and vertical polarization states are written as |h〉 and |v〉,
respectively. Suppose

|ψ1〉 = 1

2
|h〉 +

√
3

2
|v〉

|ψ2〉 = 1

2
|h〉 −

√
3

2
|v〉

|ψ3〉 = |h〉

Find

|〈ψ1|ψ2〉|2, |〈ψ1|ψ3〉|2, |〈ψ3|ψ2〉|2
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MATRICES AND OPERATORS

An operator is a mathematical rule that can be applied to a function to transform
it into another function. Operators are often indicated by placing a caret above
the symbol used to denote the operator. For example, we can define the derivative
operator as

D̂ = d

dx
(3.1)

We can apply the derivative operator to a function, say, f (x )= x cos x :

D̂f = D̂(x cos x) = d

dx
(x cos x) = cos x − x sin x

This idea can be extended to vector spaces. In this case an operator Â is a
mathematical rule that transforms a ket |ψ〉 into another ket that we will call |φ〉:

Â|ψ〉 = |φ〉 (3.2)

Operators can also act on bras. The result is another bra:

〈μ|Â = 〈ν| (3.3)

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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In many cases of interest, an operator transforms vectors into other vectors that
belong to the same space.

We say that an operator is linear if the following relationship holds given
complex numbers α and β and state vectors |ψ1〉 and |ψ2〉:

Â(α|ψ1〉 + β|ψ2〉) = α(Â|ψ1〉)+ β(Â|ψ2〉) (3.4)

More generally, a linear operator Â acts on a state vector as follows:

Â

(∑
i

αi |ui〉
)
=
∑

i

αi

(
Â|ui〉

)
(3.5)

The simplest operator is the identity operator Î. As its name implies, this operator
leaves a state unchanged:

Î |ψ〉 = |ψ〉 (3.6)

The zero operator transforms a vector into the zero vector:

0̂|ψ〉 = 0 (3.7)

We will often denote operators by italicized capital letters. So A and B can be used
to represent two operators as well as Â and B̂.

OBSERVABLES

In quantum theory, dynamical variables like position, momentum, angular momen-
tum, and energy are called observables. This is because observables are things we
measure in order to characterize the quantum state of a particle. It turns out that an
important postulate of quantum theory is that there is an operator that corresponds
to each physical observable.

Keep in mind that sometimes people get tired of writing carets all over the
place and omit them when writing down operators. The fact that a certain object is
an operator should be clear from the context.

THE PAULI OPERATORS

Operators can act on qubits, which as we have seen are just kets or state vectors in a
two-dimensional vector space. A set of operators that turns out to be of fundamental
importance in quantum computation is known as Pauli operators. Including the
identity operator, there are four Pauli operators, but sometimes the identity operator
is omitted. Unfortunately, there are a few different notations used for these operators
and you will just have to learn them all. The Pauli operators are sometimes denoted
by σ 0, σ 1, σ 2, and σ 3, by σ 0, σ x, σ y, and σ z, or by I, X, Y , and Z.
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Starting with the first of the Pauli operators, we have the identity operator. In
this context, as noted in the previous paragraph, the identity operator is sometimes
denoted by σ 0. Looking at (3.6), we see that this operator acts on the computational
basis states as

σ0|0〉 = |0〉, σ0|1〉 = |1〉 (3.8)

The next Pauli operator is denoted by σ 1= σ x=X. It acts as follows:

σ1|0〉 = |1〉, σ1|1〉 = |0〉 (3.9)

For this reason X is sometimes known as the NOT operator.
Continuing, we have σ 2= σ y=Y , which acts on the computational basis in the

following way:
σ2|0〉 = −i|1〉, σ2|1〉 = i|0〉 (3.10)

Finally, σ 3= σ z=Z acts as

σ3|0〉 = |0〉, σ3|1〉 = −|1〉 (3.11)

OUTER PRODUCTS

The product of a ket |ψ〉 with a bra 〈φ|, which is written as |ψ〉〈φ|, is sometimes
known as the outer product. This quantity is an operator. To see this, we apply it
to an arbitrary ket |χ〉:

(|ψ〉〈φ|)|χ〉 = |ψ〉〈φ|χ〉 = (〈φ|φ|χ〉)|ψ〉 (3.12)

Remember, the inner product 〈φ|χ〉 is just a complex number. Hence the result of
this operation has been to transform the vector |χ〉 into one proportional to |ψ〉.
The number 〈φ|χ〉 is the constant of proportionality.

Example 3.1

Describe the action of the operator Â= |0〉〈0|− |1〉〈1| on qubits.

Solution

We let this operator act on an arbitrary qubit, which we write as |ψ〉=α|0〉+ β|1〉. Using
linearity (3.4) together with the fact that 〈0|0〉= 〈1|1〉= 1 and 〈0|1〉= 〈1|0〉= 0, we find that

Â|ψ〉 = (|0〉〈0| − |1〉〈1|) (α|0〉 + β|1〉)
= α (|0〉〈0| − |1〉〈1|) |0〉 + β (|0〉〈0| − |1〉〈1|) |1〉
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= α (|0〉〈0|0〉 − |1〉〈i|0〉)+ β (|0〉〈0|〉 − |1〉〈1|1〉)
= α|0〉 − β|1〉

This operator has mapped |0〉 �→ |0〉 and ‖1〉 �→ −|1〉. From (3.11) we see that Â is the outer
product representation of the Z operator.

You Try It

Consider the action of Â= |0〉〈0|+ |1〉〈1| on an arbitrary qubit and deduce that this is the outer
product representation of the identity operator.

THE CLOSURE RELATION

The previous exercise you tried was an illustration of the completeness or closure
relation. This states that given a basis set {|ui〉} in n dimensions, the identity operator
can be written as

n∑
i=1

|ui〉〈ui | = Î (3.13)

The closure relation is often useful in manipulating expressions. For example,
if we denote the inner product as 〈ui|ψ〉= ci, an arbitrary state |ψ〉 can be expanded
in terms of the basis {|ui〉} in the following way:

|ψ〉 = Î |ψ〉 =
(

n∑
i=1

|ui〉〈ui |
)
|ψ〉 =

n∑
i=1

|ui〉〈ui |ψ〉 =
n∑

i=1

ci |ui〉 (3.14)

Therefore in the world of qubits which is a two-dimensional Hilbert space, we can
write the identity operator using of the computational basis as

Î = |0〉〈0| + |1〉〈1| (3.15)

REPRESENTATIONS OF OPERATORS USING MATRICES

We saw in the last chapter that a ket could be represented as a column vector. It
turns out that operators can be represented by matrices, meaning that the action
of an operator on a vector is reduced to simple matrix multiplication. This makes
doing computations relatively simple. In an n-dimensional vector space, operators
are represented by n × n matrices. If we know the action of an operator Â on a basis
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set {|ui〉}, then we can find the matrix elements of the operator using the closure
relation:

Â = Î ÂÎ =
(∑

i

|ui〉〈ui |
)

Â

⎛
⎝∑

j

|uj 〉〈uj |
⎞
⎠ =∑

i,j

〈ui |Â|uj 〉|ui〉〈uj | (3.16)

The quantity 〈ui|Â|uj〉=Aij is a number that represents the matrix element of the
operator Â located at row i and column j in the operators matrix representation with
respect to the basis {|ui〉}:

Â =

⎛
⎜⎜⎜⎜⎝
〈u1|Â|u1〉 〈u1|Â|u2〉 · · · 〈u1|Â|un〉
〈u2|Â|u1〉 〈u2|Â|u2〉

...

. . .

〈un|Â|u1〉 · · · 〈un|Â|un〉

⎞
⎟⎟⎟⎟⎠ (3.17)

It is important to keep in mind that when the matrix representation of an operator
is given, it is written with respect to a certain basis. If a different basis is used, then
the operator will be represented by a different matrix. For example, suppose that
we also have a basis set {|v i〉} at our disposal. The operator Â can also be written
as a matrix using this basis:

Â =

⎛
⎜⎜⎜⎜⎝
〈v1|Â|v1〉 〈v1|Â|v2〉 · · · 〈v1|Â|vn〉
〈v2|Â|v1〉 〈v2|Â|v2〉

...

. . .

〈vn|Â|v1〉 · · · 〈vn|Â|vn〉

⎞
⎟⎟⎟⎟⎠

The numbers in each matrix are not, in general, equal; that is, 〈ui|Â|uj〉 �= 〈v i|Â|v j〉.
Later we will see how to transform between different matrix representations using
a unitary transformation.

OUTER PRODUCTS AND MATRIX REPRESENTATIONS

Earlier we stated that the outer product of a ket with a bra is an operator. Let’s exam-
ine the outer product using matrices. Using straightforward matrix multiplication we
consider two qubits given by

|ψ〉 =
(

a

b

)
, |φ〉 =

(
c

d

)
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The outer product |ψ〉〈φ| is calculated in the following way:

|ψ〉〈φ| =
(

a

b

) (
c∗ d∗

) = (ac∗ ad∗
bc∗ bd∗

)

Meanwhile

|φ〉〈ψ | =
(

c

d

) (
a∗ b∗

) = (ca∗ cb∗
da∗ db∗

)

You Try It

Let |ψ〉= a|1〉+ b|2〉+ c|3〉, |φ〉= e|1〉+ f |2〉+ g |3〉. Show that the outer product
|ψ〉〈φ| is given by

|ψ〉〈φ| =
⎛
⎝ae∗ af ∗ ag∗

be∗ bf ∗ bg∗
ce∗ cf ∗ cg∗

⎞
⎠

MATRIX REPRESENTATION OF OPERATORS IN TWO-DIMENSIONAL
SPACES

For the most part we are interested in the two-dimensional Hilbert space C2 where
qubits live. For operators that act on qubits, we represent the operators by 2× 2
matrices

A =
(

a b

c d

)
(3.18)

To write the matrix representation of an operator with respect to the computational
basis, we use the following convention to arrange the matrix elements:

A =
(〈0|A|0〉 〈0|A|1〉
〈1|A|0〉 〈1|A|1〉

)
(3.19)

Example 3.2

Write down the matrix representation of the Z operator, using (3.11).

Solution

First we restate (3.11) here for convenience:

Z|0〉 = |0〉, Z|1〉 = −|1〉
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Using (3.19), we have

Z =
(〈0|Z|0〉 〈0|Z|1〉
〈1|Z|0〉 〈1|Z|1〉

)
=
(〈0|(Z|0〉) 〈0|(Z|1〉)
〈1|(Z|0〉) 〈1|(Z|1〉)

)

=
(〈0|(|0〉) 〈0|(−|1〉)
〈1|(|0〉) 〈1|(−|1〉)

)
=
(〈0|0〉 −〈0|1〉
〈1|0〉 −〈1|1〉

)

=
(

1 0
0 −1

)

You Try It

The identity matrix has 1s along the diagonal and 0s everywhere else. Using (3.8), verify that
the matrix representation of σ 0 is the 2× 2 identity matrix.

Definition: The Pauli Matrices

With respect to the computational basis the matrix representation of the Pauli oper-
ators X, Y , and Z are given by

X =
(

0 1
1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0
0 −1

)
(3.20)

Example 3.3

The Pauli operators are given by

X =
(

0 1
1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0
0 −1

)

in the {|0〉, | 1〉} basis. Find the action of these operators on the basis states by considering the
column vector representation of the {|0〉, | 1〉} basis.

Solution

We recall that the basis states are given by

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)

For X, we find that

X|0〉 =
(

0 1
1 0

)(
1
0

)
=
(

0∗1+ 1∗0
1∗1+ 0∗0

)
=
(

0
1

)
= |1〉

X|1〉 =
(

0 1
1 0

)(
0
1

)
=
(

0∗0+ 1∗1
1∗0+ 0∗1

)
=
(

1
0

)
= |0〉
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As noted above, since X transforms one basis state into the other, it is sometimes called the
NOT operator or bit flip operator.

For Y , we obtain

Y |0〉 =
(

0 −i

i 0

)(
1
0

)
=
(

0 ∗ 1− i ∗ 0
i ∗ 1+ 0 ∗ 0

)
=
(

0
i

)
= i|1〉

Y |1〉 =
(

0 −i

i 0

)(
0
1

)
=
(

0 ∗ 0− i ∗ 1
i ∗ 0+ 0 ∗ 1

)
=
(−i

0

)
= −i|0〉

And for Z, we have

Z|0〉 =
(

1 0
0 −1

)(
1
0

)
=
(

1 ∗ 1+ 0 ∗ 0
0 ∗ 1− 1 ∗ 0

)
=
(

1
0

)
= |0〉

Z|1〉 =
(

1 0
0 −1

)(
0
1

)
=
(

1 ∗ 0+ 0 ∗ 1
0 ∗ 0− 1 ∗ 1

)
=
(

0
−1

)
= −|1〉

HERMITIAN, UNITARY, AND NORMAL OPERATORS

Two special types of operators play a fundamental role in quantum theory and hence
in quantum computation. These are Hermitian and unitary operators. The Hermitian
adjoint of an operator Â is denoted by Â† and is defined as follows:

〈a|Â†|b〉 = 〈b|Â|a〉∗ (3.21)

To compute the Hermitian adjoint of any expression, we take the complex
conjugate of all constants in the expression, replace all kets by bras and bras by
kets, and replace operators by their adjoints. When faced with a product of operators,
the order of the operators must be reverse when computing the Hermitian adjoint.
These ideas are clarified in the following equations:

(αÂ)† = α∗A† (3.22)

(|ψ〉)† = 〈ψ | (3.23)

(〈ψ |)† = |ψ〉 (3.24)

(ÂB̂)† = B̂†Â† (3.25)

(Â|ψ〉)† = 〈ψ |Â† (3.26)

(ÂB̂|ψ〉) = 〈ψ |B̂†A† (3.27)

If an operator is written in outer product notation, we can use (3.23), (3.24), and
(3.25) to compute it’s adjoint. If Â

Â† = |φ〉〈ψ | (3.28)
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A final rule to note is that the adjoint of a sum is equal to the sum of the adjoints:

(Â+ B̂ + Ĉ)† = Â† + B̂† + Ĉ† (3.29)

Example 3.4

Find the adjoint of the operator Â= 2|0〉〈1| − i |1〉〈0|.

Solution

First we note that (3.29) tells us that

Â† = (2|0〉〈1|)† − (i|1〉〈0|)†

We can compute the adjoint of each term by taking the complex conjugate of the constants in
each expression and then applying (3.28). We find that

Â† = 2|1〉〈0| + i|0〉〈1|

You Try It

Show that the adjoint of B̂ = 3i|0〉〈0| + 2i|0〉〈1| is given by B̂ = −3i|0〉〈0| − 2i|1〉〈0|.
Considering the matrix representation of an operator, we compute its Hermitian adjoint in

two steps:

• Compute the transpose of the matrix (swap rows and columns)
• Compute the complex conjugate of each element

For a general 2× 2 matrix given by

A =
(

a b

c d

)
(3.30)

the Hermitian conjugate is

A† =
(

a∗ c∗

b∗ d∗

)
(3.31)

Definition: Hermitian Operator

An operator Â is said to be Hermitian if

Â = Â† (3.32)
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Clearly, the operator used in Example 3.3, Â= 2|0〉〈1| − i |1〉〈0|, is not Hermitian.
However, the Pauli operators are Hermitian. For example, the operator Y is writ-
ten as Y =− i |0〉〈1|+i |1〉〈0| using the computational basis. The adjoint of this
expression is

Y † = (−i|0〉〈1| + i|1〉〈0|)† = i|1〉〈0| − i|0〉〈1| = Y (3.33)

It turns out that in quantum mechanics, operators that represent physical observables
are Hermitian.

The matrix representation of a Hermitian operator has real matrix elements
along it’s diagonal. In the space C

2, given a matrix representation (3.30) it must be
the case that a and d are real (a = a*, d = d*) and c= b*.

Definition: Unitary Operator

The inverse of an operator A is denoted by A−1. This operator satisfies AA−1=
A−1A= I, where I is the identity operator. An operator is said to be unitary if its
adjoint is equal to its inverse. Unitary operators are often denoted using the symbol
U and we can state its definition as

UU † = U †U = I (3.34)

Unitary operators are important because they describe the time evolution of a quan-
tum state. The Pauli operators are both Hermitian and Unitary.

Definition: Normal Operator

An operator A is said to be normal if

AA† = A†A (3.35)

Later in the chapter when we consider the commutator of two operators, we will see
that this means a normal operator is one that commutes with its adjoint. Hermitian
and unitary operators are normal.

EIGENVALUES AND EIGENVECTORS

A given vector is said to be an eigenvector of an operator A if the following equation
is satisfied, where λ is a complex number:

A|ψ〉 = λ|ψ〉
The number λ is called an eigenvalue of the operator A. For example, looking at
(3.11) and Example 3.3, we see that the computational basis states are the eigen-
vectors of the Z operator.

A common problem in quantum mechanics is the following: given an operator,
find its eigenvalues and eigenvectors. The first step in this process is to find the
eigenvalues using what is known as the characteristic equation.
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The Characteristic Equation

The characteristic equation for an operator A is found by solving the following
equation:

det|A− λI | = 0 (3.36)

where λ is an unknown variable, I is the identity matrix and det denotes the deter-
minant of the matrix A− λI. The values of λ that are the solutions to this equation
are the eigenvalues of the operator A. The determinant of a 2× 2 matrix (3.30) is
given by

det|A| = det

∣∣∣∣a b

c d

∣∣∣∣ = ad − bc (3.37)

Example 3.5

Find the eigenvalues of an operator with matrix representation

A =
(

2 1
−1 −1

)

Solution

First we construct the matrix A− λI :

A− λI =
(

2 1
−1 −1

)
− λ

(
1 0
0 1

)

=
(

2 1
−1 −1

)
−
(

λ 0
0 λ

)
=
(

2− λ 1
−1 −1− λ

)

Then we compute the determinant

det|A− λI | = det

∣∣∣∣2− λ 1
−1 −1− λ

∣∣∣∣ = (2− λ)(−1− λ)− (−1)(1)

= −2+ λ− 2λ+ λ2 + 1

Rearranging and combining terms, and setting them equal to zero, we obtain

λ2 − λ− 1 = 0

The next step is to solve this equation for the unknown variable λ. We do so using the quadratic
formula. This gives

λ1,2 = −b ±√b2 − 4ac

2a
= 1±√1− 4(1)(−1)

2
= 1±√5

2
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You Try It

Using the matrix representation of the Z operator (3.20), show that its eigenvalues are ±1.
Once the eigenvalues are known, the eigenvectors can be found. This is done by writing

out the eigenvalue equation

A|ψ〉 = λ|ψ〉

for each eigenvalue λ and an eigenvector |ψ〉 with unknown components that we call a, b. This
leads to a set of equations we can use to solve for a and b. Usually the equations allow us to
relate the two variables but leave one, for example, a, undetermined. But in quantum mechanics
there is an additional condition that must be satisfied, normalization. Normalization requires
that

|a|2 + |b|2 = 1

So the procedure works as follows:

• Solve the characteristic equation to find the eigenvalues.
• For each eigenvalue, use the eigenvalue equation to generate relations among the com-

ponents of the given eigenvector.
• Use the normalization condition to find the values of those components.

If each of the eigenvectors of an operator is associated with a unique eigenvalue, we say
that they are nondegenerate. If two or more eigenvectors are degenerate, this means that they
correspond to the same eigenvalue.

We illustrate the procedure for finding the eigenvalues and eigenvectors of a matrix with
an example.

Example 3.6

Find the eigenvalues and eigenvectors for the “π /8” gate, which has the matrix representation

T =
(

1 0
0 eiπ/4

)

Solution

We begin by solving the characteristic equation

0 = det|T − λI | = det

∣∣∣∣
(

1 0
0 eiπ/4

)
− λ

(
1 0
0 1

)∣∣∣∣
= det

∣∣∣∣1− λ 0
0 eiπ/4 − λ

∣∣∣∣ = (1− λ)(eiπ/4 − λ)
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Since the characteristic equation comes out factored, we can set each term equal to zero to
obtain the respective eigenvalue. These are

1− λ = 0
⇒ λ1 = 1

and
eiπ/4 − λ = 0
⇒ λ2 = eiπ/4

Now we find the eigenvectors that correspond to each eigenvalue. We label them {|φ1〉,
|φ2〉}. For the first eigenvalue, which is λ1 = 1, the eigenvalue equation is given by

T |φ1〉 = |φ1〉

To find the eigenvector, we have to write the equation in matrix form. We label the unknown
components of the eigenvector in the following way:

|φ1〉 =
(

a

b

)

where the unknowns a, b can be complex numbers. We then have

T |φ1〉 =
(

1 0
0 eiπ/4

)(
a

b

)
=
(

a

b

)

We carry out the matrix multiplication on the left side, obtaining

(
1 0
0 eiπ/4

)(
a

b

)
=
(

a

eiπ/4b

)

Setting this equal to the column vector on the right side gives two equations

(
a

eiπ/4b

)
=
(

a

b

)

⇒ a = a

eiπ/4b = b

Let’s divide the second equation by b. This gives a nonsensical relationship

eiπ/4 = 1

eiπ/4 = cos
(π

4

)
+ i sin

(π

4

)
=
√

2

2
+ i

√
2

2
�= 1

Since these terms are not equal, it must be the case that b= 0. That leaves the eigenvector as

|φ1〉 =
(

a

0

)
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Now, to find a, we apply the normalization condition. Stated in terms of inner products
this condition is

〈φ1|φ1〉 = 1

Remember, to find the dual vector 〈φ1|, we use

if |φ〉 =
(

a

b

)
, then 〈φ| = (a∗ b∗

)

So for the current eigenvector this gives

1 = 〈φ1|φ1〉 =
(
a∗ 0

) (a

0

)
= |a|2,⇒ a = 1

We have found that a = 1 and b= 0. Therefore

|φ1〉 =
(

1
0

)

Now we tackle the second eigenvalue, λ2= eiπ/4. The eigenvector equation is

T |φ2〉 = eiπ/4|φ2〉

Again, letting the eigenvector |φ2〉contain arbitrary components, we have

|φ2〉 =
(

a

b

)

So we obtain

T |φ2〉 =
(

1 0
0 eiπ/4

)(
a

b

)
= eiπ/4

(
a

b

)

Carrying out the matrix multiplication on the left leads to two equations:

a = eiπ/4a

eiπ/4b = eiπ/4b, ⇒ b = b

The first equation is similar to what we obtained for the constant b for the first eigenvector.
By the same reasoning we conclude that a = 0. We solve for b using normalization:

1 = 〈φ2|φ2〉 =
(
0 b∗

) (0
b

)
= |b|2

⇒ b = 1

So the second eigenvector is

|φ2〉 =
(

0
1

)
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It is always a good idea to double check your work. We check the relations we have found
to make sure they satisfy the eigenvalue equations as expected:

T |φ1〉 =
(

1 0
0 eiπ/4

)(
1
0

)
=
(

1∗1+ 0∗0
0∗1+ eiπ/4∗0

)
=
(

1
0

)
= |φ1〉

T |φ2〉 =
(

1 0
0 eiπ/4

)(
0
1

)
=
(

1∗0+ 0∗1
0∗0+ eiπ/4∗1

)
=
(

0
eiπ/4

)
= eiπ/4

(
0
1

)
= eiπ/4|φ2〉

An important item to note is that the eigenvectors of a Hermitian operator constitute an orthonor-
mal basis set for the given vector space. The eigenvalues and eigenvectors of a Hermitian
operator also satisfy the following important properties:

• The eigenvalues of a Hermitian operator are real.
• The eigenvectors of a Hermitian operator corresponding to different eigenvalues are

orthogonal.

The eigenvalues and eigenvectors of a unitary operator satisfy the following:

• The eigenvalues of a unitary operator are complex numbers with modulus 1.
• A unitary operator with nondegenerate eigenvalues has mutually orthogonal eigenvec-

tors.

SPECTRAL DECOMPOSITION

An operator A belonging to some vector space that is normal and has a diagonal
matrix representation with respect to some basis of that vector space. This result is
known as the spectral decomposition theorem. Suppose that an operator A satisfies
the spectral decomposition theorem for some basis |ui〉. This means that we can
write the operator in the form

A =
n∑

i=1

ai |ui〉〈ui | (3.38)

where ai are the eigenvalues of the operator. In the computational basis the Z
operator is diagonal. We have already seen the Z operator written in the form of
(3.38) when we considered Z = |0〉〈0| − |1〉〈1| in Example 3.1.

Example 3.7

Using the spectral decomposition theorem, write down the representation (3.38) for the operator

A =
⎛
⎝ 0 0 i

0 1 0
−i 0 0

⎞
⎠
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Solution

The eigenvectors of this matrix are (you try it)

|u1〉 = 1√
2

⎛
⎝1

0
i

⎞
⎠ , |u2〉 = 1√

2

⎛
⎝ 1

0
−i

⎞
⎠ , |u3〉 =

⎛
⎝0

1
0

⎞
⎠

The eigenvalues corresponding to each eigenvector are a1 =− 1, a2 = a3 = 1. Since this matrix
is Hermitian (check it) the eigenvectors of the matrix constitute an orthonormal basis. So we
can write A as

A =
∑

i

|ui〉〈ui | = −|u1〉〈u1| + |u2〉〈u2| + |u3〉〈u3|

THE TRACE OF AN OPERATOR

If an operator is in a matrix representation, the trace of the operator is the sum of
the diagonal elements. For example,

A =
(

a b

c d

)
, T r(A) = a + d

B =
⎛
⎝a b c

d e f

g h i

⎞
⎠ , T r(B) = a + e + i

If an operator is written down as an outer product, we take the trace by summing
over inner products with the basis vectors. If we label a basis |ui〉, then

T r(A) =
n∑

i=1

〈ui |A|ui〉

Example 3.8

An operator expressed in the {|0〉, |1〉} basis is given by

A = 2i|0〉〈0| + 3|0〉〈1| − 2|1〉〈0| + 4|1〉〈1|

Find the trace.

Solution

We find the trace by computing

T r(A) =
n∑

i=1

〈φi |A|φi〉 = 〈0|A|0〉 + 〈1|A|1〉
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Then we compute each term individually and add the results. We have

〈0|A|0〉 = 〈0|(2i|0〉〈0| + 3|0〉〈1| − 2|1〉〈0| + 4|1〉〈1|)|0〉
= 2i〈0|0〉〈0|0〉 + 3〈0|0〉〈1|0〉 − 2〈0|1〉〈0|0〉 + 4〈0|1〉〈1|0〉

Recall that the {|0〉, |1〉} basis is orthonormal, so

〈0|1〉 = 〈1|0〉 = 0

This expression reduces to

〈0|A|0〉 = 2i〈0|0〉〈0|0〉

Also recall that

〈0|0〉 = 〈1|1〉 = 1

So we find that

〈0|A|0〉 = 2i〈0|0〉〈0|0〉 = 2i

By similar reasoning for the other term we obtain

〈1|A|1〉 = 〈1|(2i|0〉〈0| + 3|0〉〈1| − 2|1〉〈0| + 4|1〉〈1|)|1〉
= 2i〈1|0〉〈0|1〉 + 3〈1|0〉〈1|1〉 − 2〈1|1〉〈0|1〉 + 4〈1|1〉〈1|1〉
= 4〈1|1〉〈1|1〉 = 4

Hence the trace is

T r(A) = 〈0|A|0〉 + 〈1|A|1〉 = 2i + 4

Example 3.9

Find the trace of the Z operator.

Solution

Using the matrix representation of the Z operator in the computational basis:

Z =
(

1 0
0 −1

)

Calculate the trace by summing the diagonal elements:

T r(Z) = T r

(
1 0
0 −1

)
= 1+ (−1) = 0
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Important Properties of the Trace

The trace has some important properties that are good to know. These include the
following:

• The trace is cyclic, meaning that Tr(ABC )=Tr(CAB)=Tr(BCA).
• The trace of an outer product is the inner product Tr(|φ〉〈ψ |)=〈φ|φ〉.
• By extension of the above it follows that Tr(A|ψ〉〈φ|)=〈φ|A|ψ〉.
• The trace is basis independent. Let |ui〉 and |v i〉 be two bases for some Hilbert

space. Then Tr(A)=∑〈ui|A|ui〉=
∑〈v i|A|v i〉.

• The trace of an operator is equal to the sum of its eigenvalues. If the eigen-
values of A are labeled by λi, then T r(A) =∑n

i=1 λi .
• The trace is linear, meaning that Tr(αA)=αTr(A), Tr(A+B)= Tr(A)+Tr(B).

Example 3.10

Show that the trace of a matrix is equal to the sum of its eigenvalues for

X =
(

0 1
1 0

)
, T =

(
1 0
0 eiπ/4

)
, B =

⎛
⎝1 0 2

0 3 4
1 0 2

⎞
⎠

Solution

For a matrix representation, the trace is the sum of the diagonal elements. We compute the
trace of each matrix:

T r(X) = T r

(
0 1
1 0

)
= 0+ 0 = 0,

T r(T ) = T r

(
1 0
0 eiπ/4

)
= 1+ eiπ/4,

T r(B) = T r

⎛
⎝1 0 2

0 3 4
1 0 2

⎞
⎠ = 1+ 3+ 2 = 6

In the examples above we found that

eigenvalues(X) = 1, −1 ⇒∑
λi = 1− 1 = 0 = T r(X)

eigenvalues(T ) = 1, eiπ/4 ⇒∑
λi = 1+ eiπ/4 = T r(T )
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In the exercises you will show that the eigenvalues of B are {0, 3, 3} so that

∑
λi = 0+ 3+ 3 = 6 = T r(B)

Example 3.11

Prove that
T r(A|φ〉〈ψ|) = 〈ψ|A|φ〉

Solution

Using an arbitrary basis, we have

T r(A|φ〉〈ψ|) =
n∑

i=1

〈ui |A|φ〉〈ψ|ui〉 =
n∑

i=1

〈ψ|ui〉〈ui |A|φ〉

= 〈ψ|
(

n∑
i=1

|ui〉〈ui |
)

A|φ〉 = 〈ψ|A|φ〉

To obtain the result, we used the fact that inner products are just numbers to rearrange the
terms in the third step. Then we used the completeness relation to write the sum over the basis
vector outer products as the identity.

THE EXPECTATION VALUE OF AN OPERATOR

The expectation value of an operator is the mean or average value of that operator
with respect to a given quantum state. In other words, we are asking the following
question: If a quantum state |ψ〉 is prepared many times, and we measure a given
operator A each time, what is the average of the measurement results?

This is the expectation value and we write this as

〈A〉 = 〈ψ |A|ψ〉 (3.39)

Example 3.12

A quantum system is in the state

|ψ〉 = 1√
3
|0〉 +

√
2

3
|1〉

What is the average or expectation value of X in this state?
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Solution

We wish to calculate 〈X 〉= 〈ψ|X |ψ〉. First let’s write down the action of X on the state, recalling
that X |0〉= |1〉, X |1〉= |0〉. We obtain

X|ψ〉 = X

(
1√
3
|0〉 +

√
2

3
|1〉
)
= 1√

3
X|0〉 +

√
2

3
X|1〉 = 1√

3
|1〉 +

√
2

3
|0〉

Using 〈0|1〉= 〈1|0〉= 0, we find that

〈ψ|X|ψ〉 =
(

1√
3
〈0| +

√
2

3
〈1|
)(

1√
3
|1〉 +

√
2

3
|0〉
)

= 1

3
〈0|1〉 +

√
2

3
〈0|0〉 +

√
2

3
〈1|1〉 + 2

3
〈1|0〉

=
√

2

3
〈0|0〉 +

√
2

3
〈1|1〉

=
√

2

3
+
√

2

3
= 2

√
2

3

It is important to recognize that the expectation value does not have to be a value that
is ever actually measured. Remember, the eigenvalues of X are +1 and−1. No other value
is ever measured for X, and the value we have found here for the average is never actually
measured. What this exercise has told us is that if we prepare a large number of systems in the
state |ψ〉 and measure X on each of those systems, and then average the results, the average
will be 2

√
2/3.

We can compute the expectation value of higher moments of an operator. It is common to
compute

〈A2〉

This allows us to calculate the standard deviation or uncertainty for an operator, which is
defined as

�A =
√
〈A2〉 − 〈A〉2

In the next example we consider the qutrit basis, a basis for a three-level system of interest
in quantum information theory.

Example 3.13

An operator acts on the qutrit basis states in the following way:

A|0〉 = |1〉

A|1〉 = |0〉 + |1〉√
2

A|2〉 = 0
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Find, 〈A〉 for the state

|ψ〉 = 1

2
|0〉 − i

2
|1〉 + 1√

2
|2〉.

Solution

First we note that

A|ψ〉 = 1

2
A|0〉 − i

2
A|1〉 + 1√

2
A|2〉 = 1

2
|1〉 − i

2

|0〉 + |1〉√
2

= − i

2
√

2
|0〉 +

(√
2− i

2
√

2

)
|1〉

So the expectation value is

〈A〉 = 〈ψ|A|ψ〉 =
(

1

2
〈0| + i

2
〈1| + 1√

2
〈2|
)(

− i

2
√

2
|0〉 +

(√
2− i

2
√

2

)
|1〉
)

= − i

4
√

2
〈0|0〉 +

(√
2− i

4
√

2

)
〈0|1〉 + 1

4
√

2
〈1|0〉 +

(
i
√

2+ 1

2
√

2

)
〈1|1〉

− i

4
〈2|0〉 +

(√
2− i

4

)
〈2|1〉

= − i

4
√

2
〈0|0〉 +

(
i
√

2+ 1

2
√

2

)
〈1|1〉

= − i

4
√

2
+ i

√
2+ 1

2
√

2
= 2+ (2

√
2− 1)i

4
√

2

FUNCTIONS OF OPERATORS

The function of an operator can be found by calculating its Taylor expansion:

f (A) =
∞∑

n=0

anA
n (3.40)

Something that is seen frequently is an operator in the argument of an exponential
function, meaning eaA. We can find out how this function acts by writing down its
Taylor expansion:

eaA = I + aA+ a2

2!
A2 + · · · + an

n!
An + · · · (3.41)
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If an operator A is normal and has a spectral expansion given by A =∑
i ai |ui〉〈ui |, then

f (A) =
∑

i

f (ai)|ui〉〈ui | (3.42)

If H is a Hermitian operator, then

U = eiεH (3.43)

where ε is a scalar is a unitary operator. If the Hermitian operator H =∑i φi |ui〉〈ui |,
we can use (3.42) and write

U = eiεH =
∑

i

eiεφi |ui〉〈ui | (3.44)

After writing out the Taylor expansion of (3.43) and taking only the first two terms,
we obtain the infinitesimal unitary transformation:

U = I + iεH (3.45)

The operator H is called the generator of the transformation.
If the matrix representation of an operator is written in a basis such that the

matrix is diagonal, then we can use (3.42) in a convenient fashion. Using the com-
putational basis

Z =
(

1 0
0 −1

)

Use (3.42) to obtain

eZ =
(

e 0
0 1/e

)

UNITARY TRANSFORMATIONS

A method known as a unitary transformation can be used to transform the matrix
representation of an operator in one basis to a representation of that operator in
another basis. For simplicity, we consider the two dimensional vector space C2.
The change of basis matrix from a basis |ui〉 to a basis |v i〉 is given by

U =
(〈v1|u1〉 〈v1|u2〉
〈v2|u1〉 〈v2|u2〉

)
(3.46)

We write a state vector |ψ〉 given in the |ui〉 basis in terms of the new |v i〉
basis as

|ψ ′〉 = U |ψ〉 (3.47)
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Here |ψ ′〉 is the same vector— but expressed in terms of the |v i〉 basis. Now
suppose that we are given an operator in the |ui〉 basis. To write it in terms of the
|v i〉 basis, we use

A′ = UAU † (3.48)

Example 3.14

Find the change of basis matrix to go from the computational basis {|0〉, |1〉} to the {| ± 〉} basis.
Then use it to write

|ψ〉 = 1√
3
|0〉 +

√
2

3
|1〉

and the operator T =
(

1 0
0 eiπ/4

)
in the {| ± 〉} basis.

Solution

From (3.46) we see that the change of basis matrix in this case is

U =
(〈+|0〉 〈+|1〉
〈−|0〉 〈−|1〉

)
(3.49)

Using the column vector representations of these basis states, we have

〈+|0〉 = (1/
√

2)
(
1 1

) (1
0

)
= 1√

2
(3.50)

〈+|1〉 = (1/
√

2)
(
1 1

) (0
1

)
= 1√

2
(3.51)

〈−|0〉 = (1/
√

2)
(
1 −1

) (1
0

)
= 1√

2
(3.52)

〈−|1〉 = (1/
√

2)
(
1 −1

) (0
1

)
= − 1√

2
(3.53)

Hence

U = 1√
2

(
1 1
1 −1

)

It is easy to check that U =U † (you try it). Using (3.47), we can rewrite |ψ〉 = 1√
3
|0〉 +√

2
3 |1〉 in the {|± 〉} basis. In the computational basis, in column vector form, the state is

|ψ〉 = 1√
3
|0〉 +

√
2

3
|1〉 = 1√

3

(
1√
2

)
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Then

|ψ〉 = 1√
2

(
1 1
1 −1

)
1√
3

(
1√
2

)
= 1√

6

(
1+√2
1−√2

)

in the {| ± 〉} basis. Now let’s find the representation of the T operator. First we find that

T U† = 1√
2

(
1 0
0 eiπ/4

)(
1 1
1 −1

)
= 1√

2

(
1 1

eiπ/4 −eiπ/4

)

So the representation of the operator in the new basis is

UT U† = 1√
2

(
1 1
1 −1

)
1√
2

(
1 1

eiπ/4 −eiπ/4

)

= 1

2

(
1+ eiπ/4 1− eiπ/4

1− eiπ/4 1+ eiπ/4

)

PROJECTION OPERATORS

A projection operator is an operator that can be formed by writing the outer product
(3.12) using a single ket. That is, given a state |ψ〉, the operator

P = |ψ〉〈ψ | (3.54)

is a projection operator. A projection operator is Hermitian. If the state |ψ〉 is
normalized, then a projection operator is equal to its own square:

P 2 = P (3.55)

If P1 and P2 are projection operators that commute, meaning that P 1P2=P2P1,
then their product is also a projection operator. Suppose that a given vector space
has n dimensions and a basis given by |1〉,|2〉, . . . , |n〉 and that m > n. The operator
given by

P =
m∑

i=1

|i〉〈i| (3.56)

projects onto the subspace spanned by the set |1〉,|2〉, . . . , |m〉. The spectral decom-
position theorem (3.38) allows us to write an operator A in terms of projection
operators. Recall that we wrote

A =
n∑

i=1

ai |ui〉〈ui |

The projection operator Pi= |ui〉〈ui| projects onto the subspace defined by
the eigenvalue ai. The eigenvalue ai represents a given measurement result for
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the operator A. As we will see later, the projection operators represent a type of
measurement described by quantum theory.

The notion of projection operators allows us to rewrite the spectral decomposi-
tion of an operator A in terms of projection operators:

A =
n∑

i=1

aiPi (3.57)

Since the basis states satisfy the completeness relation, we can say that the projection
operators in the spectral decomposition of A do as well:∑

i

Pi = I (3.58)

Example 3.15

Describe the projection operators formed by the computational basis states and show they satisfy
the completeness relation.

Solution

The computational basis states are |0〉 and |1〉. We can form two projection operators from these
states:

P0 = |0〉〈0| =
(

1
0

)(
1 0

) = (1 0
0 0

)

P1 = |1〉〈1| =
(

0
1

)(
0 1

) = (0 0
0 1

)

We can verify the completeness relation directly:

P0 + P1 = |0〉〈0| + |1〉〈1| =
(

1 0
0 0

)
+
(

0 0
0 1

)
=
(

1 0
0 1

)
= I

You Try It

Using the basis states

|+〉 = 1√
2

(
1
1

)
, |−〉 = 1√

2

(
1

−1

)

construct the projection operators P+ and P−, and show that they satisfy the completeness
relation.
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We can write the projection operators P+ and P− in terms of the computational basis.
Given that

|+〉 = |0〉 + |1〉√
2

you can show that

P+ = |+〉〈+| = 1

2
(|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|) (3.59)

And given that

|−〉 = |0〉 − |1〉√
2

(3.60)

you can show that

P− = |−〉〈−| = 1

2
(|0〉〈0| − |0〉〈1| − |1〉〈0| + |1〉〈1|) (3.61)

These expressions allow us to write any operator in terms of different projection operators. For
example, we have seen that the Z operator is

Z = |0〉〈0| − |1〉〈1| = P0 − P1

This is just another example of the spectral decomposition theorem. But let’s think about the
projection operators P± now. Using (3.59) and (3.61), we can see they satisfy the closure
relation:

P+ + P− = |0〉〈0| + |1〉〈1| = I

In Chapter 6 we will see the role that projection operators play within the context of
measurement. For now let’s suppose that a system is prepared in the state

|ψ〉 =
n∑

i=1

ci |ui〉

where the |ui〉 constitute an orthonormal basis. To find the probability of finding the i th outcome
if a measurement is made, we can use the projection operators

Pi = |ui〉〈ui |

Then the probability of finding the i th outcome when a measurement is made on a system
prepared in the state |ψ〉 is

Pr(i) = |Pi |ψ〉|2 = 〈ψ|P †
i Pi |ψ〉 = 〈ψ|P 2

i |ψ〉 = 〈ψ|Pi |ψ〉 (3.62)
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To obtain result (3.62), we used the fact that projection operators are Hermitian so P
†
i = Pi

together with P 2
i = Pi . Now looking at the expansion of the state |ψ〉 in terms of the basis

|ui〉, we have the probability of the i th outcome as

Pr(i) = 〈ψ|Pi |ψ〉 =
⎛
⎝ n∑

j=1

c∗j 〈uj |
⎞
⎠ (|ui〉〈ui |)

(
n∑

k=1

ck|uk〉
)

=
n∑

j=1

c∗j 〈uj |ui〉
n∑

k=1

ck〈ui |uk〉 =
n∑

j=1

c∗j δij

n∑
k=1

ckδik (3.63)

= c∗i ci = |ci |2

This gives us what we expect, that the probability of the i th outcome is equal to the modulus
squared of the coefficient ci.

Example 3.16

A qubit is in the state

|ψ〉 = 1√
3
|0〉 +

√
2

3
|1〉

Using the projection operators P 0 and P1, indicate the probability of finding |0〉 and the prob-
ability of finding |1〉 when a measurement is made.

Solution

In Example 3.15 we saw that P0 = |0〉〈0| and P1 = |1〉〈1|. The respective probabilities that we
seek are given by Pr(0)=〈ψ|P0|ψ〉 and Pr(1)=〈ψ|P1|ψ〉. Now

P0|ψ〉 = (|0〉〈0|)
(

1√
3
|0〉 +

√
2

3
|1〉
)
= 1√

3
|0〉〈0|0〉 +

√
2

3
|0〉〈0|1〉

= 1√
3
|0〉

Hence

Pr(0) = 〈ψ|P0|ψ〉 =
(

1√
3
〈0| +

√
2

3
〈1|
)

1√
3
|0〉 = 1

3
〈0|0〉 +

√
2

3
〈1|0〉 = 1

3

In the second case

P1|ψ〉 = (|1〉〈1|)
(

1√
3
|0〉 +

√
2

3
|1〉
)
= 1√

3
|1〉〈1|0〉 +

√
2

3
|1〉〈1|1〉

=
√

2

3
|1〉



66 MATRICES AND OPERATORS

So the probability of finding |1〉 is

Pr(1) = 〈ψ|P1|ψ〉 =
(

1√
3
〈0| +

√
2

3
〈1|
)√

2

3
|1〉 = 2

3
〈1|1〉 = 2

3

POSITIVE OPERATORS

Consider the vector space C
n. An operator A is said to be positive semidefinite if

〈ψ |A|ψ〉 ≥ 0 (3.64)

for all |ψ〉 ∈Cn. When we study measurement theory in Chapter 6, we will see that
a specific type of operator known as a positive operator valued measure or POVM
is of fundamental importance. A POVM consists of a set of operators

{E1, E2, . . . , En}

where each E i is positive semidefinite. A set of POVM operators satisfies

∑
i

Ei = I (3.65)

We will have more to say about POVM’s in Chapter 6.

COMMUTATOR ALGEBRA

The commutator of two operators A and B is defined as

[A,B] = AB − BA (3.66)

When [A, B]= 0, we say that the operators A and B commute. This allows us to
interchange the order of the operators in expressions since AB =BA. However, in
general, [A, B] �= 0, so the ordering of operators is important. We sometimes say
that if two operators do not commute, then they are incompatible. The commutator
is antisymmetric, meaning that

[A,B] = −[B,A] (3.67)

The commutator is linear, means that

[A,B + C] = [A,B]+ [A,C] (3.68)
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We can use the following rule for distributivity:

[A,BC] = [A,B]C + B[A,C] (3.69)

The most famous commutator relation is that between the position operator X and
the momentum operator P :

[X, P ] = i�I (3.70)

(note that X is not the Pauli operator σ 1 in this context). Since we can write operators
in terms of their matrix representations, we can calculate the commutator of two
operators using matrix multiplication.

Example 3.17

Show that [σ 1, σ 2]= 2iσ 3.

Solution

Writing the matrix representations of the Pauli operators in the computational basis, we have

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)

Now

σ1σ2 =
(

0 1
1 0

)(
0 −i

i 0

)
=
(

i 0
0 −i

)

and

σ2σ1 =
(

0 −i

i 0

)(
0 1
1 0

)
=
(−i 0

0 i

)

So the commutator is

[σ1, σ2] = σ1σ2 − σ2σ1 =
(

i 0
0 −i

)
−
(−i 0

0 i

)
=
(

2i 0
0 −2i

)
= 2i

(
1 0
0 −1

)
= 2iσ3

Earlier we defined a normal operator A as one that satisfies AA† =A†A. Now that we know
the definition of the commutator, we can state that a normal operator is one that commutes with
its adjoint. That is, an operator A is normal if

[A,A†] = 0 (3.71)

If two operators commute, they possess a set of common eigenvectors. Let A and B be
two operators such that [A, B]= 0. Moreover suppose that |u i〉 is a nondegenerate eigenvector
of A with eigenvalue an, that is, A|ui〉= ai|ui〉. Assume A and B are Hermitian. Then

〈ui |[A,B]|uj 〉 = 〈ui |(AB − BA)|uj 〉 = (ai − aj )〈ui |B|uj 〉 (3.72)
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Since [A, B ]= 0, we have 〈ui|[A, B ]|uj〉= 〈ui|0|uj〉= 0, meaning that (ai − aj)〈ui|B |uj〉= 0.
This implies that if i �= j, 〈ui|B |uj〉= 0. In other words,

〈ui |B|uj 〉 ∝ δij (3.73)

This means that the eigenvectors of A, which we have denoted by |ui〉, are also eigenvectors of
B. The simultaneous eigenvector of A and B can be written as |u(a)

n , u
(b)
m 〉, where

A
∣∣u(a)

n , u
(b)
m 〉 = an|u(a)

n , u
(b)
m 〉

B
∣∣u(a)

n , u
(b)
m 〉 = bm|u(a)

n , u
(b)
m 〉

(3.74)

Now let’s consider the exponential of two operators and their commutator. If two operators
A and B commute, then

eAeB = eBeA = eA+B (3.75)

The more restrictive condition is where [A, B ] �= 0, but A and B each commute with [A, B]
(e.g., meaning that [A, [A, B]]= 0. In that case

eAeB = eA+Be1/2[A,B] (3.76)

The anticommutator of two operators A and B is

{A, B} = AB + BA (3.77)

THE HEISENBERG UNCERTAINTY PRINCIPLE

The expectation or mean value of an operator A was defined in (3.39) as 〈A〉=
〈ψ |A|ψ〉. We can compute higher operator moments such as the mean value of A2,
which is given by

〈A2〉 = 〈ψ |A2|ψ〉 (3.78)

The uncertainty �A, which is a statistical measure of the spread of measurements
about the mean, is given by

�A =
√
〈A2〉 − 〈A〉2 (3.79)

Then, for two operators A and B, it can be shown that the product of their
uncertainties satisfies

�A�B ≥ 1

2
|〈[A,B]〉| (3.80)

This is a generalization of the famous Heisenberg uncertainty principle. What this
tells us is that there is a limit to the precision with which we can know the values of
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two incompatible observables simultaneously. Equation (3.80) sets a lower bound
on the precision that we can obtain in our measurements. If [A, B] �= 0, if we make
the uncertainty in A smaller (i.e., � A gets smaller) in order to satisfy (3.80) the
uncertainty in B must grow. The most famous uncertainty relation is that between
position and momentum

�x�p ≥ �

2

POLAR DECOMPOSITION AND SINGULAR VALUES

If the matrix representation of an operator A is nonsingular, then the polar decom-
position theorem tells us that we can decompose the operator A into a unitary
operator U and a positive semidefinite Hermitian operator P in the following
way:

A = UP (3.81)

This form of the polar decomposition of A is called the left polar decomposition of
A. The operator P is given by

P =
√

A†A (3.82)

It is also possible to derive the right polar decomposition of A. If we let Q =√
AA†, then

A = QU (3.83)

We can determine the operator U from

U = AP−1 = A(
√

A†A)−1 (3.84)

We call this the polar decomposition of A because we find an analogue to the polar
representation of a complex number in the following expression:

det A = det Udet P = reiθ (3.85)

Example 3.18

Write the polar decomposition of the matrix

A =
(

a −b

b a

)
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Solution

Defining r = √
a2 + b2 and θ = tan−1(b/a), the polar decomposition of this matrix is

A =
(

a −b

b a

)
=
(

r cos θ −r sin θ

r sin θ r cos θ

)
=
(

cos θ − sin θ

sin θ cos θ

)(
r 0
0 r

)

The singular value decomposition of a matrix A is given by

A = UDV (3.86)

where D is a diagonal matrix consisting of the singular values of the matrix A.

THE POSTULATES OF QUANTUM MECHANICS

Having examined quantum states (qubits) and observables (operators), we close the
chapter with a look at how to put these together into the framework of a workable
physical theory. This is done by listing the “postulates” of quantum mechanics.
These postulates are a set of axioms that define how the theory operates.

Postulate 1: The State of a System

The state of a quantum system is a vector |ψ(t)〉 in a Hilbert space (we emphasize it
can change with time). The state |ψ(t)〉 contains all information that we can obtain
about the system. We work with normalized states such that 〈ψ |ψ〉 = 1, which we
call state vectors. A qubit is a state vector in a complex two-dimensional vector
space |ψ〉=α|0〉+β|1〉 normalized such that |α|2+ |β|2= 1.

Postulate 2: Observable Quantities Represented by Operators

To every dynamical variable A that is a physically measurable quantity, there cor-
responds an operator A. The operator A is Hermitian and its eigenvectors form a
complete orthonormal basis of the vector space.

Postulate 3: Measurements

The possible results of measurement of a dynamical variable A are the eigenvalues
an of the operator A corresponding to that variable. Using spectral decomposition,
we can write the operator A in terms of it’s eigenvalues and corresponding projection
operators Pn= |un〉〈un| as A =∑n anPn. The probability of obtaining measurement
result an is given by

Pr(an) = 〈ψ |Pn|ψ〉 = T r(Pn|ψ〉〈ψ |) (3.87)
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The probability amplitude cn = 〈un|ψ〉 gives us the probability of obtaining mea-
surement result an as

Pr(an) = |〈un|ψ〉|2
〈ψ |ψ〉 = |cn|2

〈ψ |ψ〉 (3.88)

(Recall that if the state is normalized, then 〈ψ |ψ〉 = 1.) A measurement result an

causes the collapse of the wavefunction, meaning that the system is left in state |un〉.
We can write the postmeasurement state of the system in terms of the projection
operator Pn= |un〉〈un| as

|ψ〉 measurement→ Pn|ψ〉√〈ψ |Pn|ψ〉
(3.89)

Postulate 4: Time Evolution of the System

The time evolution of a closed (i.e., physically isolated) quantum system is governed
by the Schrödinger equation. This equation is given by

i�
∂

∂t
|ψ〉 = H |ψ〉 (3.90)

where H is an operator called the Hamiltonian of the system. This operator corre-
sponds to the total energy of the system. The possible energies the system can have
are the eigenvalues of the H operator. The state of the system at a later time t is
given by

|ψ(t)〉 = e−iH t/�|ψ(0)〉 (3.91)

Therefore the time evolution of a quantum state is governed by the unitary operator

U = e−iH t/� (3.92)

where again H is the Hamiltonian operator describing the total energy of the system.

EXERCISES

3.1. Verify that the outer product representations of Xand Yare given by X=
|0〉〈1|+ |1〉〈0| and Y=− i|0〉〈1|+ i|1〉〈0| by letting them act on the state |ψ〉=α|0〉+
β|1〉 and comparing with (3.9) and (3.10).

3.2. Show that the matrix representation of the X operator with respect to the com-
putational basis is

X =
(

0 1
1 0

)
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3.3. Consider the basis states given by

|+〉 = |0〉 + |1〉√
2

, |−〉 = |0〉 − |1〉√
2

Show that the matrix representation of the X operator with respect to this basis is

X =
(

1 0
0 −1

)

3.4. Consider the space C
3 with the basis {|1〉, |2〉, |3〉}. An operator Â is given

by Â = i|1〉〈1| +
√

3
2 |1〉〈2| + 2|2〉〈1| − |2〉〈3|. Write down the adjoint of this opera-

tor Â†.

3.5. Find the eigenvalues and eigenvectors of the X operator.

3.6. Show that the Y operator is traceless.

3.7. Find the eigenvalues of

B =
⎛
⎝1 0 2

0 3 4
1 0 2

⎞
⎠ .

3.8. Prove the following relations involving the trace operation:

T r(A+ B) = T r(A)+ T r(B)

T r(λA) = λT r(A)

T r(AB) = T r(BA)

3.9. Show that X= |0〉〈1|+|1〉〈0| =P+−P−.

3.10. A three-state system is in the state

|ψ〉 = 1

2
|0〉 + 1

2
|1〉 − i√

2
|2〉

Write down the necessary projection operators and calculate the probabilities Pr(0),
Pr(1), and Pr(2).

3.11. In Example 3.17 we showed that [σ 1, σ 2]= 2iσ 3. Following the same proce-
dure, show that [σ 2, σ 3]= 2iσ 1 and [σ 3, σ 1]=2iσ 2.

3.12. Show that {σ i, σ j}=0 when i �= j.



4

TENSOR PRODUCTS

In quantum mechanics we don’t always work with single particles in isolation.
In many cases, some of which are seen in the context of quantum information
processing, it is necessary to work with multiparticle states. Mathematically, to
understand multiparticle systems in quantum mechanics, it is necessary to be able to
construct a Hilbert space H that is a composite of the independent Hilbert spaces that
are associated with each individual particle. The machinery required to do this goes
by the name of the Kronecker or tensor product . We consider the two-particle case.

Suppose that H 1 and H 2 are two Hilbert spaces of dimension N 1 and N 2. We can
put these two Hilbert spaces together to construct a larger Hilbert space. We denote this
larger space by H and use the tensor product operation symbol⊗. So we write

H = H1 ⊗H2 (4.1)

The dimension of the larger Hilbert space is the product of the dimensions of H 1

and H 2. Once again, we assume that dim(H 1)=N 1 and dim(H 2)=N 2. Then

dim(H) = N1N2 (4.2)

Next we start getting down to business and learn how to represent state vectors in
the composite Hilbert space.

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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REPRESENTING COMPOSITE STATES IN QUANTUM MECHANICS

A state vector belonging to H is the tensor product of state vectors belonging to
H 1 and H 2. We will show how to represent such vectors explicitly in a moment.
For now we will just present some notation, sticking to the more abstract Dirac
notation. Let |φ〉∈H 1 and |χ〉∈H 2 be two vectors that belong to the Hilbert spaces
used to construct H . We can construct a vector |ψ〉∈H using the tensor product in
the following way:

|ψ〉 = |φ〉 ⊗ |χ〉 (4.3)

The tensor product of two vectors is linear. That is,

|φ〉 ⊗ [|χ1〉 + |χ2〉] = |φ〉 ⊗ |χ1〉 + |φ〉 ⊗ |χ2〉
[|φ1〉 + |φ2〉]⊗ |χ〉 = |φ1〉 ⊗ |χ〉 + |φ2〉 ⊗ |χ〉

(4.4)

Moreover the tensor product is linear with respect to scalars

|φ〉 ⊗ (α|χ〉) = α|φ〉 ⊗ |χ〉 (4.5)

and vice versa. To construct a basis for the larger Hilbert space, we simply form the
tensor products of basis vectors from the spaces H 1 and H 2. Let us denote the basis
of H 1 by |ui〉 and the basis of H 2 by |v i〉. Then it follows that we can construct a
basis |wi〉 for H =H 1⊗H 2 using

|wi〉 = |ui〉 ⊗ |vi〉 (4.6)

Note that the order of the tensor product is not relevant, meaning

|φ〉 ⊗ |χ〉 = |χ〉 ⊗ |φ〉
It is often cumbersome to write the ⊗ symbol. Therefore you should be aware that
the tensor product |φ〉⊗|χ〉 is often written more simply as |φ〉|χ〉, or even as |φχ〉.

Example 4.1

Let H 1 and H 2 be two Hilbert spaces for qubits. Describe the basis of H =H 1⊗H 2.

Solution

The basis for each of the qubits is {|0〉, |1〉}. The basis of H =H 1⊗H 2 is formed by writing
all possible products of the basis states for H 1 and H 2. The basis vectors are

|w1〉 = |0〉 ⊗ |0〉
|w2〉 = |0〉 ⊗ |1〉
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|w3〉 = |1〉 ⊗ |0〉
|w4〉 = |1〉 ⊗ |1〉

Now consider the expansion of an arbitrary vector from Hi and an arbitrary vector from
H 2 in terms of the basis states in each of the respective Hilbert spaces. That is, if we again
denote the basis of H 1 by |ui〉 and the basis of H 2 by |v i〉, then

|φ〉 =
∑

i

αi |ui〉 and |χ〉 =
∑

i

βi |vi〉

To expand a vector |ψ〉= |φ〉⊗|χ〉 that belongs to the larger Hilbert space H , we simply sum
up the products of the individual terms, that is,

|ψ〉 =
∑
i,j

αiβj |ui〉 ⊗ |vj 〉 (4.7)

This result can be summarized by saying that if |ψ〉= |φ〉⊗|χ〉 is a vector formed by a ten-
sorproduct, then the components of |ψ〉 are found by multiplying the components of the two
vectors |φ〉 and |χ〉 used to form the tensor product.

Example 4.2

Let |φ〉∈H 1 with basis vectors {|x〉, |y〉} and expansion

|φ〉 = ax |x〉 + ay |y〉

And let |χ〉∈H 2 with basis vectors {|u〉, |v〉} and expansion

|χ〉 = bu|u〉 + bv|v〉

Describe the vector |ψ〉= |φ〉⊗|χ〉.

Solution

Using (7), we can write down the expansion of |ψ〉= |φ〉⊗|χ〉 in terms of the basis vectors
and given expansion coefficients. We simply write down all possible combinations of products
between the vectors and then add them up. There are four possible combinations in this case:

ax |x〉 ⊗ bu|u〉
ax |x〉 ⊗ bv |v〉
ay |y〉 ⊗ bu|u〉
ay |y〉 ⊗ bv |v〉

Adding them up and using the linearity properties, we obtain

|ψ〉 = axbu|x〉 ⊗ |u〉 + axbv|x〉 ⊗ |v〉 + aybu|y〉 ⊗ |u〉 + aybv|y〉 ⊗ |v〉
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COMPUTING INNER PRODUCTS

The next item of business is to determine how to compute the inner product of two
vectors belonging to the larger Hilbert space H . This is actually quite simple—we
just take the inner products of the vectors belonging to H 1 and H 2 and multiply
them together. That is, suppose

|ψ1〉 = |φ1〉 ⊗ |χ1〉
|ψ2〉 = |φ2〉 ⊗ |χ2〉

Then

〈ψ1|ψ2〉 = 〈φ1| ⊗ 〈χ1|)(|φ2〉 ⊗ |χ2〉) = 〈φ1|φ2〉〈χ1|χ2〉 (4.8)

In many cases we want to construct a basis for C
4 out of C

2. The next example
shows how to do this.

Example 4.3

Use the | + 〉, | − 〉 states to construct a basis of C4, and verify that the basis is orthonormal.

Solution

The basis states for H =C
4 can be constructed by using | + 〉, | − 〉 as the basis for H 1 and H 2.

Following Example 4.1, we have

|w1〉 = |+〉|+〉
|w2〉 = |+〉|−〉
|w3〉 = |−〉|+〉
|w4〉 = |−〉|−〉

If the basis is orthonormal, then we must have 〈w1|w1〉 = 〈w2|w2〉 = 〈w3|w3〉 = 〈w4|w4〉 = 1
and all other inner products equal to zero. We consider 〈w1|w1〉, 〈w2|w2〉, and 〈w1|w2〉, and
apply (4.8).

〈w1|w1〉 = (〈+|〈+|)(|+〉|+〉) = 〈+|+〉〈+|+〉 = (1)(1) = 1

〈w2|w2〉 = (〈+|〈−|)(|+〉|−〉) = 〈+|+〉〈−|−〉 = (1)(1) = 1

〈w1|w2〉 = (〈+|〈+|)(|+〉|+〉) = 〈+|+〉〈+|−〉 = (1)(0) = 0

〈w2|w1〉 = (〈+|〈−|)(|+〉|−〉) = 〈+|+〉〈−|+〉 = (1)(0) = 0

You Try It

Show that 〈w3|w3〉 = 〈w4|w4〉 = 1 and 〈w2|w3〉 = 〈w3|w3w2〉 = 0.



COMPUTING INNER PRODUCTS 77

Example 4.4

Given that 〈a|b〉 = 4 and 〈c|d〉 = 7, calculate 〈ψ|φ〉, where

|ψ〉 = |a〉 ⊗ |c〉 and |φ〉 = |b〉 ⊗ |d〉.

Solution

Applying (4.8), we find that

〈ψ|φ〉 = (〈a| ⊗ 〈c|)(|b〉 ⊗ |d〉) = 〈a|b〉〈c|d〉 = (4)(7) = 28

You Try It

Given that 〈a|b〉 = 1 and 〈c|d〉 = −2, calculate 〈ψ|φ〉, where

|ψ〉 = |a〉 ⊗ |c〉 and |φ〉 = |b〉 ⊗ |d〉.

We will see later not all states can be written as straightforward products like |φ〉|χ〉. States
that can are referred to as product states .

Example 4.5

If |ψ〉 = 1
2 (|0〉|0〉 − |0〉|1〉 + |1〉|0〉 − |1〉|1〉), could it be written as a product state?

Solution

Yes it can. Let

|φ〉 = |0〉 + |1〉√
2

and |χ〉 = |0〉 − |1〉√
2

Then

|ψ〉 = |φ〉 ⊗ |χ〉 =
( |0〉 + |1〉√

2

)
⊗
( |0〉 − |1〉√

2

)
= 1

2
(|0〉|0〉 − |0〉|1〉 + |1〉|0〉 − |1〉|1〉)

You Try It

Write |ψ〉 = 1
2 (|0〉|0〉 + |0〉|1〉 + |1〉|0〉 + |1〉|1〉) as a tensor product of two states.
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TENSOR PRODUCTS OF COLUMN VECTORS

In this section we describe how to calculate tensor products when state vectors are
written in a matrix representation, meaning as column vectors. We are primarily
concerned with going from C

2 → C
4, so there is only one procedure for us to

learn. Let

|φ〉 =
(

a

b

)
and |χ〉 =

(
c

d

)

Then the tensor product is given by

|φ〉 ⊗ |χ〉 =
(

a

b

)
⊗
(

c

d

)
=

⎛
⎜⎜⎝

ac

ad

bc

bd

⎞
⎟⎟⎠ (4.9)

Example 4.6

Calculate the tensor product of

|a〉 = 1√
2

(
1
−1

)
and |b〉 = 1√

3

(√
2

1

)

Solution

Remember, the tensor product is linear with respect to scalars. So

|a〉 ⊗ |b〉 = 1√
2

(
1
−1

)
⊗ 1√

3

(√
2

1

)
=
(

1√
2

)(
1√
3

)[(
1
−1

)
⊗
(√

2
1

)]

Now we apply (4.9):

|a〉 ⊗ |b〉 =
(

1√
2

)(
1√
3

)[(
1
−1

)
⊗
(√

2
1

)]
=
(

1√
6

)⎛⎜⎜⎝
√

2
1

−√2
−1

⎞
⎟⎟⎠

You Try It

Calculate the tensor product of

|a〉 = 1√
2

(
1
1

)
and |b〉 =

(
2
3

)
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OPERATORS AND TENSOR PRODUCTS

Operators act on tensor products in the following manner: Once again, let |φ〉∈H 1
and |χ〉∈H 2 be two vectors that belong to the Hilbert spaces used to construct H .
Now let A be an operator that acts on vectors |φ〉∈H 1, and let B be an operator that
acts on vectors |χ〉∈H 2. We can create an operator A⊗B that acts on the vectors
|〉∈H as follows:

(A⊗ B)|ψ〉 = (A⊗ B)(|φ〉 ⊗ |χ〉) = (A|φ〉)⊗ (B|χ〉) (4.10)

Example 4.7

Suppose |ψ〉= |a〉⊗|b〉 and A|a〉 = a|a〉, B|b〉 = b|b〉. What is A⊗B |ψ〉?

Solution

Using (4.10), we just apply each operator to the vector from its respective space. First we write
|ψ〉 as the tensor product:

A⊗ B|ψ〉 = (A⊗ B)(|a〉 ⊗ |b〉)

Then we use (4.10) to distribute the operators:

A⊗ B|ψ〉 = (A⊗ B)(|a〉 ⊗ |b〉) = A|a〉 ⊗ B|b〉

Next we use A|a〉 = a|a〉, B|b〉 = b|b〉 to write

A|a〉 ⊗ B|b〉 = a|a〉 ⊗ b|b〉

Now recall (4.5), which tells us that |φ〉⊗(α|χ〉)=α|φ〉⊗|χ〉, so we can pull the scalars
to the outside:

a|a〉 ⊗ b|b〉 = ab(|a〉 ⊗ |b〉) = ab|ψ〉

We have shown that

A⊗ B|ψ〉 = ab|ψ〉

You Try It

Given that X—0〉= |1〉 and Z —1〉=− |1〉, calculate X ⊗ Z |ψ〉 where |ψ〉 = |0〉⊗|1〉.
Tensor products of operators are linear in the usual way

(A⊗ B)

(∑
i

ci |φi〉 ⊗ |χi〉
)
=
∑

i

ci (A⊗ B)|φi〉 ⊗ |χi〉 =
∑

i

ciA|φi〉 ⊗ B|χi〉 (4.11)
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Example 4.8

Find X ⊗Z |ψ〉, where

|ψ〉 = |0〉|0〉 − |1〉|1〉√
2

Solution

First we write

X ⊗ Z|ψ〉 = (X ⊗ Z)

( |0〉|0〉 − |1〉|1〉√
2

)

Using (4.11), we distribute the operator over the sum

(X ⊗ Z)

( |0〉|0〉 − |1〉|1〉√
2

)
= 1√

2
(X ⊗ Z)|0〉|0〉 − 1√

2
(X ⊗ Z)|1〉|1〉

Next we apply (4.10) to allow each component operator to act on the state vector in its respective
space:

1√
2
(X ⊗ Z)|0〉|0〉 − 1√

2
(X ⊗ Z)|1〉|1〉 = 1√

2
(X|0〉)(Z|0〉)− 1√

2
(X|1〉)(Z|1〉)

Since X|0〉 = |1〉, X|1〉 = |0〉 and Z|0〉 = |0〉, Z|1〉 = −|1〉, this becomes

1√
2
(X|0〉)(Z|0〉)− 1√

2
(X|1〉)(Z|1〉) = 1√

2
|1〉|0〉 + 1√

2
|0〉|1〉

So

X ⊗ Z|ψ〉 = |1〉|0〉 + |0〉|1〉√
2

The tensor product of two operators A⊗Bsatisfies the following properties:

• If A and B are Hermitian, then A⊗B is Hermitian.
• If A and B are projection operators, then A⊗B is a projection operator.
• If A and B are unitary, then A⊗B is unitary.
• If A and B are positive, thenA⊗B is positive.

Example 4.9

Suppose that A is a projection operator in H 1 where A= |0〉〈0| and B is a projection operator
in H 2 where B = |1〉〈1|. Find A⊗B |ψ〉 where

|ψ〉 = |01〉 + |10〉√
2
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Solution

Using what we know about the action of tensor products of operators, we write

A⊗ B|ψ〉 = A⊗ B

( |01〉 + |10〉√
2

)
= 1√

2
[(A|0〉)(B|1〉)+ (A|1〉)(B|0〉)]

Now

A|0〉 = (|0〉〈0|)|0〉 = |0〉〈0|0〉 = |0〉
A|1〉 = (|0〉〈0|)|1〉 = |0〉〈0|1〉 = 0

B|0〉 = (|1〉〈1|)|0〉 = |0〉〈1|0〉 = 0

B|1〉 = (|1〉〈1|)|1〉 = |1〉〈1|1〉 = |1〉

Therefore we find that

A⊗ B|ψ〉 = 1√
2
|0〉|1〉

Example 4.10

Show that if A and B are Hermitian, then A⊗B is Hermitian.

Solution

Let’s define two tensor product states

|ψ〉 = |α〉 ⊗ |β〉
|φ〉 = |μ〉 ⊗ |ν〉

We will also say that C =A⊗B . To show that the tensor product of the two operators is
Hermitian, we need to show that

〈φ|C|ψ〉† = 〈ψ|C†|φ〉 = 〈ψ|C|φ〉

Working out the first term obtains

C|ψ〉 = C|α〉 ⊗ |β〉 = A⊗ B|α〉 ⊗ |β〉 = (A|α〉)(B|β〉)

Now recall how we compute inner products of tensor product vectors (4.8), We have

〈φ|C|ψ〉 = 〈φ|(A|α〉B|β〉) = (〈μ|〈ν|)(A|α〉B|β〉) = 〈μ|A|α〉〈ν|B|β〉

The Hermitian conjugate of this expression is

〈φ|C|ψ〉† = (〈μ|A|α〉〈ν|B|β〉)† = 〈β|B†|ν〉〈α|A†|μ〉
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But A and B are Hermitian and the inner products are numbers we can just move around. So
we write

〈φ|C|ψ〉† = 〈α|A|μ〉〈β|B|ν〉

Now let’s apply (4.8) in reverse to write

〈φ|C|ψ〉† = (〈α|〈β|)A⊗ B(|μ〉|ν〉) = 〈ψ|(A⊗ B)|φ〉 = 〈ψ|C|φ〉

Therefore we conclude that A⊗B is Hermitian.

You Try It

Show that if A and B are unitary, then A⊗B is unitary.
We can also form a tensor product operator that acts only on H 1 while doing nothing to vectors
from H 2. This is done by forming the tensor product A⊗ I , where I is the identity operator
acting in H 2. Similarly I ⊗B does nothing to vectors from H 1 but acts on vectors from H 2.

Example 4.11

Suppose

|ψ〉 = |00〉 − |11〉√
2

Describe the action of X ⊗ I on the state.

Solution

First remember that —00〉 is just a shorthand notation for —0〉⊗|0〉 and similarly for —11〉.
The action of X ⊗ I is as follows:

X ⊗ I |ψ〉 = X ⊗ I

( |00〉 − |11〉√
2

)
= 1√

2
[(X|0〉)|0〉 − (X|1〉)|1〉]

= |10〉 − |01〉√
2

You Try It

If

|ψ〉 = |00〉 + |11〉√
2
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show that

Z ⊗ I |ψ〉 = |00〉 − |11〉√
2

TENSOR PRODUCTS OF MATRICES

We conclude the chapter by looking at how to compute tensor products of matrices,
something we will need to do frequently later. We’re going to keep things simple
and focus on taking tensor products of operators in two-dimensional Hilbert spaces
to produce an operator that acts on a four-dimensional Hilbert space.

Let

A =
(

a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)

be the matrix representations of two operators A and B. The matrix representation
of the tensor product A⊗B is

A⊗ B =
(

a11B a12B

a21B a22B

)
=

⎛
⎜⎜⎝

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

⎞
⎟⎟⎠ (4.12)

Example 4.12

Find the tensor product of the Pauli matrices X and Z .

Solution

First let’s write down the Pauli matrices:

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)

Now we apply (4.12):

X ⊗ Z =
(

(0)Z (1)Z

(1)Z (0)Z

)
=

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠
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You Try It

Calculate the matrix representation of Z ⊗X , showing that X ⊗ Z¬Z ⊗X.

EXERCISES

4.1. Consider the basis in Example 4.1 Show that it is orthonormal.

4.2. Returning to Example 4.1, show that 〈w3|w4〉 = 〈w4|w4w3〉 = 0.

4.3. Given that 〈a|b〉 = 1/2 and 〈c|d〉 = 3/4, calculate 〈ψ |φ〉, where |ψ〉 = |a〉 ⊗
|c〉 and |φ〉 = |b〉 ⊗ |d〉.
4.4. Calculate the tensor product of

|ψ〉 = 1√
2

(
1
1

)
and |φ〉 = 1

2

(
1√
3

)

4.5. Can |ψ〉 = 1
2 (|0〉|0〉 − |0〉|1〉 − |1〉|0〉 + |1〉|1〉) be written as a product state?

4.6. Can

|ψ〉 = |0〉|0〉 + |1〉|1〉√
2

be written as a product state?

4.7. Find X⊗ Y|ψ〉, where

|ψ〉 = |0〉|1〉 − |1〉|0〉√
2

4.8. Show that (A⊗B)†=A†⊗B†.

4.9. If

|ψ〉 = |00〉 + |11〉√
2

find I⊗ Y|ψ〉.
4.10. Calculate the matrix representation of X⊗ Y.
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THE DENSITY OPERATOR

In many cases of practical interest, rather than considering a single quantum system,
we need to study a large number or collection of systems called an ensemble.
Furthermore, rather than being in a single state, members of the ensemble can be
found in one of two or more different quantum states. There is a given probability
that a member of the ensemble is found in each of these states. We make this more
concrete with a simple example.

Consider a two-dimensional Hilbert space with basis vectors {|x〉, |y〉}. We
prepare a large number N of systems, where each member of the system can be in
one of two state vectors

|a〉 = α|x〉 + β|y〉
|b〉 = γ |x〉 + δ|y〉

These states are normalized, so |α|2+ |β|2= |γ |2+ |δ|2= 1, and the usual rules of
quantum mechanics apply. For a system in state |a〉, if a measurement is made, then
there is a probability |α|2 of finding |x〉 while there is a probability |β|2 of finding
|y〉, and similarly for state |b〉.

Now suppose that we prepare na of these systems in state |a〉 and nb of the
systems in state |b〉. Since we have N total systems, then

na + nb = N

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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If we divide by N ,

na

N
+ nb

N
= 1

This relation tells us that if we randomly select a member of the ensemble, the
probability that it is found in state |a〉 is given by p= na/N . Probabilities must sum
to one. Therefore the probability of finding a member of the ensemble in state |b〉
is given by 1− na/N = 1− p.

So we see that with a collection of systems where each member of the ensemble
is prepared in one of two or more states, the use of probability is operating on two
different levels: “The Born rule tells us that the probabilities given by squared
amplitudes must sum to of ”.

• At the level of a single quantum system, where the Born rule gives us the
probability of obtaining a given a measurement result

• On the ensemble level, where if we draw a member of the ensemble, there
is a certain probability that the system was prepared in one state vector or
another

At the ensemble level the use of probability is acting in a classical way. That is, it
is a simple reflection of incomplete information. So, at the ensemble level, we have
a simple statistical mixture.

The question at hand is how do we describe a system like where there are
classical probabilities of finding each member of the system in different states? We
need to calculate the usual quantities that we would for any quantum system, such
as the expectation values of operators and the probabilities of obtaining different
measurement results. However, in the case of a statistical mixture of states, we need
to weight the calculated quantities by the probabilities of finding different states.
The proper way to do this is with the density operator.

THE DENSITY OPERATOR FOR A PURE STATE

We can start learning the mathematical machinery of the density operator by looking
at a single state. Consider a system that is in some known state |ψ〉. To review, if
there exists some orthonormal basis |ui〉, then we can expand the state in that basis:

|ψ〉 = c1|u1〉 + c2|u2〉 + · · · + cn|un〉
Then, using the Born rule, we know that the probability of finding the system in
state |ui〉 upon measurement is given by |ci|2. When a system is in a definite state
like this, we say the system is in a pure state. In light of the discussion above,
we seek a different way to describe quantum states that can be generalized to a
statistical mixture. This can be done with an operator called the density operator,
which is denoted by the symbol ρ. The density operator is an average operator that
will allow us to describe a statistical mixture. In the case of a pure state this is done
by constructing an outer product from the state. To see this, we begin by finding
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the expectation value or average of some operator A. We write

〈A〉 = 〈ψ |A|ψ〉

Expanding the state in some orthonormal basis as |ψ〉= c1|u1〉+ c2|u2〉+ · · · +
cn|un〉, this becomes

〈A〉 = 〈ψ |A|ψ〉 = (c∗1〈u1| + c∗2〈u2| +· · ·+ c∗n〈un|
)
A
(
c1|u1〉 + c2|u2〉 +· · ·+ cn|un〉

)
=

n∑
k,l=1

c∗kcl〈uk|A|ul〉

=
n∑

k,l=1

c∗kclAkl

Recall how the coefficients in the expansion of a state vector are defined. That is,

cm = 〈um|ψ〉

Taking the complex conjugate, we obtain c∗m = 〈ψ |um〉. This allows us to write

c∗kcl = 〈ψ |uk〉〈ul |ψ〉 = 〈ul |ψ〉〈ψ |uk〉

We were able to switch the order of the terms because cm = 〈um|ψ〉 is just a complex
number. Notice now that we have a projection operator sandwiched in between the
basis vectors. That is,

c∗kcl = 〈ul |ψ〉〈ψ |uk〉 = 〈ul |(|ψ〉〈ψ |)|uk〉

We call this the density operator and denote it by ρ= |ψ〉〈ψ |. So the expectation
or average value of an operator A with respect to a state |ψ〉 can be written as

〈A〉 =
n∑

k,l=1

c∗kclAkl =
n∑

k,l=1

〈ul |(|ψ〉〈ψ |)|uk〉Akl =
n∑

k,l=1

〈ul |ρ|uk〉Akl

Let’s set aside the definition we’ve just come up with.

Definition: Density Operator for a Pure State

The density operator for a state |ψ〉 is given by

ρ = |ψ〉〈ψ | (5.1)

Let’s write down the expectation value of A again, and then do a little manipulation
that will allow us to write this in terms of a trace operation. Then the expectation
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value or average of the operator A can be written as

〈A〉 =
n∑

k,l=1

c∗kcl〈uk|A|ul〉

=
n∑

k,l=1

〈ul |ψ〉〈ψ |uk〉〈uk |A|ul〉

=
n∑

k,l=1

〈ul |ρ|uk〉〈uk |A|ul〉

To write this expectation value in terms of a trace, we can use the completeness
relation. Recall that

∑
k|uk〉〈uk| = 1 for an orthnormal basis |uk〉. This leads us to

our next definition.

Definition: Using the Density Operator to Find
the Expectation Value

The expectation value of an operator A can be written in terms of the density
operator as

〈A〉 =
n∑

k,l=1

〈ul |ρ|uk〉〈uk|A|ul〉

=
n∑

l=1

〈ul |ρ
(

n∑
k=1

|uk〉〈uk|
)

A|ul〉

=
n∑

l=1

〈ul |ρA|ul〉

= T r(ρA) (5.2)

What happens if we take the trace of the density operator by itself ? We can work
in reverse and expand the state |ψ〉 in terms of a basis. Here we assume that the
state is normalized. Then we will use the fact that

∑
j|cj|2= 1 to write down the

trace of the density operator. We have

T r(ρ) =
∑

j

〈uj |ρ|uj 〉 =
∑

j

〈uj |ψ〉〈ψ |uj 〉 =
∑

j

cj c
∗
j =

∑
j

|cj |2 = 1 (5.3)

This expression can be summarized by saying that due to the conservation of prob-
ability , the trace of the density operator is always 1.

Example 5.1

A system is in the state |ψ〉 = 1√
3
|u1〉 + i

√
2
3 |u2〉, where the |uk〉 constitute an orthonormal

basis. Write down the density operator, and show it has unit trace.
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Solution

First we write down the bra corresponding to the given state. Remember, we must take the
conjugate of any complex numbers. We obtain

〈ψ| = 1√
3
〈u1| − i

√
2

3
〈u2|

Then, using (5.1), we have

ρ = |ψ〉〈ψ| =
(

1√
3
|u1〉 + i

√
2

3
|u2〉
)(

1√
3
〈u1| − i

√
2

3
〈u2|
)

= 1

3
|u1〉〈u1| − i

√
2

3
|u1〉〈u2| + i

√
2

3
|u2〉〈u1| + 2

3
|u2〉〈u2|

The trace is

T r(ρ) =
2∑

i=1

〈ui |ρ|ui〉 = 〈u1|ρ|u1〉 + 〈u2|ρ|u2〉

= 1

3
〈u1|u1〉〈u1|u1〉 − i

√
2

3
〈u1|u1〉〈u2|u1〉 + i

√
2

3
〈u1|u2〉〈u1|u1〉 + 2

3
〈u1|u2〉〈u2|u1〉

+ 1

3
〈u2|u1〉〈u1|u2〉 − i

√
2

3
〈u2|u1〉〈u2|u2〉 + i

√
2

3
〈u2|u2〉〈u1|u2〉 + 2

3
〈u2|u2〉〈u2|u2〉

= 1

3
+ 2

3
= 1

Mixed terms like 〈u1|u2〉 drop out because the basis is orthonormal, so 〈ui |uj 〉 = δij .

You Try It

Show that if |ψ〉 = 1
2 |u1〉 + 1√

2
|u2〉 + 1

2 |u3〉, then

ρ = 1

4
|u1〉〈u1| + 1

2
|u2〉〈u2| + 1

4
|u3〉〈u3|

+ 1

2
√

2
(|u1〉〈u2| + |u2〉〈u1| + |u2〉〈u3| + |u3〉〈u2|)+ 1

4
(|u1〉〈u3| + |u3〉〈u1|)

Then show that the trace of the density operator is 1.
Now let’s look at the matrix representation of the density operator. In this case

we refer to the density matrix . For the density operator in Example 5.1, where we had

ρ = 1

3
|u1〉〈u1| − i

√
2

3
|u1〉〈u2| + i

√
2

3
|u2〉〈u1| + 2

3
|u2〉〈u2|

the matrix representation is given by

[ρ] =
(〈u1|ρ|u1〉 〈u1|ρ|u2〉
〈u2|ρ|u1〉 〈u2|ρ|u2〉

)
=
(

1/3 −i
√

2/3

i
√

2/3 2/3

)
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There are a couple of things to notice:

• The sum of the diagonal elements of the matrix is one. This shouldn’t be
surprising, since we showed earlier that Tr(ρ)= 1 because probabilities sum
to one.

• The values along the diagonal are the probabilities of finding the system in
the respective states. For example, looking at the state given in Example 5.1,
you can see that the probability of finding the system in the state |u1〉 is
given by 〈u1|ρ|u1〉, which is 1/3. More generally, the matrix element ρnn is
the average probability of finding the system in the state |un〉.

The off-diagonal elements of the density matrix are called coherences . These terms
are a representation of the interference effects among different states, in this case
between |um〉 and |un〉. The nondiagonal components of the density matrix ρmn rep-
resent the averages of these cross terms. Since we have a pure state in this example,
these terms are nonzero. If you see a density matrix with nonzero off-diagonal terms,
the state is coherent or has some interference effects, which isn’t the case for a sta-
tistical mixture. However, keep in mind that a matrix representation of an operator
can be taken with respect to a different basis, so we can find a representation of
the density matrix that is diagonal. As we will see below, there is a better way to
determine if the state is pure or mixed.

Time Evolution of the Density Operator

The time evolution of the density operator can be found readily by application of
the Schrödinger equation. Recall that

i�
d

dt
|ψ〉 = H |ψ〉

Since H =H †, we can also write

−i�
d

dt
〈ψ | = 〈ψ |H

Writing the density operator as ρ= |ψ〉〈ψ |, and applying the product rule for deriva-
tives, we have

dρ

dt
= d

dt
(|ψ〉〈ψ |) =

(
d

dt
|ψ〉
)
〈ψ | + |ψ〉

(
d

dt
〈ψ |
)

Now we use our result from the Schrödinger equation. This becomes

dρ

dt
=
(

H

i�
|ψ〉
)
〈ψ | + |ψ〉

(
〈ψ | H

−i�

)
= H

i�
ρ − ρ

H

i�
= 1

i�
[H,ρ]
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Definition: Time Evolution of the Density Operator

i�
dρ

dt
= [H,ρ] (5.4)

For a closed system the time evolution of the density operator can also be written
in terms of a unitary operator U . If we let ρ(t) represent the density operator at
some later time t and ρ(t o) represent the density operator at an initial time t o, then

ρ(t) = Uρ(to)U
† (5.5)

Finally, looking at the definition ρ= |ψ〉〈ψ |, it is obvious that the density operator
is Hermitian, meaning ρ= ρ†. In the case of pure states, since

ρ2 = (|ψ〉〈ψ |)(|ψ〉〈ψ |) = |ψ〉(〈ψ |ψ〉)〈ψ | = |ψ〉〈ψ | = ρ

we have the following definition. If a system is in a pure state |ψ〉 with density
operator ρ= |ψ〉〈ψ |, then

T r(ρ2) = 1 (pure state only) (5.6)

THE DENSITY OPERATOR FOR A MIXED STATE

We now turn to the reason we considered density operators in the first place—we
need a way to describe a statistical mixture of states. What we are looking for is
a density matrix that describes an ensemble. This can be done by following these
three steps:

• Construct a density operator for each individual state that can be found in the
ensemble.

• Weight it by the probability of finding that state in the ensemble.
• Sum up the possibilities.

To see how this procedure works, we return to the example mentioned at the begin-
ning of the chapter. In that case, members of the ensemble could be found in one
of two states

|a〉 = α|x〉 + β|y〉
|b〉 = γ |x〉 + δ|y〉

The density operators for each of these states are

ρa = |a〉〈a|
ρb = |b〉〈b|



92 THE DENSITY OPERATOR

Or, in terms of the basis states these are

ρa = |a〉〈a| = (α|x〉 + β|y〉)(α∗〈x| + β∗〈y|)
= |α|2|x〉〈x| + αβ∗|x〉〈y| + α∗β|y〉〈x| + |β|2|y〉〈y|

ρb = |b〉〈b| = (γ |x〉 + δ|y〉)(γ ∗〈x| + δ∗〈y|)
= |γ |2|x〉〈x| + γ δ∗|x〉〈y| + γ ∗δ|y〉〈x| + |δ|2|y〉〈y|

The probability of a member of the ensemble being in state |a〉 is p while the
probability of a member of the ensemble being in state |b〉 is 1− p. In terms of the
states |a〉 and |b〉 the density operator for the ensemble is

ρ = pρa + (1− p)ρb = p|a〉〈a| + (1− p)|b〉〈b|

If we wish, we can write this in terms of the basis states {|x〉,|y〉} as well, but we’ll
save that algebraic mess for worked examples. The main point is to see how to
weigh the density operator for each pure state in the ensemble by the respective
probability, and then add them up.

In general, suppose that there are n possible states. For a state |ψ i〉, using (1) the
density operator is written as ρi= |ψ i〉〈ψ i|. Denote the probability that a member
of the ensemble has been prepared in the state |ψ i〉 as pi. Then the density operator
for the entire system is

ρ =
n∑

i=1

piρi =
n∑

i=1

pi |ψi〉〈ψi | (5.7)

Now that we know what the density operator is, let’s write down the key properties.

KEY PROPERTIES OF A DENSITY OPERATOR

An operator ρ is a density operator if and only if it satisfies the following three
requirements:

• The density operator is Hermitian, meaning ρ= ρ†.
• Tr(ρ)= 1.
• ρ is a positive operator, meaning 〈u|ρ|u〉 ≥ 0 for any state vector |u〉.

Recall that an operator is positive if and only if it is Hermitian and has nonnegative
eigenvalues.
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Example 5.2

Consider the state

|a〉 =
(

e−iφ sin θ

cos θ

)

Is ρ= |a〉〈a| a density operator?

Solution

In the {|0〉,|1〉} basis, the state is written as

|a〉 =
(

e−iφ sin θ

cos θ

)
= e−iφ sin θ

(
1
0

)
+ cos θ

(
0
1

)
= e−iφ sin θ |0〉 + cos θ |1〉

The dual vector is

〈a| = eiφ sin θ〈0| + cos θ〈1|

So we have

ρ = |a〉〈a| = (e−iφ sin θ |0〉 + cos θ |1〉)(eiφ sin θ〈0| + cos θ〈1|)
= sin2 θ |0〉〈0| + e−iφ sin θ cos θ |0〉〈1| + eiφ sin θ cos θ |1〉〈0| + cos2 θ |1〉〈1|

The matrix representation of this density operator is(
〈0|ρ|0〉 〈0|ρ|1〉
〈1|ρ|0〉 〈1|ρ|1〉

)
=
(

sin2 θ e−iφ sin θ cos θ

eiφ sin θ cos θ cos2 θ

)

First, we check to see if the matrix is Hermitian. The transpose of the matrix is

ρT =
(

sin2 θ e−iφ sin θ cos θ

eiφ sin θ cos θ cos2 θ

)T

=
(

sin2 θ eiφ sin θ cos θ

e−iφ sin θ cos θ cos2 θ

)

Taking the complex conjugate gives

ρ† = (ρT )∗ =
(

sin2 θ eiφ sin θ cos θ

e−iφ sin θ cos θ cos2 θ

)∗
=
(

sin2 θ e−iφ sin θ cos θ

eiφ sin θ cos θ cos2 θ

)
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Since ρ=ρ†, the matrix is Hermitian. Second, we see that Tr(ρ)= sin2θ + cos2θ = 1. The trace
of a density matrix is always unity. Finally, we consider an arbitrary state

|ψ〉 =
(

a

b

)

Then

〈ψ|ρ|ψ〉 = |a|2 sin2 θ + ab∗eiφ sin θ cos θ + a∗be−iφ sin θ cos θ + |b|2 cos2 θ

For complex numbers z and w , we can write

(z+ w)(z∗ + w∗) = zz∗ + wz∗ + w∗z+ ww∗ = |z+ w|2

It is also true that the modulus of any complex number satisfies |ς |2 ≥ 0, and also |z+ w|2 ≥ 0.
So we make the following definitions:

z = ae−iφ sin θ, ⇒ zz∗ = |a|2 sin2 θ

w = b cos θ, ⇒ ww∗ = |b|2 cos2 θ

We see that we can identify

ab∗eiφ sin θ cos θ = wz∗

a∗be−iφ sin θ cos θ = zw∗

Now recall that for any complex number z, |z|2 ≥ 0. So

〈ψ|ρ|ψ〉 = |ae−iφ sin θ + b cos θ |2 ≥ 0

since |z+w|2 ≥ 0. Hence the operator is positive. Since ρ is Hermitian, has unit trace, and is a
positive operator, it qualifies as a density operator. We can also verify that the density operator
is positive by examining its eigenvalues. It can be shown that the eigenvalues of

ρ =
(

sin2 θ e−iφ sin θ cos θ

eiφ sin θ cos θ cos2 θ

)

are given by λ1,2={1, 0}. Since both eigenvalues are nonnegative and the matrix is Hermitian,
we conclude that the operator is positive.

We have already seen how the trace condition is a reflection of the conservation of proba-
bility in the pure state case. We can quickly work this out in the case of the statistical mixture
by recalling that given a scalar a and an operator A, Tr(aA)= aTr(A). Recall also that the trace
turns outer products into inner products, meaning T r(|ψ〉〈φ|) = 〈ψ|φ〉. Remember, the trace is
linear, so Tr(A+B )= Tr(A)+Tr(B ) and Tr(αA)=αTr(A) if α is a scalar. Putting these facts
together to compute the trace of (5.7), we have

T r(ρ) = T r

(
n∑

i=1

pi |ψi〉〈ψi |
)
=

n∑
i=1

piT r(|ψi〉〈ψi |) =
n∑

i=1

pi〈ψi |ψi〉 =
n∑

i=1

pi = 1

To get this result, we made the reasonable assumption that the states are normalized so that
〈ψi |ψi〉 = 1.
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Now let’s show that in the general case the density operator is a positive operator. We
consider an arbitrary state vector |φ〉 and consider 〈φ|ρ|φ〉. Using (5.7), we obtain

〈φ|ρ|φ〉 =
n∑

i=1

pi〈φ|ψi〉〈ψi |φ〉 =
n∑

i=1

pi |〈φ|ψi〉|2

Note that the numbers pi are probabilities—so they all satisfy 0 ≤ pi ≤ 1. Recall that the inner
product satisfies |〈φ|ψi〉|2 ≥ 0. Therefore we have found that 〈φ|ρ|φ〉 ≥ 0 for an arbitrary state
vector |φ〉. We conclude that ρ is a positive operator.

Since ρ is a positive operator, the first property we stated for density operators—that ρ is
Hermitian—follows automatically. This property tells us that the eigenvalues λi ≥ 0 and that
we can use spectral decomposition to write the density operator in a diagonal representation
ρ=∑iλi|ui〉〈ui|.

Expectation Values

The result that we found in the pure state case for calculating the expectation value
of a given operator holds true in the general case of a statistical mixture. That is,
the expectation value of an operator with respect to a statistical mixture of states
can be calculated using

〈A〉 = T r(ρA) (5.8)

Probability of Obtaining a Given Measurement Result

Given a projection operator Pn = |un〉〈un| corresponding to measurement result
an, the probability of obtaining an can be calculated using the density operator as
follows:

p(an) = 〈un|ρ|un〉 = T r(|un〉〈un|ρ) = T r(Pnρ) (5.9)

In terms of the more general measurement operator formalism, the probability of
obtaining measurement result m associated with measurement operator M m is

P(m) = T r(M†
mMmρ) (5.10)

After a measurement described by a projection operator, the system is in the state
described by

ρ → PnρPn

T r(Pnρ)
(5.11)

In terms of general measurement operators, the state of the system after measure-
ment is

MmρM†
m

T r(M
†
mMmρ)

(5.12)
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Example 5.3

Does the matrix

ρ =

⎛
⎜⎜⎝

1

4

1− i

4

1− i

4

3

4

⎞
⎟⎟⎠

represent a density operator?

Solution

We see that the matrix has unit trace

T r(ρ) = 1

4
+ 3

4
= 1

So it looks like it might be a valid density operator. However,

ρ† =

⎛
⎜⎜⎝

1

4

1+ i

4

1+ i

4

3

4

⎞
⎟⎟⎠ �= ρ

Since the matrix is not Hermitian, it cannot represent a density operator.

You Try It

Does ρ =
(

1 0
0 1

)
represent a density operator? If not why not?

Example 5.4

A system is found to be in the state

|ψ〉 = 1√
5
|0〉 + 2√

5
|1〉

(a) Write down the density operator for this state.
(b) Write down the matrix representation of the density operator in the {|0〉,|1〉} basis.

Verify that Tr(ρ)= 1, and show this is a pure state.
(c) A measurement of Z is made. Calculate the probability that the system is found in the

state |0〉 and the probability that the system is found in the state |1〉.
(d) Find 〈X 〉.
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Solution
(a) To write down the density operator, first we construct the dual vector 〈ψ|. This can

be done by inspection

〈ψ| = 1√
5
〈0| + 2√

5
〈1|

The density operator is

ρ = |ψ〉〈ψ| =
(

1√
5
|0〉 + 2√

5
|1〉
)(

1√
5
〈0| + 2√

5
〈1|
)

= 1

5
|0〉〈0| + 2

5
|0〉〈1| + 2

5
|1〉〈0| + 4

5
|1〉〈1|

(b) The matrix representation of the density operator in the {|0〉, |1〉} basis is found by
writing

[ρ] =
(
〈0|ρ|0〉 〈0|ρ|1〉
〈1|ρ|0〉 〈1|ρ|1〉

)

For the state given in this problem, we have

〈0|ρ|0〉 = 1

5

〈0|ρ|1〉 = 2

5
= 〈1|ρ|0〉

〈1|ρ|1〉 = 4

5

So in the {|0〉, |1〉} basis the density matrix is

ρ =

⎛
⎜⎜⎝

1

5

2

5
2

5

4

5

⎞
⎟⎟⎠

The trace is just the sum of the diagonal elements. In this case

T r(ρ) = 1

5
+ 4

5
= 1

To determine whether or not this is a pure state, we need to determine if Tr(ρ2)= 1. Now

ρ2 =

⎛
⎜⎜⎝

1

5

2

5
2

5

4

5

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1

5

2

5
2

5

4

5

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1

25
+ 4

25

2

25
+ 8

25
2

25
+ 8

25

4

25
+ 16

25

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

5

25

10

25
10

25

20

25

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1

5

2

5
2

5

4

5

⎞
⎟⎟⎠ = ρ
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Since ρ2= ρ, it follows that Tr(ρ2)= 1 and this is a pure state.

(c) In this simple example we can see by inspection that the probability that the system is
in state |0〉 is 1/5 while the probability that the system is found in state |1〉 is 4/5. Let’s
see if we can verify this using the density operator formalism. First, we write down
the projection operators in matrix form. The measurement operator that corresponds to
the measurement result |0〉 is P0 = |0〉〈0| while the measurement operator P 1 = |1〉〈1|.
The matrix representation in the given basis is

P0 =
(
〈0|P0|0〉 〈0|P0|1〉
〈1|P0|0〉 〈1|P0|1〉

)
=
(

1 0

0 0

)
and P1 =

(
〈0|P1|0〉 〈0|P1|1〉
〈1|P1|0〉 〈1|P1|1〉

)
=
(

0 0

0 1

)

The probability of finding the system in state |0〉 is

p(0) = T r(P0ρ) = T r

⎡
⎢⎢⎣
(

1 0
0 0

)⎛⎜⎜⎝
1

5

2

5
2

5

4

5

⎞
⎟⎟⎠
⎤
⎥⎥⎦ = T r

⎛
⎝1

5

2

5

0 0

⎞
⎠ = 1

5

The probability of finding the system in state |1〉 is

p(1) = T r(P1ρ) = T r

⎡
⎢⎢⎣
(

0 0
0 1

)⎛⎜⎜⎝
1

5

2

5
2

5

4

5

⎞
⎟⎟⎠
⎤
⎥⎥⎦ = T r

⎛
⎜⎝

0 0

2

5

4

5

⎞
⎟⎠ = 4

5

(d) We can find the expectation value of X by calculating Tr(Xρ). First, let’s do the matrix
multiplication:

Xρ =
(

0 1
1 0

)⎛⎜⎜⎝
1

5

2

5
2

5

4

5

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2

5

4

5
1

5

2

5

⎞
⎟⎟⎠

The trace is the sum of the diagonal elements of this matrix

〈X〉 = T r(Xρ) = T r

⎛
⎜⎜⎝

2

5

4

5
1

5

2

5

⎞
⎟⎟⎠ = 2

5
+ 2

5
= 4

5

You Try It

If |ψ〉 = 2
3 |0〉 +

√
5

3 |1〉, show that the state is normalized, and then show that the density matrix
for this state is

ρ =

⎛
⎜⎜⎝

4

9

2
√

5

9

2
√

5

9

5

9

⎞
⎟⎟⎠
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You Try It

Show that for the state given in Example 5.2, 〈Z 〉=− 3/5.

You Try It

Continue with the state in Example 5.2. Recall the {| + 〉, | − 〉} basis where

|+〉 = 1√
2

(
1
1

)
, |−〉 = 1√

2

(
1
−1

)

(a) Show that the matrix representation of the projection operator onto the | − 〉 state is
given by

P− = 1

2

(
1 −1
−1 1

)

in the {|0〉, |1〉} basis.
(b) For the state given in Example 5.2, show that the probability of finding the system in

the | − 〉 state is 1/10.

CHARACTERIZING MIXED STATES

Recall that coherence is the capability of different components of a state to interfere
with one another. To emphasize that coherence is not present in a statistical mixture,
some authors refer to a plain old statistical mixture as an incoherent mixture. In a
statistical mixture there will not be coherences, but in a pure state or a state in
a linear superposition there will be coherences. One indication of whether or not
a state is a pure state or a mixed state is the presence of off-diagonal terms in the
matrix representation of the density operator. In summary:

• A mixed state is a classical statistical mixture of two or more states. The state
has no coherences. Therefore the off-diagonal terms of the density operator
are zero, that is, ρmn= 0 when m �= n .

• A pure state will have nonzero off-diagonal terms.

Recall from Chapter 3, that we can represent an operator as a matrix by computing
the components of that operator with respect to a given basis. We can choose to
represent the operator using one basis or another valid basis for the space, so the
matrix representation will not always be the same. We also indicated it possible to
find a diagonal representation of the density operator. Therefore a stronger criterion
must be used to determine whether or not the density operator represents a mixed
state rather than considering the off-diagonal terms of the matrix.

Recall that for a pure state the density operator is a projection operator, meaning
ρ2= ρ. We also showed that since Tr(ρ)= 1 for any density operator, this means
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that Tr(ρ2)= 1 for a pure state. The same is not true in the case of a mixed state,
so we can use this fact to construct a definitive test to determine whether or not a
density operator represents a mixed state or a pure state. Summarizing:

• T r(ρ2) < 1 for a mixed state.
• Tr(ρ2)= 1 for a pure state.

Example 5.5

Recalling the basis states

|+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉)

Suppose that a statistical mixture has 75% in the | + 〉 state and 25% in the | − 〉 state. A member
of the ensemble is drawn. What are the probabilities of finding it in the |0〉 state and |1〉 state,
respectively? Show that it is a mixed state and that this calculation doesn’t depend on the basis
we use. Contrast the statistical mixture with 75% of the systems in the | + 〉 state and 25% of
the systems in the | − 〉 state, with the pure state described by

|ψ〉 =
√

3

4
|+〉 +

√
1

4
|−〉

Write down the probability that a measurement of the pure state |ψ〉 finds the system in |0〉.

Solution

The density operator for the ensemble is given by

ρ = 3

4
|+〉〈+| + 1

4
|−〉〈−|

Now

|+〉〈+| =
(

1√
2
(|0〉 + |1〉)

)(
1√
2
(〈0| + 〈1|)

)
= 1

2
(|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|)

|−〉〈−| =
(

1√
2
(|0〉 − |1〉)

)(
1√
2
(〈0| − 〈1|)

)
= 1

2
(|0〉〈0| − |0〉〈1| − |1〉〈0| + |1〉〈1|)

So we find that

ρ = 3

4
|+〉〈+| + 1

4
|−〉〈−|

=
(

3

4

)(
1

2

)
(|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|)
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+
(

1

4

)(
1

2

)
((|0〉〈0| − |0〉〈1| − |1〉〈0| + |1〉〈1|))

= 1

2
|0〉〈0| + 1

4
|0〉〈1| + 1

4
|1〉〈0| + 1

2
|1〉〈1|

The respective probabilities are

p(0) = T r(ρ|0〉〈0|)
= 〈0|ρ|0〉

= 〈0|
(

1

2
|0〉〈0| + 1

4
|0〉〈1| + 1

4
|1〉〈0| + 1

2
|1〉〈1|

)
|0〉 = 1

2

p(1) = T r(ρ|1〉〈1|)
= 〈1|ρ|1〉

= 〈1|
(

1

2
|0〉〈0| + 1

4
|0〉〈1| + 1

4
|1〉〈0| + 1

2
|1〉〈1|

)
|1〉 = 1

2

In the {| + 〉,| − 〉} basis the density matrix is

ρ =

⎛
⎜⎜⎝

3

4
0

0
1

4

⎞
⎟⎟⎠

Notice that the trace of the density matrix is one, as it should be. Also note that the
off-diagonal terms are zero. Squaring, we find that

ρ2 =

⎛
⎜⎜⎝

3

4
0

0
1

4

⎞
⎟⎟⎠
⎛
⎜⎜⎝

3

4
0

0
1

4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

9

16
0

0
1

16

⎞
⎟⎟⎠

⇒ T r(ρ2) = 9

16
+ 1

16
= 10

16
= 5

8

So we see that even though the off-diagonal terms of the matrix were zero, T r(ρ2) < 1, telling
us that this is a mixed state. Let’s look at the matrix in the {|0〉, |1〉} basis. We find that

ρ =

⎛
⎜⎜⎝

1

2

1

4
1

4

1

2

⎞
⎟⎟⎠

So

ρ2 =

⎛
⎜⎝

1

2

1

4
1

4

1

2

⎞
⎟⎠
⎛
⎜⎝

1

2

1

4
1

4

1

2

⎞
⎟⎠ =

⎛
⎜⎝

5

16

1

4
1

4

5

16

⎞
⎟⎠

⇒ T r(ρ2) = 5

16
+ 5

16
= 10

16
= 5

8
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Once again, notice that T r(ρ2) = 5/8 < 1, confirming that this is a mixed state.
For the last part of this problem, recall that for the statistical mixture the probability of

obtaining measurement result 0 was pm(0)= 1/2, where we used the subscript m to remind
ourselves this is the probability given the mixed state. Now we consider the pure state:

|ψ〉 =
√

3

4
|+〉 +

√
1

4
|−〉

This state has a superficial resemblance to the statistical mixture with 75% of the systems in the
| + 〉 state and 25% of the systems in the | − 〉 state, since a measurement in the {| + 〉, | − 〉} basis
gives | + 〉 with a probability p(+ )= 3/4= 0.75 and | − 〉 with a probability p(− )= 1/4= 0.25.
For example, look at the density operator for the mixed state:

ρ = 3

4
|+〉〈+| + 1

4
|−〉〈−|

The probability of finding | + 〉 is

pm(+) = T r(|+〉〈+|ρ) = 〈+|ρ|+〉 = 〈+|
(

3

4
|+〉〈+| + 1

4
|−〉〈−|

)
|+〉 = 3

4

However, it turns out that if we instead consider measurements with respect to the {|0〉,
|1〉} basis, we will find dramatically different results. Let’s rewrite the given pure state in that
basis. We find that

|ψ〉 =
√

3

4
|+〉 +

√
1

4
|−〉 =

√
3

4

( |0〉 + |1〉√
2

)
+
√

1

4

( |0〉 − |1〉√
2

)

=
(√

3

4

1√
2
+
√

1

4

1√
2

)
|0〉 +

(√
3

4

1√
2
−
√

1

4

1√
2

)
|1〉

=
(√

3+ 1

2
√

2

)
|0〉 +

(√
3− 1

2
√

2

)
|1〉

Therefore the probability that a measurement finds |ψ〉 in the state |0〉 is

p(0) =
(√

3+ 1

2
√

2

)2

= 2+√2

4
≈ 0.85

So we see that even though p(+ )= pm(+ ), p(0) �= pm(0).

Example 5.6

Consider the ensemble in the previous example, where

ρ = 3

4
|+〉〈+| + 1

4
|−〉〈−|

A measurement in the {|0〉, |1〉} basis finds the result |0〉. Use the density operator formalism
to show that the state of the system after measurement is in fact |0〉〈0|.
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Solution

The state of the system after measurement is ρ → PnρPn/T r(Pnρ).
Writing the density operator in the {|0〉, |1〉} basis obtains

ρ = 1

2
|0〉〈0| + 1

4
|0〉〈1| + 1

4
|1〉〈0| + 1

2
|1〉〈1|

The projection operator for the |0〉 state is P 0 = |0〉〈0|. So we see that

ρP0 =
(

1

2
|0〉〈0| + 1

4
|0〉〈1| + 1

4
|1〉〈0| + 1

2
|1〉〈1|

)
|0〉〈0| = 1

2
|0〉〈0| + 1

4
|1〉〈0|

Hence

P0ρP0 = |0〉〈0|
(

1

2
|0〉〈0| + 1

4
|1〉〈0|

)
= 1

2
|0〉〈0|

Now

T r(ρP0) = T r(ρ|0〉〈0|) = 〈0|ρ|0〉

= 〈0|
(

1

2
|0〉〈0| + 1

4
|0〉〈1| + 1

4
|1〉〈0| + 1

2
|1〉〈1|

)
|0〉 = 1

2

Therefore the state of the system after measurement is

ρ → P0ρP0

T r(P0ρ)
= (1/2)|0〉〈0|

(1/2)
= |0〉〈0|

You Try It

An ensemble is described by the density operator ρ = 3
8 |+〉〈+| + 5

8 |−〉〈−|. Write down the
density operator in the {|0〉, |1〉} basis. Find the probability that if a member of the ensemble
is drawn, measurement determines it to be in state |1〉. Show that if measurement obtains the
state |1〉, the density operator is |1〉〈1|.

Example 5.7

Suppose

|a〉 = 1√
3
|+〉 +

√
2

3
|−〉 and |b〉 = 2

3
|+〉 −

√
5

9
|−〉

with 75% of the systems prepared in state |a〉 and 25% of the systems prepared in state |b〉.

(a) Write down the density operators ρa and ρb.
(b) Compute the density operator for the ensemble.
(c) A measurement is made. What are the probabilities of finding | + 〉 and | − 〉?
(d) Instead of question (c), what are the probabilities of finding |0〉 and |1〉?
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Solution

(a) We write the density operators in the {| +〉, | − 〉} basis. We find that

ρa = |a〉〈a| =
(

1√
3
|+〉 +

√
2

3
|−〉
)(

1√
3
〈+| +

√
2

3
〈−|
)

= 1

3
|+〉〈+| +

√
2

3
|+〉〈−| +

√
2

3
|−〉〈+| + 2

3
|−〉〈−|

ρb = |b〉〈b| =
(

2

3
|+〉 −

√
5

3
|−〉
)(

2

3
〈+| −

√
5

3
〈−|
)

= 4

9
|+〉〈+| − 2

√
5

9
|+〉〈−| − 2

√
5

9
|−〉〈+| + 5

9
|−〉〈−|

The density matrices, in the {| +〉, | − 〉} basis are given by

ρa =

⎛
⎜⎜⎝

1

3

√
2

3√
2

3

2

3

⎞
⎟⎟⎠ , ρb =

⎛
⎜⎜⎝

4

9

−2
√

5

9

−2
√

5

9

5

9

⎞
⎟⎟⎠

Notice that Tr(ρa)= Tr(ρb)= 1, which must be the case for a density operator.

(b) The density operator for the ensemble is given by

ρ = (3/4)ρa + (1/4) ρb

= (3/4)

[
1

3
|+〉〈+| +

√
2

3
|+〉〈−| +

√
2

3
|−〉〈+| + 2

3
|−〉〈−|

]

+ (1/4)

[
4

9
|+〉〈+| − 2

√
5

9
|+〉〈−| − 2

√
5

9
|−〉〈+| + 5

9
|−〉〈−|

]

= 13

36
|+〉〈+| + (9

√
2− 2

√
5)

36
(|+〉〈−| + |−〉〈+|)+ 23

36
|−〉〈−|

Notice that the trace is still unity

T r(ρ) = 〈+|ρ|+〉 + 〈−|ρ|−〉 = 13

36
+ 23

36
= 36

36
= 1

(c) If we pull a member of the ensemble, the probability that a measurement finds it in
the | +〉 state is

p(+) = T r(ρ|+〉〈+|)

= 〈+|
(

13

36
|+〉〈+| + (9

√
2− 2

√
5)

36
(|+〉〈−| + |−〉〈+|)+ 23

36
|−〉〈−|

)
|+〉 = 13

36
≈ 0.36
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The probability that measurement finds a member of the ensemble in the | − 〉 state is

p(−) = T r(ρ|−〉〈−|)

= 〈−|
(

13

36
|+〉〈+| + (9

√
2− 2

√
5)

36
(|+〉〈−| + |−〉〈+|)+ 23

36
|−〉〈−|

)
|−〉 = 23

36
≈ 0.64

Notice that these probabilities sum to one, as they should.

Example 5.8

Prove that for a mixed state, T r(ρ2) < 1.

Solution

First recall that we can write the density operator in terms of the spectral decomposition

ρ =
∑

i

λi |ui〉〈ui |

The {|ui〉} constitute an orthonormal basis, and so 〈ui |uj 〉 = δij . The trace of a density operator
is 1, Therefore

T r(ρ) = T r

(∑
i

λi |ui〉〈ui |
)
=
∑

j

〈uj |
(∑

i

λi |ui〉〈ui |
)
|uj 〉

=
∑
i,j

λi〈uj |ui〉〈ui |uj 〉

=
∑
i,j

λi〈uj |ui〉δij =
∑

i

λi〈ui |ui〉 =
∑

i

λi

So we have
∑

iλi= 1, which can only be true if each of the eigenvalues of the density
operator satisfies λi < 1. This result implies that

∑
i λ2

i < 1. To see this better, note that if
λi < 1, then λ2

i < λi .

With this mixed state relation of Example 5.8 in mind, we consider the square of the
density operator. We write it as

T r(ρ2) =
∑

i

〈ui |
(∑

j

λj |uj 〉〈uj |
)(∑

k

λk|uk〉〈uk|
)
|ui〉

=
∑
i,j,k

λjλk〈ui |uj 〉〈uj |uk〉〈uk|ui〉

=
∑
i,j,k

λjλk〈ui |uj 〉〈uj |uk〉δki
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=
∑
i,j

λj λi〈ui |uj 〉〈uj |ui〉

=
∑
i,j

λj λi〈ui |uj 〉δij

=
∑
i,j

λiλi〈ui |ui〉

=
∑
i,j

λiλi

=
∑
i,j

λ2
i < 1

Example 5.9

Suppose

ρ =

⎛
⎜⎝

1

3

i

3
−i

3

2

3

⎞
⎟⎠

(a) Show that ρ is Hermitian and has positive eigenvalues that satisfy 0 ≤ λi ≤ 1, and∑
λi = 1.

(b) Is this a mixed state?

(c) Find 〈X 〉 for this state.

Solution

(a) To determine if this matrix is a representation of a valid density operator, we will
check to see if it is Hermitian, if it has unit trace, and if it is a positive operator.

First notice that ρ is Hermitian. So we take the transpose and exchange rows and
columns:

ρT =

⎛
⎜⎝

1

3

−i

3
i

3

2

3

⎞
⎟⎠

Next we take the complex conjugate to give ρ†:

ρ† =

⎛
⎜⎝

1

3

i

3
−i

3

2

3

⎞
⎟⎠
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We have at least ρ=ρ†. Now the trace is

T r(ρ) = 1

3
+ 2

3
= 1

Since the trace is unity, it looks like this matrix might be a representation of a density operator.
All we have to confirm is that the operator is a positive. Begin by finding the eigenvalues.
Remember, we do this by solving the characteristic equation det |ρ − λI | = 0. We have

det |ρ − λI | = det

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

1

3

i

3
−i

3

2

3

⎞
⎟⎟⎠−

(
λ 0
0 λ

)∣∣∣∣∣∣∣∣
= det

∣∣∣∣∣∣∣∣
1

3
− λ

i

3
−i

3

2

3
− λ

∣∣∣∣∣∣∣∣
=
(

1

3
− λ

)(
2

3
− λ

)
−
(−i

3

)(
i

3

)

= λ2 − λ+ 1

9

Therefore the eigenvalues are

λ1,2 = 1

2
±
√

5

6

Because we have

λ1 = 1

2
+
√

5

6
≈ 0.87

λ2 = 1

2
−
√

5

6
≈ 0.13

the eigenvalues are real and nonnegative, and both are less than one. It is obvious that

2∑
i=1

λi =
(

1

2
+
√

5

6

)
+
(

1

2
−
√

5

6

)
= 1

2
+ 1

2
= 1

(b) Let’s square the matrix:

ρ2 =

⎛
⎜⎜⎝

1

3

i

3
−i

3

2

3

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1

3

i

3
−i

3

2

3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2

9

i

3
−i

3

5

9

⎞
⎟⎟⎠

The trace of this quantity is

T r(ρ2) = 2

9
+ 5

9
= 7

9
< 1
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Therefore this is a mixed state.

(c) We can find the expectation value using 〈X 〉= Tr(Xρ). Now

Xρ =
(

0 1
1 0

)⎛⎜⎜⎝
1

3

i

3
−i

3

2

3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−i

3

2

3
1

3

i

3

⎞
⎟⎟⎠

The trace of this matrix is zero, so we see that 〈X 〉= 0.

You Try It

Suppose

ρ =

⎛
⎜⎜⎝

3

5

1

5
1

5

2

5

⎞
⎟⎟⎠

Show that this is a valid density operator. You should find that the eigenvalues are λ1,2 =
5±√5/10. Show that this is a mixed state and that 〈Z 〉= 1/5.

Probability of Finding an Element of the Ensemble in a Given State

Once again, we ask the question: If an individual member is drawn from the ensem-
ble and a measurement is made, what are the probabilities of obtaining each possible
measurement result? In this case we write down the answer using the density matrix.

We can compute the density operator from the states that make up the ensemble
using (5.7). Then it is convenient to write the density matrix in a given basis. If we
choose the compute the density matrix in the {|0〉,|1〉} basis, the matrix will be of
the form

ρ =
(〈0|ρ|0〉 〈0|ρ|1〉
〈1|ρ|0〉 〈1|ρ|1〉

)

If a measurement on a member of the ensemble is made, then the probability that
the particle is found to be in the state |0〉 is given by

〈0|ρ|0〉 (probability a member of the ensemble is found to be in the state |0〉)

If a measurement on a member of the ensemble is made, then the probability the
particle is found to be in the state |1〉 is

〈1|ρ|1〉 (probability a member of the ensemble is found to be in the state |1〉)

Notice this statement is equivalent to the earlier definition where we used the trace
together with the given projection operator compute the various probabilities.
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Example 5.10

Consider an ensemble in which 40% of the systems are known to be prepared in the state

|ψ〉 = 1√
3
|0〉 +

√
2

3
|1〉

and 60% of the systems are prepared in the state

|φ〉 = 1

2
|0〉 +

√
3

2
|1〉

(a) Find the density operators for each of these states, and show they are pure states. If
measurements are made on systems in each of these states, what are the probabilities
they are found to be in states |0〉 and state |1〉, respectively?

(b) Determine the density operator for the ensemble.

(c) Show that Tr(ρ)= 1.

(d) A measurement of Z is made on a member drawn from the ensemble. What are the
probabilities it is found to be in state |0〉 and state |1〉, respectively?

Solution

(a) By looking at |ψ〉 and using the Born rule, we see that the probability of finding the
system in state |0〉 is 1/3, while the probability of finding the system in the state |1〉 is
2/3. If the system is prepared in state |φ〉, the probability that measurement finds the
system in state |0〉 is 1/4, and the probability that the system is found in state |1〉 is
3/4.

The density operators for each individual state are given by ρψ = |ψ〉〈ψ| and ρφ =
|φ〉〈φ|. We obtain

ρψ = |ψ〉〈ψ| =
(

1√
3
|0〉 +

√
2

3
|1〉
)(

1√
3
〈0| +

√
2

3
〈1|
)

= 1

3
|0〉〈0| +

√
2

3
|0〉〈1| +

√
2

3
|1〉〈0| + 2

3
|1〉〈1|

ρφ = |φ〉〈φ| =
(

1

2
|0〉 +

√
3

2
|1〉
)(

1

2
〈0| +

√
3

2
〈1|
)

= 1

4
|0〉〈0| +

√
3

4
|0〉〈1| +

√
3

4
|1〉〈0| + 3

4
|1〉〈1|

The matrix representations are given by

ρψ =
(
〈0|ρψ |0〉 〈0|ρψ |1〉
〈1|ρψ |0〉 〈1|ρψ |1〉

)
=

⎛
⎜⎜⎝

1

3

√
2

3√
2

3

2

3

⎞
⎟⎟⎠
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and

ρφ =
(〈0|ρφ |0〉 〈0|ρφ |1〉
〈1|ρφ |0〉 〈1|ρφ |1〉

)
=

⎛
⎜⎜⎝

1

4

√
3

4√
3

4

3

4

⎞
⎟⎟⎠

To determine whether or not these matrices are pure states, we square each density
matrix and then compute the trace. We calculate the first explicitly:

ρ2
ψ =

⎛
⎜⎜⎝

1

3

√
2

3√
2

3

2

3

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1

3

√
2

3√
2

3

2

3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1

3

√
2

3√
2

3

2

3

⎞
⎟⎟⎠

Since ρψ = ρ2
ψ and Tr(ρψ )= 1, this is a pure state. It is easy to show that ρφ is also a pure

state.

(b) We use (5.7), which we restate here:

ρ =
n∑

i=1

piρi =
n∑

i=1

pi |ψi〉〈ψi |

The probabilities given in the problem are

pψ = 40% = 2

5

pφ = 60% = 3

5

The density matrix for the ensemble is

ρ = pψρψ + pφρ = 2

5

⎛
⎜⎜⎝

1

3

√
2

3√
2

3

2

3

⎞
⎟⎟⎠+ 3

5

⎛
⎜⎜⎝

1

4

√
3

4√
3

4

3

4

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

17

60

(8
√

2+ 9
√

3)

60

(8
√

2+ 9
√

3)

60

43

60

⎞
⎟⎟⎠

(c) Notice that Tr(ρ)= 17/60+ 43/60= 60/60= 1, which must be the case for a density
matrix.

(d) To find the respective probabilities, recall that we can write the matrix representation
in the {|0〉, |1〉} basis:

ρ =
(〈0|ρ|0〉 〈0|ρ|1〉
〈1|ρ|0〉 〈1|ρ|1〉

)

The probability of finding a member of the ensemble in the state |0〉 is given by 〈0|ρ|0〉.
Looking at the density matrix calculated in part (c), we see that the probability is 17/60≈ 0.28.
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Similarly, the probability of finding a member of the ensemble in the state |1〉 is given by
〈1|ρ|1〉. Looking at the density matrix calculated in part (c), we see that the probability is
43/60≈ 0.72.

Completely Mixed States

A completely mixed state can be thought of as the opposite end along a continuum
of density operators, with a pure state on the other side. In a completely mixed state
the probability for the system to be in each given state is identical. In that case the
density operator is a constant multiple of the identity matrix. If the state space has
n dimensions, then

ρ = 1
n
I (5.13)

Since I 2= I , we have ρ2 = 1
n2 I . Furthermore, in n dimensions, Tr(I )= n . So for

a completely mixed state we have

T r(ρ2) = T r

(
1

n2
I

)
= 1

n2
T r(I ) = 1

n
(5.14)

In most if not all cases of interest to us, n = 2. For n = 2 the lower bound, given
by a completely mixed state, is T r(ρ2) = 1

2 while the upper bound for a pure state
is given by Tr(ρ2)= 1.

THE PARTIAL TRACE AND THE REDUCED DENSITY OPERATOR

A very important application of the density operator is in the characterization of com-
posite systems—systems that are made up of two or more individual subsystems.
Think entanglement.

The density operator is a very useful tool for characterizing and working with
states of subsystems. In particular, we are going to start by thinking about a com-
posite system where Alice has one part of the system and Bob has another part of
the system and they fly off in opposite directions. The complete state of the system
contains information about both subsystems, but obviously Bob, who is a long way
from Alice, can’t know about her half of the system unless she happened to call
him up and tell him about it. We need a way to take the density operator for the
entire system and distill it down into a density operator that just represents what
Bob alone sees. This can be done by calculating the partial trace, which will give us
Bob’s very own density operator. We call that density operator the reduced density
operator .

A typical example is imagining that Alice and Bob each share one member of
an entangled EPR pair. Let’s suppose that the system is in one of the Bell states

|β10〉 = |0A〉|0B〉 − |1A〉|1B〉√
2
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We construct the density operator for a composite system the same way we have
been doing for individual systems. The density operator for this particular state is

ρ = |β10〉〈β10|

=
( |0A〉|0B〉 − |1A〉|1B〉√

2

)( 〈0A|〈0B | − 〈1A|〈1B |√
2

)
(5.15)

= |0A〉|0B〉〈0A|〈0B | − |0A〉|0B〉〈1A|〈1B | − |1A〉|1B〉〈0A|〈0B | + |1A〉|1B〉〈1A|〈1B |
2

Because idea behind the partial trace is to obtain the density operator for one of
the composite systems alone, we want a mathematical tool that describes quantities
that are observable in that composite system. Basically with ρ as we have written it
here, we have a description of the complete system. Now, if Alice and Bob fly off
in opposite directions, neither one of them alone has access to the complete system.
We need a tool that will tell us what Alice alone sees and what Bob alone sees. To
implement the partial trace, we compute the trace by summing over the basis states
of one party alone. Let’s say for the sake of example that we’re in Bob’s shoes.
Then we need to trace over Alice’s basis states. We have

ρB = T rA(ρ) = T rA(|β10〉〈β10|) = 〈0A|(|β10〉〈β10|)|0A〉 + 〈1A|(|β10〉〈β10|)|1A〉

Using our expression for ρ, we have

〈0A|(|β10〉〈β10|)|0A〉
= 〈0A|

(
|0A〉|0B 〉〈0A|〈0B |−|0A〉|0B 〉〈1A|〈1B |−|1A〉|1B 〉〈0A|〈0B |+|1A〉|1B 〉〈1A|〈1B |

2

)
|0A〉

= 1

2

⎛
⎜⎝

〈0A|0A〉|0B 〉〈0B |〈0A|0A〉 − 〈0A|0A〉|0B〉〈1B |〈0A|1A〉 − 〈0A|1A〉|1B 〉〈0B |〈0A|0A〉
+ 〈0A|1A〉|1B 〉〈1B |〈1A|0A〉

2

⎞
⎟⎠

= |0B〉〈0B |
2

and

〈1A|(|β10〉〈β10|)|1A〉
= 〈1A|

(
|0A〉|0B 〉〈0A|〈0B |−|0A〉|0B 〉〈1A|〈1B |−|1A〉|1B 〉〈0A|〈0B |+|1A〉|1B 〉〈1A|〈1B |

2

)
|1A〉

= 1

2

⎛
⎜⎝

〈1A|0A〉|0B 〉〈0B |〈0A|1A〉 − 〈1A|0A〉|0B〉〈1B |〈0A|1A〉 − 〈1A|1A〉|1B 〉〈0B |〈0A|1A〉
+ 〈1A|1A〉|1B〉〈1B |〈1A|1A〉

2

⎞
⎟⎠

= |1B〉〈1B |
2
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So the density operator for Bob is

ρB = T rA(ρ) = T rA(|β10〉〈β10|) = 〈0A|(|β10〉〈β10|)|0A〉 + 〈1A|(|β10〉〈β10|)|1A〉

= |0〉〈0| + |1〉〈1|
2

We dropped the subscripts because this is Bob’s state alone. The matrix represen-
tation with respect to Bob’s {|0〉,|1〉} basis is

ρB = 1

2

(
1 0
0 1

)

Notice that Tr(ρB)= 1/2+ 1/2= 1 (remember, the trace of a density matrix is always
1). Now let’s square it. This is easy because we just have the identity matrix:

ρB = 1

2

(
1 0
0 1

)
= I

2
,⇒ ρ2

B =
I 2

4
= 1

4

(
1 0
0 1

)

Then we have

T r(ρ2
B) = 1

4
+ 1

4
= 1

2
< 1

That is, Bob has a completely mixed state.

You Try It

Compute the density matrix for Alice by taking the partial trace with respect to
Bob’s basis. Then show that Alice has the same completely mixed state in her
possession.

What about the state of the joint system? The matrix representation of ρ as
given in (15) is

[ρ] =

⎛
⎜⎜⎝
〈00|ρ|00〉 〈00|ρ|01〉 〈00|ρ|10〉 〈00|ρ|11〉
〈01|ρ|00〉 〈01|ρ|01〉 〈01|ρ|10〉 〈01|ρ|11〉
〈10|ρ|00〉 〈10|ρ|01〉 〈10|ρ|10〉 〈10|ρ|11〉
〈11|ρ|00〉 〈11|ρ|01〉 〈11|ρ|10〉 〈11|ρ|11〉

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1

2
0 0

−1

2
0 0 0 0
0 0 0 0

−1

2
0 0

1

2

⎞
⎟⎟⎟⎟⎟⎟⎠
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It can be easily verified that

ρ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

2
0 0

−1

2
0 0 0 0
0 0 0 0

−1

2
0 0

1

2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1

2
0 0

−1

2
0 0 0 0
0 0 0 0

−1

2
0 0

1

2

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1

2
0 0

−1

2
0 0 0 0
0 0 0 0

−1

2
0 0

1

2

⎞
⎟⎟⎟⎟⎟⎟⎠

So we have Tr(ρ2)= 1. That is, the joint system described by the state |β10〉 is a
pure state, while Alice and Bob alone see completely mixed states. We will see
more of joint systems when we study entanglement in detail.

Example 5.11

Suppose that

|A〉 = |0〉 − i|1〉√
2

, |B〉 =
√

2

3
|0〉 + 1√

3
|1〉

(a) Write down the product state |A〉|B〉.
(b) Compute the density operator. Is this a pure state?

Solution

(a) The product state is

|A〉 ⊗ |B〉 =
( |0〉 − i|1〉√

2

)
⊗
(√

2

3
|0〉 + 1√

3
|1〉
)

= 1√
3
|00〉 + 1√

6
|01〉 − i√

3
|10〉 − i√

6
|11〉

(b) The density operator is

ρ =
(

1√
3
|00〉 + 1√

6
|01〉 − i√

3
|10〉 − i√

6
|11〉
)(

1√
3
〈00| + 1√

6
〈01| + i√

3
〈10| + i√

6
〈11|
)

= 1

3
|00〉〈00| + 1√

18
|00〉〈01| + i

3
|00〉〈10| + i√

18
|00〉〈11| + 1√

18
|01〉〈00|

+ 1

6
|01〉〈01| + i√

18
|01〉〈10| + i

6
|01〉〈11|
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− i

3
|10〉〈00| − i√

18
|10〉〈01| + 1

3
|10〉〈10| + 1√

18
|10〉〈11| − i√

18
|11〉〈00|

− i

6
|11〉〈01| + 1√

18
|11〉〈10| + 1

6
|11〉〈11|

The matrix representation is

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3

1√
18

i

3

i√
18

1√
18

1

6

i√
18

i

6
−i

3

−i√
18

1

3

1√
18

−i√
18

−i

6

1√
18

1

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Notice that the trace is unity

T r(ρ) = 1

3
+ 1

6
+ 1

3
+ 1

6
= 1

Squaring, we have

ρ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3

1

3
√

2

i

3

i

3
√

2
1

3
√

2

1

6

i

3
√

2

i

6
−i

3

−i

3
√

2

1

3

1

3
√

2
−i

3
√

2

−i

6

1

3
√

2

1

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Of course, this matrix is just the original density matrix, so

T r(ρ2) = 1

3
+ 1

6
+ 1

3
+ 1

6
= 1

We see that the product state is a pure state.

THE DENSITY OPERATOR AND THE BLOCH VECTOR

In the second chapter we encountered the Bloch sphere, which provided a graphical
representation of two-level quantum states. We will now see how to relate the density
operator of a given system to the Bloch sphere.

The density operator of a system in a two-dimensional Hilbert space can be
decomposed in the following way. First we define

�σ = σxx̂ + σyŷ + σzẑ
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Then a density operator can be decomposed as

ρ = 1

2
(I + �S · �σ)

�S is called the Bloch vector . The magnitude of the Bloch vector satisfies | �S| ≤ 1,
with equality for pure states. Otherwise, if | �S| < 1, then the state is a mixed state.
The components of the Bloch vector are calculated by considering the expectation
values of the operators X , Y , and Z . That is,

�S = Sxx̂ + Syŷ + Szẑ = 〈X〉x̂ + 〈Y 〉ŷ + 〈Z〉ẑ

Using what we have learned about density operators, the components of the
Bloch vector are given by

Sx = T r(ρX), Sy = T r(ρY ), Sz = T r(ρZ)

The Bloch vector provides us with another way to determine whether a state is pure
or mixed, as the next example shows.

Example 5.12

Consider the following matrix:

ρ =

⎛
⎜⎜⎝

5

8

i

4
−i

4

3

8

⎞
⎟⎟⎠

(a) Is this a valid density operator?

(b) Does this represent a pure state or a mixed state?

Solution

(a) First it is easy to verify that the matrix is Hermitian. The transpose is

ρT =

⎛
⎜⎜⎝

5

8

−i

4
i

4

3

8

⎞
⎟⎟⎠

Taking the complex conjugate, we observe that ρ=ρdag, so the matrix is Hermitian. Next we
see that

T r(ρ) = 5

8
+ 3

8
= 1
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as required for density operators. Finally, we check the eigenvalues. A simple calculation shows
that the eigenvalues of the matrix are

λ1,2 = 4±√5

8

Both eigenvalues satisfy 0 < λ1,2 < 1, so the matrix represents a positive operator. We conclude
that this is a valid density matrix.

(b) We compute the components of the Bloch vector:

Sx = T r(Xρ) = T r

⎡
⎢⎢⎣
(

0 1
1 0

)⎛⎜⎜⎝
5

8

i

4
−i

4

3

8

⎞
⎟⎟⎠
⎤
⎥⎥⎦ = T r

⎛
⎜⎜⎝
−i

4

3

8
5

8

i

4

⎞
⎟⎟⎠ = 0

Sy = T r(Yρ) = T r

⎡
⎢⎢⎣
(

0 −i

i 0

)⎛⎜⎜⎝
5

8

i

4
−i

4

3

8

⎞
⎟⎟⎠
⎤
⎥⎥⎦ = T r

⎛
⎜⎜⎝
−1

4

−i3

8
i5

8

−1

4

⎞
⎟⎟⎠ = −1

2

Sz = T r(Zρ) = T r

⎡
⎢⎢⎣
(

1 0
0 −1

)⎛⎜⎜⎝
5

8

i

4
−i

4

3

8

⎞
⎟⎟⎠
⎤
⎥⎥⎦ = T r

⎛
⎜⎜⎝

5

8

i

4
i

4

−3

8

⎞
⎟⎟⎠ = 1

4

The magnitude of the Bloch vector is

| �S| =
√

S2
x + S2

y + S2
z

=
√(−1+

2

)2

+
(

1

4

)2

=
√

1

4
+ 1

16

=
√

5

16

=
√

5

4
≈ 0.56 < 1

Since | �S| < 1, we conclude that this density matrix represents a mixed state.

EXERCISES

5.1. Consider the following state vector:

|ψ〉 =
√

5
6 |0〉 + 1√

6
|1〉
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(A) Is the state normalized?
(B) What is the probability that the system is found to be in state |0〉 if Z is measured?
(C) Write down the density operator.
(D) Find the density matrix in the {|0〉, |1〉} basis, and show that Tr(ρ) = 1.

5.2. Consider the state

|ψ〉 =
(

cos θ

i sin θ

)

Is this state normalized? Is ρ= |ψ〉〈ψ | a density operator?

5.3. Let

|ψ〉 =
√

3

7
|0〉 + 2√

7
|1〉

(A) Write down the density matrix in the {|0〉, |1〉} basis.
(B) Determine whether or not this is a pure state.
(C) Write down the density matrix in the {| +〉, | − 〉} basis, show that Tr(ρ) = 1 still holds, and

determine if you still obtain the same result as in part (b).

5.4. Suppose that a system is in the state

|ψ〉 =
√

2

3
|0〉 + 1√

3
|1〉

(A) Compute Tr(ρ)and Tr(ρ2). Is this a mixed state?
(B) Find 〈X〉 for this state.

5.5. Suppose that

ρ =

⎛
⎜⎝

1

3

i

4
−i

4

2

3

⎞
⎟⎠

(A) Is this a valid density matrix? If not, why not?
(B) If this is a valid density matrix, does it represent a pure state or a mixed state?

5.6. For the density matrix given by

ρ = 1

5

(
3 1− i

1+ i 2

)

(A) Is this a mixed state?
(B) Find 〈X〉, 〈Y〉, and 〈Z〉 for this state.

5.7. Consider an ensemble in which 25% of the systems are known to be prepared
in the state

|ψ〉 = 2√
5
|0〉 + 1√

5
|1〉
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and 75% of the systems are prepared in the state

|φ〉 = 1√
2
|0〉 + 1√

2
|1〉

(A) Find the density operators for each of these states, and show they are pure states. If mea-
surements are made on systems in each of these states, what are the probabilities they are
found to be in states |0〉 and state |1〉, respectively?

(B) Determine the density operator for the ensemble.
(C) Show that Tr(ρ)= 1.
(D) A measurement of Z is made on a member drawn from the ensemble. What are the proba-

bilities it is found to be in state |0〉 and state |1〉, respectively?

5.8. Suppose that we have an ensemble with 60% of the states prepared as

|a〉 =
√

2
5 |+〉 −

√
3
5 |−〉

and 40% of the states are prepared as

|b〉 =
√

5

8
|+〉 +

√
3

8
|−〉

A member is drawn from the ensemble. What is the probability that measurement
finds it in the |0〉 state?

5.9. Suppose that Alice and Bob share the entangled state

|ψ〉 = |00〉 + |11〉√
2

(A) Write down the density operator for this state.
(B) Compute the density matrix. Verify that Tr(ρ)= 1, and determine if this is a pure state.
(C) Find the density matrix that represents the reduced density operator as seen by Alice.
(D) Show that the reduced density operator as seen by Alice is a completely mixed state.

5.10. Consider the following matrix:

ρ =

⎛
⎜⎝

2

5

−i

8
i

8

3

5

⎞
⎟⎠

(A) Show that this matrix is Hermitian.
(B) Verify that the eigenvalues are λ1,2 = 20±√41/40.
(C) Does this matrix represent a valid density matrix?
(D) Show that the probability of finding the system in the |0〉 state is 0.66.
(E) Compute the components of the Bloch vector, and show that this is a mixed state.
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QUANTUM MEASUREMENT
THEORY

When it comes to the measurement of physical observables, quantum mechanics can
tell us what measurement results are possible and what the probability is of obtaining
each measurement result. It is also important to focus on what the state of the system
is after a measurement is made. While measurement generally has no effect on a
system in classical mechanics (i.e., macroscopic systems in general), measurement
has a profound impact on a quantum mechanical system—altering its state in an
irreversible way. Much of the material in this chapter is a review of concepts
already introduced. Nevertheless, if this is your first exposure to quantum theory, it
is important that you master these topics. Measurement plays a fundamental role in
quantum computation because, at some point, we have to be able to get information
out of the computational system. In this chapter we will learn the basics about
different measurement models used in quantum theory.

DISTINGUISHING QUANTUM STATES AND MEASUREMENT

Measurement plays a central role in quantum mechanics. An act of measurement dis-
turbs a quantum system in a fundamental way. Consider once again a general qubit

|ψ〉 = α|0〉 + β|1〉 (6.1)

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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When a measurement is made, the qubit will be forced into the state |ψ〉 �→ |0〉
or |ψ〉 �→ |1〉. After measurement the original state (6.1) is lost. It isn’t possible to
make a measurement and determine what α and β are.

The measurement of a quantum system involves some type of interaction or
coupling of that system with a measuring device. That device can be thought of as
part of the larger environment which the quantum system is a part of. Frequently
the measuring apparatus or larger environment is known as the ancilla. A system
coupled to an environment is known as an open system.

In Chapters 3 and 5 we discussed the time evolution of a quantum system. The
systems considered in that case were closed quantum systems—that is, systems that
were isolated from the larger environment. The time evolution of a closed quantum
system can be is governed by the Schrödinger equation (3.90), and we say that
closed quantum systems evolve over time via unitary evolution, (3.91) and (3.92).

Let’s summarize the axioms of quantum mechanics briefly here, focusing on
what we need to begin a discussion of measurement. First we know that a quantum
system is described by a vector (the “state vector”) in a Hilbert space. The state of
the system at time t is denoted by |ψ(t)〉.

The dynamical behavior of a quantum system is determined by the Hamiltonian
operator H, which describes the total energy of the system. The time evolution of
an isolated or closed system is described by the Schrödinger equation

i�
∂

∂t
|ψ〉 = Hψ (6.2)

The actual form of the Hamiltonian operator depends on the specific nature of
the system being studied. However, the general solution of (6.2) gives us the state
of the system at time t. If we let the state of the system at the initial time t = 0 be
|ψ(0)〉, then the solution of (6.2) tells us how quantum states evolve with time:

|ψ(t)〉 = e−iH t/�|ψ(0)〉 (6.3)

Looking at (6.3) and recalling that the Hamiltonian is Hermitian, we see that
e−iH t/� is a unitary operator. This operator is called unitary evolution operator :

U = e−iH t/� (6.4)

In the last chapter we described the evolution of a quantum system in terms of
density operators. If the system is initially described by some density operator ρ0,
then the state of the system at time t will be

ρt = Uρ0U
† (6.5)

The dynamics of a quantum system is trace-preserving. This means that if the
system is initially described by some density operator ρ0 with Tr(ρ0)= 1, then after
the system has evolved to a final state described by ρ t, then Tr(ρ t)= 1.
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While time evolution is trace-preserving, measurement is described by trace-
decreasing quantum operations. A quantum operation involving measurement, des-
cribed by a measurement operator that we will denote by M m, transforms a density
operator ρ according to ρ ′ = MmρMm

†. In this case, Tr(ρ ′)≤ 1.
We begin our detailed discussion of measurement by considering projective or

Von Neumann measurements.

PROJECTIVE MEASUREMENTS

The first measurement model we will explore involves projective measurements.
We begin with this type of measurement because it’s the easiest to understand, it’s
how introductory quantum mechanics is usually taught, and historically it’s the old-
est type of measurement model. Projective measurements are also known as Von
Neumann measurements, after the mathematician who first described this type of
measurement. We have already introduced some basic notions of projective mea-
surements in previous chapters, so some of this material will be review. It plays
a fundamental role in quantum information theory, however, and a review won’t
hurt.

The idea of making a projective measurement is based on the following notion:
Given a set of mutually exclusive possible states, what state is the system is in?
For example, an atom could have two mutually exclusive states—a lower energy
“ground state” denoted by |g〉 and an “excited state” denoted by |e〉. We can use a
projective measurement to determine if the atom is in the state |g〉 or in the state |e〉.
As another example, we may be interested in the position of a particle. Is it located at
position x1 or at position x2? For a qubit, we could ask: Is the qubit |0〉, or is it |1〉?

Such mutually exclusive possibilities are described by projection operators in
quantum measurement theory. A projection operator P is Hermitian

P = P † (6.6)

and equal to its own square
P 2 = P (6.7)

We say that two projection operators P1 and P2 are orthogonal if their product is
zero. That is, for every state |ψ〉, P1 and P2 are orthogonal if

P1P2|ψ〉 = 0 (6.8)

A set of mutually exclusive measurement results corresponds to a set of orthog-
onal projection operators that act on the state space of the system. A complete set
of orthogonal projection operators is one for which

∑
i

Pi = I (6.9)
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Every complete set of orthogonal projectors specifies a measurement that can
be realized. If a set of orthogonal projection operators is complete, (6.9) implies that
at least one of the possible measurement results must be true. This is also another
expression of the fact that probabilities must sum to one. The number of projection
operators is determined by the dimension of the Hilbert space that describes the
system. If the dimension of the Hilbert space is d and there are m projection
operators, it must be true that

m ≤ d (6.10)

For example, if we are talking about a qubit where |ψ〉=α|0〉+β|1〉, the dimen-
sion of the space is 2, and the projection operators corresponding to the mutually
exclusive measurement results |0〉 and |1〉 are

P0 = |0〉〈0|, P1 = |1〉〈1| (6.11)

The projection operators corresponding to the ground and excited states of an atom
would be written as

Pg = |g〉〈g|, Pe = |e〉〈e| (6.12)

If two projection operators commute, then their product P1P2 is also a projec-
tion operator. However, the sum of two or more projection operators is, in general,
not a projector. The necessary and sufficient condition needed for the sum of a set of
projection operators to be a projection operator is that they be mutually orthogonal.
If we have a set of projection operators {P 1, P2, P3, . . .}, we can indicate that they
are mutually orthogonal by writing

PiPj = δijPi (6.13)

Now let the dimension of the system be n, and consider a set of mutually orthog-
onal projection operators {P1, P2, P3, . . . , Pn}. Let the system be prepared in a
state |ψ〉. The probability of finding the ith outcome when a measurement is made is

Pr(i) = |Pi |ψ〉|2 = (Pi |ψ〉)†(Pi |ψ〉) = 〈ψ |P 2
i |ψ〉 = 〈ψ |Pi |ψ〉 (6.14)

Next consider some observable set of projection operators, which we denote by
A, and let the eigenvectors of A be denoted by |ui〉 each with eigenvalue ai. The
spectral decomposition of A allows us to write the operator as

A =
n∑

i=1

ai |ui〉〈ui | =
n∑

i=1

aiPi (6.15)

where the projection operator corresponding to measurement outcome ai is given by
Pi= |ui〉〈ui|. We can expand the state of the system |ψ〉 in terms of the eigenvectors
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of A as

|ψ〉 =
n∑

i=1

(〈ui |ψ〉)|ui〉 =
n∑

i=1

ci |ui〉 (6.16)

Here ci=〈ui|ψ〉 is the probability amplitude for obtaining measurement result ai

when the system is in the state |ψ〉. The actual probability for the given measurement
result is found by computing the modulus squared of this quantity, that is,

Pr(i) = |〈ui |ψ〉|2 (6.17)

(assuming the state is normalized, if not then we need to divide by 〈ψ |ψ〉). Result
(6.17) is often called the Born rule. If the eigenvalue is degenerate, then the proba-
bility is found by summing over all eigenvectors that correspond to that eigenvalue

Pr(i) =
∑

j

|〈uj |ψ〉|2 (6.18)

Looking at (6.14) and recalling that the trace turns outer products into inner products
(i.e., Tr(A|ψ〉〈φ|)=〈φ|A|ψ〉), notice that the probability of obtaining measurement
result ai can be written as

Pr(i) = 〈ψ |Pi |ψ〉 = Tr(Pi |ψ〉〈ψ |) (6.19)

Now consider the state of the system after measurement. When discussing pro-
jective measurements, one frequently hears about the mysterious collapse of the wave
function. What this means is that while the state of the system prior to measurement
could be a superposition of basis states as written in (6.16), after measurement the
system collapses to the basis state that corresponds to the measurement result that
was obtained. Formally, we write the state of the system after measurement |ψ ′〉 as

|ψ ′〉 = Pi |ψ〉√〈ψ |Pi |ψ〉
(6.20)

The presence of the factor 〈ψ |P i|ψ〉 in the denominator is to ensure that |ψ ′〉 is
normalized. The expectation value or average of an observable A with respect to a
state |ψ〉 is given by

〈A〉 =
∑

i

ai〈ψ |Pi |ψ〉 (6.21)

Example 6.1

A system is in the state

|ψ〉 = 2√
19
|u1〉 + 2√

19
|u2〉 + 1√

19
|u3〉 + 2√

19
|u4〉 +

√
6

19
|u5〉
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where {|u1〉, |u2〉, |u3〉, |u4〉, |u5〉} are a complete and orthonormal set of vectors. Each |ui〉
is an eigenstate of the system’s Hamiltonian corresponding to the possible measurement result
H |un〉= nε|un〉, where n = 1, 2, 3, 4, 5.

(a) Describe the set of projection operators corresponding to the possible measurement
results.

(b) Determine the probability of obtaining each measurement result. What is the state of the
system after measurement if we measure the energy to be 3ε?

(c) What is the average energy of the system?

Solution

(a) The possible measurement results are ε, 2ε, 3ε, 4ε, and 5ε. These measurement results
correspond to the basis states |u1〉, |u2〉, |u3〉, |u4〉, and |u5〉, respectively. Hence the
projection operators corresponding to each measurement result are

P1 = |u1〉〈u1|
P2 = |u2〉〈u2|
P3 = |u3〉〈u3|
P4 = |u4〉〈u4|
P5 = |u5〉〈u5|

Since the |ui〉’s are a set of orthnormal basis vectors, the completeness relation is satisfied
and

∑
i

Pi = I

(b) We can calculate the probability of obtaining each measurement result using (6.14) or
(6.17). Let’s apply (6.17) to calculate the probability of finding ε or 2ε. First we need
to check and see if the state is normalized. This is done by calculating

5∑
i=1

|ci |2

and seeing if the result is 1. We have

5∑
i=1

|ci |2 =
∣∣∣∣ 2√

19

∣∣∣∣
2

+
∣∣∣∣ 2√

19

∣∣∣∣
2

+
∣∣∣∣ 1√

19

∣∣∣∣
2

+
∣∣∣∣ 2√

19

∣∣∣∣
2

+
∣∣∣∣∣
√

6

19

∣∣∣∣∣
2

= 4

19
+ 4

19
+ 1

19
+ 4

19
+ 6

19

= 19

19
= 1
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The state is normalized, so we can proceed. Before doing so, recall that the fact that the
basis states are orthonormal means that

〈ui |uj 〉 = δij

So, in the first case, applying the Born rule we have

Pr(ε) = |〈u2|ψ〉|2 =
∣∣∣∣∣〈u1|

(
2√
19
|u1〉 + 2√

19
|u2〉 + 1√

19
|u3〉 + 2√

19
|u4〉 +

√
6

19
|u5〉
)∣∣∣∣∣

2

=
∣∣∣∣∣ 2√

19
〈u1|u1〉 + 2√

19
〈u1|u2〉 + 1√

19
〈u1|u3〉 + 2√

19
〈u1|u4〉 +

√
6

19
〈u1|u5〉

∣∣∣∣∣
2

=
∣∣∣∣∣ 2√

19
(1)+ 2√

19
(0)+ 1√

19
(0)+ 2√

19
(0)+

√
6

19
(0)

∣∣∣∣∣
2

=
∣∣∣∣ 2√

19

∣∣∣∣
2

= 4

19

The probability of obtaining the second measurement result is

Pr(ε) = |〈u2|ψ〉|2 =
∣∣∣∣∣〈u2|

(
2√
19
|u1〉 + 2√

19
|u2〉 + 1√

19
|u3〉 + 2√

19
|u4〉 +

√
6

19
|u5〉
)∣∣∣∣∣

2

=
∣∣∣∣ 2√

19
〈u2|u2〉

∣∣∣∣
2

=
∣∣∣∣ 2√

19

∣∣∣∣
2

= 4

19

To calculate the remaining probabilities, let’s use the projection operators and apply
(6.14). We find that

P3|ψ〉 = (|u3〉〈u3|)
(
|ψ〉 = 2√

19
|u1〉 + 2√

19
|u2〉 + 1√

19
|u3〉 + 2√

19
|u4〉 +

√
6

19
|u5〉
)

= |u3〉
(

1√
19
〈u3|u3〉

)
= 1√

19
|u3〉

Therefore

Pr(3ε) = 〈ψ|P3|ψ〉
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=
(

2√
19
〈u1| + 2√

19
〈u2| + 1√

19
〈u3| + 2√

19
〈u4| +

√
6

19
〈u5|
)(

1√
19
|u3〉
)

=
(

2√
19

)(
1√
19

)
〈u1|u3〉 +

(
2√
19

)(
1√
19

)
〈u2|u3〉 + 1

19
〈u3|u3〉

+
(

2√
19

)(
1√
19

)
〈u4|u3〉 +

(√
6

19

)(
1√
19

)
〈u5|u3〉

= 1

19

Similarly we find that

P4|ψ〉 = (|u4〉〈u4|)|ψ〉 = 2√
19
|u4〉

P5|ψ〉 = (|u5〉〈u5|)|ψ〉 =
√

6

19
|u4〉

So we write
Pr(4ε) = 〈ψ|P4|ψ〉 = 4

19

Pr(5ε) = 〈ψ|P5|ψ〉 = 6

19

If a measurement is made and we find the energy to be 3ε, we apply (6.20). The state
of the system after measurement is

|ψ ′〉 = P3|ψ〉√〈ψ|P3|ψ〉
= 1/

√
19[|μ3〉√
1/19

= |μ3〉

(c) The average energy of the system is found using (6.21). We find that

〈H 〉 =
5∑

i=1

Ei〈ψ|Pi |ψ〉 = ε〈ψ|P1|ψ〉 + 2ε〈ψ|P2|ψ〉 + 3ε〈ψ|P3|ψ〉

+ 4ε〈ψ|P4|ψ〉 + 5ε〈ψ|P5|ψ〉

= ε
4

19
+ 2ε

4

19
+ 3ε

1

19
+ 4ε

4

19
+ 5ε

6

19

= 61

19
ε

Example 6.2

A qubit is in the state

|ψ〉 =
√

3

2
|0〉 − 1

2
|1〉
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A measurement with respect to Y is made. Given that the eigenvalues of the Y matrix are
±1, determine the probability that the measurement result is +1 and the probability that the
measurement result is −1.

Solution

First we verify that the state is normalized

〈ψ|ψ〉 =
(√

3

2
〈0| − 1

2
〈1|
)(√

3

2
|0〉 − 1

2
|1〉
)

= 3

4
〈0|0〉 −

√
3

4
〈1|0〉 −

√
3

4
〈0|1〉 + 1

4
〈1|1〉

= 3

4
+ 1

4
= 1

Since 〈ψ|ψ〉 = 1 the state is normalized. Recall that Y =
(

0 i

−i 0

)
. You need to show that the

eigenvectors of the Y matrix are

|u1〉 = 1√
2

(
1
i

)
, |u2〉 = 1√

2

(
1

−i

)

corresponding to the eigenvalues ±1, respectively. The dual vectors in each case, found by
computing the transpose of each vector can taking the complex conjugate of each element, are

〈u1| = (|u1〉)† = 1√
2
(1 −i), 〈u2| = (|u2〉)† = 1√

2
(1 i)

The projection operators corresponding to each possible measurement result are

P+1 = |u1〉〈u1| = 1

2

(
1
i

)(
1 −i

) = 1

2

(
1 −i

i 1

)

P−1 = |u2〉〈u2| = 1

2

(
1

−i

) (
1 i

) = 1

2

(
1 i

−i 1

)

Writing the state |ψ〉 as a column vector, we have

|ψ〉 =
√

3

2
|0〉 − 1

2
|1〉 =

√
3

2

(
1
0

)
− 1

2

(
0
1

)
= 1

2

(√
3

−1

)

Hence

P+1|ψ〉 = 1

2

(
1 −i

i 1

)
1

2

(√
3

−1

)
= 1

4

(
1 −i

i 1

)(√
3

−1

)
= 1

4

( √
3+ i

−1+ i
√

3

)

P−1|ψ〉 = 1

2

(
1 i

−i 1

)
1

2

(√
3

−1

)
= 1

4

(
1 i

−i 1

)(√
3

−1

)
= 1

4

( √
3− i

−1− i
√

3

)
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Now, if a measurement is made of the Y observable, the probability of finding +1 is

Pr(+1) = 〈ψ|P+1|ψ〉 = 1

2

(√
3 −1

) 1

4

( √
3+ i

−1+ i
√

3

)

= 1

8
(3+ i

√
3+ 1− i

√
3) = 1

8
(3+ 1) = 1

2

Similarly find

Pr(−1) = 〈ψ|P−1|ψ〉 = 1

2
(
√

3 −1)
1

4

( √
3− i

−1− i
√

3

)

= 1

8
(3− i

√
3+ 1+ i

√
3) = 1

8
(3+ 1) = 1

2

You Try It

Show that the eigenvectors of Y =
(

0 i

−i 0

)
are

|u1〉 = 1√
2

(
1
i

)
, |u2〉 = 1√

2

(
1

−i

)

Example 6.3

A system is in the state

|ψ〉 = 1√
6
|0〉 +

√
5

6
|1〉

A measurement is made with respect to the observable X. What is the expectation or average
value?

Solution

The eigenvectors of X =
(

0 1
1 0

)
are

|+x〉 = |0〉 + |1〉√
2

, |−x〉 = |0〉 − |1〉√
2

(6.22)

The projection operator corresponding to a measurement of +1 is

P+ = |+x〉〈+x | =
( |0〉 + |1〉√

2

)( 〈0| + 〈1|√
2

)

= 1

2
(|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|)

(6.23)
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The projection operator corresponding to a measurement of −1 is

P− = |−x〉〈−x | =
( |0〉 − |1〉√

2

)( 〈0| − 〈1|√
2

)

= 1

2
(|0〉〈0| − |0〉〈1| − |1〉〈0| + |1〉〈1|)

(6.24)

The probability of finding each measurement result is

Pr(+1) = 〈ψ|P+|ψ〉

=
(

1√
6
〈0| +

√
5

6
〈1|
)(

1

2
(|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|)

)(
1√
6
|0〉 +

√
5

6
|1〉
)

=
(

1√
6
〈0| +

√
5

6
〈1|
)(

1+√5

2
√

6
|0〉 + 1+√5

2
√

6
|1〉
)

= 6+ 2
√

5

12

Pr(−1) = 〈ψ|P−|ψ〉

=
(

1√
6
〈0| +

√
5

6
〈1|
)(

1

2
(|0〉〈0| − |0〉〈1| − |1〉〈0| + |1〉〈1|)

)(
1√
6
|0〉 +

√
5

6
|1〉
)

=
(

1√
6
〈0| +

√
5

6
〈1|
)(

1−√5

2
√

6
|0〉 + −1+√5

2
√

6
|1〉
)

= 6− 2
√

5

12

Notice that the probabilities sum to 1:

〈ψ|P+|ψ〉 + 〈ψ|P−|ψ〉 = 6+ 2
√

5

12
+ 6− 2

√
5

12
= 1

The average value is

〈X〉 = (+1) Pr(+1)+ (−1) Pr(−1)

= 6+ 2
√

5

12
−
(

6− 2
√

5

12

)
=
√

5

3
≈ 0.75

For a system with a single qubit, we can write the orthogonal projection operators as

P± = I ± �n · �σ
2

(6.25)

Here �n is an axis on the Bloch sphere. Recall that the outer product representation of X = σ x =
|1〉〈0| + |0〉〈1| and suppose that we choose �n to be a unit vector in the x direction. Then

P± = I ± x̂ · �σ
2

= 1

2
(|0〉〈0| + |1〉〈1| ± |0〉〈1| ± |1〉〈0|)
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Comparison with (6.23) and (6.24) shows that these are the correct projection operators onto
the eignvectors of X, namely |±〉.

MEASUREMENTS ON COMPOSITE SYSTEMS

Composite systems were introduced in Chapter 4. Many applications in quantum
computation involve composite systems. In this section we will go over some basic
measurement operations on composite systems. The utility of some of the relations
stated in the previous section will become clear when dealing with the example of
composite systems provided below.

Example 6.4

Describe the action of the operators P 0 ⊗ I and I ⊗P1 on the state

|ψ〉 = |01〉 − |10〉√
2

.

Solution

The first operator, P0 ⊗ I, tells us to apply the projection operator, P 0 = |0〉〈0|, to the first qubit
and to leave the second qubit alone. The result is

P0 ⊗ I |ψ〉 = 1√
2

[(|0〉〈0|0〉)⊗ |1〉 − (|0〉〈0|1〉 ⊗ |0〉)] = |01〉√
2

Interestingly, applying a projective measurement to the first qubit causes the second qubit to
assume a definite state. As we will see in the next chapter, this is a property of entangled
systems. Apparently it doesn’t matter if the qubits are spatially separated for a collapse of the
system to occur.

To find the properly normalized state of the system after measurement we use (6.20). We
have

〈ψ|P0 ⊗ I |ψ〉 =
( 〈01| − 〈10|√

2

) |01〉√
2
= 〈0|0〉〈1|1〉 − 〈1|0〉〈0|1〉

2
= 1

2

The state after measurement is

|ψ ′〉 = P0 ⊗ I |ψ〉√〈ψ|P0 ⊗ I |ψ〉 =
|01〉/√2

(1/
√

2)
= |01〉

As can be seen, while applying (6.20) in the single qubit case can seem like overkill, in this
case this allows us to quickly write down the properly normalized state after measurement.
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The second operator, I ⊗P1, tells us to leave the first qubit alone and to apply the pro-
jection operator P 1 = |1〉〈1| to the second qubit. This gives

I ⊗ P1|ψ〉 = 1√
2

[|0〉 ⊗ (|1〉〈1|1〉)− |1〉 ⊗ (|1〉〈1|0〉)] = |01〉√
2

We have therefore the same state, but this time doing the projective measurement represented
by P1 = |1〉〈1| the second qubit has forced the first qubit into the state |0〉. Let’s redo the
calculation using matrices. The operator is

I ⊗ P1 =
(

1 · P1 0 · P1

0 · P1 1 · P1

)
=

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠

Then we have

|01〉 = |0〉 ⊗ |1〉 =
(

1
0

)
⊗
(

0
1

)
=

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠

|10〉 = |1〉 ⊗ |0〉 =
(

0
1

)
⊗
(

1
0

)
=

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠

So the state of the system prior to measurement is

|ψ〉 = |01〉 − |10〉√
2

= 1√
2

⎛
⎜⎜⎝

0
1

−1
0

⎞
⎟⎟⎠

The action of the operator I ⊗P 1 is then computed as follows:

I ⊗ P1|ψ〉 = 1√
2

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0
1
−1
0

⎞
⎟⎟⎠ = 1√

2

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ = 1√

2
|01〉

Example 6.5

A system is in the state

|ψ〉 = 1√
8
|00〉 +

√
3

8
|01〉 + 1

2
|10〉 + 1

2
|11〉
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(a) What is the probability that measurement finds the system in the state |φ〉 = |01〉?
(b) What is the probability that measurement finds the first qubit in the state |0〉? What is

the state of the system after measurement?

Solution

(a) Given that the system is in the state |ψ〉, the probability of finding it in the state
|φ〉= |01〉 is calculated using the Born rule, which is Pr= |〈φ|ψ〉|2. Since 〈0|1〉=
〈1|0〉= 0, we have

〈φ|ψ〉 = 〈01|
(

1√
8
|00〉 +

√
3

8
|01〉 + 1

2
|10〉 + 1

2
|11〉
)

= 1√
8
〈0|0〉〈1|0〉 +

√
3

8
〈0|0〉〈1|1〉 + 1

2
〈0|1〉〈1|0〉 + 1

2
〈0|1〉〈1|1〉

=
√

3

8

Therefore the probability is

Pr = |〈φ|ψ〉|2 = 3

8

(b) To find the probability that measurement finds the first qubit in the state |0〉, we can
apply P0 ⊗ I = |0〉〈0|⊗ I to the state. So the projection operator P 0 is applied to the first
qubit and the identity operator to the second qubit, leaving the second qubit unchanged.
This obtains

P0 ⊗ I |ψ〉 = (|0〉〈0| ⊗ I )

(
1√
8
|00〉 +

√
3

8
|01〉 + 1

2
|10〉 + 1

2
|11〉
)

= 1√
8
|0〉〈0|0〉 ⊗ |0〉 +

√
3

8
|0〉〈0|0〉 ⊗ |1〉 + 1

2
|0〉〈0|1〉 ⊗ |0〉 + 1

2
|0〉〈0|1〉 ⊗ |1〉

= 1√
8
|00〉 +

√
3

8
|01〉

The probability of obtaining this result is

Pr = 〈ψ|P0 ⊗ I |ψ〉

=
(

1√
8
〈00| +

√
3

8
〈01| + 1

2
〈10| + 1

2
〈11|
)(

1√
8
|00〉 +

√
3

8
|01〉
)

= 1

8
+ 3

8
= 1

2
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The state of the system after measurement using (6.20) is found to be

|ψ ′〉 =
1√
8
|00〉 +

√
3
8 |01〉

√〈ψ|P0 ⊗ I |ψ〉 =
√

2

(
1√
8
|00〉 +

√
3

8
|01〉
)

= 1

2
|00〉 +

√
3

2
|01〉

Example 6.6

A three-qubit system is in the state

|ψ〉 =
(√

2+ i√
20

)
|000〉 + 1√

2
|001〉 + 1√

10
|011〉 + i

2
|111〉

(a) Is the state normalized? What is the probability that the system is found in the state
|000〉 if all 3 qubits are measured?

(b) What is the probability that a measurement on the first qubit only gives 0? What is the
postmeasurement state of the system?

Solution

(a) To determine if the state is normalized, we compute the sum of the squares of the
coefficients:

∑
i

|ci |2 =
(√

2+ i√
20

)(√
2− i√
20

)
+
(

1√
2

)(
1√
2

)
+
(

1√
10

)(
1√
10

)

+
(

i

2

)(
− i

2

)

= 3

20
+ 1

2
+ 1

10
+ 1

4
= 20

20
= 1

So the state is normalized. The probability the system is found in state |000〉 if all three
qubits are measured is

Pr(000) =
(√

2+ i√
20

)(√
2− i√
20

)
= 3

20
= 0.15

(b) The probability that a measurement on the first qubit is zero can be found by acting
on the state with the operator P 0 ⊗ I ⊗ I and computing 〈ψ|P 0 ⊗ I ⊗ I |ψ〉. This will
project onto the |0〉 state for the first qubit while leaving the second and third qubits
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alone. We find that

P0 ⊗ I ⊗ I |ψ〉 =
(√

2+ i√
20

)
(|0〉〈0| ⊗ I ⊗ I )|000〉 + 1√

2
(|0〉〈0| ⊗ I ⊗ I )|001〉

+ 1√
10

(|0〉〈0| ⊗ I ⊗ I )|011〉 + i

2
(|0〉〈0| ⊗ I ⊗ I )|111〉

=
(√

2+ i√
20

)
|000〉 + 1√

2
|001〉 + 1√

10
|011〉

The last term vanishes, since 〈0|1〉= 0 So

i

2
(|0〉〈0| ⊗ I ⊗ I )|111〉 = i

2
(|0〉〈0|1〉)⊗ |1〉 ⊗ |1〉 = 0

Hence the probability that measurement on the first qubit finds 0 is

〈ψ|P0 ⊗ I ⊗ I |ψ〉 =
∣∣∣∣∣
√

2+ i√
20

∣∣∣∣∣
2

+
∣∣∣∣ 1√

2

∣∣∣∣
2

+
∣∣∣∣ 1√

10

∣∣∣∣
2

= 3

20
+ 1

2
+ 1

10
= 3

4

The postmeasurement state is

|ψ ′〉 = P0 ⊗ I ⊗ I |ψ〉√〈ψ|P0 ⊗ I ⊗ I |ψ〉 =
√

4

3

((√
2+ i√
20

)
|000〉 + 1√

2
|001〉 + 1√

10
|011〉

)

=
(√

2+ i√
15

)
|000〉 +

√
2

3
|001〉 +

√
2

15
|011〉

You Try It

Verify that the postmeasurement state in Example 6.6 is normalized.

Example 6.7

A system is in the GHZ state where

|ψ〉 = 1√
2
(|000〉 + |111〉)

Suppose that an observable A= σ x⊗ σ y⊗ σ z. If |±〉 = |0〉 ± |1〉/√2, what is the probability
that measurement finds the system in the state |+++〉 and in the state |−−−〉 when the system
is in the state A|ψ〉? What is the expectation value of A?
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Solution

Recall the action of the Pauli operators:

σx |0〉 = |1〉, σx |1〉 = |0〉
σy |0〉 = −i|1〉, σy |1〉 = i|0〉
σz|0〉 = |0〉, σz|1〉 = −|1〉

Write

A|ψ〉 = (σx ⊗ σy ⊗ σz)

(
1√
2
(|000〉 + |111〉)

)

= − i√
2
(|110〉 + |001〉)

Then rewrite this in the |±〉 = |0〉 ± |1〉/√2 basis. For the first term,

|110〉 =
( |+〉 − |−〉√

2

)
⊗
( |+〉 − |−〉√

2

)
⊗
( |+〉 + |−〉√

2

)

=
( |+〉 − |−〉√

2

)
⊗
( |++〉 + |+−〉 − |−+〉 − |−−〉

2

)

= 1

2
√

2
(|+++〉 + |++−〉 − |+−+〉 − |+−−〉 − |−++〉

− |−+−〉 + |−−+〉 + |−−−〉)

Similarly for the second term,

|001〉 =
( |+〉 + |−〉√

2

)
⊗
( |+〉 + |−〉√

2

)
⊗
( |+〉 − |−〉√

2

)

= 1

2
√

2
(|+++〉 − |++−〉 + |+−+〉 − |+−−〉 + |−++〉

− |−+−〉 + |−−+〉 − |−−−〉)

Therefore in the | ± 〉 basis the state is

A|ψ〉 = − i

2
(|+++〉 − |+−−〉 − |−+−〉 + |−−+〉)

The probability that the system is found in the |−−−〉 state is zero, while the probability
it is found in the |+++〉 state is

|〈+ + +|A|ψ〉|2 =
∣∣∣∣− i

2

∣∣∣∣
2

= 1

4
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In the | ± 〉 basis the initial state is

|ψ〉 = 1

2
√

2
(|+++〉 + |+−−〉 + |−+−〉 + |−−+〉)

The expectation value is

〈ψ|A|ψ〉 = 1

2
√

2
(〈+++| + 〈+−−| + 〈−+−| + 〈−−+|)

− i

2
(|+++〉 − |+−−〉 − |−+−〉 + |−−+〉)

= − i

4
√

2
(1− 1− 1+ 1) = 0

You Try It

Write the GHZ state in the | ± 〉 basis.

Example 6.8

A two qubit system is in the state

|φ〉 =
√

3

2
|00〉 + 1

2
|11〉

A Y gate is applied to the first qubit. After this is done, what are the possible measure-
ment results if both qubits are measured, and what are the respective probabilities of each
measurement result?

Solution

The action of the Y gate on the computational basis states is

Y |0〉 = i|1〉, Y |1〉 = −i|0〉

Hence

Y ⊗ I |φ〉 =
√

3

2
(Y ⊗ I )|00〉 + 1

2
(Y ⊗ I )|11〉 = i

√
3

2
|10〉 − i

2
|01〉

If both qubits are measured, the possible measurement results are 10 and 01. The probability
of finding 10 is ∣∣∣∣∣i

√
3

2

∣∣∣∣∣
2

=
(

i

√
3

2

)(
−i

√
3

2

)
= 3

4
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The probability of finding 01 is

∣∣∣∣ i2
∣∣∣∣
2

=
(

i

2

)(
− i

2

)
= 1

4

These probabilities sum to one, as they should.

GENERALIZED MEASUREMENTS

Measurements can be described in a more general way. Following common notation,
we denote a measurement operator by M m, where m is an index that denotes a possi-
ble measurement result. Given a state |ψ〉, the probability that we find measurement
result m is

Pr(m) = 〈ψ |M†
mMm|ψ〉 (6.26)

We can see how projection operators fit into this formalism by comparing (6.14)
and (6.26) and remembering that projection operators are Hermitian and equal to
their own square.

After a measurement the state of the system is

|ψ ′〉 = Mm|ψ〉√
〈ψ |M†

mMm|ψ〉
(6.27)

As we saw with projection operators, measurement operators satisfy a complete-
ness relation that follows from the fact that probabilities sum to one. For general
measurement operators we write this as∑

m

M†
mMm = I (6.28)

Now let’s look at measurements when a system is described by a density oper-
ator. If a quantum system is described by a density operator ρ, the probability of
finding measurement result m is

Pr(m) = T r(M†
mMmρ) (6.29)

If the measurement in question is described by a set of orthogonal projection oper-
ators Pi= |ui〉〈ui| corresponding to measurement result i then the probability of
finding that measurement result is

Pr(i) = T r(P
†
i Piρ) = T r(|ui〉〈ui |ρ) = 〈ui |ρ|ui〉 (6.30)

The state of a system described by a density operator after obtaining measure-
ment result m is given by

ρ ′ = MmρM†
m

T r(M
†
mMmρ)

(6.31)
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In the case where the measurements are described by a set of orthogonal projec-
tion operators and measurement result i is obtained, the state of the system after
measurement is

ρ ′ = |ui〉〈ui |iρ|ui〉〈ui |
〈ui |ρ|ui〉 (6.32)

Example 6.9

A quantum system has a density matrix given by

ρ = 5

6
|0〉〈0| + 1

6
|1〉〈1|

What is the probability that the system is in the state |0〉?

Solution

Of course, one can read off that the probability the system is in the state |0〉 is 5/6. But let’s
see how we can apply (6.30). It’s easy enough:

Pr(0) = T r(|0〉〈0|ρ) = 〈0|ρ|0〉

= 〈0|
(

5

6
|0〉〈0| + 1

6
|1〉〈1|

)
|0〉

= 5

6
〈0|0〉〈0|0〉 + 1

6
〈0|1〉〈1|0〉 = 5

6

Example 6.10

A system has the density operator

ρ = 1

3
|u1〉〈u1| − i

√
2

3
|u1〉〈u2| + i

√
2

3
|u2〉〈u1| + 2

3
|u2〉〈u2|

where the |uk〉 constitute an orthonormal basis. What is the probability that a measurement
finds the system in the state |u2〉?

Solution

The projection operator corresponding to this measurement result is

P2 = |u2〉〈u2|
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The probability is

Pr(|u2〉) = T r(|u2〉〈u2|ρ) = 〈u2|ρ|u2〉 = 2

3

POSITIVE OPERATOR-VALUED MEASURES

A type of measurement that is more general than the projective measurements we
have focused on so far is known as a positive operator-valued measure or POVM.
A POVM consists of a set of positive operators commonly denoted by Em. The
probability of obtaining measurement result m in this case is given by

Pr(m) = 〈ψ |Em|ψ〉 (6.33)

When the system is a mixed state described by a density operator ρ, the probability
of obtaining measurement result m is given by Tr(Emρ). In addition to being positive
operators, the set of E m satisfy ∑

m

Em = I (6.34)

The measurement operators in a POVM can be constructed from an arbitrary mea-
surement operator by taking

Em = M†
mMm (6.35)

It is possible to form a POVM to describe a projective measurement, but the
operators Em do not have to be projection operators. The POVM allows us to
construct a more general type of measurement operator to describe measurements
where projective measurements do not apply in the real world. For example, if a
system is in a state |ψ〉 =∑i ci |ui〉, a projective measurement |uk〉〈uk| collapses
the wavefunction to the state |uk〉. We are free to repeat another measurement
immediately on the system—and that measurement will find the system in the state
|uk〉 with certainty.

In the laboratory not all measurements are repeatable. The quintessential
example is the detection of a photon—after it has been detected, the photon is
destroyed. Hence repeated measurements on the system are not possible. A POVM
is applicable in this case because it allows us to describe measurements on the
system without regard to the postmeasurement state.

Example 6.11

A system is in the state

|ψ〉 = 2√
5
|0〉 + 1√

5
|1〉

Describe the probabilities of measuring 0 and 1 for this state in the POVM formalism.
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Solution

In the simple case of a single qubit, we actually have a POVM using the projection operators.
In this example we denote

E0 = |0〉〈0|, E1 = |1〉〈1|

Notice that
∑

m Em = E0 + E1 = |0〉〈0| + |1〉〈1| = I . The matrix representations of these oper-
ators in the computational basis are

E0 =
(

1 0
0 0

)
, E1 =

(
0 0
0 1

)

Each matrix has two eigenvalues, namely {1, 0} indicating that these operators are positive
semidefinite.

By (6.33), the respective probabilities are

Pr(0) = 〈ψ|E0|ψ〉 =
(

2√
5
〈0| + 1√

5
〈1|
)

(|0〉〈0|)
(

2√
5
|0〉 + 1√

5
|1〉
)

=
(

2√
5
〈0| + 1√

5
〈1|
)(

2√
5
|0〉〈0|0〉 + 1√

5
|1〉〈0|1〉

)

=
(

2√
5
〈0| + 1√

5
〈1|
)

2√
5
|0〉

= 4

5
〈0|0〉 + 2

5
〈1|0〉 = 4

5

Pr(1) = 〈ψ|E1|ψ〉 =
(

2√
5
〈0| + 1√

5
〈1|
)

(|1〉〈1|)
(

2√
5
|0〉 + 1√

5
|1〉
)

=
(

2√
5
〈0| + 1√

5
〈1|
)(

2√
5
|0〉〈1|0〉 + 1√

5
|1〉〈1|1〉

)

=
(

2√
5
〈0| + 1√

5
〈1|
)

1√
5
|1〉

= 2

5
〈0|1〉 + 1

5
〈1|1〉 = 1

5

POVM’s can be useful when projective measurements are not. For example, POVM’s provide
the ability to distinguish between nonorthogonal states.

Example 6.12

A system can be in one of two states |ψ〉 or |φ〉. The states are not orthogonal; in fact
|〈ψ|φ〉| = cos θ . Describe a POVM that can distinguish between the two states. Assume that
the states are normalized.
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Solution

Consider the POVM consisting of the following measurement operators:

E1 = I − |φ〉〈φ|
1+ cos θ

, E2 = I − |ψ〉〈ψ|
1+ cos θ

, E3 = I − E1 − E2

Each of these operators corresponds to a different measurement outcome. These operators
satisfy the completeness relation, since

∑
m Em = E1 + E2 + E3 = I . Now consider the first

measurement outcome associated with E 1. The probabilities associated with each state are
〈ψ|E1|ψ〉 and 〈φ|E1|φ〉. In the first case,

〈ψ|E1|ψ〉 = 〈ψ| I − |φ〉〈φ|
1+ cos θ

|ψ〉

= 〈ψψ〉 − 〈ψφ〉〈φψ〉
1+ cos θ

= 1− |〈ψφ〉|2
1+ cos θ

= 1− cos θ2

1+ cos θ
= (1− cos θ)(1+ cos θ)

1+ cos θ
= 1− cos θ

Meanwhile, in the second case,

〈φ|E1|φ〉 = 〈φ| I − |φ〉〈φ|
1+ cos θ

|φ〉

= 〈φφ〉 − 〈φφ〉〈φφ〉
1+ cos θ

= 1− 1

1+ cos θ
= 0

Hence the operator E 1 allows us to identify the state |ψ〉 with probability 1− cos θ . If the
system is in the state |φ〉, the probability is zero—this measurement never identifies the state
|φ〉. A similar exercise shows that the operator

E2 = 1− |ψ〉〈ψ|
1+ cos θ

never identifies the state |ψ〉, but it identifies the state |φ〉 with probability 1− cos θ . These
operators have provided a means of imperfectly distinguishing between two nonorthogonal
quantum states.

If the measurement outcome E 3 is obtained, no information about the state is available.

Example 6.13

A POVM can be used to obtain information about a state with a weak measurement. This is
a measurement that provides some information about the state while only mildly disturbing it,
without forcing a “collapse of the wave function.” Describe a POVM that will do this for a
single qubit.
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Solution

The system in this case is a single qubit

|ψ〉 = a|0〉 + b|1〉

where |a|2+ |b|2= 1. Suppose that we have a small positive parameter ε� 1 and two mea-
surement operators

A0 = A|0〉〈0| + √1− ε|1〉〈1|
A1 =

√
ε|1〉〈1|

We construct a POVM with the operators

E0 = A2
0 = |0〉〈0| + (1− ε)|1〉〈1|

E1 = A2
1 = ε|1〉〈1|

Notice that

E0 + E1 = |0〉〈0| + (1− ε)|1〉〈1| + ε|1〉〈1| = |0〉〈0| + |1〉〈1| = I

Hence the completeness relation is satisfied. The operators are positive semidefinite; for example,
the eigenvalues of E 0 are {1, 1− ε} while the eigenvalues of E 1 are {0, ε}. The probability of
obtaining measurement result E 0 is

〈ψ|E0|ψ〉 = (a∗〈0| + b∗〈1|)(a|0〉 + b(1− ε)|1〉) = |a|2 + |b|2(1− ε)

The postmeasurement state is

E0|ψ〉√〈ψ|E0|ψ〉
= a|0〉 + b(1− ε)|1〉√

|a|2 + |b|2(1− ε)
= a√

|a|2 + |b|2(1− ε)
|0〉 + b(1− ε)√

|a|2 + |b|2(1− ε)
|1〉

Therefore we see that a measurement of E 0 has left the state in a superposition. Although the
state has been disturbed from the initial state of the wave function, a “collapse” of the wave
function to |0〉 or |1〉 has not occurred.

The probability of obtaining measurement result E 1 is

〈ψ|E1|ψ〉 = (a∗〈0| + b∗〈1|)(b(ε)|1〉) = |b|2(ε)

Since ε� 1, the probability of obtaining this measurement result is very small. Moreover the
wave function has collapsed in this case—the postmeasurement state of the system is |1〉.

As we have seen, POVMs are a more general type of measurement that allow us to do
things in quantum mechanics that are not possible using ordinary projective measurements.
Three examples we have mentioned are correctly describing a system where we don’t need
or can’t know the postmeasurement state, the possibility of imperfectly distinguishing between
nonorthogonal states, and the possibility of making weak measurements on a system that give
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us some information about the state without causing the collapse of the wavefunction. In later
chapters we will see more applications of POVMs in quantum computation and information.

EXERCISES

6.1. Let P1 and P2 be two projection operators. Show that if their commutator [P1,
P2]= 0, then their product P1P2 is also a projection operator.

6.2. A system is in the state

|ψ〉 = 1

2
|u1〉 −

√
2

2
|u2〉 + 1

2
|u3〉

where the orthonormal basis states |u1〉, |u2〉, |u3〉 correspond to possible measure-
ment results �ω, 2�ω, and3�ω, respectively. Write down the projection operators
corresponding to each possible measurement result, and determine the probability of
finding the system in each of the states |u1〉, |u2〉, |u3〉. What is the average energy
of the system?

6.3. A qubit is in the state |ψ〉= |1〉. A measurement of X is made. What are the
matrix representations of the projection operators corresponding to measurement
results ±1? What is the probability of finding measurement results ±1?

6.4. A system is in the state

|ψ〉 = 1√
3
|00〉 + 1√

6
|01〉 + 1√

2
|11〉

(A) What is the probability that measurement finds the system in the state |φ〉= |01〉?
(B) What is the probability that measurement finds the second qubit in the state |1〉, and what

is the state of the system after measurement?

6.5. A system is in the state

|ψ〉 = 1√
6
|0〉 +

√
5

6
|1〉

A measurement is made with respect to the observable Y. What is the expectation or
average value?

6.6. A three-qubit system is in the state

|ψ〉 =
(√

2+ i√
20

)
|000〉 + 1√

2
|001〉 + 1√

10
|011〉 + i

2
|111〉
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(A) What is the probability that the system is found in the state |011〉 if all three qubits are
measured?

(B) What is the probability that a measurement on the second qubit only gives 1? What is the
postmeasurement state of the system? Show that the postmeasurement state is normalized.

6.7. A two-qubit system is in the state

|φ〉 = 1√
6
|01〉 +

√
5

6
|10〉

Is the state normalized? An X gate is applied to the second qubit. After this is done,
what are the possible measurement results if both qubits are measured, and what are
the respective probabilities of each measurement result?

6.8. Suppose |ψ〉= |1〉 and |φ〉 = |0〉 + |1〉/√2. Write down a POVM that allows
for imperfect distinguishability between the two states.

6.9. Verify that the POVM used in Problem 6.8 satisfies the completeness relation.

6.10. Why don’t the operators

A0 = A|0〉〈0| + √1− ε|1〉〈1|
A1 =

√
ε|1〉〈1|

used in Example 6.13 constitute a POVM?
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ENTANGLEMENT

One of the most unusual and fascinating aspects of quantum mechanics is the fact
that particles or systems can become entangled . For the simplest two quantum
systems case we denote the systems A and B. If these systems are entangled, this
means that the values of certain properties of system A are correlated with the
values that those properties will assume for system B. The properties can become
correlated even when the two systems are spatially separated—leading to the phrase
spooky action at a distance.

The roots of this idea go back a long way—all the way back to the year 1935
when Einstein and two colleages, Podolsky and Rosen (now commonly known as
EPR), published a paper titled “Can the quantum-mechanical description of reality be
considered complete?” This paper—written by the quantum skeptic Einstein—was
actually designed to show that quantum theory is incomplete and to make absurd
predictions.

A core value held by EPR and other “realists” was that the properties of physical
systems have definite values (an objective reality) whether you observe the system
or not. Another way to say this is that a given property of a system has a sharply
defined value before a measurement is made.

Quantum mechanics, however, tells a different story. Suppose that we have a
qubit in the state |ψ〉= |0〉. Quantum mechanics tells us that prior to measurement

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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a property of the system does not have a definite or sharply defined value. For our
qubit, say that we want to measure X . We know that the state is in a superposition
of the eigenstates of the X operator as

|ψ〉 = |0〉 = |+〉 + |−〉√
2

Hence measurement of X will find the system in | + 〉 50% of the time and | − 〉
50% of the time. After measurement the system does assume a definite state—either
| + 〉or | − 〉—but before measurement this is not the case. This is in direct contra-
diction to the values held by EPR.

EPR thought predictions such as this one for single systems by quantum mechan-
ics were absurd enough. But things only get worse when you consider composite
systems. By making a very clever observation about what quantum theory tells us,
EPR demonstrated that quantum mechanics predicts that if two particles interact
and then separate, measurement of one of the particles will determine the values
that the properties of the other particle must assume. This is the case even though
the particles are spatially separated and noninteracting at the time of measurement.

In their brilliant 1935 paper, EPR focused on measurements of position and
momentum. The first thing to note about this emphasis is that position x and
momentum p do not commute:

[x, p] = i� (7.1)

As (7.1) tells us, x and p do not have simultaneous eigenstates. A consequence of
this fact is that if a definite value is assumed for one of the variables—momentum,
say—then the other variable (position in our example) cannot be in a definite
eigenstate.

In discussions of this type it is common to denote the two quantum systems
as being in the possession of Alice and Bob. We will denote the position and
momentum for the particle in possession of Alice by xA and pA, respectively, and
we will denote the position and momentum of the particle in Bob’s possession by
xB and pB. The basic scenario proposed by EPR is the following:

• The particles interact, then the particles spatially separate.
• There are no more interactions between the particles. We can even assume

that they are so far away from each other that no signal—not even a light
ray—can connect them over the time span when measurements are made.

The EPR system has definite values for the following properties:

• The relative position of the two particles, which is given by xA− xB.
• The total momentum of the particles, which is pA+ pB.

However, prior to measurement, the values of each parameter, x A, xB or pA, pB,
are not determined according to quantum mechanics. If we allow Alice to make
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measurements, she can choose to measure whatever she wants. If she measures
momentum, she obtains a definite value pA. Then, since pA+ pB, Alice knows the
exact value of pB even though she has not made any measurements or disturbed
Bob’s particle in any way.

Alice could instead choose to measure the position of her particle. When she
measures position and finds a definite value of xA, Alice then knows the value of
xB. Again, this is true even though Alice has not disturbed, looked at, or measured
Bob’s particle in any way. In principle, this is true even if Bob is on the other side
of the galaxy.

EPR believed that because Alice can determine or know the values of position
and momentum of Bob’s particle, these properties have definite values regardless
of whether or not we measure them (position and momentum are “elements of
reality”—i.e., objective properties). In contrast, quantum theory tells us that the
wavefunctions of each particle exist in superpositions and each property does not
have a definite value until we measure it. Since quantum theory cannot tell one
the definite values of each property prior to measurement, EPR said the theory was
incomplete. There could be some other physical variables we don’t yet know about
that would allow us to describe the definite properties of each particle using the
theory. Because we don’t know what those variables are, they are called hidden
variables .

We can summarize the conventional or classical view as local realism and the
theories that are based on this philosophy as local realistic theories . Let’s formally
define each term before moving on:

• Locality. Measurement of particle A in no way disturbs the state of spatially
separated particle B.

• Realism. The values of measurable properties of each particle are objectively
real. They have definite values prior to measurement and regardless of whether
or not they are observed.

For technical reasons the scenario depicted by EPR is difficult to test experi-
mentally. A simpler version of this thought experiment was put forward by David
Bohm in 1952 and involved particles with correlated spins. This thought experiment
considered a spin-0 particle that decays into two spin-1/2 particles. The decay prod-
ucts have to travel in opposite directions to conserve momentum, and their total spin
has to remain zero in order to conserve angular momentum. A total spin-0 state,
which consists of a system of two spin-1/2 particles, can be described in terms of
the computational basis with the singlet state

|ψ〉 = |0〉|1〉 − |1〉|0〉√
2

(7.2)

We can make a measurement of Z on the first particle, while leaving the second
particle alone using the operator Z ⊗ I . From (7.2) it’s also clear that if we measure
0 for the first particle, the state of the second particle must be |1〉. On the other hand,
if we measure 1 for the first particle, the state of the second particle must be |0〉.
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An interesting property of (7.2) is revealed if we rewrite this state in terms of
the eigenvectors of the X operator, the | ± 〉 states. Recall that

|0〉 = |+〉 + |−〉√
2

, |1〉 = |+〉 − |−〉√
2

(7.3)

The first term in (7.2) can be written as

|0〉|1〉 =
( |+〉 + |−〉√

2

)( |+〉 − |−〉√
2

)
= 1

2
(|++〉 + |−+〉 − |+−〉 − |−−〉)

and the second term as

|1〉|0〉 =
( |+〉 − |−〉√

2

)( |+〉 + |−〉√
2

)
= 1

2
(|++〉 − |−+〉 + |+−〉 − |−−〉)

Hence

|ψ〉 = |0〉|1〉 − |1〉|0〉√
2

= 1√
2

1

2
(|++〉 + |−+〉 − |+−〉 − |−−〉 − |++〉 + |−+〉 − |+−〉 + |−−〉)

= 1√
2

1

2
(2|−+〉 − 2|+−〉)

= − (|+−〉 − |−+〉)√
2

Notice that if we look in the x direction—so we have the same state. If we measure
the X operator for the first particle and obtain the result+ , the second particle must
be in the state | − 〉, and vice versa. Finding a “− ” for the first particle means that
the second particle must be in the | + 〉state.

In this state there seem to be some strange correlations between the particles.
At first, if we only consider the z direction, the correlations probably do not seem
all that mysterious. We could assume that the particles had definite states prior
to measurement. But things start looking fishy when we find that the measurement
results are correlated in different directions. The fact that the states are also correlated
in the x direction indicates that the particles cannot be in definite states prior to
measurement and that the states are part of a larger composite system. Remember
the commutation relations satisfied by the Pauli operators:

[X,Y ] = 2iZ, [Y,Z] = 2iX, [Z,X] = 2iY (7.4)

The fact that [Z , X ]= 2iY �= 0 reminds us that the state of the second particle
cannot be an eigenstate of both the Z operator and the X operator. However, it is
possible to assume that the particles had definite spins for both the x and z directions
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prior to measurement and that measurement of one particle does not disturb the spin
of the distant, spatially separated particle (local realism) and reproduce the results of
quantum mechanics—assuming only that conservation of angular momentum hold.
If we only assume that conservation of angular momentum holds and say nothing
about quantum mechanics, then the measurement results with respect to the Pauli
operators Z , X will be found as listed in Table 7.1.

As Table 7.1 shows the results agree with quantum mechanics. To illuminate
the difference between quantum mechanics and local realistic theories, we are going
to have to consider a more complicated situation. We will do so in the next section
for measurements of spin along three nonorthogonal directions, and arrive at Bell’s
theorem.

When a system is entangled, this means that the individual component systems
are really linked together as a single entity. Any measurement that measures a part
of the system—in our case the first particle—is really a measurement on the entire
system. The wavefunction for the system then collapses, and both particles assume
definite states. In summary, if two systems are entangled, the description of each
system has to be made with reference to the state of the other system, even if the
component systems are spatially separated and noninteracting.

BELL’S THEOREM

In 1964 these ideas were taken much further by the brilliant theoretical physicist
John S. Bell. By considering spin measurements along three nonorthogonal direc-
tions, which are conventionally labeled a, b, and c, and derived an inequality that is
satisfied by local realistic theories but violated by quantum mechanics. This inequal-
ity is experimentally testable, and to date all experimental evidence has come down
in favor of quantum mechanics.

The following simple derivation of Bell’s inequality has been stated in many
quantum mechanics textbooks such as Sakuri (1985) and Townsend (2000). We
begin our thought experiment by imagining that an ensemble or large number of
systems have been prepared so that Alice and Bob can measure spin along the three
directions a, b, and c. With three directions to consider and 2 possible states (± )
along each direction, there will be 23= 8 different populations in total. Here we
consider the local realist position, based only on conservation of angular momen-
tum. We only make the simple assumption that if Alice measures+ along a given

TABLE 7.1 Conservation of momentum by particles Alice and Bob

Alice z Direction Alice x Direction Bob z Direction Bob x Direction

+1 +1 − 1 − 1
+1 − 1 − 1 +1
− 1 +1 +1 − 1
− 1 − 1 +1 +1
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TABLE 7.2 Measurements for particles Alice and Bob

Alice Bob

Population a b c a b c

N 1 + + + − − −
N 2 + + − − − +
N 3 + − + − + −
N 4 + − − − + +
N 5 − + + + − −
N 6 − − + + + −
N 7 − + − + − +
N 8 − − − + + +

direction, then Bob will measure− along that same direction, should he choose to
make that given measurement. The total number of particles is denoted by N , where
there are N i particles found in state i as described in Table 7.2.

N = N1 +N2 +N3 +N4 +N5 +N6 +N7 +N8

The direction along which Alice and Bob choose to measure is completely ran-
dom. But, when deriving Bell’s inequality, we assume that Alice and Bob measure
along different directions. Let’s consider some individual populations starting with
N 1. From the table we see that if Alice chooses to measure along the a direction,
she finds +1. Again, assuming that Bob measures along a different direction, he
will measure along b or along c. In this case no matter what, Bob obtains the result
−1. Look at population N 2, where Alice again measures along the a direction, again
giving+1. This time Bob obtains−1 as he measures along b, and he will obtain+1
as he measures along c. This gives you an idea of how the measurements work.

Now let’s see how many cases occur when Alice measures+ 1 along a and Bob
measures−1 along b. The table shows that this occurs in populations N 1 and N 2. If
Bob chooses to measure along c, then he obtains a−1 for populations N 1 and N 3.

In each population there are six possible measurement results if we require Alice
and Bob to measure along different axes. If we look at population N 4, where Alice
measures along a, she obtains+1. If Bob measures along b or c, he also obtains+1.
Now, if Alice instead measures along b, Bob can measure along a (in which case he
gets− 1) or along c (in which case he obtains+1). All the measurement possibilities
are listed in Table 7.3.

From the table we see that Alice and Bob get opposite measurement results two
out of six times or 1/3 of the time. It turns out that Alice and Bob will get opposite
measurement results at least 1/3 of the time. If all populations occur with equal
frequency then half of the measurements will be such that Alice and Bob obtain
opposite measurement results.

By using some basic math regarding real numbers, we can derive some inequal-
ities for the data in Table 7.2. We make no assumptions as to the size of each
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TABLE 7.3 All possible measurements for
particles Alice and Bob

Direction

Alice Bob Alice Bob

a b +1 +1
a c +1 +1
b a − 1 − 1
b c − 1 +1
c a − 1 − 1
c b − 1 +1

population in the ensemble, but it must be true that Ni ≥ 0 and N =∑8
i=1 Ni . Now

it’s a basic fact that if x , y , z are real numbers such that x ≥ 0, y ≥ 0, z ≥ 0, then
x + y ≤ x + y + z. So it must be true that

N3 +N4 ≤ (N3 +N4)+ (N2 +N7) = (N2 +N4)+ (N3 +N7) (7.5)

We can divide by N , the total number in the ensemble,

N3 +N4

N
≤ (N2 +N4)

N
+ (N3 +N7)

N
(7.6)

Referring back to Table 7.2, we see that N 3 and N 4 both have Alice measuring
+1 along a and Bob measuring+1 along b. Hence

N3 +N4

N
= Pr(+ a;+b) (7.7)

That is, this is the probability that Alice measures+1 along a and Bob measures
+1 along b. Now let’s look at N 2 and N 4. Again, we see that Alice measures+1
along a. This time Bob gets+1 along c in both cases. Hence

N2 +N4

N
= Pr(+a;+c) (7.8)

Finally, consider N 3 and N 7. Alice measures a+ 1 when measuring along c in both
cases, while Bob obtains a+ 1 when measuring along b in both cases. So

N3 +N7

N
= Pr(+c;+b) (7.9)

Putting the results (7.7), (7.8), and (7.9) into (7.6) gives us Bell’s inequality

Pr(+a;+b) ≤ Pr(+a;+c)+ Pr(+c; +b) (7.10)
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Local realistic theories satisfy or obey Bell’s inequality. As we’ll see in a moment,
quantum mechanics does not .

To see what quantum mechanics says about the situation, we need to consider
a qubit oriented in an arbitrary direction. Consider a unit vector �n = sin θ cos φx̂ +
sin θ sin φŷ + cos θẑ. The eigenvectors of �σ · �n are

|+n〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉

|−n〉 = cos
θ

2
|0〉 − eiφ sin

θ

2
|1〉

(7.11)

Notice that (7.11) works by considering the x and y axes. For example, to get the
eigenvectors of �σ · x̂, set θ =π /2 and φ= 0.

If the system is in the state | + n〉, then we have

〈0|+n〉 = cos
θ

2
(7.12)

Therefore the probability that measurement finds |0〉 given that the system is in the
state | + n〉 is

|〈0|+n〉|2 = cos2
(

θ

2

)
(7.13)

Similarly the probability to find |1〉 given that the system is in the state | − n〉 is

|〈1|+n〉|2 = sin2
(

θ

2

)
(7.14)

Now that we see how to relate some axis defined by �n to the z axis, we can write down
relations for arbitrary axes a, b, and c. We define the angles between each of these
axes as θab, θ cb, and θac, respectively. We prepare the system in the singlet state. The
form of the state is invariant under rotations, so we consider it along the a axis:

|ψ〉 = |+a〉|−a〉 − |−a〉|+a〉√
2

(7.15)

Then we can calculate Pr(+ a;+ c) by looking at the inner product

〈+a+c|ψ〉 = 〈+a|+a〉〈+c|−a〉 − 〈+a|−a〉〈+c|+a〉√
2

= 〈+c|−a〉√
2

= 1√
2

sin
θac

2

(7.16)

Hence the probability is

Pr(+a;+c) =
∣∣∣∣ 〈+c|−a〉√

2

∣∣∣∣
2

= 1

2
sin2

(
θac

2

)
(7.17)
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Similarly we find that

Pr(+a;+b) = 1

2
sin2

(
θab

2

)
, Pr(+c;+b) = 1

2
sin2

(
θcb

2

)
(7.18)

This means that we can write Bell’s inequality (7.10) as

sin2
(

θab

2

)
≤ sin2

(
θac

2

)
+ sin2

(
θcb

2

)
(7.19)

Following Sakuri, we take a, b, and c to lie in a plane with c bisecting the angle
θab. We then obtain the simplification θac= θ cb= θ , θab= 2θ , and Bell’s inequality
becomes sin2(θ) ≤ 2 sin2(θ/2). Bell’s inequality is violated when

0 < θ <
π

2
(7.20)

Suppose that Alice and Bob design their system such that θ =π /3. Bell’s
inequality is then the nonsensical statement that 0.75 ≤ 0.5. Therefore quantum
mechanics clearly predicts a violation of Bell’s inequality, which was derived under
the assumption of local realism. A clear distinction has been made between simple
counting arguments based on local realism (Table 7.2) and quantum mechanics.
Experiment agrees with the predictions of quantum mechanics, so theories of the
type that Einstein favored based on local realism are ruled out as descriptions of
nature. Bell’s inequality does not rule out nonlocal theories, however.

BIPARTITE SYSTEMS AND THE BELL BASIS

Now that we have an idea of what it means for two systems to be entangled, let’s
see how to work with the basic description and mathematics of such systems. When
a system consists of two subsystems we say it is a bipartite system. An example of
this is when Alice and Bob each have one member of an entangled pair of particles.
Let’s review some of the results from Chapter 4 where we described composite
systems in quantum mechanics. The Hilbert space of the composite system is the
tensor product of the Hilbert space that describes Alice’s system and the Hilbert
space that describes Bob’s system. If we denote these as HA and HB, respectively,
then the Hilbert space of the composite system is

H = HA ⊗ HB (7.21)

If we denote the basis states for Alice as |ai〉 and the basis states for Bob by
|bj〉, then the basis states for the composite system are found by taking the tensor
product of the Alice and Bob basis states:

|αij 〉 = |ai〉 ⊗ |bj 〉 = |ai〉|bj 〉 = |aibj 〉 (7.22)
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The basis for Alice and the basis for Bob are both orthonormal, so the basis states
for the composite system are

〈αij |αkl〉 = 〈aibj |akbl〉 = 〈ai |ak〉〈bj |bl〉 = δikδjl (7.23)

Now consider a quantum state |ψ〉 of the composite system. It can be expanded
in terms of the basis states (7.22) as follows:

|ψ〉 =
∑
i,j

cij |αij 〉 =
∑
i,j

|aibj 〉〈aibj |ψ〉 (7.24)

The coefficients in the expansion (7.24) 〈aibj |ψ〉 are the probability amplitudes to
find the system in the state |aibj〉. So the probability of finding the system in this
state is given by

Pr(aibj ) = |〈aibj |ψ〉|2 (7.25)

Finally, we can write down the representation of an operator A in the basis |aibj〉 as

A =
∑
i,j,k,l

|aibj 〉〈aibj |A|akbl〉〈akbl | (7.26)

The matrix element Aijkl=〈aibj|A|akbl〉.
For an example of a basis for a bipartite system, consider the Bell Basis . The

members of the Bell basis, sometimes called the Bell states or the EPR states , are

|β00〉 = |00〉 + |11〉√
2

(7.27)

|β01〉 = |01〉 + |10〉√
2

(7.28)

|β10〉 = |00〉 − |11〉√
2

(7.29)

|β11〉 = |01〉 − |10〉√
2

(7.30)

The state |β01〉is known as the triplet state (there are three triplet states—the other
two are |11〉 and |00〉), while |β11〉 is known as the singlet state. For those with a
physics background, the triplet states are spin-1 states (and can have ms=± 1, 0,
while the singlet state is a spin-0 state.

We can write the Bell states compactly as

|βxy〉 = |0y〉 + (−1)x |1y〉√
2

(7.31)
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where y denotes “not” y (if y is 0, then y is 1, and vice versa). In (7.31), x is called
the phase bit and y is called the parity bit .

Example 7.1

Show that the operator Z ⊗ Z acts on (7.31) via the parity bit as Z ⊗ Z |β xy〉= (− 1)y|βxy〉.

Solution

Recall the action of the Z operator

Z|0〉 = |0〉, Z|1〉 = −|1〉

This can be written more abstractly as Z |a〉= (− 1)a|a〉. Look at the first term in (7.31). The
operator on the first qubit does nothing because it’s |0〉. So we obtain

Z ⊗ Z|0y〉 = (−1)y |0y〉

In the second case, we have

(Z ⊗ Z)(−1)x |1y〉 = (−1)x(Z|1〉)⊗ (Z|y〉) = (−1)x(−1)(−1)y |1y〉

Now, if y= 0, then (− 1)(− 1)0= (− 1)(+ 1)=− 1. But, if y= 0, then obviously y = 1,
and this is the same as (− 1)y. If y= 1, then (− 1)(− 1)1= (− 1)(− 1)=+ 1= (− 1)y, since
y = 0 in that case. So we’ve found that (Z ⊗ Z )(− 1)x|1y〉= (− 1)x(− 1)y|1y〉. Putting every-
thing together we have

Z ⊗ Z|βxy〉 = (−1)y |0y〉 + (−1)x(−1)y |1y〉√
2

= (−1)y |βxy〉

WHEN IS A STATE ENTANGLED?

Not all states |ψ〉 ∈H A⊗H B are entangled. When two systems are entangled, the
state of each composite system can only be described with reference to the other
state. If two states are not entangled, we say that they are a product state or sepa-
rable. If |ψ〉∈H A and |φ〉∈H B and |χ〉= |ψ〉⊗|φ〉, then |χ〉 is a product state.

One simple test that can be applied to states in C
4 is the following: Let

|ψ〉 =

⎛
⎜⎜⎝

a

b

c

d

⎞
⎟⎟⎠

This state is separable if and only if

ad = bc (7.32)
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Example 7.2

Are the Bell states given in (7.27) through (7.30) entangled?

Solution

The Bell states are clearly entangled (in fact they could be said to be the quintessential entangled
state), but let’s apply criterion (7.32) to show they are not separable. Writing each state as a
column vector, we have

|β00〉 = |00〉 + |11〉√
2

= 1√
2

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠ , |β01〉 = |01〉 + |10〉√

2
= 1√

2

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠

|β10〉 = |00〉 − |11〉√
2

= 1√
2

⎛
⎜⎜⎝

1
0
0
−1

⎞
⎟⎟⎠ , |β11〉 = |01〉 − |10〉√

2
= 1√

2

⎛
⎜⎜⎝

0
1
−1
0

⎞
⎟⎟⎠

For |β00〉, we have a = d = 1/
√

2, b = c = 0, so ad = 1/2 �= bc. So |β00〉 is not a product
state and must be entangled. For |β01〉, a = d = 0, b = c = 1/

√
2,⇒ ad = 0 �= bc = 1/2. We

conclude that |β01〉 is also entangled. For |β10〉, we find that ad =− 1/2 �= bc= 0, and for |β11〉,
we have ad = 0 �= bc=− 1/2, so these states are also entangled by (7.32).

Example 7.3

A system of two qubits is in the state |00〉. We operate on this state with H⊗H , where H is
the Hadamard matrix. Is the state H ⊗H |00〉 entangled?

Solution

First let’s write down the matrix representation of H ⊗H in the computational basis. The
Hadamard matrix is given by

H = 1√
2

(
1 1
1 −1

)
(7.33)

So we find that

H ⊗H = 1√
2

(
H H

H −H

)
= 1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠
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The state in question has a column vector representation

|00〉 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠

In this case ad = (1)(0)= 0= bc so |00〉 is clearly a product state according to (7.32).
Now let’s calculate H ⊗H |00〉:

H ⊗H |00〉 = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠

Using (7.32), we see that this is also a product state, since

ad =
(

1

2

)(
1

2

)
= 1

4

bc =
(

1

2

)(
1

2

)
= 1

4

⇒ ad = bc

In fact this state is the tensor product( |0〉 + |1〉√
2

)( |0〉 + |1〉√
2

)
= 1

2
(|00〉 + |01〉 + |10〉 + |11〉)

Example 7.4

Alice and Bob each possess one member of a pair of interacting magnetic dipoles (spin-1/2
particles). The interaction Hamiltonian for two interacting magnetic dipoles separated by a
distance r is given by

HI = μ2

r3
(�σA · �σB − 3ZAZB)

where �σA = XA x̂ + YA ŷ + ZA ẑ and similarly for Bob. Find the allowed energies of the system
and show that the eigenvectors of the Hamiltonian include entangled states. Then rewrite the
Hamiltonian using it’s eigenvectors.

Solution

First we express the Hamiltonian in matrix form. We have

�σA · �σB = XA ⊗XB + YA ⊗ YB + ZA ⊗ ZB
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The first term is

XA ⊗XB =
(

0 ·XB 1 ·XB

1 ·XB 0 ·XB

)
=

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠

Similarly we find that

YA ⊗ YB =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠ and ZA ⊗ ZB =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

So

�σA · �σB = XA ⊗XB + YA ⊗ YB + ZA ⊗ ZB

=

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎞
⎟⎟⎠

Therefore the matrix representation of the Hamiltonian is

HI = μ2

r3
(�σA · �σB − 3ZAZB) = μ2

r3

⎡
⎢⎢⎣
⎛
⎜⎜⎝

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎞
⎟⎟⎠− 3

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠
⎤
⎥⎥⎦

= μ2

r3

⎛
⎜⎜⎝
−2 0 0 0
0 2 2 0
0 2 2 0
0 0 0 −2

⎞
⎟⎟⎠

Keep in mind that the matrix is written in the following way:

HI =

⎛
⎜⎜⎜⎝
〈00|HI |00〉 〈00|HI |01〉 〈00|HI |10〉 〈00|HI |11〉
〈01|HI |00〉 〈01|HI |01〉 〈01|HI |10〉 〈01|HI |11〉
〈10|HI |00〉 〈10|HI |01〉 〈10|HI |10〉 〈10|HI |11〉
〈11|HI |00〉 〈11|HI |01〉 〈11|HI |10〉 〈11|HI |11〉

⎞
⎟⎟⎟⎠
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And a state vector |ψ〉= a|00〉+ b|01〉+ c|10〉+ d |11〉is given by

|ψ〉 =

⎛
⎜⎜⎝

a

b

c

d

⎞
⎟⎟⎠

The eigenvalues of this matrix are the energies that the system can assume. With a 4× 4matrix,

it’s easiest to find the eigenvalues and eigenvectors using a computer. Using Mathematica
we find that the eigenvalues of H I are μ2/r3{4,− 2,− 2,0}. The eigenvectors corresponding to
each of these eigenvalues are in turn

|φ1〉 = 1√
2

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠ = |01〉 + |10〉√

2

|φ2〉 =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ = |11〉, |φ3〉 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ = |00〉

and

|φ4〉 = 1√
2

⎛
⎜⎜⎝

0
1
−1
0

⎞
⎟⎟⎠ = |01〉 − |10〉√

2

Comparison with (7.28) and (7.30) shows that two of the eigenvectors are Bell states—and
hence represent states in which the particles in possession of Alice and Bob are entangled.
Specifically, |φ1〉= |β01〉 and |φ4〉= |β11〉.

In the basis of its eigenstates, H I is diagonal with the entries along the diagonal given by
its eigenvalues

HI =

⎛
⎜⎜⎜⎝
〈φ1|HI |φ1〉 〈φ1|HI |φ2〉 〈φ1|HI |φ3〉 〈φ1|HI |φ4〉
〈φ2|HI |φ1〉 〈φ2|HI |φ2〉 〈φ2|HI |φ3〉 〈φ2|HI |φ4〉
〈φ3|HI |φ1〉 〈φ3|HI |φ2〉 〈φ3|HI |φ3〉 〈φ3|HI |φ4〉
〈φ4|HI |φ1〉 〈φ4|HI |φ2〉 〈φ4|HI |φ3〉 〈φ4|HI |φ4〉

⎞
⎟⎟⎟⎠

= μ2

r3

⎛
⎜⎜⎝

4 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 0

⎞
⎟⎟⎠
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You Try It

Show that

YA ⊗ YB =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠ and ZA ⊗ ZB =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

You Try It

Verify that for the Hamiltonian in Example 7.4,

HI |β01〉 = 4
μ2

r3
|β01〉 and HI |β00〉 = 0

THE PAULI REPRESENTATION

The Pauli representation provides a means to write down a density operator of a
single qubit or two-qubit systems in terms of Pauli matrices. For a single qubit the
Pauli representation is given by

ρ = 1

2

3∑
i=0

ciσi (7.34)

The coefficients in this expansion are given by

ci = T r(ρσ i) = 〈σi〉

Example 7.5

A certain density matrix is given by

ρ = 3

4
|0〉〈0| + 1

4
|1〉〈1|

Find its Pauli representation.

Solution

Proceeding by brute force, and recalling that σ 0 = I the identity operator, we have

c0 = T r(ρσ0) = T r

⎛
⎜⎝

3

4
0

0
1

4

⎞
⎟⎠ = 3

4
+ 1

4
= 1



THE PAULI REPRESENTATION 163

Next we find

c1 = T r(ρσ1) = T r

⎛
⎜⎜⎝

3

4
0

0
1

4

⎞
⎟⎟⎠
(

0 1
1 0

)
= T r

⎛
⎜⎜⎝

0
3

4
1

4
0

⎞
⎟⎟⎠ = 0

Similarly c2 = Tr(ρσ 2)= 0. Finally,

c3 = T r(ρσ3) = T r

⎛
⎜⎜⎝

3

4
0

0
1

4

⎞
⎟⎟⎠
(

1 0
0 −1

)
= tr

⎛
⎜⎜⎝

3

4
0

0
−1

4

⎞
⎟⎟⎠ = 3

4
− 1

4
= 1

2

The Pauli representation is

ρ = σ0 − 1

2
σ3 = I − 1

2
Z

The Pauli representation for a system of two qubits is given by

ρ = 1

4

∑
i,j

cij σi ⊗ σj (7.35)

where cij =〈σ i⊗ σ j〉=Tr(ρ σ i⊗σ j). If the density operator ρis a separable state, then

|c11| + |c22| + |c33| ≤ 1 (7.36)

Example 7.6

Show that H ⊗H |00〉 is a separable state using the criterion (7.36), and show that |β 00〉 is
entangled.

Solution

First let’s find the density operator for H ⊗H |00〉. This can be written down using

ρ = 1

2
(|00〉 + |01〉 + |10〉 + |11〉) 1

2
(〈00| + 〈01| + 〈10| + 〈11|)

The density matrix turns out to be

ρ = 1

4

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠

The first term is

c11 = 〈σ1 ⊗ σ1〉 = 〈X ⊗X〉 = T r(ρX ⊗X)
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Now

X ⊗X =
(

0 X

X 0

)
=

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠

and

ρX ⊗X = 1

4

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ = 1

4

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠

Hence

c11 = T r(ρX ⊗X) = 1

4
+ 1

4
+ 1

4
+ 1

4
= 1

Using

Y ⊗ Y =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠

we find that

c22 = T r(ρσ2 ⊗ σ2) = T r(ρY ⊗ Y)

= T r
1

4

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠

= T r
1

4

⎛
⎜⎜⎝
−1 1 1 −1
−1 1 1 −1
−1 1 1 −1
−1 1 1 −1

⎞
⎟⎟⎠ = 1

4
(−1+ 1+ 1− 1) = 0

Finally, we have

Z ⊗ Z =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠
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and

ρZ ⊗ Z = 1

4

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ = 1

4

⎛
⎜⎜⎝

1 −1 −1 1
1 −1 −1 1
1 −1 −1 1
1 −1 −1 1

⎞
⎟⎟⎠

The trace of this matrix, which is the sum of the diagonal elements, also vanishes, so we have

|c11| + |c22| + |c33| = 1+ 0+ 0 = 1

Hence (7.36) is satisfied, and this is a separable state. Now let’s check |β00〉. The density
operator for this state is

ρ = 1

2
(|00〉 + |11〉)(〈00| + 〈11|) = 1

2
(|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|)

The density matrix is thus

ρ =

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠

We find that

c11 = T r(ρX ⊗X) = T r
1

2

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠

= T r
1

2

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠ = 1

2
+ 0+ 0+ 1

2
= 1

Next we find that

c22 = T r(ρY ⊗ Y) = T r
1

2

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠

= T r
1

2

⎛
⎜⎜⎝
−1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 −1

⎞
⎟⎟⎠ = −1

2
+ 0+ 0− 1

2
= −1
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The last coefficient we need is

c33 = T r(ρZ ⊗ Z) = T r
1

2

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

= T r
1

2

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠ = 1

2
+ 0+ 0+ 1

2
= 1

So in this case

|c11| + |c22| + |c33| = |1| + |−1| + |1| = 1+ 1+ 1 = 3

Hence by (7.36) the state is entangled.

ENTANGLEMENT FIDELITY

Consider a density operator for a single qubit that is diagonal with respect to the
computational basis

ρ = f |0〉〈0| + (1− f )|1〉〈1| (7.37)

The parameter f is known as the entanglement fidelity . For example, if

ρ = 3

4
|0〉〈0| + 1

4
|1〉〈1|

the entanglement fidelity is 3
4 .

USING BELL STATES FOR DENSITY OPERATOR REPRESENTATION

A density operator for a two-qubit system that is diagonal with respect to the Bell
basis can be represented in terms of the Bell states using the expansion

ρ = ∑
i,j

cij |βij 〉〈βij |
= c00|β00〉〈β00| + c01|β01〉〈β01| + c10|β10〉〈β10| + c11|β11〉〈β11|

(7.38)

This type of expansion is possible because we can write outer products of the Bell
states in terms of the Pauli operators:

|β00〉〈β00| = 1

4
(I ⊗ I +X ⊗X − Y ⊗ Y + Z ⊗ Z) (7.39)
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|β01〉〈β01| = 1

4
(I ⊗ I +X ⊗X + Y ⊗ Y − Z ⊗ Z) (7.40)

|β10〉〈β10| = 1

4
(I ⊗ I −X ⊗X + Y ⊗ Y + Z ⊗ Z) (7.41)

|β11〉〈β11| = 1

4
(I ⊗ I −X ⊗X − Y ⊗ Y − Z ⊗ Z) (7.42)

When written in the expansion (7.38) a density operator, ρis separable if and only if

c00 ≤ 1

2
(7.43)

Example 7.7

A density matrix for a certain two-qubit system in the {|00〉, |01〉, |10〉, |11〉} basis is

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

8
0 0

1

8

0
3

8

−3

8
0

0
−3

8

3

8
0

1

8
0 0

1

8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Can this state be written in a diagonal form with respect to the Bell basis? Is this a separable
state?

Solution

This matrix represents the density operator

ρ = 1

8
(|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|)

+ 3

8
(|01〉〈01| − |01〉〈10| − |10〉〈01| + |10〉〈10|)

In terms of the Bell basis, this operater is rewritten as

ρ = 1

4
|β00〉〈β00| + 3

4
|β11〉〈β11|

Since c00 = 1/4 < 1/2, by (7.43) this is a separable state.
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SCHMIDT DECOMPOSITION

Consider a composite system HA⊗HB, and let |ψ〉∈HA⊗HB be a pure state. Then
there exists an expansion of |ψ〉 of the form

|ψ〉 =
∑

i

λi |ai〉|bi〉 (7.44)

where |ai〉 are orthnormal states belonging to system A and |bi〉 are orthnormal
states belonging to system B (these states are called the Schmidt bases for system A
and system B , respectively). The expansion coefficients λi are such that λi ≥ 0and∑

i λ2
i = 1. We call the λi Schmidt coefficients and the expansion (7.44) is known

as the Schmidt decomposition .
The Schmidt coefficients are calculated from the matrix

T rB (|ψ〉〈ψ |) (7.45)

This matrix has eigenvalues λ2
i . The Schmidt number is the number of nonzero

eigenvalues λi. The Schmidt number is used in the following way:

• If a state is separable, then the Schmidt number is 1.
• If a state is entangled, then the Schmidt number is > 1.

We will denote the Schmidt number by Sch .

Example 7.8

Consider the state |ψ〉 = 1
2 (|00〉 − |01〉 − |10〉 + |11〉). Is this state separable? What is the

Schmidt number?

Solution

The density operator for this state is

ρ = |ψ〉〈ψ| = 1

4
(|00〉〈00| − |00〉〈01| − |00〉〈10| + |00〉〈11| − |01〉〈00| + |01〉〈01|

+ |01〉〈10| − |01〉〈11| − |10〉〈00| + |10〉〈01| + |10〉〈10| − |10〉〈11| + |11〉〈00|
− |11〉〈01| − |11〉〈10| + |11〉〈11|)

We can trace out system B immediately giving

ρA = T rB(|ψ〉〈ψ|) = 〈0|ψ〉〈ψ|0〉 + 〈1|ψ〉〈ψ|1〉

= 1

4
(|0〉〈0| − |0〉〈1| − |1〉〈0| + |1〉〈1|)+ 1

4
(|0〉〈0| − |0〉〈1| − |1〉〈0| + |1〉〈1|)

= 1

2
(|0〉〈0| − |0〉〈1| − |1〉〈0| + |1〉〈1|)
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The matrix representation is

ρA = 1

2

(
1 −1
−1 1

)

The eigenvalues of this matrix are λ1= 1, λ2= 0. The Schmidt number is the number of nonzero
eigenvalues, and since Sch= 1, this is a separable state. In fact this is the product state given by

|ψ〉 =
( |0〉 − |1〉√

2

)
⊗
( |0〉 − |1〉√

2

)

Example 7.9

Show that the singlet state

|S〉 = |01〉 − |10〉√
2

is entangled by computing its Schmidt number.

Solution

The density operator in this case is

ρ = |S〉〈S| =
( |01〉 − |10〉√

2

)( 〈01| − 〈10|√
2

)

= 1

2
(|01〉〈01| − |01〉〈10| − |10〉〈01| + |10〉〈10|)

Tracing out system B, we obtain

ρA = T rB

(
1

2
(|01〉〈01| − |01〉〈10| − |10〉〈01| + |10〉〈10|)

)

= 〈0|1
2
(|01〉〈01| − |01〉〈10| − |10〉〈01| + |10〉〈10|)|0〉

+ 〈1|1
2
(|01〉〈01| − |01〉〈10| − |10〉〈01| + |10〉〈10|)|1〉

= 1

2
(|1〉〈1| + |0〉〈0|) = 1

2
I

This matrix has two nonzero eigenvalues, namely λ1=λ2 = 1/2. Since the Schmidt number is
Sch= 2 > 1, this is an entangled state.

PURIFICATION

Purification is the process by which we create a reference system B such that, given
the system A, the state |φAφB〉is a pure state. The starting point for this procedure
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is the density matrix of the mixed state ρA. The state |φB〉is a purification of ρA if

ρA = T rB(|φB〉〈φB |) (7.46)

If ρA is a mixed state, we can use purification to analyze the system as a pure state
by expanding the Hilbert space to the larger space defined by |φAφB〉. Suppose

ρA =
∑

i

pi |ai〉〈ai |

Let |bi〉 be an orthonormal basis for system B . The purification is then

|φB〉 =
∑

i

√
pi |ai〉 ⊗ |bi〉 (7.47)

We will see how to calculate a purification explicitly and with some applications in
Chapter 10.

EXERCISES

7.1. Derive the result (7.11).

7.2. The eigenstates of the Y operator are

|±y〉 = |0〉 ± i|1〉√
2

Rewrite the singlet state (7.2) in terms of the Y eigenstates. Does it have a similar
form?

7.3. Verify that Z⊗ Z|βxy〉= (− 1)y|βxy〉 for

|β00〉 = |00〉 + |11〉√
2

and |β01〉 = |01〉 + |10〉√
2

7.4. Show that X⊗X|βxy〉= (− 1)x|βxy〉.
7.5. Show that Y⊗ Y|βxy〉= (− 1)x+y|βxy〉.
7.6. Show that X⊗X commutes with Z⊗ Z.

7.7. Consider the eigenvectors in Example 7.4. Show that [HI , �σA · �σB ] = 0, and
hence show that the eigenvectors of the Hamiltonian are eigenvectors of the �σA · �σB

operator. In particular, show that �σA · �σB |φi〉 = |φi〉 for i = 1, 2, 3 and �σA · �σB |φ4〉
= −3|φ4〉.
7.8. Is the state X⊗Z|β00〉entangled?
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7.9. Find the Pauli representation of

ρ =
(

sin2 θ e−iφ sin θ cos θ

eiφ sin θ cos θ cos2 θ

)

7.10. Use (7.36) to show that |β10〉 is entangled. Apply the same criterion to test
X⊗ Z|β00〉.
7.11. Derive (7.39).

7.12. Can the following state be written in diagonal form in terms of the Bell basis?

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
0 0

−1

8
0 0 0 0

0 0 0 0

−1

8
0 0

1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using (7.43), determine if this is a separable state.

7.13. Verify that

|ψ〉 =
( |0〉 − |1〉√

2

)
⊗
( |0〉 − |1〉√

2

)

is a product state using (7.36).

7.14. Verify that the state

|ψ〉 = 1√
2
|β00〉 − 1√

2
|β01〉

is entangled by calculating the Schmidt number.





8

QUANTUM GATES AND
CIRCUITS

In a classical computer, at the most fundamental level there are two basic tasks
that we can use when manipulating information. We can move it from one place to
another, or we can do some type of basic processing on the information using a logic
gate. Sets of logic gates can be connected together to construct digital circuits. In
this chapter we will be introduced to the equivalent notions of logic gates and circuits
in a quantum computer. We begin with a brief overview of classical logic gates.

CLASSICAL LOGIC GATES

The basic purpose of a logic gate is to manipulate or process information at the bit
level in some way. A simple example is the NOT gate. The NOT gate is a single
input gate. As its name implies, the NOT gate simply flips or inverts the value of the
input bit. That is, if the input to the gate is a 0, the output is a 1, and if the input is a
1, the output is a 0. We can write down the action of the NOT gate schematically as

0 �→ 1

1 �→ 0

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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In more complicated situations we will need a more systematic way to write
down the action of a gate. This is done using a truth table, which is a table that
lists the inputs together with the corresponding outputs of the gate. For a NOT gate,
this is very easy to do. We write the values of the single input bit on the left side
of the table and the corresponding outputs on the right:

Input NOT

0 1

1 0

Now we will consider more complicated operations that are applied to pairs of
bits. There are several two input gates, including the OR gate, the AND gate, and
the exclusive-OR (XOR) gates. Let’s examine each one in turn.

The OR gate accepts two bits as input, which we label A and B. The output of
the OR gate is a 1 if A OR B is 1, and is 0 otherwise. That is,

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

The AND gate returns a 1 only if both inputs are 1:

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

The XOR gate returns a 1 when A OR B is 1, but does not return a 1 if they are
both 1. The XOR operation can be indicated using the ⊕ symbol:

A B A ⊕ B

0 0 0

0 1 1

1 0 1

1 1 0
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The next two input gate that is important in classical computing is the NOT-AND
or NAND gate. This gate works by inverting the result of the AND gate. The truth
table in this case is as follows:

A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

This gate has the interesting property of being universal . That is, all computing
operations can be completed using only NAND gates. In fact you can construct an
entire computer using nothing but NAND gates, or the combination of NOT and
AND gates. As a simple example of how other logic operations can be implemented
using only NAND gates, suppose that happens if we supply the same bit to both
inputs of the NAND gate. The truth table is reduced to the following:

A A A OR B

0 0 1

1 1 0

In this case the NAND gate has inverted the value of the input gate. In other words,
we’ve constructed a NOT gate out of a NAND gate.

You Try It

Using only NAND gates, show how you could construct and OR gate.
The NAND gate is interesting because it is universal, but it is also irreversible.

That is, looking at the output of a NAND gate, we cannot work backward to deter-
mine the values of the input bits once the gate has acted upon them. However, it
turns out that there are reversible gates that can be used to construct a classical
computer. The first of these is called the Fredkin gate. This gate has three input
bits, the first of which is a control bit . We denote the control bit by C; its function
is to determine whether or not a given operation will be applied to the other input
bits. In the Fredkin gate, if C= 0, then nothing is done to the input bits—they
simply pass through the circuit unchanged. However, if C= 1, then the values of
the bits are interchanged or swapped. The truth table for the Fredkin gate is given
as follows:
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C A B A′ B′

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 0

1 1 0 0 1

1 1 1 1 1

We’ve denoted the output bits by A′ and B′. Like the NAND gate, the Fredkin gate
is universal.

The final classical gate we’ll look at is called the Toffoli gate. This gate has two
control bits, which we’ll designate by C1 and C2. The gate operates by computing
C1 AND C2, and then computes the XOR of the result with a target bit, which we
denote by T. The truth table is as follows:

C1 C2 T T′

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

SINGLE-QUBIT GATES

A gate can be thought of as an abstraction that represents information processing.
Now that we have a basic idea of how bits can be processed using logic gates, let’s
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move on to consider the analogous process in a quantum computer. In a quantum
computer, information is also processed using gates, but in this case the “gates”
are unitary operations. Since quantum gates are just unitary operators, we’ll often
go back and forth between the words gate and operator—so keep in mind they
mean the same thing in this context. Recall that a unitary operator U is one where
the adjoint is equal to the inverse, meaning U †=U−1. The defining relation for a
unitary operator is thus

UU † = U †U = I (8.1)

In addition, if H is a Hermitian operator, then U = eiHt is unitary.
Recall that quantum operators can be represented by matrices. A quantum gate

with n inputs and outputs can be represented by a matrix of degree 2n. For a single
qubit, we require a matrix of degree 21= 2. That is, a quantum gate acting on a
single qubit will be a 2× 2 unitary matrix. A two-qubit gate can be implemented
with a matrix of degree 22= 4 or a 4× 4 matrix.

Following the procedure used when thinking about classical logic gates, we
begin by examining the simplest gate possible, the quantum NOT gate. It turns out
that we have already come across the quantum NOT gate—in fact we’ve already
seen many of the single qubit gates. The NOT operation can be implemented with
the X Pauli matrix. It never hurts to review, so let’s go back and write out a few
basics. The standard or computational basis states are given by

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
(8.2)

The Pauli X matrix, which we will often refer to as the NOT operator, is given
in matrix form in the standard or computational basis as

X = UNOT =
(

0 1
1 0

)
(8.3)

Hence we have

UNOT |0〉 =
(

0 1
1 0

)(
1
0

)
=
(

0
1

)
= |1〉 (8.4)

UNOT |1〉 =
(

0 1
1 0

)(
0
1

)
=
(

1
0

)
= |0〉 (8.5)

So with respect to the standards or computational basis, the X matrix acts as
a NOT operator. The action of a NOT gate on an arbitrary state |j 〉 can be written
using the XOR operation as

X|j 〉 = |j ⊕ 1〉 (8.6)

To see how this works, recall the exclusive OR returns 1 if one or the other of the
inputs are 1, but 0 otherwise. Hence, if j = 0, then X |0〉= |0⊕1〉= |1〉. Meanwhile,
if j = 1, then X |1〉= |1⊕1〉= |0〉.
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Example 8.1

The NOT operator takes |0〉 �→ |1〉 and |1〉 �→ |0〉. Describe the unitary operator that will imple-
ment the NOT operation in outer product form, and find its matrix representation with respect
to the basis

|+〉 = 1√
2

(
1
1

)
, |−〉 = 1√

2

(
1
−1

)

Solution

In the standard or computational basis, the matrix representation of the NOT operator is given
by (8.3). We can also write this as

X =
(
〈0|X|0〉 〈0|X|1〉
〈1|X|0〉 〈1|X|1〉

)

You can see that this will work if

X = |0〉〈1| + |1〉〈0| (8.7)

(check it). Then the action of the operator on the standard or computational basis states is

X|0〉 = (|0〉〈1| + |1〉〈0|)|0〉
= |0〉〈1|0〉 + |1〉〈0|0〉
= |1〉

and

X|1〉 = (|0〉〈1| + |1〉〈0|)|1〉
= |0〉〈1|1〉 + |1〉〈0|1〉
= |0〉

where we have used the orthonormality of the basis states. To find the representation of the
NOT operator in the {| + 〉, | − 〉} basis, we need to find the unitary transformation connecting
this basis with the standard or computational basis. That is, we need to find a matrix with
components given by

Utrans =
(〈+|0〉 〈+|1〉
〈−|0〉 〈−|1〉

)

We know already the representation of the {| + 〉, | − 〉} states in the standard or computational
basis:

|+〉 = 1√
2

(
1
1

)
, |−〉 = 1√

2

(
1
−1

)
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So it’s a simple matter to compute each matrix component:

〈+|0〉 = 1√
2

(
1 1

) (1
0

)
= 1√

2

〈+|1〉 = 1√
2

(
1 1

) (0
1

)
= 1√

2

〈−|0〉 = 1√
2

(
1 −1

) (1
0

)
= 1√

2

〈−|1〉 = 1√
2

(
1 −1

) (1
0

)
= − 1√

2

Hence the transformation matrix between the two bases is given by

Utrans = 1√
2

(
1 1
1 −1

)
= H (8.8)

This matrix is nothing other than the Hadamard matrix H . For this reason the {| + 〉, | − 〉} basis
is sometimes called the Hadamard basis . Now we can apply this unitary transformation to the
matrix representation of the NOT gate to find its representation with respect to the Hadamard
basis. It is easy to verify that H =H †=H−1, so the unitary transformation that takes NOT
from the standard or computational basis to the Hadamard basis is just

UH
NOT = HUNOTH = 1

2

(
1 1
1 −1

)(
0 1
1 0

)(
1 1
1 −1

)

= 1

2

(
1 1
1 −1

)(
1 −1
1 1

)

=
(

1 0
0 −1

)

You Try It

Show that UH
NOT acts as a NOT gate when applied to the Hadamard basis, taking |+〉 �→ |−〉

and |−〉 �→ |+〉 .
In the Bloch sphere picture, the X or NOT gate reflects a state vector twice—first

about the x -y plane, and then about the x -z plane.

Example 8.2

A rotation matrix by an angle γ is given by

R(γ ) =
(

cos γ − sin γ

sin γ cos γ

)

Describe the action of this operator on a qubit |ψ〉= cosθ |0〉+ sinθ |1〉.
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Solution

The rotation matrix acts on the state as follows:

R(γ )|ψ〉 =
(

cos γ − sin γ

sin γ cos γ

)(
cos θ

sin θ

)
=
(

cos γ cos θ − sin γ sin θ

sin γ cos θ + cos γ sin θ

)

Now recall some basic trig identities:

cos(α + β) = cos α cos β − sin α sin β

sin(α + β) = sin α cos β + cos α sin β

So the rotated state can be written as

|ψ ′〉 =
(

cos(γ + θ)

sin(γ + θ)

)
= cos(γ + θ)|0〉 + sin(γ + θ)|1〉

Consider the Bloch sphere picture. The rotation operator has rotated the state vector relative
to the z axis by the angle γ . More specifically for those who like a more concrete interpretation,
the rotation operator has altered the relative length of each probability amplitude. If the original
qubit were measured, the probability that we find the system in the state |0〉 is given by cos2θ ,
while the probability that we find the system in the state |1〉 is given by sin2θ . If we rotate the
state before measurement, then these probabilities are changed to cos2(γ + θ ) and sin2(γ + θ ),
respectively.

MORE SINGLE-QUBIT GATES

The other Pauli matrices, being unitary 2× 2 matrices, are also valid single-qubit
gates. The Z operator is sometimes called the phase flip gate because it takes a
qubit |ψ〉=α|0〉+β|1〉 into a state |ψ ′〉 =α|0〉−β|1〉. This is easy to see using the
matrix representation:

Z|ψ〉 =
(

1 0
0 −1

)(
α

β

)
=
(

α

−β

)
(8.9)

We can also show the phase flip using the outer product representation, where
we have Z = |0〉〈0| − |1〉〈1|:

Z|ψ〉 = (|0〉〈0| − |1〉〈1|)(α|0〉 + β|1〉)
= α|0〉〈0|0〉 + β|0〉〈0|1〉 − α|1〉〈1|0〉 − β|1〉〈1|1〉
= α|0〉 − β|1〉

It’s fairly easy to see that generally we can represent the action of the Z gate by

Z|j 〉 = (−1)j |j 〉
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You Try It

Describe the action of the Y Pauli operator on an arbitrary qubit. Use the matrix
and outer product representations.

More generally, the phase shift gate is given by

P =
(

1 0
0 eiθ

)
(8.10)

This gate shifts or alters the relative phase of the amplitudes α and β of a qubit.
The Z gate is just the special case where θ =π , and hence eiπ = cos π + i sin
π =− 1. In general, the action of the phase shift gate on a qubit is

P |ψ〉 =
(

1 0
0 eiθ

)(
α

β

)
=
(

α

eiθβ

)
(8.11)

Example 8.3

Describe the action of the phase shift gate when considering the Bloch sphere representation
of a qubit.

Solution

We write the qubit as

|ψ〉 = cos θ |0〉 + eiφ sin θ |1〉

The phase shift operator (using an angle γ ) can be written in outer product notation as follows:

P = |0〉〈0| + eiγ |1〉〈1| (8.12)

Hence

P |ψ〉 = (|0〉〈0| + eiγ |1〉〈1|)(cos θ |0〉 + eiφ sin θ |1〉)
= cos θ |0〉 + ei(γ+φ) sin θ |1〉

Therefore we see that the phase shift operator takes the azimuthal angle φ → φ + γ .
We have seen that the Z gate is a special case of the phase shift operator where

we take the angle to be π . There are other special cases of interest. The first of
these is when we take θ =π /2. By Euler’s identity, eiπ/2= cos(π /2)+ isin(π /2)= i .
The resulting gate is called the S gate, which has the matrix representation in the
standard or computational basis given by

S =
(

1 0
0 i

)
(8.13)
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If we let θ =π /4, then we have the π /8 or T gate:

T =
(

1 0
0 eiπ/4

)
= eiπ/8

(
e−iπ/8 0

0 eiπ/8

)
(8.14)

Of course, we have already seen the Hadamard matrix:

H = 1√
2

(
1 1
1 −1

)
(8.15)

Example 8.4

Write the Hadamard matrix in outer product form (using the standard or computational basis)
and describe its action on the basis states {|0〉, |1〉}.

Solution

The matrix representation given in (8.15) can be rewritten as

H
.=
(〈0|H |0〉 〈0|H |1〉
〈1|H |0〉 〈1|H |1〉

)

Comparing this to (8.15), we see that the outer product representation of the Hadamard operator
must be

H = 1√
2
(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|) (8.16)

Now let’s see how the Hadamard operator acts on |0〉:

H |0〉 = 1√
2
(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|)|0〉

= 1√
2
(|0〉〈0|0〉 + |0〉〈1|0〉 + |1〉〈0|0〉 − |1〉〈1|0〉)

= |0〉 + |1〉√
2

Similarly we find that

H |1〉 = |0〉 − |1〉√
2

Therefore the action of the Hadamard gate on the standard or computational basis states
is to map the {|0〉, |1〉} states into the superposition states{ |0〉 + |1〉√

2
,
|0〉 − |1〉√

2

}
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In general, the Hadamard gate takes the state |ψ〉=α|0〉+β|1〉 into the state

H |ψ〉 =
(

α + β√
2

)
|0〉 +

(
α − β√

2

)
|1〉 (8.17)

This means that the probability of finding the qubit in the state |0〉 is changed from

|α|2to

∣∣∣∣α + β√
2

∣∣∣∣
2

=
(

α∗ + β∗√
2

)(
α + β√

2

)
= 1

2
(|α|2 + |β|2 + Re(αβ∗))

and similarly for the probability of finding the system in the |1〉 state. We can regroup the terms
in (8.17) to give another interpretation of the output of a Hadamard gate:

H |ψ〉 = α
|0〉 + |1〉√

2
+ β

|0〉 − |1〉√
2

= α|+〉 + β|−〉 (8.18)

That is, the Hadamard gate has turned a state that, with respect to the standard or computational
basis, had the probability |α|2 of finding the system in the state |0〉 and the probability |β|2 of finding
the system in the state |1〉 into a state that has the probability |α|2 of finding the system in the state
| + 〉 and the probability |β|2 of finding the system in the state | − 〉.

You Try It

A Hadamard gate is applied to the qubit |ψ〉= cosθ |0〉+ eiφsinθ |1〉, and subsequently a mea-
surement is made. What is the probability that this measurement finds the system in the state
|1〉?

EXPONENTIATION

Now let’s consider the construction of more single-qubit gates using exponentiation.
If a matrix U is unitary and Hermitian, then

exp(−iθU) = cos θI − i sin θU (8.19)

This is very easy to prove, which we do in the next example.

Example 8.5

Prove that if an operator U is unitary and Hermitian, then exp(− iθU )= cos θ I − i sin θU .

Solution

If a matrix or operator U is unitary, then

UU† = U†U = I
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If the operator is also Hermitian, then

U = U†

Combining these two relations yields

U2 = UU = UU† = I

So we have

exp(−iθU) = I − iθU + (−i)2 θ2

2!
U2 + (−i)3 θ3

3!
U3 + (−i)4 θ4

4!
U4 + (−i)5 θ5

5!
U5 + · · ·

Since U 2= I and i 2=− 1, this relation becomes

exp(−iθU) =
(

I − θ2

2!
I + θ4

4!
I − · · ·

)
− iθU + i

θ3

3!
U − i

θ5

5!
U + · · ·

=
(

1− θ2

2!
+ θ4

4!
− · · ·

)
I − i

(
θ − θ3

3!
+ θ5

5!
+ · · ·

)
U

= cos θI − sin θU

By exponentiating a given matrix, we can come up with more gates. In fact we can create
rotation operators to represent rotation about the x , y , and z axes on the Bloch sphere by
exponentiating the Pauli matrices. These are given by

Rx(γ ) = e−iγX/2 =

⎛
⎜⎝ cos

(γ

2

)
−i sin

(γ

2

)
−i sin

(γ

2

)
cos
(γ

2

)
⎞
⎟⎠ (8.20)

Ry(γ ) = e−iγ Y/2 =

⎛
⎜⎝cos

(γ

2

)
− sin

(γ

2

)
sin
(γ

2

)
cos
(γ

2

)
⎞
⎟⎠ (8.21)

Rz(γ ) = e−iγZ/2 =
(

e−iγ /2 0

0 eiγ /2

)
(8.22)

You Try It

Using (8.19), derive the matrix representation of Rz(γ ).
The rotation matrices given in (8.20), (8.21), and (8.22) allow us to gener-

ate different representations of other single-qubit gates related to the Bloch sphere
picture. For example for the T gate of (8.14),

T = eiπ/8
(

e−iπ/8 0
0 eiπ/8

)
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From (8.22) it is easy to see that

T = eiπ/8
(

e−iπ/8 0
0 eiπ/8

)
= eiπ/8e−iπZ/8 = eiπ/8Rz

(π

4

)
(8.23)

This shows us that the T gate is equivalent to a 45 degree rotation around the z
axis.

THE Z–Y DECOMPOSITION

Given a single-qubit operator U , we can find real numbers a , b, c, d such that

U = eiaRz(b)Ry(c)Rz( d) (8.24)

BASIC QUANTUM CIRCUIT DIAGRAMS

We can represent the action of a quantum gate by drawing a circuit diagram. Each
unitary operator or gate is represented by a block with lines (or “wires”) used to
represent input and output. For example, the representations of the Pauli operators
X , Y , and Z and their action on a single qubit are shown in Figure 8.1.

The circuit diagram representation of a Hadamard gate is shown in
Figure 8.2. We represent measurement in a circuit with an encircled M . This is
shown in Figure 8.3. A measurement in a circuit diagram should remind you of the

X

Y

Z

yin = a 0 + b 1 yout = b 0 + a 1

yout = −ib 0 + ia 1yin = a 0 + b 1

yin = a 0 + b 1 yout = a 0 − b 1

Figure 8.1 Circuit diagram representations of the Pauli operators and their actions on a

single arbitrary qubit
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H

0 1yin a b= +
0 1

2 2
yout =

= +

+

b+a

a + b a − b

−

Figure 8.2 The Hadamard gate

M

2

2

0 y a2

b21y

P0

P1

= =

= =

0 1yin a b= +

Figure 8.3 Representation of measurement in a quantum circuit

Born rule—the probability of each measurement result is given by the corresponding
squared amplitudes.

In other texts or papers the representation of measurement may be different, but
it should be clear from the context. We will see how to incorporate measurement
into quantum circuits in later chapters, for example, when we consider teleportation
in Chapter 10.

CONTROLLED GATES

We are ready to move to the case of two-qubit gates. In this section the notion
of a controlled gate will allow us to implement an if –else type of construct with
a quantum gate. Consider a controlled classical gate. We include a control bit C .
If C = 0, then the gate does nothing, but if C = 1, then the gate performs some
specified action. Controlled quantum (or controlled unitary) gates work in a similar
fashion, using a control qubit to determine whether or not a specified unitary action
is applied to a target qubit.

When working with two-qubit gates, we consider their action with respect to
two-qubit states. Recall from our discussion of tensor products in Chapter 4 that
these are states of the form |a〉⊗ |b〉, which can be written more simply as |a〉|b〉 or
|ab〉. If we know the action of an operator on states |ab〉, then we can find its matrix
representation. The matrix representation of a two-qubit gate can be calculated using

U
.=

⎛
⎜⎜⎝
〈00|U |00〉 〈00|U |01〉 〈00|U |10〉 〈00|U |11〉
〈01|U |00〉 〈01|U |01〉 〈01|U |10〉 〈01|U |11〉
〈10|U |00〉 〈10|U |01〉 〈10|U |10〉 〈10|U |11〉
〈11|U |00〉 〈11|U |01〉 〈11|U |10〉 〈11|U |11〉

⎞
⎟⎟⎠ (8.25)

The first two-qubit gate we will meet is the controlled NOT or CNOT gate.
The first input to a controlled not gate acts as the control qubit. Using the notation
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a

b

a

b ⊕ a

Figure 8.4 Circuit diagram representation of a controlled NOT gate

developed in Chapter 4 for tensor product states, the action of a CNOT gate can be
described in terms of the XOR operation as follows:

|a, b〉 → |a, b ⊕ a〉 (8.26)

If the control qubit is |0〉, then nothing happens to the target qubit. If the control
qubit is |1〉, then the NOT or X matrix is applied to the target cubit. The possible
input states to the CNOT gate are |00〉,|01〉,|10〉, and |11〉, and the action of the
CNOT gate on these states is

|00〉 �→ |00〉
|01〉 �→ |01〉
|10〉 �→ |11〉
|11〉 �→ |10〉

(8.27)

A common circuit representation of the controlled NOT gate is shown in
Figure 8.4.

To write the matrix representation of the controlled NOT gate, we have to do it
with respect to the states |00〉,|01〉,|10〉, and |11〉. The matrix will be a 4× 4 matrix.
The matrix representation of this gate is given by

CN =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ (8.28)

If we use Dirac notation, the outer product representation of the controlled NOT is

CN = |00〉〈00| + |01〉〈01| + |10〉〈11| + |11〉〈10| (8.29)

Example 8.6

Using Dirac notation, find the action of the controlled NOT gate when the control bit is |1〉 and
the target qubit is given by |0〉,|1〉 and α|0〉+ β|1〉.
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Solution

In the first case, CN will act on the state |10〉. Using (8.29), we have

CN |10〉 = (|00〉〈00| + |01〉〈01| + |10〉〈11| + |11〉〈10|)|10〉
= |00〉〈00||10〉 + |01〉〈01||10〉 + |10〉〈11||10〉 + |11〉〈10||10〉

To calculate each of the inner products, we use the rule for calculating inner products
given in (4.8):

〈ab|cd = 〈a|c〉〈b|d〉
Hence

〈00|10〉 = 〈0|1〉〈0|0〉 = 0
〈01|10〉 = 〈0|1〉〈1|0〉 = 0
〈11|10〉 = 〈1|1〉〈1|0〉 = 0
〈10|10〉 = 〈1|1〉〈0|0〉 = 1

We conclude that

CN |10〉 = |11〉
When the target qubit is |1〉, we have

CN |11〉 = (|00〉〈00| + |01〉〈01| + |10〉〈11| + |11〉〈10|)|11〉
= |00〉〈00||11〉 + |01〉〈01||11〉 + |10〉〈11||11〉 + |11〉〈10||11〉
= |10〉

So we’ve confirmed that the controlled NOT gate flips the target qubit when the control bit is
|1〉. Now we can use what we’ve learned to find the action on the target qubit when it’s in the
state α|0〉+β|1〉. In this case

CN(α|10〉 + β|11〉) = αCN |10〉 + βCN |11〉 = α|11〉 + β|10〉

Therefore the CN takes α|0〉+ β|1〉 to β|0〉+α|1〉 when the control bit is |1〉.

Example 8.7

Describe a circuit that will generate the Bell states.

Solution

In Chapter 7 we learned that the Bell states are given by

|β00〉 = |00〉 + |11〉√
2

(8.30)
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|β01〉 = |01〉 + |10〉√
2

(8.31)

|β10〉 = |00〉 − |11〉√
2

(8.32)

|β11〉 = |01〉 − |10〉√
2

(8.33)

To see how we can draw a circuit to generate these states, consider the action of the CNOT gate
when the control qubit is in a superposition state. For example, let’s take it to be |c〉 = |0〉+ |1〉,
and let the target qubit be |0〉. Then the CNOT gate will act on the sum |00〉+ |10〉. From (8.29),
we see that the action of the CN gate on this state is

CN(|00〉 + |10〉) = (|00〉〈00| + |01〉〈01| + |10〉〈11| + |11〉〈10|)(|00〉 + |10〉)
= |00〉〈00||00〉 + |01〉〈01||00〉 + |10〉〈11||00〉 + |11〉〈10||00〉
+ |00〉〈00||10〉 + |01〉〈01||10〉 + |10〉〈11||10〉 + |11〉〈10||10〉

= |00〉 + |11〉

This is almost the Bell state given by (8.30). All we are missing is the normalization constant
1/
√

2. Of course, if we look back at (8.16) and the action of the Hadamard gate on |0〉, we see
that this gives us the factor we need. So we will start with a qubit given by |0〉 and act on it
with a Hadamard gate. That should give us the state

|0〉 + |1〉√
2

The resulting qubit output from the Hadamard gate is then passed as the control
qubit for the CN gate. The result will be the state |β00〉. We can use a similar thought
process to see how to generate the other Bell states. The circuit required to do this,
in general, is shown in Figure 8.5. One thing to notice about this circuit is that
moving from left to right indicates the passage of time. So a wire in a quantum

a

b bab

H

Figure 8.5 Diagram for a quantum circuit that creates Bell states. Time moves from left to

right, with wires used to represent the passage of time where the state is left alone. First we

apply a Hadamard gate to the qubit —a〉 to generate a superposition state. This is then used

as the control bit in a CN gate. The result is the bell state —βab〉
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circuit is simply the time evolution of a quantum state. The operation of the circuit
goes as follows, with the steps applied in order:

• Take a qubit |a〉 where |a = 0〉 or |a = 1〉, and act on it with a Hadamard
gate.

• Use the resulting output as the control bit that is passed to a CN gate. If the
target qubit is denoted by |b〉, where b={0,1}, the target output of the CN
gate will be the Bell state |βab〉.

The Bell state |βab〉 can be written as

|βab〉 = |0, b〉 + (−1)a|1, a〉√
2

(8.34)

where a represents NOT a .
As we mentioned earlier, it is possible to generate any type of controlled U

gate we wish. For example, we can have a controlled-Hadamard gate. Let’s denote
this by CH . The action of the controlled Hadamard gate is as follows: If the control
qubit is |0〉, nothing happens to the target qubit. If the control qubit is |1〉, then
we apply a Hadamard gate to the target qubit. The matrix representation of the
controlled Hadamard gate is

CH =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2

−1√
2

⎞
⎟⎟⎟⎟⎠ (8.35)

The Dirac notation representation of this operator is

CH = |00〉〈00| + |01〉〈01| + 1√
2
(|10〉〈10| + |10〉〈11| + |11〉〈10| − |11〉〈11|)

(8.36)

Example 8.8

Find the action of the CH gate using (8.35) and (8.36) when the input states are |01〉and|11〉.

Solution

Using the matrix representation of the CH gate, we need to write out the states |01〉 and |11〉.
From (4.9) the column vector representation of these states are

|01〉 =
(

1
0

)
⊗
(

0
1

)
=

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠
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|11〉 =
(

0
1

)
⊗
(

0
1

)
=

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠

We should find that applied to the state |01〉, the CH gate does nothing, since the control qubit
is set to 0. We have

CH |01〉 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2

−1√
2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ = |01〉

In the second case, we have

CH |11〉 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2

−1√
2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
1√
2−1√
2

⎞
⎟⎟⎟⎠

Hence the target qubit has been taken into the state |0〉 − |1〉/√2. Now let’s redo the calculations
using Dirac notation. For the first state, we have

CH |01〉 =
[
|00〉〈00| + |01〉〈01| + 1√

2
(|10〉〈10| + |10〉〈11| + |11〉〈10| − |11〉〈11|)

]
|01〉

= |00〉〈00||01〉 + |01〉〈01||01〉 + 1√
2
(|10〉〈10||01〉 + |10〉〈11||01〉 + |11〉〈10||01〉

− |11〉〈11||01〉) = |01〉

For the second state, we find that

CH |11〉 =
[
|00〉〈00| + |01〉〈01| + 1√

2
(|10〉〈10| + |10〉〈11| + |11〉〈10| − |11〉〈11|)

]
|01〉

= |00〉〈00||11〉 + |01〉〈01||11〉 + 1√
2
(|10〉〈10||11〉 + |10〉〈11||11〉 + |11〉〈10||01〉

− |11〉〈11||11〉) = |10〉 − |11〉√
2

Example 8.9

We wish to investigate the use of the controlled NOT gate as a cloning machine. Specifically
can it clone the state a|0〉− b|1〉? Begin by supposing that the superposition state given by
a|0〉− b|1〉 is used as the control qubit and that the target qubit is given by |1〉. Then consider
the case where the target qubit is |0〉.
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Solution

First let’s write down what the output state would be if the gate could clone the state. If it
could, then it would make a copy of a|0〉− b|1〉, and the output state would be the product
state given by

a|0〉 − b|1〉 ⊗ a|0〉 − b|1〉 = a2|00〉 − ab|01〉 − ba|10〉 + b2|11〉

The input state is

a|0〉 − b|1〉 ⊗ |1〉 = a|01〉 − b|11〉

The controlled NOT gate acts on this state as follows:

CN (a|01〉 − b|11〉) = aCN |01〉 − bCN |11〉 = a|01〉 − b|10〉

You can see that a|01〉− b|10〉 �= a|0〉− b|1〉⊗ a|0〉− b|1〉. If the target qubit is |0〉, then we
have

CN (a|00〉 − b|10〉) = aCN |00〉 − bCN |10〉 = a|00〉 − b|11〉

This state is also not equal to the product state a|0〉− b|1〉⊗ a|0〉− b|1〉, so we aren’t any
closer to cloning the state. This example shows that the CN gate can’t clone, in general. Can
you think of any specific states that the CN gate might clone?

GATE DECOMPOSITION

A large part of working with quantum circuits is decomposing an arbitrary controlled
unitary operation U into a series of single-qubit operations and controlled NOT
gates. This procedure is illustrated schematically in Figure 8.6.

The figure shows some arbitrary controlled-U operation. An equivalent circuit,
consisting of two controlled NOT gates and the single-qubit gates A, B , and C , will
result in the same output. To illustrate how circuits can be manipulated, we have
the common example illustrated in Figure 8.7. We want to prove that a controlled
NOT gate can be written in terms of two Hadamard gates and a controlled Z gate.

B

C

U A

Figure 8.6 We replaced a controlled-U operation by an equivalent circuit consisting of

controlled NOT gates and single-qubit gates
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X H Z H

Figure 8.7 A controlled NOT gate is equivalent to a circuit consisting of two Hadamard

gates and a controlled Z gate

To derive this result, we start by recalling the resolution of the identity operator
in Dirac notation. We denote the projection operators onto the |0〉 and |1〉 states by

P0 = |0〉〈0| (8.37)

P1 = |1〉〈1| (8.38)

Then we write the identity operator as

I = |0〉〈0| + |1〉〈1| = P0 + P1 (8.39)

Now consider the+X state:

|+〉 = |0〉 + |1〉√
2

(8.40)

The projection operator onto this state is

P+ = |+〉〈+| = 1

2
(|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|) (8.41)

Similarly the projection operator onto the−X state is

P− = |−〉〈−| = 1

2
(|0〉〈0| − |0〉〈1| − |1〉〈0| + |1〉〈1|) (8.42)

Notice that

P+ + P− = I (8.43)

Now recall the Dirac notation representations for the X and Z operators and how
they relate to (8.37), (8.38), (8.41), and (8.42):

X = |0〉〈1| + |1〉〈0| = P+ − P− (8.44)

Z = |0〉〈0| − |1〉〈1| = P0 − P1 (8.45)
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In the exercises you will show that the controlled NOT matrix can be generated
from P0⊗ I +P1⊗X . So we start here and use (8.43):

P0 ⊗ I + P1 ⊗X = P0 ⊗ (P+ + P−)+ P1 ⊗X

Next we use (8.44) to write X in terms of the same projection operators, giving

P0 ⊗ (P+ + P−)+ P1 ⊗ (P+ − P−) = (P0 + P1)⊗ P+ + (P0 − P1)⊗ P−

From (8.39) and (8.45) we see that this is just

I ⊗ P+ + (P0 − P1)⊗ P− = I ⊗ P+ + Z ⊗ P− (8.46)

From (8.16) in Dirac notation the Hadamard operator is

H = 1√
2
(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|)

Notice that

P0H = (|0〉〈0|) 1√
2
(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|)

= 1√
2
(|0〉〈0| + |0〉〈1|)

So we have

HP0H = 1√
2
(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|) 1√

2
(|0〉〈0| + |0〉〈1|)

= 1

2
(|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|)

= P+

This means that

I ⊗ P+ = I ⊗HP0H = (I ⊗H)(I ⊗ P0H) = (I ⊗H)(I ⊗ P0)(I ⊗H)

It can also be shown that

Z ⊗ P− = (I ⊗H)(Z ⊗ P1)(I ⊗H)

Putting the two results together, we can rewrite (8.46) as

I ⊗ P+ + Z ⊗ P− = (I ⊗H)(I ⊗ P0)(I ⊗H)+ (I ⊗H)(Z ⊗ P1)(I ⊗H)

= (I ⊗H)(I ⊗ P0 + Z ⊗ P1)(I ⊗H)
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This is the circuit shown on the right-hand side of Figure 8.7. What this tells us is
to first apply the operation that leaves the first qubit alone and applies a Hadamard
gate to the second qubit, then apply the controlled Z gate, and finally apply another
Hadamard gate to the second qubit only.

EXERCISES

8.1. Describe the action of the Y gate in terms of the Bloch sphere picture.

8.2. The Hubbard operators are given by

X11 = |0〉〈0|, X12 = |0〉〈1|
X21 = |1〉〈0|, X22 = |1〉〈1|

(A) Write down the matrix representations of the Hubbard operators in the computational basis.
(B) Describe the action of the Hubbard operators on the Hadamard basis states.

8.3. Find a way to write the Pauli operators X, Y, and Z in terms of the Hubbard
operators.

8.4. Show that the controlled NOT gate is Hermitian and unitary.

8.5. Let |a〉= |1〉, and consider the circuit shown in Figure 8.5. Determine which
Bell states are generated as output when |b〉= |0〉,|b〉= |1〉.
8.6. Write down the matrix representation for the controlled Z gate. Then write

down its representation using Dirac notation.

8.7. Consider the single qubit operators X, Y, Z, S, and T. Find the square of each
operator.

8.8. Show that the Hadamard gate is equivalent to a 180 degree rotation about the
axis defined by (�ex − �ez)/

√
2, where �ex and �ez are unit vectors pointing along the x

and z axes.

8.9. Show that X�σX = X �ex − Y �ey − Z �ez.

8.10. By using the tensor product methods developed in chapter 4, show that the
controlled-NOT matrix can be generated from P0⊗ I + P1⊗X.

8.11. Show that the following circuits are equivalent:

X

H X H

H H
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8.12. The Toffoli gate can be implemented in a quantum circuit as

X

Show that if

V = (1− i)
(I + iX)

2

then this circuit can be replaced by

 V †V
 V 
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QUANTUM ALGORITHMS

An algorithm is a set of instructions used to perform some well-defined task on a
computer. A large part of the desire to develop a quantum computer has come from
the discovery that some algorithms work dramatically better on a quantum computer
than they could ever work on a classical computer. This is because the nature
of quantum systems—captured in superposition and interference of qubits—often
allows a quantum system to compute in a parallel way that is not possible even, in
principle, with a classical computer.

It was discovered that given a function f (x ), a quantum algorithm is capable
of evaluating the function at multiple values of x simultaneously. As we will see
below, a quantum algorithm highlights one of the central tugs-of-war that exist in
quantum theory. A qubit can exist in a superposition of states, giving a quantum
computer a hidden realm where exponential computations are possible. In other
words, the fact that a quantum system can exist in a superposition or linear combi-
nation of states allows us to do simultaneous parallel computations that cannot be
done even, in principle, on any classical computer. This feature allows a quantum
computer to do parallel computations using a single circuit-providing a dramatic
speedup in many cases. However, since measurement finds a qubit in one state or

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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the other—frustratingly we find that if we give a quantum computer n inputs we
only get n outputs.

Nature allows us to get around this to a certain extent and extract useful infor-
mation using quantum interference. This is another feature of qubits that cannot
be seen with classical bits—and it plays an important role in the development of
useful algorithms. Because it’s also true that a quantum computer can execute any
classical algorithm, the hope is that as more algorithms are discovered and quan-
tum computers become a reality, extremely efficient computing machines can be
built. At the present time only a small set of truly quantum algorithms have been
discovered, and this remains a very active area of research.

We begin by reviewing two quantum gates that are important in the develop-
ment of quantum algorithms and explaining quantum interference. Then we explore
our first truly quantum algorithm, called Deutsch’s algorithm after its creator, the
imaginative physicist David Deutsch.

HADAMARD GATES

An important step in quantum algorithms is to use Hadamard gates to create super-
position states. Recall that the Hadamard gate H acts on the computational basis
states in the following way:

H |0〉 = |0〉 + |1〉√
2

, H |1〉 = |0〉 − |1〉√
2

(9.1)

An interesting feature of the Hadamard gate is that two Hadamard gates in
series act to reverse the operation and give back the original input. Let’s consider
a Hadamard gates applied to an arbitrary qubit |ψ〉=α|0〉+β|1〉. We have

H |ψ〉 = αH |0〉 + βH |1〉 = α

( |0〉 + |1〉√
2

)
+ β

( |0〉 − |1〉√
2

)

=
(

α + β√
2

)
|0〉 +

(
α − β√

2

)
|1〉

If we apply a Hadamard gate twice, we get the original state back:

H

[(
α + β√

2

)
|0〉 +

(
α − β√

2

)
|1〉
]
=
(

α + β√
2

)
H |0〉 +

(
α − β√

2

)
H |1〉

=
(

α + β√
2

)( |0〉 + |1〉√
2

)
+
(

α − β√
2

)( |0〉 − |1〉√
2

)

=
(

α + α + β − β

2

)
|0〉 +

(
α − α + β + β

2

)
|1〉

= α|0〉 + β|1〉 = |ψ〉



HADAMARD GATES 199

H H yy

Figure 9.1 Two Hadamard gates in series restore a qubit to its original state

H

H
?=

1

1
y

Figure 9.2 Two Hadamard gates used in parallel

So the action of two Hadamard gates in series, shown in Figure 9.1, restores a qubit
to its original state.

Now consider what happens when we apply two Hadamard gates in parallel.
Let’s say that we do this for the state |1〉|1〉 (see Figure 9.2). The result of this
action is the product state given by

(H ⊗H)|1〉|1〉 = (H |1〉)(H |1〉) =
( |0〉 − |1〉√

2

)( |0〉 − |1〉√
2

)

= 1

2
(|00〉 − |01〉 − |10〉 + |11〉)

(9.2)

As we will see, the operation of two or more Hadamard gates in parallel plays an
important role in quantum algorithms. When n Hadamard gates act in parallel on n
qubits, this is called a Hadamard transform . A shorthand notation that is sometimes
used is to write H⊗n. So the operation shown in (9.2) can be denoted by H ⊗2. If
we apply H⊗2 to the product state |0〉|0〉, we obtain

(H ⊗H)|0〉|0〉 = (H |0〉)(H |0〉) =
( |0〉 + |1〉√

2

)( |0〉 + |1〉√
2

)

= 1

2
(|00〉 + |01〉 + |10〉 + |11〉)

(9.3)

In a similar way H⊗3|0〉|0〉|0〉 gives us

(H ⊗H ⊗H)|0〉|0〉|0〉 = (H |0〉)(H |0〉)(H |0〉)

=
( |0〉 + |1〉√

2

)( |0〉 + |1〉√
2

)( |0〉 + |1〉√
2

)

= 1√
23

(|000〉 + |001〉 + |010〉 + |100〉 + |101〉

+ |110〉 + |111〉)

(9.4)
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We can write a sum over states like 1
2 (|00〉 + |01〉 + |10〉 + |11〉) compactly in

thefollowing way: We let |x〉 denote a general state where x ∈ {0, 1}2; that is, |x〉 is
one of |00〉, |01〉, |10〉, |11〉. If we write x ∈ {0, 1}3, then we mean that |x〉 is one
of the three qubit states |000〉, |001〉, |010〉, |100〉, |101〉, |110〉, |111〉. By summing
over the variable |x〉, we can write the states compactly. For relation (9.3) can be
written as

(H ⊗H)|0〉|0〉 = H⊗2|0〉⊗2 = 1√
22

∑
x∈{0,1}2

|x〉 (9.5)

In general, the application of H ⊗n to a product state with n copies of |0〉 is

H⊗n(|0〉⊗n) = 1√
2n

∑
x∈{0,1}n

|x〉 (9.6)

Another useful operation is applying H ⊗H to the product state |0〉|1〉. This gives

(H ⊗H)|0〉|1〉 =
( |0〉 + |1〉√

2

)( |0〉 − |1〉√
2

)

= 1

2
(|00〉 − |01〉 + |10〉 − |11〉)

(9.7)

If we think of x as running over the numbers 00, 01, 10, 11 (i.e, 0, 1, 2, 3), then
we can write this compactly as

(H ⊗H)|0〉|1〉 = 1

2

∑
x∈{0,1}

(−1)x |x〉 (9.8)

Meanwhile

(H ⊗H)|1〉|1〉 = 1

2
(|00〉 − |01〉 − |10〉 + |11〉) = 1

2

∑
x∈{0,1}2

(−1)x0⊕x1 |x〉 (9.9)

where x 0⊕ x1 is the exclusive-OR of the two qubits, and we are saying |x〉 is a
two qubit state of the form |x0x1〉, where x 0, x 1 are either 0 or 1.

Example 9.1

What is the result of apply the Hadamard transform to the state

|ψ〉 = |0〉 + (−1)x |1〉√
2

where x ∈ {0, 1}.
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Solution

Since

H |ψ〉 = αH |0〉 + βH |1〉 = α

( |0〉 + |1〉√
2

)
+ β

( |0〉 − |1〉√
2

)

=
(

α + β√
2

)
|0〉 +

(
α − β√

2

)
|1〉

The result is

H |ψ〉 =
(

1+ (−1)x

2

)
|0〉 +

(
1− (−1)x

2

)
|1〉

If x = 0, this tells us that

H

( |0〉 + |1〉√
2

)
= |0〉 (9.10)

On the other hand, if x = 1, then

H

( |0〉 − |1〉√
2

)
= |1〉 (9.11)

THE PHASE GATE

Another useful gate that can be applied in the development of quantum algorithms
is a variation of the phase gate we met in the last chapter, called the discrete phase
gate. We denote the discrete phase gate by Rk, where

Rk =
(

1 0
0 e(2πi/2k)

)
(9.12)

MATRIX REPRESENTATION OF SERIAL AND PARALLEL OPERATIONS

When looking at quantum circuit diagrams or thinking about quantum algorithms,
it is sometimes helpful to break down the problem in termsof matrices. There are
two basic rules that can be followed. The first is that if a set of operations is
performed in series, then this is represented by a matrix product . We represent a set
of operations performed in series (i.e., in time) by starting with the first operation on
the left followed by subsequent operations moving to the right. This is illustrated
in Figure 9.3, where we first perform a phase gate with angle θ , followed by a
Hadamard gate, which is then followed by the application of a Z gate.

The matrix representation of this sequence of operations is written down by
multiplying the matrices in reverse order. Hence the operation shown in Figure 9.3
is written as

ZHP(θ)
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P(q) H Z

Figure 9.3 Circuit diagram for the application of a phase gate, followed by an application

of a Hadamard gate, followed by the application of a Z gate

Explicitly we have(
1 0
0 −1

)
1√
2

(
1 1
1 −1

)(
1 0
0 eiθ

)
= 1√

2

(
1 eiθ

−1 eiθ

)

When quantum operations are performed in parallel (i.e., at the same time),
we compute the tensor product, which we already know how to do. So the matrix
representation of H ⊗H is

H ⊗H = 1√
2

(
H H

H −H

)
= 1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠

As we will see when we start developing some quantum algorithms, interference
and parallelism play a fundamental role. Before actually describing an algorithm we
first describe quantum interference.

QUANTUM INTERFERENCE

The application of a Hadamard gate to an arbitrary qubit is an example of quantum
interference. Let’s recall what happens when we calculate H |ψ〉 for |ψ〉=α|0〉+
β|1〉. We get

H |ψ〉 =
(

α + β√
2

)
|0〉 +

(
α − β√

2

)
|1〉 (9.13)

Notice that the probability to obtain |0〉 upon measurement has been changed as

α → α + β√
2

while the probability to find |1〉 has been changed as

β → α − β√
2

Specifically, looking at the state, we write

|ψ〉 = |0〉 + |1〉√
2
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We saw in (9.10) that the Hadamard gate transforms |ψ〉 → |0〉. This is a
manifestation of quantum interference—mathematically this means the addition of
probability amplitudes. There are two types of interference, positive interference
inwhich probability amplitudes add constructively to increase or negative interfer-
ence in which probability amplitudes add destructively to decrease. In the case of
(9.10), with the Hadamard transformation of the state we have the following:

• Positive interference with regard to the basis state |0〉. The two amplitudes
add to increase the probability of finding 0 upon measurement. In fact in this
case it goes to unity meaning we are certain to find 0.

• Negative interference where by the terms |1〉 and −|1〉 cancel. We go from a
state where there was a 50% chance of finding 1 upon measurement to one
where there is no chance of finding 1 upon measurement.

Quantum interference plays an important role in the development of quantum
algorithms:

• Quantum interference allows us to gain information about a function f (x ) that
depends on evaluating the function at many values of x . That is, interference
allows us to deduce certain global properties of the function.

Now let’s look at the final part of the basic quantum algorithm toolkit, quantum
parallelism.

QUANTUM PARALLELISM AND FUNCTION EVALUATION

The first foray into the development of a quantum algorithm one can imagine is
actually quite simple— but it demonstrates the overwhelming power of a quantum
computer (i.e., should a practical one ever be constructed). The algorithm we are
going to describe is called Deutsch’s algorithm. Earlier we mentioned that quantum
parallelism can be described as the ability to evaluate the function f (x ) at many
values of x simultaneously.

Let’s see how to do this by considering a very simple function, one that accepts
a single bit as input and produces a single bit as output. That is, x ∈ {0, 1}. There
are only a small number of functions that can act on the set x ∈ {0, 1} and give a
single bit as output. For example, we could have the identity function

f (x) =
{

0 if x = 0

1 if x = 1

Two more examples are the constant functions

f (x) = 0, f (x) = 1
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The final example is the bit flip function

f (x) =
{

1 if x = 0

0 if x = 1

The identity and bit flip functions are called balanced because the outputs
are opposite for half the inputs. So a function on a single bit can be constant or
balanced . Whether a function on a single bit is constant or balanced is a global
property. What we’re going to see in the following development is that Deutsch’s
algorithm will let us put together a state that has all of the output values of the
function associated with each input value in a superposition state. Then we will use
quantum interference to find out if the given function is constant or balanced.

The first step in developing this algorithm is to imagine a unitary operation
denoted by U f that acts on two qubits. It leaves the first qubit alone and produces
the exclusive or (denoted by ⊕) of the second qubit with the function f evaluated
with the first qubit as argument. That is,

Uf |x, y〉 = |x, y ⊗ f (x)〉 (9.14)

(note that x, y ∈ {0, 1}). Now, since |x〉 is a qubit, it can be in a superposition state.
Let’s specifically start with an initial state |0〉 and apply a Hadamard gate, as shown
in Figure 9.4.

Using algebra, we write the action of the circuit shown in Figure 9.4 as

Uf

( |0〉 + |1〉√
2

)
|0〉 = 1√

2
(Uf |00〉 + Uf |10〉) = |0, 0⊕ f (0)〉 + |1, 0⊕ f (1)〉√

2

This circuit has produced a superposition state that has information about every
possible value of f (x ), in a single step. Suppose that f (x ) is the identity function.
Then the final state is

Uf

( |0〉 + |1〉√
2

)
|0〉 = |0, 0⊕ f (0)〉 + |1, 0⊕ f (1)〉√

2
= |00〉 + |11〉√

2

0 H
2

0      1+
x

y0

Uf

y ⊕ f (x)

x

Figure 9.4 Circuit diagram for Uf|x, y〉= |x,y⊗ f (x)〉 where we take the first qubit to be in a

superposition and the second qubit to be |0〉
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Recall that 0⊕ 0= 1⊕ 1= 0, 0⊕ 1= 1⊕ 0= 1, so more generally the output of this
circuit is

Uf

( |0〉 + |1〉√
2

)
|0〉 = |0, f (0)〉 + |1, f (1)〉√

2

This looks pretty nifty—we have a superposition state with all pairs of x, f (x )
represented. But remember how quantum measurement works. If we measure the
state

∑|x〉|f (x )〉, we get one and only one value of x and f (x ). After measurement
the system is in a state proportional to |x〉|f (x )〉 for that single and specific value
of x . Moreover the value of x that we obtain is completely random. So what we
have so far is the same as evaluating the function f (x ) at some randomly chosen x .
That doesn’t seem very useful. For a simple function on bits we can learn the value
of f (0) or f (1), but not both simultaneously (even though they are simultaneously
present in the premeasurement state). While it seems like we haven’t gotten anything
any more useful than what we can do with a classical computer, it’s in fact worse:
we can’t choose which value to reveal, f (0)or f (1), that occurs randomly.

Deutsch’s algorithm takes what we have done so far to exploit the fact that the
system is in a superposition state

∑|x〉|f (x )〉 to obtain information about a global
property of the function—whether or not it is constant f (0)= f (1) or balanced
f (0) �= f (1). It does this by computing

|ψout 〉 = (H ⊗ I )Uf (H ⊗H)|0〉|1〉 (9.15)

In words Deutsch’s algorithm is implemented by the following steps:

1. Apply Hadamard gates to the input state |0〉|1〉 to produce a product state of
two superpositions.

2. Apply U f to that product state.
3. Apply a Hadamard gate to the first qubit leaving the second qubit alone.

We already know what the result of the first step is in (9.15). We calculated it
in(9.7), which we restate here

(H ⊗H)|0〉|1〉 =
( |0〉 + |1〉√

2

)( |0〉 − |1〉√
2

)

= 1

2
(|00〉 − |01〉 + |10〉 − |11〉)

By doing this, we provide a superposition state as input that will contain all possible
values of the combination (x, f (x )) once weapply U f. Because it’s a single state, we
have these listed simultaneously. Now let’s apply U f to each term of (H ⊗H )|0〉|1〉.
For the first term we have

Uf |00〉 = |0, 0⊕ f (0)〉 = (1− f (0))|100〉 + f (0)|01〉 (9.16)
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This result takes into account the possibilities 0⊕ f (0)= 0 and 0⊕ f (0)= 1. To see
how this works, note that if f (0)= 0, then 0⊕ f (0)= 0⊕ 0= 0 and

|0, 0⊕ f (0)〉 = (1− f (0))|00〉 + f (0)|01〉 = |00〉 + (0)|01〉 = |00〉

On the other hand, if f (0)= 1, then 0⊕ f (0)= 0⊕ 1= 1 and

|0, 0⊕ f (0)〉 = (1− f (0))|00〉 + f (0)|01〉 = (0)|00〉 + (1)|01〉 = |01〉

Similar logic applied to the other terms gives

Uf |01〉 = |0, 1⊕ f (0)〉 = f (0)|00〉 + (1− f (0))|01〉 (9.17)

Uf |10〉 = |0, 1⊕ f (0)〉 = (1− f (1))|00〉 + f (1)|01〉 (9.18)

Uf |11〉 = |0, 1⊕ f (1)〉 = f (1)|10〉 + (1− f (1))|11〉 (9.19)

Hence
|ψ ′〉 = Uf (H ⊗H)|0〉|1〉

= (1− f (0))|00〉 + f (0)|01〉 + f (0)|00〉 + (1− f (0))|01〉 (9.20)

+(1− f (1))|00〉 + f (1)|01〉 + f (1)|10〉 + (1− f (1))|11〉

To get the final output state of Deutsch’s algorithm, we apply H ⊗ I to |ψ ′〉.
The Hadamard gate is applied to the first qubit, and the second qubit is left alone.
Let’s look a the first couple of terms explicitly:

(H ⊗ I )[(1− f (0))|00〉 + f (0)|01〉]
= (1− f (0))(H |0〉)⊗ |0〉 + f (0)(H |0〉)⊗ |1〉

= (1− f (0))

( |0〉 + |1〉√
2

)
⊗ |0〉 + f (0)

( |0〉 + |1〉√
2

)
⊗ |1〉

= (1− f (0))

( |00〉 + |10〉√
2

)
+ f (0)

( |01〉 + |11〉√
2

)

Applying H ⊗ I to all the terms in (9.20) and doing some algebra gives the final
output state of Deutsch’s algorithm as

|ψout 〉 = (1− f (0)− f (1))|0〉
( |0〉 − |1〉√

2

)
+ (f (1)− f (0))|1〉

( |0〉 − |1〉√
2

)
(9.21)

Now suppose that the function is constant so that f (0)= f (1). Then we obtain
the final output state, using (9.21), as

|ψout 〉 = −|0〉
( |0〉 − |1〉√

2

)
(f (0) = f (1)) (9.22)
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On the other hand, if f (0) �= f (1), then f (0)= 0, f (1)= 1, or f (0)= 1, f (1)= 0, and
the final output state is

|ψout 〉 = ±|1〉
( |0〉 − |1〉√

2

)
(f (0) �= f (1)) (9.23)

In this algorithm, single-qubit interference is applied to the first qubit allowing us
to distinguish between the two cases of the output of the function

DEUTSCH-JOZSA ALGORITHM

The Deutsch-Jozsa algorithm is a generalization of Deutsch’s algorithm. Again, this
algorithm allows us to determine whether a function f (x ) is constant or balanced,
but this time the function has multiple input values. If f (x ) is constant, then the
output is the same for all input values x . If the function is balanced, then f (x )= 0
for half of the inputs and f (x )= 1 for the other half of the inputs, and vice versa.
We start with an initial state that includes n qubits in the state |0〉 and a singlequbit
in the state |1〉. Hadamard gates are applied to all qubits. The circuit is illustrated
in Figure 9.5.

We start off by calculating

|ψ ′〉 = (H⊗n)(|0〉⊗n)⊗ (H |1〉) (9.24)

From (9.6) we see that this is

|ψ ′〉 = 1√
2n

∑
x∈{0,1}n

|x〉
( |0〉 − |1〉√

2

)
(9.25)

Next we apply (9.14), that is, U f|x, y〉= |x, y ⊗ f (x )〉, to evaluate the function. The
first n qubits are the values of x and the last qubit plays the role of y as shown in
the figure. The output state of the U f gate is

|ψ ′′〉 = 1√
2n

∑
x

(−1)f (x)|x〉
( |0〉 − |1〉√

2

)
(9.26)

0
nH⊗

x (n inputs)

y1

x

n

H

y ′

H

y ′′
Uf

y ⊕ f (x)

n⊗

Figure 9.5 The Deutsch-Jozsa algorithm generalizes Deutsch’s algorithm to handle a func-

tion with n input values and determine whether or not it is constant or balanced



208 QUANTUM ALGORITHMS

Applying a Hadamard gate to an n qubit state |x〉 gives

H⊗n|x〉 = 1√
2n

∑
y

(−1)x·y |y〉 (9.27)

So the final output state is

|ψout 〉 = 1

2n

∑
y

∑
x

(−1)x·y+f (x)|y〉
( |0〉 − |1〉√

2

)
(9.28)

Now we measure the n inputs. It might not be immediately obvious looking at
(9.28), but there are two possible measurement results on |y〉 (which is the state of
n inputs at this stage) that are of interest. The possible results are as follows:

• Measurement of the first n input qubits in |ψout〉 returns all 0’s. In this case
f (x ) is constant.

• Otherwise, if at least one of the qubits in |y〉 is found to be a 1 on measure-
ment, f (x ) is balanced.

Example 9.2

Consider a function with two inputs such that f (x )= 1. Explicitly show that the Deutsch-
Jozsa algorithm works in this case by generating the vector |y〉= |00〉 as the final output.

Solution

The initial input state will be |ψ in〉= |0〉|0〉|1〉. Applying Hadamard gates to this state gives

|ψ ′〉 = 1

2
√

2
(|000〉 − |001〉 + |010〉 − |011〉 + |100〉 − |101〉 + |110〉 − |111〉)

Next we apply U f to the system, obtaining

|ψ ′′〉 = 1

2
√

2
(|001〉 − |000〉 + |011〉 − |010〉 + |101〉 − |100〉 + |111〉 − |110〉)

The final step is to apply H ⊗2 to the first two qubits. This gives

|ψout 〉 = 1

2
√

2

[( |0〉 + |1〉√
2

) ( |0〉 + |1〉√
2

)
|1〉 −

( |0〉 + |1〉√
2

)( |0〉 + |1〉√
2

)
|0〉

+
( |0〉 + |1〉√

2

)( |0〉 − |1〉√
2

)
|1〉 −

( |0〉 + |1〉√
2

)( |0〉 − |1〉√
2

)
|0〉



DEUTSCH-JOZSA ALGORITHM 209

+
( |0〉 − |1〉√

2

)( |0〉 + |1〉√
2

)
|1〉 −

( |0〉 − |1〉√
2

)( |0〉 + |1〉√
2

)
|0〉

+
( |0〉 − |1〉√

2

)( |0〉 − |1〉√
2

)
|1〉 −

( |0〉 − |1〉√
2

) ( |0〉 − |1〉√
2

)
|0〉
]

Expanding out all the terms gives

|ψout 〉 = 1

4
√

2
[(|00〉 + |01〉 + |10〉 + |11〉)|1〉 − (|00〉 + |01〉 + |10〉 + |11〉)|0〉

+ (|00〉 − |01〉 + |10〉 − |11〉)|1〉 − (|00〉 − |01〉 + |10〉 − |11〉)|0〉
+ (|00〉 + |01〉 − |10〉 − |11〉)|1〉 − (|00〉 + |01〉 − |10〉 − |11〉)|0〉
+ (|00〉 − |01〉 − |10〉 + |11〉)|1〉 − (|00〉 − |01〉 − |10〉 + |11〉)|0〉]

Now we want to factor these terms to put them in the form with the third qubit as
(
|0〉−|1〉/√2

)
.

We get

|ψout 〉 = 1

4

[
−(|00〉 + |01〉 + |10〉 + |11〉)

( |0〉 − |1〉√
2

)

−(|00〉 − |01〉 + |10〉 − |11〉)
( |0〉 − |1〉√

2

)

−(|00〉 + |01〉 − |10〉 − |11〉)
( |0〉 − |1〉√

2

)

−(|00〉 − |01〉 − |10〉 + |11〉)
( |0〉 − |1〉√

2

)]

Hence

|ψout 〉 = −|00〉
( |0〉 − |1〉√

2

)

Measurement on the first two qubits gives 00, confirming that this is a constant function.

Example 9.3

Suppose that f (00)= f (01)= 0, f (10)= f (11)= 1. Apply the Deutsch-Josza algorithm and show
that at least one of the first two qubits ends up as a 1.

Solution

The input state is again |ψ in〉= |0〉|0〉|1〉, and the application of the Hadamard gates gives

|ψ ′〉 = 1

2
√

2
(|000〉 − |001〉 + |010〉 − |011〉 + |100〉 − |101〉 + |110〉 − |111〉)
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We apply U f to the system, obtaining

|ψ ′′〉 = 1

2
√

2
(|000〉 − |001〉 + |010〉 + |011〉 + |101〉 − |100〉 + |111〉 − |110〉)

Applying Hadamard gates to the first two inputs gives

|ψout 〉 = 1

4

[( |0〉 + |1〉√
2

)( |0〉 + |1〉√
2

)
|0〉 −

( |0〉 + |1〉√
2

)( |0〉 + |1〉√
2

)
|1〉

+
( |0〉 + |1〉√

2

)( |0〉 − |1〉√
2

)
|0〉 +

( |0〉 + |1〉√
2

)( |0〉 − |1〉√
2

)
|1〉

+
( |0〉 − |1〉√

2

)( |0〉 + |1〉√
2

)
|1〉 −

( |0〉 − |1〉√
2

)( |0〉 + |1〉√
2

)
|0〉

+
( |0〉 − |1〉√

2

)( |0〉 − |1〉√
2

)
|1〉 −

( |0〉 − |1〉√
2

)( |0〉 − |1〉√
2

)
|0〉
]

Again, we expand this result to obtain

|ψout 〉 = 1

4
√

2
[(|00〉 + |01〉 − |10〉 − |11〉)|1〉 + (|00〉 + |01〉 + |10〉 + |11〉)|0〉

− (|00〉 + |01〉 + |10〉 + |11〉)|1〉 + (|00〉 − |01〉 + |10〉 − |11〉)|0〉

+ (|00〉 − |01〉 + |10〉 − |11〉)|1〉 − (|00〉 + |01〉 − |10〉 − |11〉)|0〉

+ (|00〉 − |01〉 − |10〉 + |11〉)|1〉 − (|00〉 − |01〉 − |10〉 + |11〉)|0〉]

We rearrange as follows:

|ψout 〉 = 1

4

[
(|00〉 + |01〉 + |10〉 + |11〉)

( |0〉 − |1〉√
2

)

+ (|00〉 − |01〉 + |10〉 − |11〉)
( |0〉 − |1〉√

2

)

− (|00〉 + |01〉 − |10〉 − |11〉)
( |0〉 − |1〉√

2

)

−
(
|00〉 − |01〉 − |10〉 + |11〉)

( |0〉 − |1〉√
2

)]

So we find that

|ψout 〉 = |10〉
( |0〉 − |1〉√

2

)

Measurement on the first two qubits returns 10, since at least one qubit was 1. This shows that
the function is balanced.
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QUANTUM FOURIER TRANSFORM

A quantum computer can be used to compute a quantum analog of the Fourier trans-
form. First let’s get some preliminaries down. Consider two states of d = n qubits

|x〉 = |xn−1xn−2 . . . x0〉
|y〉 = |yn−1yn−2 . . . y0〉

where each x i, yi ∈ {0,1}. Then

x · y = x0y0 + x1y1 + · · · + xn−1yn−1 (9.29)

The quantum Fourier transform maps the state |ψ〉= |xn−1xn−2 · · · x0〉 into the state

1

2n/2
(|0〉 + e2πi[0.xn−1]|1〉)⊗ (|0〉 + e2πi[0.xn−2xn−1]|1〉)

⊗ · · · ⊗ (|0〉 + e2πi[0.x0...xn−2xn−1]|1〉)
(9.30)

where we have introduced the notation
x0

2
→ 0.x0

x0

22
+ x1

2
→ 0.x0x1 (9.31)

x0

23
+ x1

22
+ x2

2
→ 0.x0x1x2

and so on, to represent a binary fraction. Notice that we have two things going
on here—superposition states and the introduction of phases. The first fact tells us
that we will need to build a circuit with Hadamard gates to introduce superposi-
tion states. As for the phases, let’s recall the discrete phase gate (9.12). The matrix
representation of this gate in the computational basis is

Rk =
(

1 0

0 e(2πi/2k)

)

So we see that
Rk|0〉 = |0〉, Rk|1〉 = e(2πi/2k)|1〉 (9.32)

The quantum Fourier transform is implemented using Hadamard gates and con-
trolled discrete phase gates. Let’s denote the quantum Fourier transform operator
by U F. It acts on an arbitrary state |x〉 as

UF |x〉 = 1√
2n

2n−1∑
y=0

e2πixy/2n |y〉

= 1√
2n

2n−1∑
y=0

e2πi(y0(0.x0x1...xn−1)+y1(0.x0x1...xn−2)+···+yn−1(0.x0))|y〉
(9.33)
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We use the property ea+b = eaeb
and |y〉= |y0〉⊗|y1〉⊗· · ·⊗|yn−1〉 to write this as a

tensor product state:

UF |x〉 = 1√
2n

2n−1∑
y=0

e2πiy0(0.x0x1...xn−1)|y0〉 ⊗ · · · ⊗ e2πiyn−1(0.x0)|yn−1〉 (9.34)

Each yi∈{0, 1}. If y i= 0, then e2πiyi (.x0x1...xj ) = e0 = 1. If yi= 1, then the termsis
left with e2πi(.x0x1...xj ). This is how we get the form (9.30).

The discussion so far has been pretty abstract. Next we will show how to com-
pute the discrete quantum Fourier transform for a three-qubit state |x〉= |x 2x1x0〉.
The circuit used to do this is shown in Figure 9.6.

The first step is to apply the Hadamard gate to |x 2〉. Note that −1= eiπ , so the
state on the top line in Figure 9.6 becomes

H |x2〉 = 1√
2

∑
y

(−1)x2y |y〉 = 1√
2

∑
y

e2πix2y/2|y〉 = 1√
2
(|0〉 + e2πi(0.x2)|1〉)

We proceed to act on this state with the controlled R2 gate. The control bit for
this gate is the state |x1〉, which is |0〉 or |1〉. Since 1= e0= e2π i0, and |x 1〉 is
either |0〉 or |1〉, we can write the action of the R2 gate on the basis state |1〉 as
R2|1〉 = eiπx1/2|1〉 = e2πix1/4|1〉. So the state of the entire system at this point is

I ⊗ R2|x1〉 ⊗ 1√
2
(|0〉 + e2πi(0.x2)|1〉) = |x1〉 ⊗ 1√

2
(|0〉 + e2πi(0.x2x1)|1〉)

Now we apply the controlled R3 gate to this state with the control bit being |x0〉.
This acts in the same manner transforming the system into the state

|x0〉 ⊗ |x1〉 ⊗ 1√
2
(|0〉 + e2πi(0.x2x1x0)|1〉)

Next |x 1〉 goes through the Hadamard gate and the controlled R2 gate, transforming
it as

|x1〉 → 1√
2
(|0〉 + e2πi(.x1x0)|1〉)

x2 H R2

H R2

R3

H

x1

x0

Figure 9.6 Circuit for a quantum Fourier transform applied to a three—qubit state.
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The state of the system becomes

|x0〉 ⊗ 1√
2
(|0〉 + e2πi(0.x1x0)|1〉)⊗ 1√

2
(|0〉 + e2πi(0.x2x1x0)|1〉)

The last step is to act on |x0〉 with the final Hadamard gate. This takes

|x0〉 → 1√
2
(|0〉 + e2πi(0.x0)|1〉)

The final state of the system is

1√
2
(|0〉 + e2πi(0.x0)|1〉)⊗ 1√

2
(|0〉 + e2πi(0.x1x0)|1〉)⊗ 1√

2
(|0〉 + e2πi(0.x2x1x0)|1〉)

PHASE ESTIMATION

The quantum Fourier transform is closely related to a problem called phase estima-
tion . Let U be a unitary operator on a d = 2n Hilbert space, and let |φ1〉, |φ2〉, . . . ,
|φd〉 be the eigenvectors of U, which form an orthonormal basis for the space. The
eigenvalues of unitary operators are phases. Hence the eigenvalues of each |φn〉 will
be given by

U |φn〉 = e2πiθn |φn〉 (9.35)

Notice that if we act on a given eigenvector say j times, we have

Uj |φn〉 = Uj−1(e2πiθn |φn〉) = (e2πiθn)j |φn〉 = e2πiθnj |φn〉 (9.36)

The problem of quantum phase estimation is the following: Given a unitary
operator U and an input eigenvector |φ〉 of U, estimate the angle θ in the associated
eigenvalue that will have a form given by (9.35). We suppose that we want to know
the phase angle θ to m bits of accuracy. To begin, the algorithm with the initial
state given by

|ψin〉 = |0〉⊗m|φ〉 (9.37)

Here we know the eigenvector of the given unitary operator, |φ〉 to n bits, meaning
it is an n qubit state |φ〉= |φn−1, φn−2, . . . , φ1, φ0〉. Following a procedure you’re
familiar with already, the first step is to apply Hadamard gates to the |0〉 inputs to
generate superposition states. Acting with m Hadamard gates on (9.37)gives

|ψ ′〉 = H⊗m|ψin〉 =
( |0〉 + |1〉√

2

)⊗m

|φ〉 = 1

2m/2

2m−1∑
x=0

|x〉|φ〉 (9.38)
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Now apply the unitary operator to the state in the following way:

|ψ ′′〉 = 1

2m/2

2m−1∑
x=0

|x〉(Ux |φ〉) = 1

2m/2

2m−1∑
x=0

|x〉(e2πiθx |φ〉) (9.39)

Because e2π iθx is just a number, we can move it wherever we like. Notice that the
state in (9.39) is a product state, with each term multiplied by |φ〉. So we can pull
it out of the sum and write

|ψ ′′〉 = 1

2m/2

2m−1∑
x=0

e2πiθx |x〉|φ〉 =
(

1

2m/2

2m−1∑
x=0

e2πiθx |x〉
)
|φ〉 (9.40)

We are after an estimate of θ , so we can throw out the last n qubits (i.e., throw out
|φ〉). This leaves the state

|ψout 〉 = 1

2m/2

2m−1∑
x=0

e2πiθx |x〉 (9.41)

The algorithm we have described to this point is sometimes called a phase kickback
circuit . This is illustrated in Figure 9.7.

To get an estimate of θ , we can use the quantum Fourier transform U F. Specif-
ically, we apply the inverse quantum Fourier transform, which is given by UF

†, to
the state (9.41). The result is

UF
†|ψout 〉 = 1

2m

2m−1∑
x=0

2m−1∑
y=0

e(−2πixy/2m)/2m+2πiθx |y〉 = 1

2m

2m−1∑
x,y=0

e2πix(θ−y/2m)|y〉

(9.42)
The probability of finding the system in the state |y〉 is

Pr(y) =
∣∣∣∣∣ 1

2m

2m−1∑
x=0

e2πix(θ−y/2m)

∣∣∣∣∣
2

= 1

22m

∣∣∣∣∣
2m−1∑
x=0

e2πix(θ−y/2m)

∣∣∣∣∣
2

(9.43)

H
⊗m

0
⊗m

2m −1

2m/2
x = 0

1
e2piqx x∑

U=f fn−1, fn−2, ....., f1, f0

Figure 9.7 An illustration of a circuit to implement steps (9.37) through (9.41)
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We can evaluate this term by considering a geometric series . If |r| < 1, then

∞∑
n=0

arn = a

1− r
(9.44)

When the sum is finite, we have

m−1∑
n=0

arn = a
rm − 1

r − 1
(9.45)

Looking at (9.43), we let a = 1 and r = e2πix(θ−y/2m). From (9.45) the probability
of finding the system in the state |y〉 is

Pr(y) = 1

22m

∣∣∣∣ r2m − 1

r − 1

∣∣∣∣
2

(9.46)

We wish to estimate a lower bound on this probability. Doing so involves looking
at the terms in (9.46) in the complex plane. If you haven’t had complex variables,
you may wish to skip this section, which will seem obscure to many readers.

Suppose that we have an m bit approximation of θ given by 0.θm−1θm−2. . .θ0

that differs from θ by some error ε such that 0 < |ε| ≤ 2m+1. Then we can take
r = e2π iε and estimate a lower bound on obtaining an accurate m bit precision
estimate of θ . To do this, we examine the complex plane and consider that |r2m− 1|
is the chord length from 1 to r2m. We drawing a unit circle in the complex plane.
As illustrated in Figure 9.8, the arc length from 1 to r2m is given by 2π |ε|2m.

In Figure 9.8 the ratio of the arc length to the chord length cannot exceed π /2.
Hence we obtain the bound

2π |ε|2m

|r2m − 1| ≤
π

2
, ⇒ |r2m − 1| ≥ 4|ε|2m (9.47)

1

r2m Arc length is 

2p e 2m

Figure 9.8 Estimating a bound on the probability (9.46) by looking at the complex plane.
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Now we need a bound on the denominator in (9.46). A similar procedure for con-
sidering the chord length from 1 to r gives the bound

2π |ε|
|r − 1| ≥ 1, ⇒ 1

|r − 1| ≥
1

2π |ε| (9.48)

Hence

Pr(y) = 1

22m

∣∣∣∣r2m − 1

r − 1

∣∣∣∣
2

≥ 1

22m

|4|ε|2m|2
|2π |ε||2 = 1

22m

16|ε|222m

4π2|ε|2 = 4

π2
〉0.4 (9.49)

The bottom line of this calculation is that the probability is greater than 0.4.
that a measurement of θ to m bits of precision is obtained with every single bit
correct.

SHOR’S ALGORITHM

Shor’s algorithm was fundamental in demonstrating the power and importance
of quantum computation. This is an algorithm that can be used to factor prime
numbers—meaning that it can be used to break encryption codes if a practical
quantum computer is ever built. Needless to say, this algorithm got the attention of
a lot of people.

The first thing we need to know in order to do Shor’s algorithm is order finding .
Let x and N be positive integers with no common factors such that x < N . The
order of x is the smallest positive integer r such that

xr = 1 mod N (9.50)

Let’s explain what mod N means by way of an example. First of all, x and N
can’t have any common factors because their greatest common divisor is 1. Suppose
that we let x = 5 and N = 44. To find xr = a mod N , we compute x rand subtract N
until we get the last integer greater than 0. The first two cases are less than N = 44,
so we don’t do anything:

51 = 5, 52 = 25

Now since 53= 125, we note that (44)(2)= 88 and 125− 88= 37. Hence

53 = 37(mod 44)

Next 54= 625. We have (14)(44)= 616, and so

54 = 9(mod 44)
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Finally 55= 3125. It turns out that 71× 44= 3124, which is 1 less than 55= 3125.
This is where we stop. Hence

55 = 1(mod 44)

The order of 5 is 5 in this case.
As you can see, plugging away like this, finding the powers xr = 1(modN)

can be very time-consuming. With large numbers it will swamp the best computers
available, the time required is exponential in log N . This problem can be solved far
more efficiently by using a quantum algorithm based on phase estimation.

To solve the problem of order finding, we consider the unitary operator

Ux |y〉 =
{
|xy mod N〉 0 ≤ y ≤ N − 1

|y〉 N ≤ y ≤ 2L − 1
(9.51)

where L = �log N�. The eigenstates of U x are given by

|ut〉 = 1√
r

r−1∑
k=0

exp

(
−2πikt

r

)
|xk mod N〉 (9.52)

The eigenvalues are given by

Ux |ut 〉 = e2πi(t/r)|ut 〉 (9.53)

Notice that we can apply the phase estimation algorithm to these states to estimate
the phase t /r, and hence to find an estimate of the order. The order-finding algorithm
begins by considering a superposition of these eigenstates. It turns out that the eigen
states sum to |1〉, since

∑r−1
k=0 exp (−(2πikt)/r) = rδk,0,

1√
r

r−1∑
t=0

|ut〉 = 1√
r

r−1∑
t=0

1√
r

r−1∑
k=0

exp

(
−2πikt

r

)
|xk mod N〉 = |1〉 (9.54)

So we begin order finding with the input state

|ψin〉 = |1〉 = 1√
r

r−1∑
t=0

|ut〉 (9.55)

We can calculate the quantity xk mod N using quantum parallelism. The period r /t,
which gives us the order r, is found by the phase estimation procedure. So if we
start with |0〉⊗n|1〉, then we have

1√
r

r−1∑
t=0

(
1√
2s

2s−1∑
k=0

exp

(
−2πikt

r

)
|k〉
)
|ut〉 = 1√

r

r−1∑
t=0

|t/r〉 |ut 〉 (9.56)
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where we have defined

|t/r〉 = 1√
2s

2s−1∑
k=0

exp

(
−2πikt

r

)
|k〉

Measurement gives an estimate of a random t /r for 0≤ t ≤ r − 1. To obtain the
exact value, continued fractions are applied.

The order-finding algorithm is the only quantum part of Shor’s algorithm—the
rest of it involves classical calculations. A simple way to state Shor’s algorithm
is that we use order finding to find the factors of some odd integer N . This can
be summarized as a “Repeat. . . until” procedure (which I borrow from the lecture
notes of John Watrous of University of Waterloo):

Input: odd integer N
Repeat

Randomly select x∈ {2,. . . ,N−1} a∈ {2,. . . ,N∨1�}

d = gcd (x,N)
If d≥2 Then u = d, v = N/d
Else

Find the order r such that xr = 1 mod N
y = xr/2−1 mod N
d = gcd (y,N)
If d≥2 Then u = d, v = N/d

Until find u,v

QUANTUM SEARCHING AND GROVER’S ALGORITHM

Grover’s algorithm can be described as a quantum database-searching algorithm.
The presentation given here is simplistic and is not something that has much real
world utility. Grover’s algorithm once again, demonstrates the power of a quan-
tum computer in that the algorithm significantly reduces the number of operations
necessary to solve the problem as compared to a classical computer.

Once again, we have a function f (x ) on bits with n inputs and x ∈ {0, 1}n. The
output of the function is a single bit, so we can have f (x )= 0 or f (x )= 1. The task
at hand, which is solved by Grover’s algorithm, is the following. There is a single
x such that f (x )= 1, and we want to find out what x that is. Note that it may be
the case that f (x )≡ 0 identically, in which case no such x exists.

To solve this problem classically, we can generate input strings x and simply
test the function to find out if f (x )= 1. It turns out that doing this will require 2n− 1
tries to solve the problem. In contrast, Grover’s algorithm solves the problem with on
order of

√
2n tries. Now suppose that the bit string is small, just 5 bits. The classical

algorithm would require 25− 1= 31 attempts to find the correct x, while Grover’s
algorithm would require

√
25 ≈ 6 attempts. We have a significant improvement on
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a small bit string. As you might imagine, as the bit strings get larger and larger, the
improvement offered by Grover’s algorithm becomes very significant.

Let’s denote the input we seek by |x ′〉. In other words, f (x ′)= 1, but f (x )= 0
for all other |x〉. So the task at hand, using Grover’s algorithm, is to find |x ′〉. The
basic idea is we are going to create an input superposition state and rotate it into
|x ′〉 using the Grover operator G .

Following the usual procedure, we start with an initial n bit input state |0〉⊗n

and apply H⊗n to this state to generate superposition states. We define the state |ψ〉
to be a superposition of all possible states |x〉, meaning

|ψ〉 = 1√
2n

∑
x∈{0,1}n

|x〉 (9.57)

This superposition includes the state |x ′〉 so that

〈x′|ψ〉 = 1√
2n

∑
x∈{0,1}n

〈x′|x〉 = 1√
2n

(9.58)

By excluding |x ′〉 from (9.57), we can construct an othonormal basis set consisting
of |x ′〉 and

|ψ ′〉 = 1√
2n − 1

∑
x∈{0,1}n,x �=x′

|x〉 (9.59)

Now we define two operators. The first is

Uf =
∑

x∈{0,1}n
(−1)f (x)|x〉〈x| =

∑
x∈{0,1}n

(−1)δx,x′ |x〉〈x| (9.60)

where

δx,x′ =
{

1 x = x′

0 otherwise
(9.61)

is the Kronecker delta function. Next, using (9.57), we define

W = 2|ψ〉〈ψ | − I (9.62)

If we split |ψ〉 into two parts—the piece containing |x ′〉 and the rest as defined by
(9.59)—we have

|ψ〉 =
√

2n − 1

2n
|ψ ′〉 + 1√

2n
|x′〉 (9.63)

Hence

〈ψ |ψ ′〉 =
√

2n − 1

2n
(9.64)
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Inverting (9.63) so that |x ′〉 = √
2n|ψ〉 − √2n − 1|ψ ′〉, we see that

W |x′〉 = (2|ψ〉〈ψ | − I )(
√

2n|ψ〉 − √2n − 1|ψ ′〉)
= 2

√
2n|ψ〉〈ψ |ψ〉 −

√
2n|ψ〉 − 2

√
2n − 1|ψ〉〈ψ |ψ ′〉 + √2n − 1|ψ ′〉

(9.65)

= 2
√

2n|ψ〉 −
√

2n|ψ〉 − 2
√

2n − 1

√
2n − 1

2n
|ψ〉 + √2n − 1|ψ ′〉

Using (9.63) to substitute for |ψ〉 allows us to write

W |x′〉 = 2
√

2n − 1

2n
|ψ ′〉 +

(
2

2n
− 1

)
|x′〉 (9.66)

We also find that

W |ψ ′〉 = −
(

2

2n
− 1

)
|ψ ′〉 + 2

√
2n − 1

2n
|x′〉 (9.67)

Then, if we define the angle θ as

sin θ = 2
√

2n − 1

2n
(9.68)

Notice that (9.66) and (9.67) are a rotation, that is,

W |x′〉 = − cos θ |x ′〉 + sin θ |ψ ′〉 (9.69)

W |ψ ′〉 = sin θ |x′〉 + cos θ |ψ ′〉 (9.70)

If we apply the operator G =WU f, which is known as the Grover operator, we
obtain the more familiar form of a rotation, namely

G|x′〉 = cos θ |x ′〉 − sin θ |ψ ′〉 (9.71)

G|ψ ′〉 = sin θ |x′〉 + cos θ |ψ ′〉 (9.72)

The basic idea is that the Grover operator rotates the state |ψ ′〉 into the state
we are looking for, |x ′〉. It does so only a tiny bit at a time, so we have to apply it
multiple times, say, m times. In that case (9.71) and (9.72) become

Gm|x′〉 = cos mθ |x ′〉 − sin mθ |ψ ′〉 (9.73)

Gm|ψ ′〉 = sin mθ |x′〉 + cos mθ |ψ ′〉 (9.74)
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If we see that mθ =π /2, then (9.74) tells us that the application of Gm to |ψ ′〉
turns it into |x ′〉, since sin π /2= 1, cos π /2= 0. Hence Gm|ψ ′〉 = |x′〉 (mθ = π/2).
From our definition of θ (9.68), the condition that must be met is

sin θ = 2
√

2n − 1

2n
(9.75)

Using the small angle approximation, (i.e., sin θ ≈ θ ) reduces this to

θ ≈ 2
√

2n − 1

2n
(9.76)

Using our observation that mθ =π /2 will swap the state into the one we want, we
know that the condition that must be met in order to find |x ′〉 is

mθ = m
2
√

2n − 1

2n
= π

2

⇒ m = π

4

2n

√
2n − 1

≈ π

4

√
2n

(9.77)

Therefore on the order of
√

2n rotations—or applications of the Grover operator
G —are necessary to find the state |x ′〉.

EXERCISES

9.1. Using the matrix representation of the Hadamard gate

H = 1√
2

(
1 1
1 −1

)

write down the matrix H⊗H and find (H⊗H)(|0〉⊗ |1〉). Show that this is equiva-
lent to

|φ〉 =
( |0〉 + |1〉√

2

)( |0〉 − |1〉√
2

)

9.2. The Beam splitter gate has a matrix representation given by

B = 1√
2

(
i 1
1 i

)
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Show that B generates superposition states out of the computational basis states |0〉
and |1〉. In particular, show that

B ⊗ B|0〉|0〉 =
(

i|0〉 + |1〉√
2

)(
i|0〉 + |1〉√

2

)

Show that two applications of the beam splitter gate on the same state, namely that
B(B|ψ〉) act analogously to the NOT gate, giving the same probabilities of finding
|0〉 and |1〉.
9.3. Show that the matrix representation of HP(θ )HP(φ) is given by

eiθ/2

(
cos θ

2 −ieiφ sin θ
2

−i sin θ
2 eiφ cos θ

2

)

9.4. Derive (9.17) through (9.19).

9.5. Quantum gates are universal in the sense that quantum gates can be designed
that do anything a classical gate can do. Design a quantum adder, a gate that takes
three inputs |x〉, |y〉, |z〉 and that has three output qubits |x〉, |x⊕ y〉, |xy〉, where
|x⊕ y〉, is the sum and |xy〉 is the carry.

9.6. Consider a generalization of the qubit, a d= 2n-dimensional system where the
quantum states are called qudits. A qudit system is more complicated but might be
considered because of the increased computing power. The computational basis for
a qudit is

{|0〉, |1〉, |2〉, . . . , |d − 1〉}

The qudit Hadamard gate Hd takes the states

|0H 〉 = Hd |0〉 = |0〉 + |1〉 + · · · + |d − 2〉 + |d − 1〉
|1H 〉 = Hd |1〉 = |0〉 − |1〉 + · · · + |d − 2〉 − |d − 1〉

(a) In d= 4 dimensions, the computational basis is {|0〉,|1〉,|2〉,|3〉}. Show that

Hd |0〉 = |0〉 + |1〉 + |2〉 + |3〉
Hd |1〉 = |0〉 − |1〉 + |2〉 − |3〉

and that H 2
d |0〉 = |0〉, H 2

d |1〉 = |1〉 if the matrix representation of the Hadamard
gate is

Hd = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠
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In general,

Hd |x〉 = 1√
d

d−1∑
y=0

(−1)x·y |y〉

where

x · y = xoyo ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1

and

x =
n−1∑
i=0

xi2
i , y =

n−1∑
i=0

yi2
i , x, y ∈ {0, 1}

A function in d dimensions is constant if

f (0)⊕ f (1)⊕ · · · ⊕ f (d − 1) = 0

and it is balanced if

f (0)⊕ f (1)⊕ · · · ⊕ f (d − 1) = d

2

where⊕ is addition mod d= 2n. Starting with |ψ in〉= |0〉|1〉, generalize the Deutsch-
Josza algorithm to the input of two qudits with steps (b) and (c)
(b) Apply the qudit Hadamard gate to |ψ in〉= |0〉|1〉 and show that

|ψ ′〉 = Hd ⊗Hd |ψin〉 =
d−1∑

x,y=0

(−1)y |x〉|y〉

(c) Using Uf | x, y〉= |x, y⊕ f(x)〉, show that

Uf |ψ ′〉 =
(

d−1∑
x=0

(−1)x |x〉
)
|1H 〉

Finally, apply qudit Hadamard gates to the first set of qudits (leaving the auxiliary
qudit |1H〉 alone). Then, if the state is all 0’s, the function is constant. Otherwise, it
is balanced.

9.7. Derive the relation (9.67).

9.8. Consider the eigenvectors (9.52) and show that

Ux |ut〉 = exp

(
−2πit

r

)
|ut 〉.





10
APPLICATIONS OF
ENTANGLEMENT:

TELEPORTATION AND
SUPERDENSE CODING

It is often said that entanglement is a resource in quantum computation and informa-
tion. This is because we can use entanglement to accomplish communications and
information processing tasks that would otherwise not be possible. In this chapter we
will explore two areas where entanglement can be used to do some rather unusual
tasks. The first of these, known as teleportation, is a procedure that allows one
party (Alice) to send a quantum state to her friend (Bob) without that state being
transmitted in the usual sense. By using entanglement, Alice and Bob can set up a
quantum communications channel that links them together in a quantum way via
the EPR paradox—allowing Alice to send her state to Bob in an almost magical
fashion. As we will see, however, faster than light communication isn’t possible
using teleportation because it is still necessary for Alice and Bob to maintain a
classical communications link in order for teleportation to work.

In our second application of entanglement, we will look at superdense coding .
This is a procedure that allows us to send two classical bits to a party using only a
single qubit—demonstrating the power of quantum information processing.

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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TELEPORTATION

Anyone who has read science fiction or watched it on television is familiar with
teleportation —a device or process by which people can jet around the galaxy. The
basic idea is that you get scanned somehow, turned into energy, then beamed to
where you want to go and rematerialized.

While such a procedure is likely to remain in the realm of science fiction,
quantum mechanics does allow us to do something almost as magical. It allows
us to send a quantum state from one place to another without that state traversing
the space in between. Good thing Einstein wasn’t around to hear about this. If
entanglement itself made him feel “spooky,” then teleportation is sure to be making
him turn over in his grave.

While teleportation seems to work almost by magic Einstein can breathe a
sigh of relief because special relativity seems to step in to prevent faster than light
communication. To see how this works, let’s go through the basic formalism. The
task at hand is that Alice wants to transmit an unknown quantum state to Bob. Let’s
denote the state that Alice wants to send Bob by |χ〉. The state is a qubit:

|χ〉 = α|0〉 + β|1〉 (10.1)

By saying the state is unknown, we are saying we don’t necessarily know what α and
β are. All we assume is that the state is normalized, so |α|2+ |β|2= 1. Teleportation
takes place in a series of steps. We begin by creating an entangled EPR pair.

Teleportation Step 1: Alice and Bob Share an Entangled Pair
of Particles

Alice and Bob create the entangled state

|β00〉 = |0A〉|0B〉 + |1A〉|1B〉√
2

= |00〉 + |11〉√
2

(10.2)

Here we’ve decided that the first member of the pair belongs to Alice and the second
member of the pair belongs to Bob. Now Alice and Bob physically separate. Alice
decides that she wants to send the state (10.1) to Bob. She can do it by letting it
interact with her member of the EPR pair in (10.2).

Teleportation Step 2: Alice Applies a CNOT Gate

Let’s begin by writing down the state of the entire system. It’s a product state of
the unknown state (10.1) and the EPR pair (10.2):

|ψ〉 = |χ〉 ⊗ |β00〉 = (α|0〉 + β|1〉)⊗
( |00〉 + |11〉√

2

)

= α(|000〉 + |011〉)+ β(|100〉 + |111〉)√
2

(10.3)
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The first two qubits in this state belong to Alice, while the third rightmost qubit
belongs to Bob. So |011〉 indicates that Alice has a 01 in her possession while Bob
has a 1.

Alice begins interacting her member of the EPR pair, which is the second qubit
in (10.3), with the unknown state—the first qubit in (10.3)—by applying a CNOT
gate. She uses the unknown state |χ〉 as the control qubit and her member of the
EPR pair as the target qubit. Remember, if the control qubit is 0, nothing happens;
if the control qubit is 1, the target qubit is flipped:

|00〉 �→ |00〉, |01〉 �→ |01〉, |10〉 �→ |11〉, |11〉 �→ |10〉 (10.4)

So, when Alice applies the CNOT gate to (10.3), the state becomes

|ψ ′〉 = UCNOT |ψ〉

= α(UCNOT |000〉 + UCNOT |011〉)+ β(UCNOT |100〉 + UCNOT |111〉)√
2

(10.5)

= α(|000〉 + |011〉)+ β(|110〉 + |101〉)√
2

Teleportation Step 3: Alice Applies a Hadamard Gate

Next Alice will apply a Hadamard gate to the first qubit. Remember, a Hadamard
gate acts on the computational basis states by turning them into superpositions:

H |0〉 = |0〉 + |1〉√
2

, H |1〉 = |0〉 − |1〉√
2

(10.6)

Let’s rewrite the state (10.5) a bit to make things a little clearer:

|ψ ′〉 = α|0〉(|00〉 + |11〉)√
2

+ β|1〉(|10〉 + |01〉)√
2

(10.7)

So Alice transforms the state into

|ψ ′′〉 = H |ψ ′〉 = αH |0〉(|00〉 + |11〉)√
2

+ βH |1〉(|10〉 + |01〉)√
2

= α

( |0〉 + |1〉√
2

)
(|00〉 + |11〉)√

2
+ β

( |0〉 − |1〉√
2

)
(|10〉 + |01〉)√

2

(10.8)

Remember, Bob is in possession of the third qubit.

Teleportation Step 4: Alice Measures Her Pair

The next step in the process is that Alice makes a measurement on both qubits in
her possession. First, let’s rewrite the state so that the state is written in terms of the
possible measurement results on the first two qubits. These possible measurement
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results are |00〉, | 01〉, | 10〉, and |11〉. So we can write (10.8) as

|ψ ′′〉 = 1

2
[|00〉(α|0〉 + β|1〉)+ |01〉(α|1〉 + β|0〉)+ |10〉(α|0〉

−β|1〉)+ |11〉(α|1〉 − β|0〉)] (10.9)

If Alice measures |00〉, then the state collapses and Bob has |χ〉=α|0〉+β|1〉—
the unknown state that Alice wanted to send Bob in the first place—in his possession.
Next, if Alice measures |01〉, then Bob has the state α|1〉+β|0〉 in his possession.
But he can transform this into the desired state with the application of an X gate:

X(α|1〉 + β|0〉) = αX|1〉 + βX|0〉 = α|0〉 + β|1〉 = |χ〉 (10.10)

Suppose that Alice measures |10〉. The state in Bob’s possession is then α|0〉−β|1〉.
He can turn it into the desired state using a Z gate:

Z(α|0〉 − β|1〉) = αZ|0〉 − βZ|1〉 = α|0〉 + β|1〉 = |χ〉 (10.11)

Now, if Alice measures |11〉, the state Bob has is α|1〉−β|0〉. This time Bob has to
apply two gates, and X and a Z

ZX(α|1〉 − β|0〉) = αZX|1〉 − βZX|0〉 = αZ|0〉 − βZ|1〉
= α|0〉 + β|1〉 = |χ〉 (10.12)

So how does Bob know what to do? The answer is Alice gives him a call.

Teleportation Step 5: Alice Contacts Bob on a Classical
Communications Channel and Tells Him Her Measurement Result

At this stage of the game special relativity surprisingly enters the game. Alice
has to somehow tell Bob her measurement result, and she has to do it using a
classical communications channel—a telephone, email message, radio wave, or
something—some mechanism governed by the speed of light limit. It’s this nec-
essary step that prevents Alice and Bob from faster than light communication. But
security is maintained—Alice just calls Bob and for instances, says she got 01, then
Bob applies his X gate to obtain the state Alice wanted to send to Bob. Nothing
about that state is communicated over the classical channel—Bob can obtain it
because they shared an entangled EPR pair of particles.

The lesson here is that quantum information based communication can be
characterized by two key aspects—local operations and classical communications
(LOCC). That is, each party has two tasks:

• Performs local quantum mechanical (local unitaries) operations on their res-
pective states.

• Uses classical communication to communicate measurement results.

If classical communications is not used, then the state will appear totally random
to Bob.
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THE PERES PARTIAL TRANSPOSITION CONDITION

Teleportation continues to be an active area of study. For us, we can use it as a
vehicle to learn more tools in the toolbox of the quantum information theorist. We
begin by considering the Peres partial transposition condition, which allows us to
determine whether or not a given density operator represents an entangled state. An
arbitrary density matrix can be written as

ρAB =
∑
i,j,k,l

ρijkl|i〉〈j | ⊗ |k〉〈l| (10.13)

The partial transposition of ρ is given by

ρ
TB

AB =
∑
i,j,k,l

ρjikl|i〉〈j | ⊗ |k〉〈l| (10.14)

More specifically, if we have a state

|ψ〉 = 1√
α

∑
i

|aibi〉 and ρAB = |ψ〉〈ψ |

that is,

ρAB = 1

α

∑
ij

|aibi〉〈ajbj | (10.15)

Then the partial transpose is given by

ρ
TB

AB =
1

α

∑
ij

|aibj 〉〈ajbi | (10.16)

So we just swap the second qubits. For example, if we are computing the partial
transpose of a density matrix,

|01〉〈00| �→ |00〉〈01|, |01〉〈10| �→ |00〉〈11|, |01〉〈01| �→ |01〉〈01|
Why is this useful? If ρT has any negative eigenvalues, then ρ is a density operator
of an entangled state. If the eigenvalues are all positive, then the state is separable.

Example 10.1

We know that the Bell state

|β01〉 = |01〉 + |10〉√
2

is entangled. Show this using the Peres partial transposition condition.
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Solution

The density operator is

ρ = |β01〉〈β01| =
( |01〉 + |10〉√

2

)( 〈01| + 〈10|√
2

)

= 1

2
(|01〉〈01| + |01〉〈10| + |10〉〈01| + |10〉〈10|)

In the |00〉, |01〉, |10〉, |11〉 basis the matrix representation of this density operator is

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0
1

2

1

2
0

0
1

2

1

2
0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The partial transpose is found by swapping the B qubits in each term. Hence

ρTB = 1

2
(|01〉〈01| + |00〉〈11| + |11〉〈00| + |10〉〈10|)

The matrix representation of the partial transpose is

ρTB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1

2

0
1

2
0 0

0 0
1

2
0

1

2
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The eigenvalues of ρTB are {−1
2 , 1

2 , 1
2 , 1

2 }. The presence of the negative eigenvalue −1
2 tells

us that this is an entangled state. Note that while the specific matrix representation of the
transposition ρTB is basis dependent, the eigenvalues of the matrix are basis independent.

Example 10.2

In this example we consider a state that is obviously separable

|ψ〉 =
( |0〉 − |1〉√

2

)
⊗
( |0〉 − |1〉√

2

)
= |00〉 − |01〉 − |10〉 + |11〉

2

Show that this is the case using the Peres partial transposition condition.
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Solution

The density operator is

ρ = |ψ〉〈ψ|

=
( |00〉 − |01〉 − |10〉 + |11〉

2

)( 〈00| − 〈01| − 〈10| + 〈11|
2

)

= 1

4
(|00〉〈00| − |00〉〈01| − |00〉〈10| + |00〉〈11| − |01〉〈00| + |01〉〈01| + |01〉〈10| − |01〉〈11|

−|10〉〈00| + |10〉〈01| + |10〉〈10| − |10〉〈11| + |11〉〈00| − |11〉〈01| − |11〉〈10| + |11〉〈11|)

The partial transpose is

ρTB = 1

4
(|00〉〈00| − |01〉〈00| − |00〉〈10| + |01〉〈10| − |00〉〈01| + |01〉〈01| + |00〉〈11| − |01〉〈11|

−|10〉〈00| + |11〉〈00| + |10〉〈10| − |11〉〈10| + |10〉〈01| − |11〉〈01| − |10〉〈11| + |11〉〈11|)

In this case the two operators happen to be the same. So

ρTB = 1

4

⎛
⎜⎜⎝

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎞
⎟⎟⎠

The eigenvalues of ρTB are {1, 0, 0, 0}. Since all λi≥ 0, the Peres partial transposition condition
shows that this is a separable state.

Returning to teleportation, it is possible for Alice to simultaneously transmit two unknown
quantum states to two parties, Bob and Charlie. Suppose that Alice wants to transmit the state

|φ1〉 = α1|0〉 + β1|1〉 (10.17)

to Bob and the state

|φ2〉 = α2|0〉 + β2|1〉 (10.18)

to Charlie. Alice must have two entangled pairs in her possession, sharing one EPR pair with
Bob and one EPR pair with Charlie:

|βA1B〉 =
|00〉A1B + |11〉A1B√

2
(10.19)

|βA2C〉 =
|00〉A2C + |11〉A2C√

2
(10.20)

The state of the joint system of Alice, Bob, and Charlie is

|ψ〉 = (α1α2|00〉 + α1β2|01〉 + α2β1|10〉 + β1β2|11〉)

⊗1

2
(|0000〉 + |0101〉 + |1010〉 + |1111〉)

(10.21)



232 APPLICATIONS OF ENTANGLEMENT: TELEPORTATION AND SUPERDENSE CODING

The four-qubit state in the second part of this expression is organized as |A1A2BC 〉 so that the
first and third qubits represent the entanglement between Alice and Bob and the second and
fourth qubits are the entanglement between Alice and Charlie.

To simultaneously teleport the states (10.17) and (10.18), the unitary transformation

UBC = 1√
2

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

⎞
⎟⎟⎠ (10.22)

is applied to Bob and Charlie’s qubits. This “locks” the quantum channel. The state (10.21) is
transformed into

|ψ ′〉 = (α1α2|00〉 + α1β2|01〉 + α2β1|10〉 + β1β2|11〉)

⊗ 1

2
√

2
(|0000〉 + |0101〉 + |0011〉 + |0110〉 + |1000〉

− |1011〉 + |1101〉 − |1110〉)

(10.23)

Next Alice measures her qubits using the Bell basis (7.27) through (7.30). Based on her result,
which she communicates with a classical channel, Bob and Charlie perform local unitary oper-
ations using the Pauli matrices I , X , Y , and Z . However, they do not yet have the states they
need. They need to “unlock” the quantum channel by applying the inverse of (10.22), namely

UBC
† = 1√

2

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0

⎞
⎟⎟⎠ (10.24)

Example 10.3

Show that the initial state shared between Alice and Bob (10.21) is entangled, but that the
state shared between Alice and Bob after the channel has been locked (10.23) is a product
state.

Solution

We begin by writing down the density matrix of the system prior to locking. We look at the
state

|ψ〉 = (α1α2|00〉 + α1β2|01〉 + α2β1|10〉 + β1β2|11〉)

⊗1

2
(|0000〉 + |0101〉 + |1010〉 + |1111〉)

We only need to concern ourselves with the second term:

|φ〉 = 1

2
(|0000〉 + |0101〉 + |1010〉 + |1111〉)
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The density operator is

ρ = |φ〉〈φ| = 1

4
(|0000〉〈0000| + |0000〉〈0101| + |0000〉〈1010| + |0000〉〈1111|

+ |0101〉〈0000| + |0101〉〈0101| + |0101〉〈1010| + |0101〉〈1111|
+ |1010〉〈0000| + |1010〉〈0101| + |1010〉〈1010| + |1010〉〈1111|
+ |1111〉〈0000| + |1111〉〈0101| + |1111〉〈1010| + |1111〉〈1111|)

To obtain the density operator to represent the joint state between Alice and Bob, we need
to compute the partial trace over the Alice–Charlie states. These are the second and fourth
qubits (A2, C ). So we compute

ρA1B = 〈00|ρ|00〉A2C + 〈01|ρ|01〉A2C + 〈10|ρ|10〉A2C + 〈11|ρ|11〉A2C

This gives the reduced density operator

ρA1B = 1

2
(|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|)

= 1

2

⎛
⎜⎜⎜⎜⎝

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞
⎟⎟⎟⎟⎠

Now we compute the partial transpose, which turns out to be

ρTB
A1B = 1

2
(|00〉〈00| + |01〉〈10| + |10〉〈01| + |11〉〈11|)

= 1

2

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

The eigenvalues of this matrix are { −1
2 , 1

2 , 1
2 , 1

2 }. Since one of the eigenvalues is −1
2 <0, we

have shown that Alice and Bob share an entangled state prior to locking.
The state after locking is given by (10.23). We are concerned with the second term in the

tensor product

|φL〉 = 1

2
√

2
(|0000〉 + |0101〉 + |0011〉 + |0110〉 + |1000〉 − |1011〉 + |1101〉 − |1110〉)

The density matrix this time is

ρL = |φL〉〈φL|

Needless to say, writing this matrix down is a tedious exercise. There are 64 terms in the
expansion, you will have to take my word for it. After tracing out over the Alice–Charlie terms
(tracing over the A2C qubits, which are the second and fourth qubits), we obtain the reduced
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density operator:

ρ′L =
1

4
(|00〉〈00| + |00〉〈10| + |01〉〈01| − |01〉〈11| + |10〉〈00|

+ |10〉〈10| − |11〉〈01| + |11〉〈11|) (10.25)

= 1

4

⎛
⎜⎜⎝

1 0 1 0
0 1 0 −1
1 0 1 0
0 −1 0 1

⎞
⎟⎟⎠

Its easy to see that the partial transpose gives the same matrix. The eigenvalues are { 1
2 , 1

2 , 0, 0}.
Since each λi≥ 0, we conclude that the state is separable. Therefore the locking operation has
destroyed the entanglement between Alice and Bob.

ENTANGLEMENT SWAPPING

In an interesting extension of teleportation, we can cause two particles that have
never interacted to become entangled. This is possible, in principle, even if the
particles are light years apart.

Entanglement swapping begins with two EPR pairs. We label the qubits 1, 2,
3, and 4. Alice has qubits 1 and 4 in her possession while Bob has qubits 2 and 3
in his possession. Qubits 1 and 2 are entangled in the Bell state

|β00〉12 = |00〉12 + |11〉12√
2

(10.26)

Similarly qubits 3 and 4 are entangled:

|β00〉34 = |00〉34 + |11〉34√
2

(10.27)

The product of these two states is

|β00〉12|β00〉34 =
( |00〉12 + |11〉12√

2

)( |00〉34 + |11〉34√
2

)

= 1

2
(|00〉12|00〉34 + |00〉12|11〉34 + |11〉12|00〉34 + |11〉12|11〉34)

Now let’s do some simple algebra. First we just rearrange the qubits in each
term so that we can write qubits 1 and 4 together and qubits 2 and 3 together:

|β00〉12|β00〉34 = 1

2
(|00〉14|00〉23 + |01〉14|01〉23 + |10〉14|10〉23 + |11〉12|11〉34)
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Notice that

|β00〉14|β00〉23 =
( |00〉14 + |11〉14√

2

)( |00〉23 + |11〉23√
2

)

= 1

2
(|00〉14|00〉23 + |00〉14|11〉23 + |11〉14|00〉23 + |11〉14|11〉23)

The product |β00〉12|β00〉34 is missing a few of these terms, but we can stick them
in there if we also subtract them, giving

|β00〉12|β00〉34 = 1

2
(|00〉14|00〉23 + |01〉14|01〉23 + |10〉14|10〉23 + |11〉12|11〉34

+ |00〉14|11〉23 + |11〉14|00〉23 − |00〉14|11〉23 − |11〉14|00〉23)

= 1

2
(|β00〉14|β00〉23 + |01〉14|01〉23 + |10〉14|10〉23

− |00〉14|11〉23 − |11〉14|00〉23)

Similar algebraic tricks on the other terms can be used to show that in the end

|β00〉12|β00〉34 = 1

2
(|β00〉14|β00〉23 + |β10〉14|β10〉23

+ |β01〉14|β01〉23 + |β11〉14|β11〉23)

Remember, Alice has particles 1 and 4 in her possession. Now Alice performs
a Bell state measurement on particles 1 and 4. The possible results are, of course,
|β00〉14, |β10〉14, |β01〉14, and |β11〉14, each with a probability of 1

4 . Depending on
the measurement result that Alice obtains, Bob’s system collapses into one of the
Bell state |β00〉23, |β10〉23, |β01〉23, or |β11〉23. Now particles 2 and 3 are entangled.

Let’s summarize the procedure. Alice and Bob create two entangled states.
Particles 1 and 2 are entangled together, and particles 3 and 4 are entangled together.
Alice has particles 1 and 4 in her possession, and Bob has particles 2 and 3 in his
possession. Bob carefully flies off to a distant land with his particles, and Alice does
a Bell state measurement on her particles. The state collapses and Bob’s particles
2 and 3 become entangled with each other. What is teleported here? Perhaps you
can say that the entanglement has been teleported. This procedure works even if
particles 2 and 3 have never interacted. To see the possible significance of this, add
a twist and say that Charlie takes particle 3 and goes off somewhere else before
the measurement is made. Alice does her Bell state measurement—now Bob and
Charlie share an entangled pair and can use it as a resource between the two of
them—so Bob can teleport a state to Charlie.
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SUPERDENSE CODING

Alice and Bob are once again living in separate places and Alice wants to send
Bob some information. This time Alice would like to send Bob two classical bits
of information, but she only has one single qubit to work with. She can accomplish
this amazing feat using a protocol known as superdense coding . Once again, we
begin with Alice and Bob sharing an entangled pair of particles. We also agree on
a code: we let the Bell states |βxy〉 correspond to the classical bit string xy , where
xy = 00, 01, 10, or 11. The system begins in the state

|ψ〉 = |00〉 + |11〉√
2

(10.28)

where Alice has the first qubit in her possession and Bob has the second qubit.
Alice transmits the information to Bob, this time by actually sending Bob her qubit.
Depending on what bit string Alice wants to send to Bob, she first acts on the
qubit with a single-qubit quantum gate of her choosing. If she wants to send Bob
the classical bit string 00, then Alice leaves her qubit alone. Then the state stays in
its initial state (10.28), which we denote as the Bell state

|β00〉 = |00〉 + |11〉√
2

(10.29)

What if Alice applied the X gate to her qubit before transmitting it? Then the
state would become

(X ⊗ I )|ψ〉 = |10〉 + |01〉√
2

= |β01〉 (10.30)

If Alice instead applies a Z gate to her qubit before sending it on over to Bob, the
state (10.28) becomes

(Z ⊗ I )|ψ〉 = |00〉 − |11〉√
2

= |β10〉 (10.31)

Finally, notice that if Alice applies the iY gate, the state is

(iY ⊗ I )|ψ〉 = |01〉 − |10〉√
2

= |β11〉 (10.32)

After Bob gets the qubit from Alice, he does a measurement in the Bell basis
and finds one of |β00〉, |β01〉, |β10〉, or |β11〉. So he obtains one of the classical
two-bit strings 00, 01, 10, or 11.
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Example 10.4

A W state is a three-qubit state of the form

|Wn〉 = 1√
2+ 2n

(|100〉 + √neiγ |010〉 + √n+ 1eiδ|001〉) (10.33)

Consider the particular case of |W1〉 = 1
2 (|100〉 + |010〉 + √2|001〉). Show that if Alice takes

qubit 1 and Bob takes qubits 2 and 3, Alice can perform a local unitary operation and send
Bob her qubit, which results in the transmission of two classical bits to Bob.

Solution

If Alice does nothing to her qubit, then when she sends Bob the first qubit he has the state

|W1〉 = 1

2
(|100〉 + |010〉 +

√
2|001〉) = |ψ00〉 (10.34)

in his possession. Now suppose that Alice applies the X gate. The state becomes

X ⊗ I ⊗ I |W1〉 = 1

2
(|000〉 + |110〉 +

√
2|101〉) = |ψ01〉 (10.35)

If instead Alice applies iY , we have

iY ⊗ I ⊗ I |W1〉 = 1

2
(−|100〉 + |010〉 +

√
2|001〉) = |ψ10〉 (10.36)

Finally, suppose Alice applies the Z gate, giving

Z ⊗ I ⊗ I |W1〉 = 1

2
(|000〉 − |110〉 −

√
2|101〉) = |ψ11〉 (10.37)

Notice that these states are orthogonal. For example,

〈ψ00|ψ01〉 = 1

4
(〈100| + 〈010| +

√
2〈001|)(|000〉 + |110〉 +

√
2|101〉)

= 1

4
(〈1|0〉〈0|0〉〈0|0〉 + 〈0|1〉〈1|1〉〈0|0〉 + 2〈0|1〉〈0|0〉〈1|1〉)

= 0

This means that after Alice sends Bob the first qubit, he can distinguish among the states by
making a three-qubit projective measurement. With the agreed-upon coding protocol, Bob can
recover the two classical bits 00, 01, 10, and 11 when he obtains the measurement result |ψ 00〉,
|ψ01〉, |ψ10〉, or |ψ11〉, respectively.
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EXERCISES

10.1. Suppose that Alice and Bob use the teleportation scheme but don’t use classical
communication. What does Bob see? Start with the state (10.9) and form the density
operator. Then trace out the first two qubits to obtain the density operator for Bob.
You should see that Bob sees a set of states that are all equally likely—so Bob sees
a completely random mixture.

10.2. Using the Peres partial transposition condition, determine whether or not the
state |ψ〉 = 1

2 (|00〉 + |01〉 + |10〉 − |11〉) is entangled.

10.3. Determine whether or not the state ρ = 1
5 (|01〉+|10〉)⊗ (〈01| + 〈10|)+ 1

5 |11〉
〈11| is entangled.

10.4. If you’re brave, derive (10.25) from (10.23).

10.5. Consider entanglement swapping and suppose that Alice and Bob share the
two EPR pairs |β10〉12|β00〉34. Alice does a Bell state measurement and measures
|β00〉14. Show that Bob’s two qubits have become entangled and that they are in the
state |β10〉23.

10.6. The GHZ state is the three-qubit state given by

|GHZ 〉 = |000〉 + |111〉√
2

.

Suppose that Alice takes the first qubit and Bob takes qubits 2 and 3. Show that this
scenario can be used for superdense coding.
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QUANTUM CRYPTOGRAPHY

Secure communication can be accomplished through key distribution, a method by
which two parties who want to communicate privately share a key that is used to
encrypt or scramble a message. Later the key can be used to recover or decrypt the
message. Currently cryptographic keys are generated using mathematical algorithms
that are hard but not impossible to break. In contrast, quantum cryptography is
a method of key distribution that relies on the laws of physics to create a key.
While not 100% safe, quantum cryptography offers huge advantages over traditional
methods.

Before we get into quantum cryptography, let’s look at a toy example to see
how messages can be encrypted. Suppose that two parties, denoted Alice and Bob
as usual, want to share a private message. A trivial way to encrypt the message is to
generate a key k that is just a number used to scramble up the message. We can add
k to each character in the message, for example, converting a useful message into a
scrambled bunch of meaningless characters. Let’s say that we are representing the
capital letters of the alphabet using a binary code. Since there are 26 letters in the
alphabet, and 25= 32, we need at least five bits to encode the alphabet using binary.
If we start with the first four letters A, B, C, D as 0, 1, 2, 3, then we can encode

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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the letters in the following way:

A → 0000

B → 0001

C → 0010

D → 0011

If we just transmitted our message over a public communications channel (e.g.,
over a cell phone), then an eavesdropper (commonly denoted as Eve) might just
tap into the line and record our conversation. So how can Alice and Bob secure the
message? A very simple way to secure the message is to create a key k that we add
to each character before it’s transmitted. Then the scrambled message is sent over
the public communications channel. When it reaches Bob, he subtracts k to decrypt
or recover the original message. If Eve doesn’t know the value of k , then Alice and
Bob get to share their private conversation. So, if the message is m Alice encrypts
it with the key k by creating the transmitted string t in the following way:

t = m+ k

To be specific, suppose that k = 3= 0011. We add this to each character in a
given message. So the strings above become

A → 0000 → 0011

B → 0001 → 0100

C → 0010 → 0101

D → 0011 → 0110

That is, A→D , B→E , C→F , D→G for our particular encoding scheme. If Alice
wants to transmit the word BAD to Bob, she encrypts it using the key and obtains

E D G

This string is transmitted over the public channel. Eve taps the line and gets the
meaningless string of characters EDG and has no idea what Alice is talking about.
Bob, on the other hand, knows that he can decrypt the signal by subtracting the key

m = t − k

Now, if we always use the same key, then Eve can study the situation over time
and eventually deduce what k is, or maybe someone will find out what it is while
talking to Alice or going through Bob’s hard drive. We can minimize the risk by
changing the key, maybe we change it every time we send a message, say. When
we regularly change the key we are using a one-time pad method.
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A BRIEF OVERVIEW OF RSA ENCRYPTION

Of course such a simplistic system is not used in the real world. More safeguards
are needed to ensure the security of our data, and one method that is very popular
is an encryption scheme called RSA. The basic idea behind RSA is to use two keys,
one that is public and one that is private. To decrypt a message you’ve got to have
the private key, and the security of the system is based on generating very large
numbers that are hard to factor. You would need to factor the numbers in order to
crack the system.

We begin by choosing two prime numbers, which we denote p and q . A prime
number is a natural number p that is divisible only by itself and by 1. For example,
some small prime numbers are

2, 3, 5, 7, 11, 19

The number 9 is not a prime number because it is divisible by 9, 3, 1 . The number
13 is a prime number because its only divisible by 13 and 1. In RSA encryption,
very large prime numbers p>10100 are used, making factoring very difficult, if not
impossible. It turns out that factoring products of very large prime numbers appears
to be so difficult, in principle (meaning that it doesn’t matter how fast or powerful a
computer we build), that it would take billions of years to factor them. But keep in
mind that this has not been proved, so it may be possible that someday an efficient
mathematical algorithm will be developed that could factor products of large prime
numbers on a classical computer. Regardless, Shor’s algorithm can factor prime
numbers readily on a quantum computer—so other cryptographic methods will
have to be used (quantum cryptography) to secure messages.

Let’s see how a simple RSA scheme might work. We begin with two large
prime numbers p and q and create their product, which we denote n:

n = pq (11.1)

Now we compute another product that some imaginative number theorists have
denoted the totient:

φ(n) = (p − 1)(q − 1) (11.2)

Next, let 1 < e <φ(n) such that the only common factor of e and φ(n) is 1. We
generate the public key using n and e. To create the private key, we use

d = 1 mod φ(n)

e
(11.3)

The private key consists of d and n . Notice that if we knew d , since we know e
(which is available on a public channel), we would be able to decrypt the message.
A quick aside for readers who aren’t familiar with the mod function. This is short
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for modulus , which is the remainder we get when we divide one number by another.
For example 7 divided by 5 is 1 with a remainder of 2

7÷ 5 = 1 R2

This is

7 mod 5 = 2

So the mod function just gives us the remainder of a division operation.
Returning to RSA encryption, a message m is encrypted in the following way:

c = me mod n (11.4)

The intended party has the private key d in their possession. They can decrypt the
message, since

cd = mde mod n (11.5)

Now it so happens that since n = pq ,

med = m mod p

med = m mod q

Some results from number theory tell us that this means that

cd = m mod n (11.6)

Example 11.1

Let’s see how the RSA system works, in principle, by working an example with some
very small numbers. Let p= 3, q = 11, and show how we would encrypt and decrypt a message
m = 6 using the RSA procedure outlined above.

Solution

First, we create the product

n = pq = (3)(11) = 33

Next, we create the totient

φ = (3− 1)(11− 1) = (2)(10) = 20
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Let e > 1 such that e and φ= 20 have no common factors except 1. The smallest number that
satisfies this criterion is e= 3. To find d , we use (11.3) and find the smallest x such that

de = 1+ xφ

where d is a natural number. In our case we have

d = 1+ 20x

3

The smallest value is x = 1, giving

d = 1+ 20

3
= 21

3
= 7

The encrypted message that is transmitted for m = 6 is

c = me mod n = 63 mod 33 = 18

(the mod function is best computed using your favorite program like MATLAB). Alice transmits
this signal to Bob, who holds the private key d = 7 in his possession. He decrypts the message
using

m = cd mod n = 187 mod 33 = 6

The RSA encryption algorithm works for many applications in the present day.
However, as we mentioned earlier, Shor’s algorithm demonstrates that a workable
quantum computer can easily crack an RSA encryption scheme, since n = pq can
be readily factored. Is there a better way to encrypt messages? It turns out that
quantum mechanics shows us several ways.

BASIC QUANTUM CRYPTOGRAPHY

Quantum cryptography is a method that uses quantum mechanics rather than sim-
ple numerical algorithms to generate a secret key. This is known as quantum key
distribution, or QKD . To implement QKD, two communications channels are used
between Alice and Bob. This includes an ordinary public channel, which is just
an ordinary classical communications link—it could be the Internet, a cell phone,
or your home telephone. Encrypted messages are sent over this line. In addition
a second piece of the QKD puzzle is used—a quantum communications channel
over which the quantum key is distributed. In practice, this is done using individual
photons in different polarization states. Quantum mechanics relies on a fundamental
principle of quantum theory—that measurement disturbs a quantum state. To learn
something about a key encoded as a quantum state, a measurement has to be made.
So if Eve taps into the line, she has to make measurements—disturbing the system
in such a way that Alice and Bob can detect her presence.
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The first type of quantum cryptography we will look at is called the BB84
protocol. It’s named after its discoverers (Bennett and Brassard) and the year when
the protocol was first published. There are three key principles used in BB84 QKD:

1. The no-cloning theorem–quantum states cannot be copied. As a result Eve
cannot tap a quantum communications channel, copy the quantum states used
to create the key for herself, and send the originals down the line to Bob.

2. Measurement leads to state collapse. A key aspect of QKD is that different
bases will be used to create a bit string. When we make measurements in
one of the given bases, we will cause state collapse such that measurements
in the other basis are completely random. In other words, extracting some
information about the state disturbs the state of the system.

3. Measurements are irreversible.

To see points 2 and 3, notice that if the system is in the state

|+〉 = |0〉 + |1〉√
2

We make a measurement in the computational basis {|0〉,|1〉}, and the original state
of the system is lost. Suppose we obtain measurement result 0. Then in the | ± 〉
basis the state is now different than it was originally:

|0〉 = |+〉 + |−〉√
2

There is only a 50% chance of finding | + 〉 if we measure in the | ± 〉 basis—the
state has been irreversibly altered.

In the BB84 protocol we use the computational basis {|0〉,|1〉} together with the
| ± 〉 basis to create our key. To review, these two bases are related using

|+〉 = |0〉 + |1〉√
2

, |−〉 = |0〉 − |1〉√
2

(11.7)

To create the key, Alice begins by randomly creating a string of 2n qubits. Each
qubit is created in one of the four states:

|0〉, |1〉, |+〉, |−〉

Logical 0 can be represented by |0〉, | + 〉, while logical 1 is represented by |1〉,
| − 〉. Alice then sends the random sequence of qubits over the quantum channel
to Bob. Bob measures each qubit, but he does so randomly selecting the {|0〉, |1〉}
basis or the | ± 〉 basis at each position.

We have two bases here, and Alice randomly selects what basis to use to create
each bit in the string. Based on ordinary probability arguments, you can see that
about n of the bits will be created in the {|0〉,|1〉} basis and n of the bits will be
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created in the | ± 〉 basis. Alice and Bob compare notes, only telling each other
which basis was used at each position. When Alice and Bob use a different basis,
they discard that qubit. We call the key that results after discarding the bits where
Alice and Bob used different bases the sifted key .

Example 11.2

Alice creates an 8-bit string

|0〉|1〉|+ 〉|0〉|0〉|−〉|+〉|−〉

If Bob randomly measures in the following order using the bases {|0〉,|1〉}{|0〉, |1〉}{| ± 〉|± 〉}|± 〉
|0〉,|1〉|± 〉|± 〉, describe the bit string that Alice and Bob keep.

Solution

We simply throw out the bits where Alice and Bob used a different basis, numbering the bits
from 1 to 8. We have the following table:

Alice 0 1 0 0 0 1 0 1
Bits
Alice {|0〉, |1〉} {|0〉, |1〉} |±〉 {|0〉, |1〉} {|0〉, |1〉} |±〉 |±〉 |±〉
Basis
Bob {|0〉, |1〉} {|0〉, |1〉} |±〉 |±〉 |±〉 {|0〉, |1〉} |±〉 |±〉
Basis
Match Yes Yes Yes No No No Yes Yes
Keep Yes Yes Yes No No No Yes Yes

The resulting bit string is created by keeping bits in positions 1, 2, 3, 7, 8 and discarding the
bits in positions 4, 5, 6. The sifted key is then

s = 01001

Once the sifted key is created, Alice and Bob need to check it for errors. Errors can occur
simply from the environment—causing bit flip and phase flip errors for example—or they
can occur because an eavesdropper has tapped the channel. If the error rate is too high, this
probably indicates Eve is listening in. In this case, Alice and Bob check the error rate, and
if it’s above an agreed-upon threshold, they discard the key and start over. In Example 11.2,
let’s suppose that Eve had made a measurement on bit 8. There is a 50% chance she selected
the computational basis to make her measurement and a 50% chance that she selected the | ± 〉
basis. Suppose that she selected the computational basis. Then

|−〉 = |0〉 − |1〉√
2



246 QUANTUM CRYPTOGRAPHY

When Eve makes her measurement, the qubit will be either in the |0〉 state or the |1〉 state.
Let’s say it’s |0〉. In the {1±〉} basis this can be written as:

|0〉 = |+〉 + |−〉√
2

Although Alice prepared the qubit in the | − 〉 state, when Bob makes his measurement,
there is only a 50% chance of seeing the correct result. If we include a large number of qubits
in our string, Alice and Bob can use this kind of behavior to deduce the presence of Eve. In
our example Alice knows she created the bit string

01001

But Bob has the bit string

01000

Noise on the quantum channel will also create errors. Quantum error correction can be used to
fix up those qubits.

AN EXAMPLE ATTACK: THE CONTROLLED NOT ATTACK

Suppose that Alice has the state

|+A〉 = |0A〉 + |1A〉√
2

Can Eve duplicate this state in any way? Let’s suppose that Eve wanted to make a
state that gave the same measurement result for both Alice and Eve. What Eve can
do is start with the state |0E〉 and create the product state

|+A〉 ⊗ |0E〉 = |0A〉|0E〉 + |1A〉|0E〉√
2

Now watch what happens if Eve applies a controlled NOT gate to the state,
using Alice’s qubit at the control bit and Eve’s qubit as the target. The state becomes

|0A〉|0E〉 + |1A〉|0E〉√
2

→
CN

|0A〉|0E〉 + |1A〉|1E〉√
2

If Alice measures 0, we’ve got 0 for Eve. If Alice gets 1, Eve has 1. What happens
if the measurement is made in the | ± 〉 basis? Then we have

|0A〉|0E〉 + |1A〉|1E〉√
2

= 1√
2

[( |+A〉 + |−A〉√
2

)( |+E〉 + |−E〉√
2

)

+
( |+A〉 − |−A〉√

2

)( |+E〉 − |−E〉√
2

)]
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= 1√
2

(
1

2

)
[|+A〉|+E〉 + |+A〉|−E〉 + |−A〉|+E〉 + |−A〉|−E〉

+ |+A〉|+E〉 − |+A〉|−E〉 − |−A〉|+E〉 + |−A〉|−E〉]

= 1√
2
(|+A〉|+E〉 + |−A〉|−E〉)

Interestingly the correlation between Alice and Eve has been maintained! Eve’s
qubit assumes the same value as Alice’s qubit in both bases. Suppose instead that
Alice has

|−A〉 = |0A〉 − |1A〉√
2

Does the correlation still hold? You can show that if we apply the same procedure,
we end up with the state

|ψ〉 = |+A〉|−E〉 + |−A〉|+E〉√
2

We see that Alice and Eve get opposite measurement results. But Eve doesn’t know
what state Alice had ahead of time—so her measurement results are meaningless.
Eve cannot, in general, form a product state with |0E〉 and apply a controlled NOT
gate to find out what Alice has.

THE B92 PROTOCOL

We now give an overview of an updated QKD protocol that is a simplification of
the BB84 protocol. This time Alice and Bob use two nonorthogonal bases. As usual,
we use the computational basis for one of the bases and a basis that we denote |0′〉,
|1′〉. The basic procedure is the following:

1. Bob measures the qubits, randomly selecting the computational basis or the
|0′〉,|1′〉 basis. Bob only measures using |0〉〈0| or |0′〉〈0′|.

2. Bob creates a key from the bit positions where he obtains |1〉 or |1′〉 as his
measurement result.

3. Bob uses a public channel to tell Alice what bit positions he has.

The way this works is that if Alice creates a |0〉, and Bob measures in the compu-
tational basis, he obtains |0〉. If he measures in the |0′〉, |1′〉 basis, he gets |1′〉.

If Alice creates a |0′〉, and Bob measures in the computational basis, he obtains
|0′〉. If he measures in the |0′〉, |1′〉 basis, he gets |1〉. Let’s say that Alice creates
the following 8 bit string:

|0〉|0〉|0′〉|0〉|0′〉|0′〉|0〉|0′〉
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If Bob measures using

|0〉|0′〉|0′〉|0〉|0〉|0〉|0′〉|0′〉

The result is

|0〉|1′〉|0′〉|0〉|1〉|1〉|1′〉|0′〉

Bob announces he is keeping positions 2, 5, 6, 7 for the key. Notice the differ-
ences when comparing this to the BB84 protocol. In BB84, Alice generates a key.
In this case, the key is generated when Bob obtains measurements results |1〉 or
|1′〉. Instead of the four states |0〉, |1〉, | + 〉, | − 〉 used to create the key, Alice only
uses the two states |0〉, |0′〉, a simplified procedure.

THE E91 PROTOCOL (EKERT)

The final method of quantum cryptography we will examine is due to Ekert and is
based on quantum entanglement. We create a Bell state, giving one member of the
EPR pair to Alice and the second member of the EPR pair to Bob. Suppose that
the state used for the EPR pair is

|β00〉 = |00〉 + |10〉√
2

Then we know that Alice and Bob will have measurement results that are completely
correlated. On the other hand, if the state used is

|β01〉 = |01〉 + |10〉√
2

then Alice and Bob will have measurement results that are perfectly anticorrelated.
Alice and Bob measure their respective qubits in randomly chosen bases. Then they
communicate over an ordinary channel and figure out on which bit positions they
used the same basis. They keep these bits to create the key.

Since the measurement results will be perfectly correlated or perfectly anticor-
related, it is easy for Alice and Bob to determine whether or not an eavesdropper is
present. Ordinary errors can be corrected using quantum error correction techniques.

In all cases of QKD, a refined key is created in a process known as privacy
amplification . Basically all this involves is throwing away qubits that Eve could
have attempted to measure. If the key originally had 20 bits say, and Eve knew
something about 6 of the bits, the refined key is created by simply throwing away
those 6 bits and leaving a 14-bit key.
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EXERCISES

11.1. Use the RSA algorithm with p= 3, q= 19, to encrypt and decrypt the message
m= 42.

11.2. Consider BB84 QKD. Alice creates an 8-bit string

|+〉|1〉|+〉|−〉|0〉|−〉|+〉|−〉

Use a coin to randomly determine what basis Bob uses to measure each bit position,
and describe the resulting bit string that Alice and Bob keep.

11.3. Beginning with the state

|−A〉 = |0A〉 − |1A〉√
2

let Alice form a product state with |0E〉. Show that after applying a controlled-NOT
gate, she obtains a correlation with Alice in the computational basis but not in the
| ± 〉basis.

11.4. Alice generates a bit string |0′〉|0〉|0〉|0〉|0〉|0′〉|0〉|0′〉. If Bob does measure-
ments |0′〉|0′〉|0〉|0〉|0〉|0〉|0〉|0′〉, what positions does he keep?
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QUANTUM NOISE AND ERROR
CORRECTION

In the treatment of quantum theory we’ve used so far we have been looking at
closed systems. These are quantum systems that do not interact with the outside
world. That is, an idealized model. In reality, quantum systems interact with the
outside environment. The problem if that interactions with the environment can
introduce noise and cause errors. To deal with this and construct, for example, real
quantum computers and communications systems, we are going to need some kind
of error correction.

Before we get there, we are going to have to develop a mathematical formalism
to describe quantum systems that interact with the environment. We refer to systems
of this type as open systems . Open quantum systems are important for the following
reason: in an open quantum system, a pure state can evolve into a mixed state. The
downside of this is that we need pure states to do quantum computation, and hence
this type of evolution into mixed states is undesirable. In this chapter we will
describe some of the formalism used to describe open quantum systems and then
discuss error correction techniques.

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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SINGLE-QUBIT ERRORS

At the most basic level, it can be said that the power of quantum information
processing comes from the fact that quantum states can exists in superpositions. To
review, this means that while a qubit could be in the state |0〉 or the state |1〉, it can
also be found in the state

|ψ〉 = α|0〉 + β|1〉 (12.1)

where α, β are complex constants that satisfy |α|2+ |β|2= 1. We have seen through-
out the book that the ability to work with superposition states (12.1) is what
gives quantum computers their power—quantum algorithms often begin by using
Hadamard gates to create superposition states to basically perform multiple eval-
uations simultaneously. Unfortunately, when a quantum system interacts with the
environment (we often say the system is coupled to the environment), superposition
can be lost. We call this process—whereby a pure state is turned into a mixed state
via interactions with the environment—decoherence and refer to states like (12.1)
where superposition is maintained as coherent states. The idea behind coherence is
that the amplitudes in (12.1) can interfere. To see this, we apply a Hadamard gate
to the qubit. Recall that

H |ψ〉 = αH |0〉 + βH |1〉
(12.2)

= α

( |0〉 + |1〉√
2

)
+ β

( |0〉 − |1〉√
2

)
=
(

α + β√
2

)
|0〉 +

(
α − β√

2

)
|1〉

Now, if the qubit is in the pure state

|ψ〉 = |0〉 + |1〉√
2

then

H |ψ〉 = |0〉 (12.3)

The amplitudes have interfered to take |ψ〉→|0〉. Similarly you can show that if

|ψ〉 = |0〉 − |1〉√
2

then application of a Hadamard gate will cause the amplitudes to interfere and
take |ψ〉→|1〉. What happens in the case of mixed states? If a state is mixed (an
incoherent mixture; see Chapter 5), the amplitudes cannot interfere. This is easy to
see by considering the completely mixed state ρ = 1

2 (|0〉〈0| + |1〉〈1|) = 1
2I . Since

H 2= I , we have HρH = 1
2HIH = 1

2H 2 = 1
2I . The amplitudes did not interfere

in this case.
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It turns out that we can describe the interaction of a single qubit with the
environment and hence single-qubit errors with the familiar operators I , X , Y , Z .
The identity operator, of course, represents no error at all. We can summarize the
effect of noise on a single qubit by saying that quantum noise acts on qubits via the
application of one of the operators I , X , Y , Z . Which operator is applied depends
on the state of the environment.

In the case of a classical bit, which can be 0 or 1, engineers are concerned
with bit flip errors. The physical details aren’t important for us, but we can imagine
some stray electromagnetic field causing a bit to change from 1 to 0, for example.
A similar type of error can affect qubits, where we have |0〉→|1〉 and |1〉→|0〉. This
type of error is described by the X operator, which can be written as

X = |0〉〈1| + |1〉〈0| (12.4)

We have already seen several times throughout the book that the application of
(12.4) to (12.1) takes the qubit to the state

|ψ〉 → α|1〉 + β|0〉 (12.5)

In quantum systems, bit flip errors are not the only problem that we can encounter.
We can also have phase flip errors. Let x∈{0, 1}. Then a phase flip error is one that
transforms a state |x〉 as

|x〉 → (−1)x |x〉 (12.6)

Looking at (12.6), we readily see that a phase flip error is described by the Z Pauli
operator. We recall that Z acts on a qubit in the following way:

Z|ψ〉 = α|0〉 − β|1〉 (12.7)

The Y operators is related to a phase flip followed by a bit flip. In particular,
we have− iY =− |0〉〈1| + |1〉〈0|, which acts on a qubit (12.1) as

−iY |ψ〉 = α|1〉 − β|0〉 (12.8)

As mentioned above, (12.8) can be decomposed into a sequence of two errors—a
phase flip (as described by Z ) followed by a bit flip (as described by X ). It’s easy
to verify that

−iY = XZ (12.9)

Later we will see how quantum error-correcting codes work on bit flip and phase
flip errors. Now let’s see how we can describe the evolution of a quantum
system.
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QUANTUM OPERATIONS AND KRAUSS OPERATORS

We now turn to a method of describing the dynamical evolution of a quantum system
that is quite general and lends itself to a description of the interaction between a
system of interest (the principal system) and the external environment. Suppose
that the principal system has a density operator ρ, and let �(ρ) be a mapping that
describes the evolution of the system. This mapping acts on density operators ρ,
transforming them to new density operators ρ ′:

ρ ′ = �(ρ) (12.10)

We call the mapping �(ρ) a quantum operation . We are already familiar with two
quantum operations—unitary (time) evolution of a closed system where

�(ρ) = UρU † (12.11)

and measurement

�(ρ) = MmρM†
m (12.12)

Now let’s imagine a more general case where we have a set of operators Ak

that aren’t necessarily unitary. In this case we write a general quantum operation
�(ρ)as

�(ρ) =
n∑

k=1

AkρA
†
k (12.13)

We say that (12.13) is the operator-sum representation of �(ρ). The Ak, which are
known as operation elements , can satisfy a completeness relation

n∑
k=1

AkA
†
k = I (12.14)

When
∑n

k=1 AkA
†
k = I , we say that the operation elements are trace-preserving .

Later we will see that we can also have non–trace-preserving operation elements,
in which case

∑n
k=1 AkA

†
k < I . When ρ is a density matrix and the operation

elements are trace-preserving, then �(ρ) is also a density matrix, meaning (12.10)
is satisfied.

The first item of business in deriving the operator sum representation of some
quantum operation is to calculate the Ak. In the following we will denote the density
operator of the principal system by ρ and the density operator of the environ-
ment by σ . Quantum computation (and closed system dynamics) evolves by unitary
operations—let’s say some unitary operation U . What we are imagining now is the
interaction of the principal system with the environment, during which the opera-
tion U is applied. After the interaction and application of U , we are interested in
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knowing the state of the principal system alone. We can do this by tracing out over
the environment. Hence

�(ρ) = T rE(U(ρ ⊗ σ)U †) (12.15)

We can calculate (12.15) in the following way: First we denote the basis states of the
environment by |ek〉 and assume that the environment is in the state σ = |e0〉〈e0|.
This assumption is justified because the environment can be “widened” until we
find it in a pure state. Continuing, we find that (12.15) becomes

�(ρ) = T rE(U(ρ ⊗ σ)U †) =
∑

k

〈ek|(Uρ ⊗ σU †)|ek〉
(12.16)

=
∑

k

〈ek|(Uρ ⊗ |e0〉〈e0|U †)|ek〉 =
∑

k

〈ek|U |e0〉ρ〈e0|U †|ek〉

Comparison with (12.13) tells us that the operation elements Ak are given by

Ak = 〈ek|U |e0〉 (12.17)

The operation elements Ak are also known as Kraus operators . Note that the Kraus
operators act on the principal system.

Example 12.1

Suppose that the principal system and the environment are given by single qubits. The state
of the principal system is |ψ〉=α|0〉+β|1〉 and the environment is in the state |0〉. A unitary
operation that describes measurement of principal system and discards the result is given by

U = P0 ⊗ I + P1 ⊗X

Here P0 = |0〉〈0| and P1 = |1〉〈1| are the usual projection operators. Find the Kraus operators
and write down the operator-sum representation as a matrix.

Solution

Since the environment is a single qubit, the basis for the environment is the computational
basis. For clarity, we will denote the basis states for the environment by {|0E〉, |1E〉}. The Kraus
operators are then found by calculating A0=〈0E|U |0E〉 and A1 =〈1E|U |0E〉. In the first case
we have
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A0 = 〈0E |U |0E〉 = 〈0E |P0 ⊗ I + P1 ⊗X|0E〉
= 〈0E |P0 ⊗ I |0E〉 + 〈0E |P1 ⊗X|0E〉
= P0〈0E |0E〉 + P1〈0E |1E〉 = P0

Notice that when doing calculations with terms like A ⊗ B , the operator A acts on states of the
principal system while B acts on states of the environment. Hence we just let A pass through
and only consider the action of B when deriving the Kraus operator.

Continuing, we have

A1 = 〈1E |U |0E〉 = 〈1E |P0 ⊗ I + P1 ⊗X|0E〉
= 〈1E |P0 ⊗ I |0E〉 + 〈1E |P1 ⊗X|0E〉
= P0〈1E |0E〉 + P1〈1E |1E〉 = P1

Since Pj = P
†
j , the operator-sum representation of this quantum operation is

�(ρ) = P0ρP0 + P1ρP1 = |0〉〈0|ρ|0〉〈0| + |1〉〈1|ρ|1〉〈1|

If |ψ〉=α|0〉+ β|1〉, the density operator for the system is

ρ = |ψ〉〈ψ| = (α|0〉 + β|1〉)(α∗〈0| + β∗〈1|)
= |α|2|0〉〈0| + αβ∗|0〉〈1| + α∗β|1〉〈0| + |β|2|1〉〈1|

Hence

ρ|0〉 = (|α|2|0〉〈0| + αβ∗|0〉〈1| + α∗β|1〉〈0| + |β|2|1〉〈1|)|0〉
= |α|2|0〉 + α∗β|1〉

and

ρ|1〉 = (|α|2|0〉〈0| + αβ∗|0〉〈1| + α∗β|1〉〈0| + |β|2|1〉〈1|) |1〉
= αβ∗|0〉 + |β|2|1〉

So we have

P0ρP0 = |0〉〈0|ρ|0〉〈0| = |0〉〈0| (|α|2|0〉 + α∗β|1〉) 〈0|
= |α|2|0〉〈0|

|1〉〈1|ρ|1〉〈1| = |1〉〈1| (αβ∗|0〉 + |β|2|1〉) 〈1|
= |β|2|1〉〈1|

The operator-sum representation is then

�(ρ) = |α|2|0〉〈0| + |β|2|1〉〈1|



QUANTUM OPERATIONS AND KRAUSS OPERATORS 257

Since

|0〉〈0| =
(

1
0

) (
1 0

) = (1 0
0 0

)
, |1〉〈1| =

(
0
1

) (
0 1

) = (0 0
0 1

)

the matrix representation is

�(ρ) =
(|α|2 0

0 |β|2
)

Hence this quantum operation describes the evolution of the system to

ρ =
(|α|2 αβ∗

α∗β |β|2
)
→ ρ′ =

(|α|2 0
0 |β|2

)

We can also consider more complicated interactions with the environment that are unde-
sirable. Suppose that the environment is itself in a superposition state |φE〉. In that case the
operation elements are given by

Ak = 〈ek |U |φE〉 (12.18)

We illustrate this with two examples.

Example 12.2

A qubit in the state |ψ〉=α|0〉+ β|1〉 interacts with an environment which is in the state

|φE〉 = |0E〉 + |1E〉√
2

The unitary operator that describes the coupling of the qubit to the environment is given by
U = e−iθ(ZP⊗ZE)/2, where Z P is the Pauli Z operator acting on the principal system and Z E

is the Pauli Z operator acting on the environment. Find the density operator of the principal
system after the interaction.

Solution

First we know that the density operator of the principal system starts off as

ρ = |α|2|0〉〈0| + αβ∗|0〉〈1| + α∗β|1〉〈0| + |β|2|1〉〈1|

To do this calculation, let’s review how to find e−iA|a〉 where |a〉 is an eigenvector of A.
If the eigenvectors of A have eigenvalues given by A|a〉= a|a〉, then

e−iA|a〉 = e−ia |a〉
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In the case of the Pauli Z operator, Z |0〉=+ |0〉 and Z |1〉=− |1〉. So

e−iθZ|0〉 = e−iθ |0〉, e−iθZ|1〉 = eiθ |1〉

The Kraus operators in this case are given by

A0 = 〈0E |U |φE〉, A1 = 〈1E |U |φE〉

Now

U |0E〉 = e−iθ(ZP⊗ZE)/2|0E〉 = e−iθZp/2|0E〉

U |1E〉 = e−iθ(ZP⊗ZE)/2|1E〉 = eiθZp/2|1E〉

Therefore

A0 = 〈0E |U |φE〉 = 〈0E |U
( |0E〉 + |1E〉√

2

)
= 〈0E |

(
e−iθ(ZP⊗ZE)/2|0E〉 + e−iθ(ZP⊗ZE)/2|1E〉

√
2

)

= 〈0E |
(

e−iθZP /2|0E〉 + eiθZP /2|1E〉√
2

)
= 1√

2
e−iθZP /2

and

A1 = 〈1E |U |φE〉 = 〈1E |U
( |0E〉 + |1E〉√

2

)
= 〈1E |

(
e−iθ(ZP⊗ZE)/2|0E〉 + e−iθ(ZP⊗ZE)/2|1E〉√

2

)

= 〈1E |
(

e−iθZP /2|0E〉 + eiθZP /2|1E〉√
2

)
= 1√

2
eiθZP /2

The operator-sum representation is

�(ρ) = A0ρA
†
0 +A1ρA

†
1

The first term is given by

A0ρA
†
0 =

1√
2
e−iθZp/2|α|2|0〉〈0| + αβ∗|0〉〈1| + α∗β|1〉〈0| + |β|2|1〉〈1| 1√

2
eiθZp/2

= 1

2

(
e−iθZp/2|α|2|0〉〈0|eiθZp/2 + e−iθZp/2αβ∗|0〉〈1|eiθZp/2

+e−iθZp/2α∗β|1〉〈0|eiθZp/2 + e−iθZp/2|β|2|1〉〈1|eiθZp/2)
= 1

2

(
e−iθ/2|α|2|0〉〈0|eiθ/2 + e−iθ/2αβ∗|0〉〈1|e−iθ/2

+eiθ/2α∗β|1〉〈0|eiθ/2 + eiθ/2|β|2|1〉〈1|e−iθ/2)
= 1

2

(|α|2|0〉〈0| + e−iθαβ∗|0〉〈1| + eiθα∗β|1〉〈0| + |β|2|1〉〈1|)
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And the other term is

A1ρA
†
1 =

1√
2
eiθZp/2|α|2|0〉〈0| + αβ∗|0〉〈1| + α∗β|1〉〈0| + |β|2|1〉〈1| 1√

2
e−iθZp/2

= 1

2

(
eiθZp/2|α|2|0〉〈0|e−iθZp/2 + eiθZp/2αβ∗|0〉〈1|e−iθZp/2 + eiθZp/2α∗β|1〉

〈0|e−iθZp/2 + eiθZp/2|β|2|1〉〈1|e−iθZp/2)
= 1

2

(
eiθ/2|α|2|0〉〈0|e−iθ/2 + eiθ/2αβ∗|0〉〈1|eiθ/2 + e−iθ/2α∗β|1〉

〈0|e−iθ/2 + e−iθ/2|β|2|1〉〈1|eiθ/2)
= 1

2

(|α|2|0〉〈0| + eiθαβ∗|0〉〈1| + e−iθ α∗β|1〉〈0| + |β|2|1〉〈1|)
Adding these two terms together, we see that

ρ′ = �(ρ) = (|α|2|0〉〈0| + cos θαβ∗|0〉〈1| + cos θα∗β|1〉〈0| + |β|2|1〉〈1|)

Example 12.3

Suppose U =C X, the controlled NOT operation. Find the Krauss operators and an expression
for �(ρ) if the environment is in the state |φE〉 =

√
1−p|0〉 + √p|1〉.

Solution

Recall that the controlled NOT gate acts on two qubits. If the control qubit is |0〉, then nothing
happens to the target qubit. On the other hand, if the control qubit is |1〉, then the target qubit is
flipped. We can write down an expression that will implement this operation in the following way:
If we write the composite state of the principal system and environment in the form |φE〉|ψP〉,
an operator A⊗B is one where A acts on the environment and B acts on the principal system.

In the first case, to do nothing to the target qubit, we apply the identity operator. To pick
out the case when the first qubit is |0〉, we use the projection operator onto this state as applied
to the first qubit. That is,

|0〉〈0| ⊗ I = P0 ⊗ I

will leave the second qubit alone if the first qubit is |0〉. In the second case, we can pick out
when the first qubit is |1〉 by again using a projection operator. This time to flip the bit, we
apply the X Pauli operator to the second qubit. The following will do the job

|1〉〈1| ⊗X = P1 ⊗X

The controlled NOT gate is implemented with the sum of these two operators:

CX = P0 ⊗ I + P1 ⊗X
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Remember, we just pass through operators that act on the principal system, The action of
C X on |φE〉 =

√
1−p|0〉 + √p|1〉 then is

CX|φE〉 = (P0 ⊗ I + P1 ⊗X)(
√

1− p|0〉 + √p|1〉)
= (
√

1− p|0〉〈0|0〉I +√p|1〉〈1|1〉X) =
√

1− p|0〉I +√p|1〉X

Hence the Kraus operators are

A0 = 〈0E |CX(
√

1− p|0E〉 + √p|1E〉) = 〈0E |(
√

1− p|0〉I +√p|1〉X) =
√

1− pI

A1 = 〈1E |CX(
√

1− p|0E〉 + √p|1E〉) = 〈1E |(
√

1− p|0〉I +√p|1〉X) = √
pX

Then the operator sum representation is

�(ρ) = A0ρA
†
0 + A1ρA

†
1 = (1− p)ρ + pXρX

If this operation represents noise in the system, it tells us the probability that nothing happens
to the state of the principal system is 1− p, while the probability of a bit flip error is p.

THE DEPOLARIZATION CHANNEL

Quantum noise is often described in terms of channels . The basic idea is that Alice
transmits a qubit to Bob. This is done through some communications channel with
noise or distortion.

Let’s extend the result in the last example to describe the following disagreeable
error: Imagine that there is a probability p that the principal system evolves into a
completely mixed state. That is,

ρ → 1

2
I =

⎛
⎜⎝

1

2
0

0
1

2

⎞
⎟⎠

with probability p. Suppose that the probability that there is no error, in other words,
that the system stays the same, is 1− p. This is known as the depolarization channel .
What are the Kraus operators that can be used for the operator-sum representation
of the depolarization channel? To leave the system alone with probability 1− p, we
just apply the identity operator:

A0 =
√

1− pI

To obtain the other Kraus operators, first recall that the density operator for a
single qubit can be written as

ρ = I + �n · �σ
2

(12.19)
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where �n = nxx̂ + nyŷ + nzẑ is a unit vector. Expanding out (12.19) obtains

ρ = 1

2
(I + nxX + nyY + nzZ)

Notice that

XρX = 1

2
(X2 + nxX

2X + nyXYX + nzXZX) = 1

2
(I + nxX − nyY − nzZ)

We also find that

YρY = 1

2

(
I − nxX + nyY − nzZ

)

ZρZ = 1

2

(
I − nxX − nyY + nzZ

)
Adding all three together, results in

XρX + YρY + ZρZ = 3

2
I

We are now in a position to write down the remaining Kraus operators. If
we take

A1 =
√

p

3
X, A2 =

√
p

3
Y, A3 =

√
p

3
Z

Hence

ρ ′ = �(ρ) = A0ρA0 + A1ρA1 + A2ρA2 + A3ρA3

= (1− p)ρ + p

3
XρX + p

3
YρY + p

3
ZρZ

= (1− p)ρ + p

3

(
3

2
I

)
= (1− p)ρ ++p

1

2
I

This is the result we need: there is a probability p that the system will evolve into
a completely mixed state and a probability 1− p that nothing happens to the
system.

THE BIT FLIP AND PHASE FLIP CHANNELS

Now suppose that the environment is in the state |φE〉= |0E〉 and that it inter-
acts with the system qubit via the Pauli X operator, where we take |φE〉|ψP〉 and
U = √

pI ⊗ I +√1−pX ⊗X. This operator acts on the state of the environment
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in the following way:

U |0E〉 = (
√

pI ⊗ I )|0E〉 + (
√

1− pX ⊗X)|0E〉 = √
p|0E〉I +

√
1− p|1E〉X

We can derive the Kraus operators

A0 = 〈0E |U |φE〉 = 〈0E |
(√

p|0E〉I +
√

1− p|1E〉X
)

(12.20)
= √

p〈0E |0E〉I +
√

1− p〈0E |1E〉X = √
pI

A1 = 〈1E |U |φE〉 = 〈1E |
(√

p|0E〉I +
√

1− p|1E〉X
)

(12.21)
= √

p〈1E |0E〉I +
√

1− p〈1E |1E〉X =
√

1− pX

which describe the following interaction: there is a probability p that nothing hap-
pens to the qubit, while there is a probability 1− p that there is a bit flip error. The
quantum operation is

�(ρ) = pρ + (1− p)XρX (12.22)

This quantum operation is called the bit flip channel . When there is a probability p
that nothing happens to the qubit, while there is a probability 1− p that there is a
phase flip error, we have

A0 = √
pI, A1 =

√
1− pZ (12.23)

and the quantum operation

�(ρ) = pρ + (1− p)ZρZ (12.24)

This is called the phase flip channel .

AMPLITUDE DAMPING

Real physical systems lose energy. When describing a quantum system undergoing
energy dissipation because of some type of interaction with the environment, we
apply a quantum operation known as amplitude damping .

Amplitude damping describes a decay process. The example we will use is an
atom decaying from an excited energy state |1A〉 to the ground state |0A〉. When an
atom decays, it emits a photon, so the environment goes from |0E〉→|1E〉. Suppose
that there is a probability p for the process |1A〉→|0A〉 to occur and a probability
1− p that the atom just stays in the state |1A〉. This quantum process can be described
by a unitary operator U that acts as follows:
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U |0A〉|0E〉 = |0A〉|0E〉 (12.25)

U |1A〉|0E〉 = √p|0A〉|1E〉 +
√

1− p|1A〉|0E〉 (12.26)

Equation (12.25) describes the situation where the atom and the environment are
both in the ground state—nothing happens. On the other hand, (12.26) describes
the decay of the atom and excitation of the environment with probability p together
with the atom remaining in the excited state with probability 1− p. We can use this
information to derive the Kraus operators for this damping process but first let’s
figure out what we can use for U .

Let’s introduce two new operators called the ladder operators σ±. The operator
σ+ takes the ground state to the excited state and gives zero when applied to the
excited state:

σ+|0〉 = |1〉, σ+|1〉 = 0 (12.27)

Sometimes this operator is called the raising operator . The operator σ− takes the
excited state to the ground state and eliminates or annihilates the ground state:

σ−|0〉 = 0, σ−|1〉 = |0〉 (12.28)

Following previous examples, we can build U by looking at (12.25) and (12.26)
and using projection operators that project onto the appropriate state of the atom.
In the first case, (12.25), we want to project onto the |0A〉 state while doing nothing
to the environment. We can do this with

|0A〉〈0A| ⊗ I (12.29)

Looking at (12.26), we have two situations. In the first case, we start with the
atom in the |1A〉 state and end in the |0A〉 state. This can be accomplished using
(12.28). Note that the lowering operator can be written as |1A〉〈0A|. On the other
hand, the environment goes from the ground state to the excited state, indicating
the need to use (12.27). This process occurs with probability p, so this piece of the
operator is

√
p (|1A〉〈0A|)⊗ (|0E〉〈1E |) = √

p σ− ⊗ σ+ (12.30)

Finally, with probability 1− p, the atom stays in the excited state and the environ-
ment stays in its initial state. This is described by√

1− p|1A〉〈1A| ⊗ I (12.31)

Putting (12.29), (12.30), and (12.31) together gives us the desired unitary operator
for this process:

U = |0A〉〈0A| ⊗ I +√p σ− ⊗ σ+ +
√

1− p|1A〉〈1A| ⊗ I (12.32)
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It acts on the initial state of the environment as follows:

U |0E〉 = |0A〉〈0A| ⊗ (I |0E〉)+√pσ− ⊗ (σ+|0E〉)
+
√

1− p|1A〉〈1A| ⊗ (I |0E〉) (12.33)

= |0A〉〈0A| ⊗ (|0E〉)+√pσ− ⊗ (|1E〉)+
√

1− p|1A〉〈1A| ⊗ (|0E〉)

So the first Kraus operator is

A0 = 〈0E |U |0E〉 = |0A〉〈0A| ⊗ (〈0E |0E〉)+√pσ− ⊗ (〈0E |1E〉)
+
√

1− p|1A〉〈1A| ⊗ (〈0E |0E〉) (12.34)

= |0A〉〈0A| +
√

1− p|1A〉〈1A|

In matrix form, using the {|0A〉, |1A〉} basis results in

A0 =
(

1 0
0

√
1− p

)
(12.35)

The other Kraus operator is

A1 = 〈1E |U |0E〉 = |0A〉〈0A| ⊗ (〈1E |0E〉)+√pσ− ⊗ (〈1E |1E〉)
+
√

1− p|1A〉〈1A| ⊗ (〈1E |0E〉) (12.36)

= √pσ− = √
p|0A〉〈1A|

The matrix representation is

A1 =
(

0
√

p

0 0

)
(12.37)

In the next example we consider amplitude damping of a harmonic oscil-
lator . For those not familiar with the harmonic oscillator of mass m , the total
energy is

E = p2

2m
+ 1

2
mω2x2 (12.38)

In quantum theory the harmonic oscillator is studied using the annihilation operator
a and creation operator a†, which are defined as

a = 1√
2

(√
mω

�
x + i

1√
m�ω

p

)
, a† = 1√

2

(√
mω

�
x + i

1√
m�ω

p

)
(12.39)
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These operators obey the commutation relation

[a, a†] = 1 (12.40)

Using (12.38), we can write the Hamiltonian as

H = a†a + 1

2
= N + 1

2
(12.41)

where we have introduced the number operator N = a†a . The eigenstates of the
number operator are

N |n〉 = n|n〉 (12.42)

In addition

a†|n〉 = √
n+ 1|n+ 1〉, a|n〉 = √

n|n− 1〉 (12.43)

The states |n〉= |0〉, |1〉, |2〉, . . . give the different energy levels of the system. Note
that a|0〉= 0. Therefore |0〉 is the lowest energy or ground state of the system.

The harmonic oscillator can be used to model modes of the electromagnetic
field, and to construct a quantum computer. In the next problem we consider a
quantum system a interacting with an environment r where both the system and
the environment are harmonic oscillators (for example, the environment could be a
heat reservoir). This is a more complicated example of amplitude damping.

Example 12.4

A quantum system given by a harmonic oscillator a interacts with the environment r , which
is also a harmonic oscillator. If the interaction between the system and the environment is
described by the Hamiltonian

H = a†r + r†a

find the Kraus operators.

Solution

First let’s set up some notation. Let the number states of the system be denoted by |n a〉 and
the states of the environment by |nr〉. We will calculate the Kraus operators Ak =〈kr|U |0r〉.
Note that since the states of the system range over all of the nonnegative integers, there will be
an infinity of Kraus operators A0, A1, A2, . . .. So our goal is to derive an expression that gives
the k th Kraus operator. Starting with the Hamiltonian H = (a †r + r†a), the interaction will be
described by the unitary operator U = exp(− iHt ).
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We will need several mathematical facts to derive what we need. First, note that for
operators A and G ,

eλGAe−λG =
∞∑

n=0

λn

n!
Cn (12.44)

where the C n are operators defined recursively with C0 = A, C1 = [G,C0], C2 = [G,C1],
and so on. We take G = a†r + r†a and λ=− it , and we have

C0 = r

C1 = [G, r] = [a†r + r†a, r] = a[r†, r] = −a

C2 = [G,C1] = −[a†r + r†a, a] = r[a, a†] = r

This allows us to write

UrU† =
∞∑

n=0

(−it)n

n!
Cn =

∞∑
n=0

(n even)

(−it)n

n!
r −

∞∑
n=1

(n odd)

(−it)n

n!
a

which is nothing other than

UrU† = r cos t + ia sin t (12.45)

A similar exercise shows that

UaU† = a cos t + ir sin t (12.46)

Now, since U †U =UU †= I , we can write

UrkU† = UrIrI . . . I rU† = UrU†UrU† · · ·UrU†UrU† = (UrU†)k (12.47)

Using (12.45) together with the binomial theorem, which tells us that

(x + y)n =
n∑

l=0

(
n

l

)
xlyn−l

we find that

(UrU†)k = (r cos t + ia sin t)k =
k∑

m=0

cosm t rm(i sin t)k−mak−m (12.48)

We are now in a position to derive the Kraus operators. The closure relation for the number
states of a harmonic oscillator (the principal system a in this case) is

I =
∞∑

m=0

|ma〉〈ma | (12.49)
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So we can write

Ak =
(∑

na

|na〉〈na |
)

Ak =
(∑

na

|na〉〈na |
)

Ak

(∑
na

|ma〉〈ma |
)

=
∑

na,ma

|na〉〈ma |〈na |Ak|ma〉

We use Ak =〈kr|U |0r〉 to rewrite this expression as

Ak =
∑

na,ma

|na〉〈ma |〈na |〈kr |U |0r 〉|ma〉 (12.50)

Now consider that

〈kr | = 〈0r | rk

√
k!

Using this expression together with (12.47), (12.48), and (12.50), we arrive at

Ak =
∑

na,ma

|na〉〈ma |〈na |〈kr |U |0r 〉|ma〉

=
∑

na,ma

|na〉〈ma |〈na |〈0r | rk

√
k!

U |0r 〉|ma〉

=
∑

na,ma

|na〉〈ma |〈na |〈0r |UU† rk

√
k!

U |0r 〉|ma〉

Since UrU †= r cos t + ia sin t , it follows that U †rU = r cos t − ia sin t . Therefore

Ak =
∑

na,ma

|na〉〈ma |〈na |〈0r |UU† rk

√
k!

U |0r 〉|ma〉

=
∑

na,ma

|na〉〈ma |〈na |〈0r |U (r cos t − ia sin t)k√
k!

|0r〉|ma〉

Referring the binomial theorem, we write

Ak =
∑

na,ma

|na〉〈ma|〈na |〈0r | U√
k!

(
k∑

l=0

(cos t)lr l(−i sin t)k−lak−l

)
|0r 〉|ma〉

Now we use the fact that r |0r〉= 0. Hence the only term in the sum that contributes is
when l = 0, and this becomes

Ak =
∑

na,ma

|na〉〈ma|〈na |〈0r | U√
k!

(−i sin t)kak|0r 〉|ma〉
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Let’s consider ak|ma〉. Some algebra gives

ak

√
k!
|ma〉 =

√
ma(ma − 1) . . . (ma − (k − 1))√

k!
|ma − k〉

=
√

ma(ma − 1) . . . (ma − (k − 1))√
k!

(√
(ma − k)!√
(ma − k)!

)
|ma − k〉

=
√

ma!

k!(ma − k)!
|ma − k〉 =

√(
ma

k

)
|ma − k〉

Putting this together with our previous result, we have

Ak =
∑

na,ma

√(
ma

k

)
(−i sin t)k〈na |〈0r |U |0r 〉|ma − k〉|na〉〈ma |

We can then repeat the process, this time applying UaU †= a cos t + ir sin t . First we have

〈na | = 〈0a| ana

√
na!

Hence

〈na |〈0r |U |0r 〉|ma − k〉 = 〈0a |〈0r | ana

√
na!

U |0r 〉|ma − k〉

= 〈0a |〈0r |UU† ana

√
na!

U |0r 〉|ma − k〉

= 〈0a |〈0r |U (a cos t − ir sin t)na

√
na!

|0r〉|ma − k〉

= 〈0a |〈0r |U 1√
na!

na∑
l=0

(cos t)na−lana−l (i sin t)lr l |0r 〉|ma − k〉

Once again, we have

r|0r 〉 = 0

So the only term in the sum that contributes is l = 0, and thus

〈0a|〈0r |U 1√
na!

na∑
l=0

(cos t)na−lana−l (i sin t)lr l |0r〉|ma − k〉

= 〈0a |〈0r |U 1√
na!

(cos t)na ana |0r 〉|ma − k〉

Next we use

ana

√
na!

|ma − k〉 =
√(

ma − k

na

)
|ma − k − na〉
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together with 〈0a|〈0r|U =〈0a|〈0r| to write

Ak =
∑

na,ma

√(
ma

k

)
(−i sin t)k〈na |〈0r |U |0r 〉|ma − k〉|na〉〈ma |

=
∑

na,ma

√(
ma

k

)
(−i sin t)k〈0a |〈0r |U 1√

na!
(cos t)na ana |0r 〉|ma − k〉|na〉〈ma |

=
∑

na,ma

√(
ma

k

)√(
ma − k

na

)
(−i sin t)k(cos t)na 〈0a |〈0r‖0r 〉|ma − k − na〉|na〉〈ma |

Since 〈0r|0r〉= 1, this is just

Ak =
∑

na,ma

√(
ma

k

)√(
ma − k

na

)
(−i sin t)k(cos t)na 〈0a‖ma − k − na〉|na〉〈ma |

Now we use the fact that

〈0a‖ma − k − na〉 = δ0,m−k−n

⇒ m− k − n = 0

Then we have n =m − k , and therefore

Ak =
∑
m

√(
m

k

)√(
m− k

m− k

)
(−i sin t)k(cos t)m−k|m− k〉〈m|

=
∑
m

√(
m

k

)
(−i sin t)k(cos t)m−k|m− k〉〈m|

Looking at the term |m − k〉, we see that the smallest term we can have is m − k = 0. The sum
becomes

Ak =
∞∑

m=k

√(
m

k

)
(−i)k(sin t)k(cos t)m−k|m− k〉〈m|

If we let γ = 1− cos2 t , then we obtain the final expression for the Kraus operators for the
interaction between two harmonic oscillators

Ak =
∞∑

m=k

√(
m

k

)
(−i)k

√
(sin t)2k

√
(cos t)2(m−k)|m− k〉〈m|

=
∞∑

m=k

√(
m

k

)
(−i)k

√
(1− cos2 t)k

√
(cos2 t)(m−k)|m− k〉〈m|

=
∞∑

m=k

√(
m

k

)
(−i)k

√
(1− γ )m−k

√
γ k|m− k〉〈m|

where |m − k〉 and 〈m| are states of the system (with annihilation operator a).
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PHASE DAMPING

Phase damping is a quantum process that involves information loss, but unlike
amplitude damping, it does not involve energy loss. Specifically phase damping
involves the loss of information about relative phases in a quantum state. During
phase damping the principal quantum system becomes entangled with the environ-
ment. Of course, this is undesirable if we are trying to use the quantum system to
perform quantum computing.

To illustrate phase damping, we consider a qubit with density matrix

ρ =
(

a b

c d

)
interacting with the environment, which can assume three states:

|0E〉, |1E〉, and |2E〉. We assume that the environment is initially in the state |0E〉.
A unitary operator U generates entanglement between the principal system and the
environment in the following way:

U |0〉|0E〉 =
√

1− p|0〉|0E〉 + √p|0〉|1E〉
U |1〉|0E〉 =

√
1− p|1〉|0E〉 + √p|1〉|2E〉

Since there are three states of the environment, we need three Kraus operators.
These are

A0 =
√

1− pI (12.51)

A1 = √
p|0〉〈0| (12.52)

A2 = √
p|1〉〈1| (12.53)

The quantum process is then

ρ ′ = �(ρ) = A0ρA
†
0 + A1ρA

†
1 + A2ρA

†
2 =

(
a (1− p)b

(1− p)c d

)
(12.54)

where we used the matrix representations of (12.51) through (12.53) together with

ρ =
(

a b

c d

)
as the original density matrix. If this operation is carried out n times,

then

ρ →
(

a (1− p)nb

(1− p)nc d

)

Now, if the probability p=��t and n = t /�t , we have

lim
�t→0

(1− p)n = lim
�t→0

(1− ��t)t/�t = e−�t
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So the density matrix becomes

ρ →
(

a e−�tb

e−�tc d

)
exponentially decays

→

(
a 0
0 d

)

The terms b and c go to zero, leaving only the terms along the diagonal. All
information about the relative phases in the original state of the principal system is
lost. This is phase damping.

Example 12.5

Consider a system–environment interaction that leaves the system unchanged and applies the
rotation gate

Ry(θ) =

⎛
⎜⎜⎝

cos
θ

2
− sin

θ

2

sin
θ

2
cos

θ

2

⎞
⎟⎟⎠

to the environment if the system is in the state |1〉. If the system is in the state |0〉, the
environment is unchanged. Let the initial state of the environment be |φE〉= |0E〉.

Solution

The interaction described in this example is a controlled-rotation gate, with the principal system
playing the role of the control qubit and the environment playing the role of the target qubit.
First note that

Ry(θ)|0E〉 =

⎛
⎜⎜⎝

cos
θ

2
− sin

θ

2

sin
θ

2
cos

θ

2

⎞
⎟⎟⎠
(

1
0

)
= cos

θ

2
|0E〉 + sin

θ

2
|1E〉

The unitary operator that will do what we need, taking the system as the first qubit and the
environment as the second qubit, is given by

U = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Ry(θ)

So we have

A0 = 〈0E |U |0E〉 = 〈0E |(|0〉〈0| ⊗ I + |1〉〈1| ⊗ Ry(θ))|0E〉

= |0〉〈0|〈0E|0E〉 + |1〉〈1|〈0E|
(

cos
θ

2
|0E〉 + sin

θ

2
|1E〉

)

= |0〉〈0| + cos
θ

2
|1〉〈1|
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Next we find that

A1 = 〈1E |U |0E〉 = 〈1E |(|0〉〈0| ⊗ I + |1〉〈1| ⊗ Ry(θ))|0E〉

= |0〉〈0|〈1E|0E〉 + |1〉〈1|〈1E|
(

cos
θ

2
|0E〉 + sin

θ

2
|1E〉

)

= sin
θ

2
|1〉〈1| = |0〉〈0| +

√
1− cos

θ

2
|1〉〈1|

If we define the probability p by p= cos θ /2, the matrix representations of these
operators are

A0 =
(

1 0
0

√
p

)
, A1 =

(
1 0
0

√
1− p

)

The quantum operation described here is an example of phase damping . Given an arbitrary
density matrix,

ρ =
(

a b

c d

)

the off-diagonal terms c, d are damped by this operation:

ρ′ = A0ρA
†
0 + A1ρA

†
1

=
(

1 0
0

√
p

)(
a b

c d

)(
1 0
0

√
p

)
+
(

1 0
0

√
1− p

)(
a b

c d

)(
1 0
0

√
1− p

)

=
(

a
√

pb√
pc pd

)
+
(

a
√

1− pb√
1− pc (1− p)d

)
=
(

a (
√

p +√1− p)b

(
√

p +√1− p)c d

)

Now we see why this is an example of phase damping. For the right value of cos θ /2, the
off-diagonal terms b and c will get vanishingly small. Applying the operation many times will
result in their vanishing completely from the resulting density matrix.

QUANTUM ERROR CORRECTION

So far we’ve seen that interaction with the environment can produce a lot of unde-
sirable effects on a qubit. To deal with this unavoidable fact, we need to develop
error correction techniques before we can construct a useful quantum computer. As
we will see later, quantum mechanics does not allow you to duplicate or copy an
unknown quantum state because of the no-cloning theorem. So we are going to have
to come up with more clever error correction schemes rather than simply making
multiple copies of our information—something we cannot do. Our first look into
error correction will involve a look at decoherence.

Decoherence is the loss of coherence in a quantum system due to interactions
with the external environment. Using qubits, we can model decoherence by the
introduction of a relative phase. Specifically |0〉→|0〉 and |1〉→eiθ |1〉. Therefore an
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arbitrary qubit |ψ〉=α|0〉+β|1〉 is transformed in the following way:

|ψ〉 → α|0〉 + eiθβ|1〉 (12.55)

For example, if

|ψ〉 = |0〉 + |1〉√
2

then the density matrix is transformed according to

ρ = 1

2

(
1 1
1 1

)
→ 1

2

(
1 e−iθ

eiθ 1

)

This type of model used for coherence is called collective dephasing . Clearly, such
transformations induced by the environment are not desirable. We can get around
this problem, however. First, the important thing to remember is that an overall
global phase (a phase that multiplies all terms in a superposition) has no effect on
the predictions of measurement results. A relative phase, that is, a phase that only
multiplies a single term in a superposition, does change predictions about possible
measurement results. Hence the introduction of a global phase is irrelevant, but the
introduction of a relative phase, what we have in (12.55), is problematic.

We can get around this problem with a little trick, a mapping to what is called
a decoherent free subspace. This is done by introducing logical qubits, which are
denoted by |0L〉,|1L〉. The qubits we have been using all along are physical qubits, so
they are the states of actual physical systems such as the energy levels in an atom or
the spin state of an electron. The two logical qubits are defined in the following way:

|0L〉 = |0〉|1〉 − i|1〉|0〉√
2

, |1L〉 = |0〉|1〉 + i|1〉|0〉√
2

(12.56)

Notice next what happens when we introduce decoherence using the collective
dephasing model:

|0L〉 → |0〉eiθ |1〉 − ieiθ |1〉|0〉√
2

= eiθ |0〉|1〉 − i|1〉|0〉√
2

= eiθ |0L〉

|1L〉 → |0〉eiθ |1〉 + ieiθ |1〉|0〉√
2

= eiθ |0〉|1〉 + i|1〉|0〉√
2

= eiθ |1L〉

Each logical qubit has been altered by an overall global phase eiθ . Now the best
part of this is that since each logical qubit is altered by the same global phase, an
arbitrary logical qubit is unchanged by decoherence

|ψL〉 = α|0L〉 + β|1L〉 → eiθα|0L〉 + eiθβ|1L〉 = eiθ |ψL〉

There is no change in the state whatsoever.
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In this chapter we have seen that there is a large class of errors that can
effect qubits—for example, bit flip and phase flip errors. While we have addressed
decoherence with the introduction of the decoherent free subspace, there are a
lot of problems that we have not dealt with. Error correction schemes known as
Calderbank-Shor-Steane, or CSS codes, have been developed to deal with bit flip
and phase flip errors. We will focus on one particular error correction scheme known
as Shor’s nine-bit code. This is based on a simple idea, to deal with errors that are
inevitable in the real world and make the system redundant. Like we did when
creating the decoherent free subspace, we will define logical qubits, but this time
the logical qubits consist of three physical qubits. The logical qubits are

|0L〉 = |000〉, |1L〉 = |111〉 (12.57)

Let’s consider an arbitrary logical qubit |ψ〉=α|0L〉+β|1L〉=α|000〉+β|111〉.
It is possible that nothing happens to the state—that is, there are no errors at all.
This operation is, of course, described by the application of the identity operator to
each physical qubit:

(I ⊗ I ⊗ I )|ψ〉 = α|000〉 + β|111〉

We can carry this procedure further and figure out how to represent bit flips and
phase flips.

Considering bit flips first, we suppose that we can flip the first qubit, the second
qubit, or the third qubit. Bit flips, as you recall, are represented by the application
of the Pauli operator X . Hence to flip the first qubit, we have

(X ⊗ I ⊗ I )|ψ〉 = α(X ⊗ I ⊗ I )|000〉 + β(X ⊗ I ⊗ I )|111〉 = α|100〉 + β|011〉

Similarly flipping the second and third qubits, we have

(I ⊗X ⊗ I )|ψ〉 = α(I ⊗X ⊗ I )|000〉 + β(I ⊗X ⊗ I )|111〉 = α|010〉 + β|101〉
(I ⊗ I ⊗X)|ψ〉 = α(I ⊗ I ⊗X)|000〉 + β(I ⊗ I ⊗X)|111〉 = α|001〉 + β|110〉

How do we correct for such errors? This can be done using a quantum circuit
that basically works in two steps:

• Figure out which error occurred.
• Use a unitary transformation to fix it.

By using the correct unitary operations, it turns out that we can do the first step with-
out in any way damaging the superposition of the logical qubit state. For example,
let’s suppose that the second qubit was flipped giving

α|010〉 + β|101〉
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To detect the error, we first form the product state

(α|010〉 + β|101〉)|00〉 = α|010〉|00〉 + β|101〉|00〉 (12.58)

We refer to the extra qubits as ancillary qubits. We pass the entire state through
a series of five controlled NOT gates, and then measure the ancillary qubits at the
end. The ancillary qubits will encode the position of the error for the first, second,
or third qubit as binary 01, 10, or 11. The result of the two ancillary bits is known
as the syndrome measurement .

Step One
Passing (12.58) through the first controlled NOT, we take the first qubit as the
control bit and the second ancillary qubit as the targe bit. The state becomes

α|010〉|00〉 + β|101〉|00〉 → α|010〉|00〉 + β|101〉|01〉 (12.59)

Step Two
Now we pass (12.59) through a controlled NOT, using the second qubit as the
control bit and the second ancillary bit as the target. The state becomes

α|010〉|00〉 + β|101〉|01〉 → α|010〉|01〉 + β|101〉|01〉 (12.60)

Step Three
This time the control qubit is the second qubit, while the target is the first ancillary:

α|010〉|01〉 + β|101〉|01〉 → α|010〉|11〉 + β|101〉|01〉 (12.61)

Step Four
Now we transform (12.61) by passing the state through yet another controlled-NOT
gate. This time the control bit is the third qubit, and the target is the first ancillary,
giving

α|010〉|11〉 + β|101〉|01〉 → α|010〉|11〉 + β|101〉|11〉 (12.62)

Step Five
Finally, we apply one more controlled NOT, using the first ancillary bit as the
control bit and the second ancillary bit as the target, giving

α|010〉|11〉 + β|101〉|11〉 → α|010〉|10〉 + β|101〉|10〉 (12.63)

The ancillary qubits are measured, giving 10. This tells us that the error is in
the second qubit. The superposition of the state has been maintained throughout
the procedure, since the qubits of our state were only used as control bits in the
controlled NOT gate.
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We can fix the error with an X gate, by applying it to the qubit which has been
flipped, giving

(I ⊗X ⊗ I )(α|010〉 + β|101〉) = α|000〉 + β|111〉

The original state has been recovered.
We can also detect single bit flips using the following projection operators:

P0 = |000〉〈000| + |111〉〈111|
P1 = |100〉〈100| + |011〉〈011|

(12.64)
P2 = |010〉〈010| + |101〉〈101|
P3 = |001〉〈001| + |110〉〈110|

Measurement of the four projection operators reveals where the error is and does
not alter the state. Suppose that a bit flip has occurred on the second qubit so that
|ψ〉=α|010〉+β|101〉. Its easy to see that

〈ψ |P0|ψ〉 = 0

〈ψ |P1|ψ〉 = 0
(12.65)

〈ψ |P2|ψ〉 = 1

〈ψ |P3|ψ〉 = 0

To correct phase flip errors, we can again use a three-qubit code to encode
logical states. This is done using the | ± 〉 basis instead of the computational basis.
We generate a logical qubit that takes α|0〉+β|111〉, and then apply Hadamard
gates to each qubit. The result is the state α| +++ 〉+β| −−− 〉. If the state has
been altered by a phase flip, say, on the second qubit, it will now be α| +−+ 〉+
β| −+− 〉. We can invert the process by applying Hadamard gates again, which
converts this to α|010〉+β|101〉. Now we can use the procedure developed in the
last section to recover the original qubit, α|000〉+β|111〉.

The price we pay is that we can’t correct bit flip errors in this case. To be
able to correct both types of errors, we need a modified approach, which is Shor’s
nine-bit code. We begin by defining two more states, that we will call the up and
down states:

| ↑〉 = |000〉 + |111〉√
2

, | ↓〉 = |000〉 − |111〉√
2

(12.66)

What the up and down states do is combine the bit flip error correction scheme
we described in detail with the phase flip correction scheme that uses the | ± 〉 basis.
A physical qubit α|0〉+ β|1〉 is encoded as

α|↑↑↑〉 + β|↓↓↓〉 (12.67)
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where we have defined the logical qubits

|0L〉 = |↑↑↑〉, |1L〉 = |↓↓↓〉 (12.68)

All together, there are 27 different errors that can occur with a bit flip or phase
flip on each of the nine physical qubits used to create the state (12.67). Notice the
effect of any single phase flip on the basis states (12.66) is the same. For example,
we can phase flip the second qubit, giving

I ⊗ Z ⊗ I | ↑〉 = |000〉 − |111〉√
2

= | ↓〉, I ⊗ Z ⊗ I | ↓〉 = |000〉 + |111〉√
2

= | ↑〉

The correction procedure is then just a generalization of the error correction
methods we’ve described so far. We can detect errors on single qubits by pro-
jecting onto the appropriate subspace and then applying the corresponding unitary
transformation to get back to the original state.

EXERCISES

12.1. Show that the matrix representation of CX=P0⊗I+P1⊗X is given by

CX =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

12.2. The environment is in the state

|φE〉 =
√

2

3
|0〉 + 1√

3
|1〉

What is the probability that there is a phase flip error on a principal system with
density matrix ρ?

12.3. Let �n = nxx̂ + nyŷ + nzẑ. Noting that we can write any density operator on
qubits as

ρ = I + �n · �σ
2

show that

XρX + YρY + ZρZ = 3

2
I
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12.4. Consider a system–environment interaction that leaves the system unchanged
and applies the rotation gate

Rz(θ) =
(

e−iθ/2 0
0 eiθ/2

)

to the environment if the system is in the state |1〉. If the system is in the state |0〉, the
environment is unchanged. Let the initial state of the environment be |φE〉= |0E〉.
12.5. Show that if the state of the environment is |0E〉 and U = √

pI ⊗ I +√
1−pX ⊗ Z, this is the phase flip channel (12.24).

12.6. Consider phase damping and derive (12.51) through (12.53).

12.7. Verify that if the third qubit in a logical state has been flipped so that the state
is α|001〉+ β|110〉, the algorithm described in (12.59) through (12.63) will reveal
that the third qubit is flipped by setting the ancillary bits to 11.

12.8. What result is returned for the ancillary bits in the bit flip correcting algorithm?
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TOOLS OF QUANTUM
INFORMATION THEORY

In this chapter we consider several important aspects of quantum information theory
that are important for a thorough understanding of quantum computers. First we
discuss the no-cloning theorem , which shows that you cannot make copies of an
unknown quantum state. After recognizing this fact, we see how to measure the
closeness of two states to each other. We will do this by looking at trace distance
and fidelity. We can characterize the amount of entanglement in a state by looking
at the concurrence, and we can determine the resources needed to create a given
entangled state by calculating the entanglement of formation.

We conclude the chapter by considering how to characterize the information
content in a state. This is done by calculating entropy .

THE NO-CLONING THEOREM

A routine task performed in information processing is making copies of data. We take
it for granted that we can make as many copies as we like of something—whether
it’s a word processing file or a bit of music. As we have seen, the remarkable power
of a quantum computer comes from the fact a qubit can exist in a superposition
|ψ〉=α|0〉+β|1〉. Given this fact, can we make an exact copy of an arbitrary qubit?

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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It turns out the answer is no. This result, which we state below, is known as the
no-cloning theorem, and it was derived by Wooters and Zurek in 1982.

Consider two pure states |ψ〉 and |φ〉, and suppose that there exists a unitary
operator U such that

U(|ψ〉 ⊗ |χ〉) = |ψ〉 ⊗ |ψ〉 (13.1)

U(|φ〉 ⊗ |χ〉) = |φ〉 ⊗ |φ〉 (13.2)

for some target state |χ〉. We take the inner product of the left-hand side of (13.1)
with the left-hand side of (13.2) and use the fact that U †U = I to get

(〈ψ | ⊗ 〈χ |U †)(U |φ〉 ⊗ |χ〉) = 〈ψ |φ〉〈χ |χ〉 = 〈ψ |φ〉 (13.3)

However, taking the inner product of the right-hand sides of (13.1) and (13.2) gives

(〈ψ |φ〉)2 (13.4)

Equating these two results gives us the equation

〈ψ |φ〉 = (〈ψ |φ〉)2 (13.5)

This equation can only be true in two cases—if 〈ψ |φ〉= 0, in which case the states
are orthogonal, or if |φ〉= |ψ〉. What this result means is that there is no unitary
operator U that can be used to clone arbitrary quantum states.

Here is a second proof, this time a simple proof by contradiction. In quantum
mechanics we use linear operators. If U is linear, then

U(α|ψ〉 ⊗ |χ〉) = α(U(|ψ〉 ⊗ |χ〉)) = α|ψ〉 ⊗ |ψ〉 (13.6)

However, we can let |ω〉=α|ψ〉 and then apply (13.1), giving

U(|ω〉 ⊗ |χ〉) = |ω〉 ⊗ |ω〉 = α|ψ〉 ⊗ α|ψ〉 = α2|ψ〉 ⊗ |ψ〉 (13.7)

Comparison of (13.6) and (13.7) gives a contradiction. Hence general cloning is
not possible. So a question we may ask, given that we can’t make a perfect copy
of a quantum state in general, is how close is one quantum state to another? Is it
possible to make imperfect copies?
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TRACE DISTANCE

Because we cannot, in principle, make an exact copy of an unknown quantum state,
the next question we might ask is, can we make an approximate copy? Before we
look into the answer, let’s see what tools are at our disposal that can be used to
determine how similar two states are.

The first measure we will consider is the trace distance. Let ρ and σ be two
density matrices. The trace distance δ(ρ, σ ) is defined to be

δ(ρ, σ ) = 1

2
T r|ρ − σ | (13.8)

Note that |ρ| =
√

ρ†ρ. Suppose that the states ρ and σ are equally likely and that
we want to do a measurement to distinguish between the two states. The average
probability of success is

Pr = 1

2
+ 1

2
δ(ρ, σ ) (13.9)

The trace distance acts like a metric on the Hilbert space. For example, the trace
distance is nonnegative

0 ≤ δ(ρ, σ ) (13.10)

with equality if and only if ρ= σ . The trace distance is symmetric,

δ(ρ, σ ) = δ(σ, ρ) (13.11)

and it satisfies the triangle inequality

δ(ρ, σ ) ≤ δ(ρ, ϑ)+ δ(ϑ, σ ) (13.12)

If ρ= |ψ〉〈ψ | is a pure state, then δ(ρ, σ ) is given by

δ(ρ, σ ) =
√

1− 〈ψ |σ |ψ〉 (13.13)

If ρ and σ commute, meaning [ρ, σ ]= 0, and they are both diagonal with respect
to some basis {|ui〉} such that the eigenvalues of ρ are r i and the eigenvalues of σ

are si, then

δ(ρ, σ ) = 1

2
T r

∣∣∣∣∣
∑

i

(ri − si)|ui〉〈ui |
∣∣∣∣∣ (13.14)
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Example 13.1

Compute the trace distance between

ρ = 3

4
|0〉〈0| + 1

4
|1〉〈1|

and each of

σ = 2

3
|0〉〈0| + 1

3
|1〉〈1|, π = 1

8
|0〉〈0| + 7

8
|1〉〈1|

Solution

Looking at each of these states. Intuitively you would expect that ρ and σ are closer together
than ρ and π , since π is more weighted toward |1〉. First we have

ρ − σ = 3

4
|0〉〈0| + 1

4
|1〉〈1| −

(
2

3
|0〉〈0| + 1

3
|1〉〈1|

)

= 1

12
|0〉〈0| − 1

12
|1〉〈1|

Let’s recall a couple of facts about the trace. It’s linear, meaning Tr(αA+βB )=αTr(A)
+βTr(B ). Second, the trace turns outer products into inner products, meaning T r(|ψ〉〈ψ|) =
〈ψ|ψ〉. So we can write

δ(ρ, σ ) = 1

2
T r|ρ − σ |

= 1

2
T r

∣∣∣∣ 1

12
|0〉〈0| − 1

12
|1〉〈1|

∣∣∣∣
= 1

2

(
1

12

)
(T r(|0〉〈0|)+ T r(|1〉〈1|)) = 1

2

(
1

12

)
(〈0|0〉 + 〈1|1〉)

= 1

2

(
1

12

)
(2) = 1

12

Now let’s see what the trace distance δ(ρ, π ) is. We have

ρ − π = 3

4
|0〉〈0| + 1

4
|1〉〈1| −

(
1

8
|0〉〈0| + 7

8
|1〉〈1|

)

= 5

8
(|0〉〈0| − |1〉〈1|)



TRACE DISTANCE 283

We find that

δ(ρ, π) = 1

2
T r|ρ − π |

= 1

2
T r

∣∣∣∣58 (|0〉〈0| − |1〉〈1|)
∣∣∣∣

= 1

2

(
5

8

)
(T r(|0〉〈0|)+ T r(|1〉〈1|)) = 1

2

(
5

8

)
(〈0|0〉 + 〈1|1〉)

= 1

2

(
5

8

)
(2) = 5

8

As expected, since ρ and σ are more heavily weighted toward |0〉, we have δ(ρ, π)〉δ(ρ, σ ).
This tells us the states ρ and σ are more similar than the states ρ and π are.

You Try It

Write down the matrix representations of ρ = 3
4 |0〉〈0| + 1

4 |1〉〈1|, σ = 2
3 |0〉〈0| + 1

3 |1〉〈1|, and
π = 1

8 |0〉〈0| + 7
8 |1〉〈1|, and calculate (13.8). Verify the result obtained in Example 13.1.

A simple way to calculate the trace distance is to use the eigenvalues of the
matrix ρ− σ . If we denote the eigenvalues by λi, then the trace distance is

δ(ρ, σ ) = 1

2

∑
i

|λi | = 1

2

∑
i

√
λ∗i λi (13.15)

If we know the Bloch vectors of each density matrix, then we can calculate the
trace distance easily. Suppose that �r is the Bloch vector of ρ and �s is the Bloch
vector of σ . Then the trace distance δ(ρ, σ ) can be calculated as

δ(ρ, σ ) = 1

2
|�r − �s| (13.16)

Example 13.2

Find the trace distance between the states

ρ =

⎛
⎜⎜⎝

5

8

i

4
−i

4

3

8

⎞
⎟⎟⎠ , σ =

⎛
⎜⎜⎝

2

5

−i

8
i

8

3

5

⎞
⎟⎟⎠
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Solution

Let’s do it using (13.8) first. We have

ρ − σ =

⎛
⎜⎜⎝

5

8

i

4
−i

4

3

8

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

2

5

−i

8
i

8

3

5

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

9

40

i3

8
−i3

8

−9

40

⎞
⎟⎟⎠

Now (ρ− σ )†=ρ− σ , so

(ρ − σ)†ρ − σ =

⎛
⎜⎜⎝

9

40

i3

8
−i3

8

−9

40

⎞
⎟⎟⎠
⎛
⎜⎜⎝

9

40

i3

8
−i3

8

−9

40

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

153

800
0

0
153

800

⎞
⎟⎟⎠

Next we find

|ρ − σ | =
√

(ρ − σ)†(ρ − σ) =

√√√√√√
⎛
⎜⎝

153

800
0

0
153

800

⎞
⎟⎠ = 1

20

⎛
⎜⎜⎝3

√
17

2
0

0 3

√
17

2

⎞
⎟⎟⎠

Hence

δ(ρ, σ ) = 1

2

(
1

20

)
(2)

(
3

√
17

2

)
≈ 0.437

The Bloch vector for ρ was found in Example 5.12:

Sx = T r(Xρ) = T r

⎡
⎢⎢⎣
⎛
⎝0 1

1 0

⎞
⎠
⎛
⎜⎜⎝

5

8

i

4
−i

4

3

8

⎞
⎟⎟⎠
⎤
⎥⎥⎦ = T r

⎛
⎜⎜⎝
−i

4

3

8
5

8

i

4

⎞
⎟⎟⎠ = 0

Sy = T r(Yρ) = T r

⎡
⎢⎢⎣
⎛
⎝0 −i

i 0

⎞
⎠
⎛
⎜⎜⎝

5

8

i

4
−i

4

3

8

⎞
⎟⎟⎠
⎤
⎥⎥⎦ = T r

⎛
⎜⎜⎝
−1

4

−i3

8
i5

8

−1

4

⎞
⎟⎟⎠ = −1

2

Sz = T r(Zρ) = T r

⎡
⎢⎢⎣
⎛
⎝1 0

0 −1

⎞
⎠
⎛
⎜⎜⎝

5

8

i

4
−i

4

3

8

⎞
⎟⎟⎠
⎤
⎥⎥⎦ = T r

⎛
⎜⎜⎝

5

8

i

4
i

4

−3

8

⎞
⎟⎟⎠ = 1

4
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�r = −1

2
ŷ + 1

4
ẑ

The Bloch vector for σ , which was calculated as Exercise 5.10, is

�s = 1

4
ŷ − 1

5
ẑ

Therefore

�r − �s = −3

4
ŷ + 9

20
ẑ

The magnitude of this vector is

|�r − �s| =
√(

−3

4

)2

+
(

9

20

)2

=
√

306

20

Hence

δ(ρ, σ ) = 1

2
|�r − �s| = 1

2

√
306

20
≈ 0.437

Example 13.3

A system is in the pure state

ρ = 3

4
|+〉〈+| + 1

4
|−〉〈−|

Find the trace distance between ρ and σ = |ψ〉〈ψ|, where

|ψ〉 = 1√
5
|0〉 + 2√

5
|1〉

Solution

Both density matrices need to be written with respect to the same basis. Let’s start by rewriting
ρ in terms of the computational basis. In Example 5.5 we found that

ρ = 3

4
|+〉〈+| + 1

4
|−〉〈−|

=
(

3

4

)(
1

2

)
(|0〉〈0|+|0〉〈1|+|1〉〈0| + |1〉〈1|)+

(
1

4

)(
1

2

)
((|0〉〈0|−|0〉〈1|−|1〉〈0| + |1〉〈1|))

= 1

2
|0〉〈0| + 1

4
|0〉〈1| + 1

4
|1〉〈0| + 1

2
|1〉〈1|
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The matrix representation of this density operator is

ρ = 1

4

(
2 1

1 2

)

Now for

|ψ〉 = 1√
5
|0〉 + 2√

5
|1〉

we found in Example 5.4 that

σ = |ψ〉〈ψ| =
(

1√
5
|0〉 + 2√

5
|1〉
)(

1√
5
〈0| + 2√

5
〈1|
)

= 1

5
|0〉〈0| + 2

5
|0〉〈1| + 2

5
|1〉〈0| + 4

5
|1〉〈1|

The matrix representation is

σ =

⎛
⎜⎜⎝

1

5

2

5
2

5

4

5

⎞
⎟⎟⎠

The matrix ρ− σ is given by

ρ − σ = 1

20

(
6 −3

−3 −6

)

This matrix has two eigenvalues, namely

λ1 = − 3

4
√

5
, λ2 = 3

4
√

5

Using (13.15), we find the trace distance to be

δ(ρ, σ ) = 1

2

∑
i

|λi | = 1

2

(∣∣∣∣− 3

4
√

5

∣∣∣∣+
∣∣∣∣ 3

4
√

5

∣∣∣∣
)
= 3

4
√

5

FIDELITY

Another measure that can be used to determine how close one state is to another is
based on the notion of the amount of statistical overlap between two distributions,
called the fidelity . Once again, let ρ and σ be two density operators. Then the
fidelity is given by

F(ρ, σ ) = T r

(√√
ρ σ

√
ρ

)
(13.17)
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In short, fidelity is a concept that comes from the inner product of two quantum
states. Let |ψ〉and |φ〉 be two states. The inner product |〈φ|ψ〉|2 gives the probability
of finding the system in the state |φ〉 if it is known to be in the state |ψ〉, and vice
versa. Hence this is a kind of measure of how similar the two states are or how
much overlap there is between them. Suppose that they are pure states and with
density operators ρ= |ψ〉〈ψ | and σ = |φ〉〈φ|. Since these are pure states, ρ2= ρ,
σ 2= σ , and hence ρ = √

ρ, σ = √
σ . Then

F(ρ, σ ) = T r

(√√
ρσ
√

ρ

)
= T r

√
(|ψ〉〈ψ |)(|φ〉〈φ|)(|ψ〉〈ψ |)

(13.18)

= T r
√

(|〈φ|ψ〉|2)(|ψ〉〈ψ |) = |〈φ|ψ〉|
√
〈ψ |ψ〉 = |〈φ|ψ〉|

From (13.18), a few general properties of fidelity can be seen. The first is that
fidelity is a number that ranges between 0 and 1,

0 ≤ F(ρ, σ ) ≤ 1 (13.19)

with unity if the states ρ and σ are the same state and 0 if there is no overlap
whatsoever. We can also see from (13.18) that the fidelity of two pure states is
symmetric. In fact this is true in general, that is,

F(ρ, σ ) = F(σ, ρ) (13.20)

The fidelity is futher invariant under unitary operations, that is,

F(UρU †, UσU †) = F(ρ, σ ) (13.21)

If ρ and σ commute and are hence diagonal in the same basis, which we denote by
|ui〉, then we can write the fidelity in terms of the eigenvalues of ρ and σ . Suppose
that ρ =∑ir i|ui〉〈ui| and σ =∑is i|ui〉〈ui|, then

F(ρ, σ ) =
∑

i

√
risi (13.22)

Example 13.4

Compute the fidelity between

ρ = 3

4
|0〉〈0| + 1

4
|1〉〈1|
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and each of

σ = 2

3
|0〉〈0| + 1

3
|1〉〈1|, π = 1

8
|0〉〈0| + 7

8
|1〉〈1|

Can the fidelity be calculated using (13.18) or (13.22)? Compare with Example 13.1.

Solution

First we compute

ρ2 =

⎛
⎜⎜⎝

3

4
0

0
1

4

⎞
⎟⎟⎠
⎛
⎜⎜⎝

3

4
0

0
1

4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

9

16
0

0
1

16

⎞
⎟⎟⎠

Since T r(ρ2) = 10/16 < 1, ρ is not a pure state. Similar calculations show that T r(σ 2) =
5/9 < 1 and T r(π 2) = 50/64 < 1, so σ and π are also mixed states and (13.18) does not
apply. However, since all three density operators are diagonal in the computational basis, we
can use (13.22). Notice that

ρσ =

⎛
⎜⎜⎝

3

4
0

0
1

4

⎞
⎟⎟⎠
⎛
⎜⎜⎝

2

3
0

0
1

3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1

2
0

0
1

12

⎞
⎟⎟⎠

σρ =

⎛
⎜⎜⎝

2

3
0

0
1

3

⎞
⎟⎟⎠
⎛
⎜⎜⎝

3

4
0

0
1

4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1

2
0

0
1

12

⎞
⎟⎟⎠

Therefore [ρ, σ ]= 0. Using (13.22), we find that the fidelity is

F(ρ, σ ) =
∑

i

√
risi =

√(
3

4

)(
2

3

)
+
√(

1

4

)(
1

3

)
= 1√

2
+ 1√

12
= 1+√6√

12
= 0.996

Since the fidelity is close to 1, this tells us that the two states are very similar—they have
a lot of overlap. In Example 13.1 we found that the trace distance between the states was 1/12,
a small number indicating that there is not much “distance” between the two states. Hence
states that are similar have a high fidelity and a small trace distance.

For the other state we find that

F(ρ, π) =
∑

i

√
risi =

√(
3

4

)(
1

8

)
+
√(

1

4

)(
7

8

)
=
√

3

32
+
√

7

32
=
√

3+√7√
32

= 0.774

The smaller fidelity indicates there is not nearly as much overlap between these two states as
there is in the first case. In Example 13.1 we found that the trace distance was 5/8. So a state
that is not as similar results in a smaller fidelity and a larger trace distance.
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Fidelity can be looked at as a transition probability. In other words, the probability that ρ

evolves into σ is
Pr(ρ → σ) = (F (ρ, σ ))2 (13.23)

Example 13.5

What is the probability that ρ evolves into each of the states σ and π in the previous example?

Solution

The probability that ρ evolves into σ is

Pr(ρ → σ) = (F (ρ, σ ))2 = (0.996)2 = 0.992

The probability that ρ evolves into π is

Pr(ρ → π) = (F (ρ, π))2 = (0.774)2 = 0.599

The Bures distance function is a distance measure between quantum states that makes use of
the fidelity. It is

d2
B(ρ, σ ) = 2(1− F(ρ, σ )) (13.24)

The Bures distance function or modified Bures metric is a distance measure between quantum
states that makes use of the fidelity. It is

d2
B(ρ, σ ) = 2(1− F(ρ, σ )) (13.25)

The Bures metric is given by

dB(ρ, σ ) = 2− 2
√

F(ρ, σ ) (13.26)

Example 13.6

Consider the states in Example 13.4 and show that the Bures distance between ρ and π is much
larger than the Bures distance between ρ and σ .

Solution

In the first case we find that

d2
B(ρ, σ ) = 2(1− F(ρ, σ )) = 2(1− 0.996) = 0.008
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For the other two states we have

d2
B(ρ, π) = 2(1− F(ρ, π)) = 2(1− 0.774) = 0.452

d2
B(ρ, π) � d2

B(ρ, σ ) once again indicating that ρ and σ are far more similar than ρ and π .
In practical cases of interest we often want to find the minimum fidelity for a

given channel. This is because we do not know the quantum state |ψ〉, so finding
the minimum fidelity gives us a worst-case analysis of a given quantum channel.

Example 13.7

On a certain quantum channel there is a probability p= 1/9 that there is a bit flip error. What
is the minimum fidelity of the bit flip channel in this case? Assume that system starts in some
pure state ρ= |ψ〉〈ψ|.

Solution

The bit flip channel was described in (12.22). Recall that there is a probability p that nothing
happens to the qubit, while there is a probability 1− p that there is a bit flip error. The quantum
operation is

ρ′ = �(ρ) = pρ + (1− p)XρX

The fidelity between this state and ρ= |ψ〉〈ψ| is given by

F(ρ, ρ′) = F(ρ′, ρ) = T r(

√√
ρ′ρ
√

ρ′) = tr

√√
ρ′(|ψ〉〈ψ|)

√
ρ′

=
√
〈ψ|
√

ρ′
√

ρ′|ψ〉 =
√
〈ψ|ρ′|ψ〉

Using (12.22) simplifies the fidelity to

F(ρ′, ρ) =
√
〈ψ|(pρ + (1− p)XρX)|ψ〉 =

√
〈ψ|(p|ψ〉〈ψ| + (1− p)X|ψ〉〈ψ|X)|ψ〉

=
√

p + (1− p)〈ψ|X|ψ〉〈ψ|X|ψ〉
=
√

p + (1− p)〈ψ|X|ψ〉2

Now we want to find the state where F is a minimum, which gives the worst-case scenario.
Since it is always the case that 0 ≤ p ≤ 1, it follows that1− p ≥ 0 and F will assume the
smallest value when (1− p)〈ψ|X |ψ〉2 = 0. So we need to find the state for which 〈ψ|X |ψ〉= 0.
Notice that if

|ψ〉 = |0〉 + i|1〉√
2
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Then

〈ψ|X|ψ〉 =
( 〈0| − i〈1|√

2

)
X

( |0〉 + i|1〉√
2

)
=
( 〈0| − i〈1|√

2

)( |1〉 + i|0〉√
2

)

= i〈0 | 0〉 − i〈1 | 1〉
2

= 0

Let’s verify that |ψ〉 is a pure state. We find that

ρ = |ψ〉〈ψ| = 1

2

(
1 −i

i 1

)

⇒ ρ2 = 1

4

(
2 −2i

2i 2

)

So we have T r(ρ2) = 1
4 (2+ 2) = 1, and this is a pure state. So the minimum fidelity occurs

when 〈ψ|X |ψ〉 = 0, in which case

F(ρ, ρ′) = √
p

For the case where p= 1/9 the minimum fidelity is Fmin =
√

1/9 ≈ 0.33.

ENTANGLEMENT OF FORMATION AND CONCURRENCE

Here we return to the examination of entangled states of two qubits. Two questions
we can ask are how much entanglement does a state have, and second, what is the
cost of creating a given entangled state? One way to characterize entanglement is
by calculating the concurrence. To characterize the resources required to create a
given entangled state, we can calculate the entanglement of formation.

First let’s consider the concurrence. Basically this is just the amount of overlap
between a state |ψ〉 and a state |ψ〉:

C(ψ) = |〈ψ |ψ̃〉| (13.27)

where |ψ〉=Y⊗Y |ψ*〉 and ψ* is the complex conjugate of the state. The concur-
rence can also be calculated using the density operator by considering the quantity
given by ρ (Y⊗Y )ρ†(Y⊗Y ).

Example 13.8

Concurrence can be a measure of entanglement. Consider the product state

|ψ〉 = |0〉 ⊗ |1〉

and show that the concurrence is zero.
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Solution

We have
|ψ̃〉 = Y ⊗ Y |ψ〉 = Y |0〉 ⊗ Y |1〉 = −i|1〉 ⊗ i|0〉 = |1〉 ⊗ |0〉

So we have
〈ψ̃ |ψ〉 = (〈1| ⊗ 〈0|)(|0〉 ⊗ |1〉) = 〈1|0〉〈0|1〉 = 0

So the concurrence is zero. We can also see the concurrence vanishes by using the matrix
representations of the operators. First, we have

Y ⊗ Y =
(

0 −iY

iY 0

)
=

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠

The density operator for this state is

ρ = |01〉〈01| =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

Hence

ρ(Y ⊗ Y)ρ†(Y ⊗ Y)

=

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

We can find the concurrence by looking at the eigenvalues of the resulting matrix. The eigen-
values of this matrix all vanish, hence the concurrence is zero.

A second way to define concurrence is to look at the eigenvalues of the matrix

R =
√√

ρρ̃
√

ρ (13.28)

which are denoted by λ1, λ2, λ3, λ4. The concurrence is

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (13.29)
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where λ1 ≥ λ2 ≥ λ3 ≥ λ4. In the next two examples we consider the concurrence
of entangled states.

Example 13.9

Find the concurrence of

|S〉 = |01〉 − |10〉√
2

Solution

Again, note that

Y ⊗ Y =
(

0 −iY

iY 0

)
=

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠

The density operator is

ρ = |S〉〈S| =
( |01〉 − |10〉√

2

)( 〈01| − 〈10|√
2

)

= 1

2
(|01〉〈01| − |01〉〈10| − |10〉〈01| + |10〉〈10|)

The matrix representation is

ρ = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞
⎟⎟⎠

So we have

ρ(Y ⊗ Y )ρ†(Y ⊗ Y)

= 1

4

⎛
⎜⎜⎝

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠

= 1

4

⎛
⎜⎜⎝

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

⎞
⎟⎟⎠

= 1

2

⎛
⎜⎜⎝

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞
⎟⎟⎠
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The eigenvalues of this matrix are

λ1 = 1, λ2 = λ3 = λ4 = 0

Using (13.29), we find the concurrence to be

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} = max{0, 1} = 1

Example 13.10

Find the concurrence of

|ψ〉 = |00〉 + |11〉√
2

Solution

The density operator in this case is

ρ = |ψ〉〈ψ| = 1

2
(|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|)

= 1

2

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠

Therefore

ρ(Y ⊗ Y)ρ†(Y ⊗ Y)

= 1

4

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠

= 1

4

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝
−1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 −1

⎞
⎟⎟⎠

= 1

2

⎛
⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠

The eigenvalues are {1, 0, 0, 0}, and hence the concurrence is 1.
In the next section we will see that we can write the Shannon entropy as

h(p) = −p log2 p − (1− p) log2(1− p) (13.30)
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The entanglement of formation is defined in terms of the concurrence as

E(ρ) = h

(
1+

√
1− C(ρ)2

2

)
(13.31)

This is a mathematical characterization of the resources required to create an entan-
gled state.

Example 13.11

Find the entanglement of formation for the Werner state

ρ = 5

6
|φ+〉〈φ+| + 1

24
I4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11

24
0 0

5

12

0
1

24
0 0

0 0
1

24
0

5

12
0 0

11

24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For ρ (Y⊗Y )ρ†(Y⊗Y ).

Solution

First we have

ρ(Y ⊗ Y )ρ†(Y ⊗ Y) ⇒ ρ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

221

576
0 0

55

144

0
1

576
0 0

0 0
1

576
0

55

144
0 0

221

576

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The eigenvalues of this matrix are

λi =
{

49

64
,

1

576
,

1

576
,

1

576

}

From (13.29) the concurrence is

C(ρ) = 0.76
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From (13.31) the entanglement of formation is

E(ρ) = −1+
√

1− C(ρ)2

2
log2

1+
√

1− C(ρ)2

2
− 1−

√
1− C(ρ)2

2
log2

1−
√

1− C(ρ)2

2

= 0.67

You Try It

Show that the entanglement of formation for the case considered in Example 13.9 is 1 and the
entanglement of formation for the case in Example 13.10 is also 1.

INFORMATION CONTENT AND ENTROPY

Entropy is a way to quantify the information content in a signal. Specifically, suppose
that there exists a random variable X . Entropy tells us the amount of ignorance we
have about the random variable X prior to measurement. Or put another way, entropy
provides the answer on how much information we will gain when we measure X .

We define entropy by using the probabilities that each possible outcome occurs.
Suppose that pj is the probability of the j th outcome where there are n total possible
outcomes. The Shannon entropy H is given by

H = −
n∑

j=1

pj log2 pj (13.32)

An example of an entropy function is shown in Figure 13.1, where we have a plot
of the binary entropy function H 2(x )=− x logx − (1− x )log(1− x ). In the plot it
is clear that entropy is a concave function. This means that for 0≤λ≤ 1,

λH(p)+ (1− λ)H(q) ≤ H(λp + (1− λ)q) (13.33)

The maximum entropy occurs for the case where we have the least amount of
knowledge. In the case of discrete probabilities pj, we have the least amount of
knowledge about the outcome of a measurement when each of the possible out-
comes is equally likely. That is, with n possible outcomes, each of the probabilities
is given by

pj = 1

n

A simple example is the binary entropy function. There are two possible out-
comes.We first suppose that both are equally likely so that x = 1/2. Then we have

−x log x − (1− x) log(1− x) = 1
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0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1
H2 (x)

Figure 13.1 The binary entropy function

(note we are using base 2 logarithms). Now suppose that one outcome is substantially
more likely. For example, if x = 0.2, the probability of finding the alternative is
1− x = 0.8. This is a situation where we have more knowledge about the state prior
to measurement because one alternative is far more likely than the other. In this
case

−x log x − (1− x) log(1− x) = 0.72

If x = 0.05, meaning that there is a 95% chance of seeing the alternative, then

−x log x − (1− x) log(1− x) = 0.29

So, if we are completely uncertain as to what outcome will occur—meaning
all possible outcomes are equally likely—then with two possible outcomes

H(x) = 1

This case represents maximum entropy. For all other cases

H(x) < 1

The general rule is that the larger the entropy, the more ignorance you have about
the outcome.

Now suppose that there are two random variables, X and Y . If the probability
that we find result X = x i and Y = yi is p(x , y), then the joint Shannon entropy is

H(X, Y ) = −
∑
x,y

p(x, y) log(p(x, y)) (13.34)

The following inequality called subadditivity is obeyed in general:

H(X, Y ) ≤ H(X)+H(Y ) (13.35)
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Equality holds in (13.35) if the distributions X and Y are independent. The condi-
tional entropy for X given Y is

H(X|Y ) = H(X, Y )−H(Y ) (13.36)

To determine the amount of entropy in a quantum state, we seek an analogue
to the Shannon entropy. This is done by using density operators instead of elements
of the probability distribution as in (13.32). The entropy of a quantum state with
density operator ρ is called the Von Neumann entropy and is given by

S(ρ) = −T r(ρ log2 ρ) (13.37)

The relative Von Neumann entropy of states ρ and σ is

S(ρ||σ) = T r(ρ log ρ)− T r(ρ log σ) (13.38)

Note that S(ρ||σ) ≥ 0 with equality if and only if ρ= σ .
Suppose that the eigenvalues of the density operator ρ are given by λi. We can

write the Von Neumann entropy in terms of the eigenvalues as

S(ρ) = −
∑

i

λi log2 λi (13.39)

Example 13.12

The maximally mixed state for a qubit is

ρ =

⎛
⎜⎝

1

2
0

0
1

2

⎞
⎟⎠

What is the Von Neumann entropy for this state?

Solution

The eigenvalues are

{λ1, λ2} =
{

1

2
,

1

2

}

Using (13.39), we find the entropy to be

S(ρ) = −
∑

i

λi log2 λi = −1

2
log2

(
1

2

)
− 1

2
log2

(
1

2

)
= − log2

(
1

2

)
= log2 2 = 1
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In general, if a quantum system is in a Hilbert space of dimension n, the completely mixed
state has entropy

log2 n (13.40)

Example 13.13

Find the entropy of the two states

ρ =

⎛
⎜⎝

3

4
0

0
1

4

⎞
⎟⎠ , σ =

⎛
⎜⎝

9

10
0

0
1

10

⎞
⎟⎠

Solution

Let’s look at the two states. We might guess that ρ has higher entropy because we have a little
less information about the possible outcomes. Using the eigenvalues of ρ together with (13.39),
we see that the entropy is

S(ρ) = −3

4
log2

(
3

4

)
− 1

4
log2

(
1

4

)
= 0.81

For σ we find that

S(σ) = − 9

10
log2

(
9

10

)
− 1

10
log2

(
1

10

)
= 0.47

Our intuition is confirmed, we have more knowledge about the state σ before a measure-
ment is made because its far more certain that the outcome is |0〉.

Example 13.14

Find the entropy of the state

ρ =

⎛
⎜⎜⎝

1

2

1

4
1

4

1

2

⎞
⎟⎟⎠

Solution

The eigenvalues of this matrix are

λ1,2 =
{

3

4
,

1

4

}
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Is this a pure state or a mixed state? We met this state in Example 5.5 where we found that

ρ2 =

⎛
⎜⎜⎝

1

2

1

4
1

4

1

2

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1

2

1

4
1

4

1

2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

5

16

1

4
1

4

5

16

⎞
⎟⎟⎠

⇒ T r(ρ2) = 5

16
+ 5

16
= 10

16
= 5

8

Hence this is a mixed state. The entropy is the same as the matrix in the previous example,
even though it looks very different:

S(ρ) = −3

4
log2

(
3

4

)
− 1

4
log2

(
1

4

)
= 0.81

While a completely mixed state has the highest entropy, a pure state has the smallest possible
entropy.

Example 13.15

Find the entropy of the state

|ψ〉 = |0〉 + |1〉√
2

Solution

First let’s write down the density operator. We find that

ρ = |ψ〉〈ψ| =
( |0〉 + |1〉√

2

)( 〈0| + 〈1|√
2

)

= 1

2
(|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|)

The matrix representation of this density operator is thus

ρ = 1

2

(
1 1

1 1

)

The eigenvalues of this matrix are

λ1,2 = {1, 0}

To calculate the entropy, we use the fact that

lim
x→0

x log x = 0
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So we only need to consider λ= 1, and we find that

S(ρ) = − log2(1) = 0

This state is a pure state and it has zero entropy. We know with certainty what the state is
prior to measurement—or put another way—there is no ignorance as to what the state of the
system is.

In n dimensions, the entropy of a quantum state obeys the following inequality:

log2 n ≥ S(ρ) ≥ 0 (13.41)

We have seen examples of both extrema.The completely mixed state—which is
characterized by equally probable outcomes pi= 1/n , has entropy given by log2

n — The pure state with zero entropy is the lower bound in (13.41). The Von
Neumann entropy is invariant under a change of basis as we show in the next
example.

Example 13.16

Let ρ = 3
4 |+〉〈+| + 1

4 |−〉〈−|. Show that the entropy of the state is invariant under a change of
basis.

Solution

The matrix representation of this state is

ρ =

⎛
⎜⎝

3

4
0

0
1

4

⎞
⎟⎠

Note that this matrix is written in the {|±〉} basis. The eigenvalues are λ1,2 =
{ 3

4 , 1
4

}
and we

have already seen that the entropy in this case is

S(ρ) = −3

4
log2

(
3

4

)
− 1

4
log2

(
1

4

)
= 0.81

What happens if we write the state in the computational basis? In that case the matrix repre-
sentation is given by

ρ =

⎛
⎜⎜⎝

1

2

1

4
1

4

1

2

⎞
⎟⎟⎠
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We met this matrix earlier—in Example 13.14. It has the same eigenvalues, and we find that
once again,

S(ρ) = −3

4
log2

(
3

4

)
− 1

4
log2

(
1

4

)
= 0.81

Now let’s consider states formed by tensor products of qubits. If a composite state is separable,
that is, a product state of the form ρ ⊗ σ , entropy is additive in the sense that

S(ρ ⊗ σ) = S(ρ)+ S(σ) (13.42)

In general, entropy is subadditive. Let ρA and ρB be the reduced density matrices of a composite
system ρ. The subadditivity inequality states that

S(ρ) ≤ S(ρA)+ S(ρB) (13.43)

The result (13.43) indicates that in order to have the most information about an entangled
system, you need to consider the system as a whole— that is, S (ρ) is smaller than the entropies
of the reduced density matrices, because ignorance decreases when considering the system as
a whole. Alice and Bob, in possession of the reduced density matrices ρA and ρB, have more
ignorance about the state when considering their parts of the system alone.

Example 13.17

Alice and Bob each share one member of an EPR pair that is in the Bell state:

|β10〉 = |0A〉|0B〉 − |1A〉|1B〉√
2

Determine the entropy of the entire system, and the entropy as seen by Alice and Bob alone.

Solution

We showed in (5.15) that the density operator for this state is

ρ = |β10〉〈β10|

=
( |0A〉|0B〉 − |1A〉|1B〉√

2

)( 〈0A|〈0B | − 〈1A|〈1B |√
2

)

= |0A〉|0B〉〈0A|〈0B | − |0A〉|0B〉〈1A|〈1B | − |1A〉|1B〉〈0A|〈0B | + |1A〉|1B〉〈1A|〈1B |
2

In matrix form we have

ρ = 1

2

⎛
⎜⎜⎝

1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎞
⎟⎟⎠
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The eigenvalues of this matrix are

λ1,2,3,4 = {1, 0, 0, 0}

So we quickly see that the entropy is S (ρ)=− log 1= 0. To get the states as seen by Alice
and Bob individually, we compute the partial trace of this density operator. For example, in
Chapter 5 we found that the reduced density matrix for Bob is

ρB = 1

2

(
1 0
0 1

)

This is the completely mixed state with entropy given by

SB(ρB) = − log2

(
1

2

)
= 1

We find a similar result for Alice, and clearly (13.43) is satisfied.

EXERCISES

13.1. Verify that δ(ρ, σ ) = 3/4
√

5 for the density matrices in Example 13.3 by
calculating 1

2T r
√

(ρ − σ)†(ρ − σ) with the matrices written in the {|±〉} basis.

13.2. Let ρ=∑iri|ui〉〈ui| and σ =∑isi|ui〉〈ui|. Prove (13.22).

13.3. Compute the trace distance and fidelity between

ρ = 4

7
|0〉〈0| + 3

7
|1〉〈1|

and each of

σ = 2

3
|0〉〈0| + 1

3
|1〉〈1|, π = 3

5
|0〉〈0| + 2

5
|1〉〈1|

13.4. On a certain quantum channel there is a probability p= 1/11 that there is a
phase flip error. What pure state leads to the minimum fidelity in this case? What
is the minimum fidelity of the bit flip channel in this case? Assume that the system
starts in some pure state ρ= |ψ〉〈ψ |.
13.5. Determine the concurrence for the Werner state where

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

7

16
0 0

3

8

0
1

16
0 0

0 0
1

16
0

3

8
0 0

7

16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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13.6. Find the entanglement of formation for the state in Exercise 13.5.

13.7. Find the entropy of the state

ρ =

⎛
⎜⎝

5

6
0

0
1

6

⎞
⎟⎠

13.8. Find the entropy of the state

|ψ〉 = 2

3
|0〉 +

√
5

3
|1〉

13.9. Consider the product state |A〉|B〉 used in Example 5.11 where

|A〉 = |0〉 − i|1〉√
2

, |B〉 =
√

2

3
|0〉 + 1√

3
|1〉

The density matrix is

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3

1√
18

i

3

i√
18

1√
18

1

6

i√
18

i

6
−i

3

−i√
18

1

3

1√
18

−i√
18

−i

6

1√
18

1

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A) Show that the entropy of the density operator for |A〉|B〉 is zero.
(B) Find the entropy for the density operator seen only by Alice, ρA.

13.10. Consider the density operators for the state

|ψ〉 =
√

3

7
|0〉 + 2√

7
|1〉

and the state

|φ〉 =
√

2

3
|0〉 + 1√

3
|1〉

Which state has a higher entropy?
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ADIABATIC QUANTUM
COMPUTATION

Adiabatic quantum computation is an alternative approach to quantum computation
based on the time evolution of a quantum system. Before describing adiabatic pro-
cesses, let’s quickly review the dynamics of a quantum system. The time evolution
of a quantum state |ψ(t)〉 is described by the Schrödinger equation

i�
∂|ψ(t)〉

∂t
= H |ψ(t)〉 (14.1)

where H is the Hamiltonian operator. This operator is the total energy of the system
and can be expressed in terms of kinetic and potential energies

H = p2

2m
+ V = − �

2

2m
∇2 + V (14.2)

where ∇2 is the Laplacian operator and V is the potential energy function. In one
dimension (14.2) becomes

H = p2

2m
+ V = − �

2

2m

∂2

∂x2
+ V (14.3)

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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In many cases of interest, the potential V is time-independent. Where this is
the case, then solutions of (14.1) are products of a function that depends only on
the spatial coordinates and a function that depends only on time. In one dimension
the solution can be written in the form

�(x, t) = ψ(x)f (t) (14.4)

By inserting (14.4) into (14.1) and using (14.3), its not too hard to show that the
solution can be written as

�(x, t) = ψ(x)e−iEt/� (14.5)

Solutions of Schrödingers equation are known as wave functions . Using (14.5)
in (14.1), we also arrive at a time-independent Schrodinger’s equation that gives a
solution for the spatial part of the wave function:

− �
2

2m

d2ψ

dx2
+ V (x)ψ = Eψ (14.6)

where E is the energy of the system. The modulus squared of the wave function is
a probability density, where |�(x , t)|2dx is the probability of finding the particle
in a volume dx . The total probability over all space must be equal to one, so the
normalization condition for a wave function is∫ ∞

−∞
|�(x, t)|2 dx = 1 (14.7)

Solutions of the type (14.5) are called stationary . This is because when we
calculate the modulus squared of (14.5), we see that the probability density does
not change with time:

|�(x, t)|2 = |ψ(x)e−iEt/�|2 = (ψ∗(x)eiEt/�)(ψ(x)e−iEt/�) = |ψ(x)|2 (14.8)

The eigenstates of the Hamiltonian �n(x , t)=φn(x )f n(t) have eigenvalues that are
the energies E n that the system can assume. Bound states have discrete energy
levels; that is, the system can only take on specific energy values like the rungs on
a ladder. Unbound systems have continuous energy spectra (they can assume any
energy value). The general solution to the time-dependent Schrödinger equation is
a superposition of energy eigenstates

�(x, t) =
∑

n

cnφn(x) exp

(
−i

Ent

�

)
(14.9)

The lowest energy that the system can assume is called the ground state.
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Example 14.1

Find the energy eignstates and most general solution to the Schrödinger equation for an infinite
unsymmetric square well:

V (x) =

⎧⎪⎨
⎪⎩
+∞ x<0

0 0 ≤ x ≤ a

+∞ x〉a

Solution

A particle confined to an infinite square well is a bound system. Hence it will have a discrete
energy spectrum. At the boundaries of the well, the potential is infinite. The wave function
must vanish outside this region as well as at the boundaries for continuity. Inside the well, the
time-independent Schrödinger equation (14.6) can be written as

d2ψ

dx2
+ k2ψ = 0 (14.10)

where we define k2 as

k2 = 2mE

�2
(14.11)

The solutions of (14.10) are

ψ(x) = A sin kx + B cos kx (14.12)

The constants A and B are determined by the boundary conditions. The first of these is the
vanishing of the wave function at the left boundary—that is, ψ(0)= 0. This tells us that B = 0.
The other boundary condition is ψ(a)= 0, from which we conclude that

kna = nπ (14.13)

where n = 1, 2, 3, . . . . Using this together with (14.11) allows us to determine the energies that
the system can assume, which are

En = �2

2m
k2
n =

�2π2

2 ma2
n2, n = 1, 2, 3, . . . (14.14)

Therefore the wave functions are of the form

ψn(x) =
√

2

a
sin
(nπ

a
x
)

, n = 1, 2, 3, . . . (14.15)
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The constant
√

2/a is called the normalization constant. It is determined from

1 =
∫ ∞

−∞
ψ∗

n (x)ψn(x) dx (14.16)

The most general solution to (14.10) is a superposition of all possible solutions:

�(x, t) =
∞∑

n=1

ψn(x)e−iEnt/� =
√

2

a

∞∑
n=1

sin
(nπx

a

)
exp

(
−i

n2π2�

2 ma2
t

)
(14.17)

ADIABATIC PROCESSES

An adiabatic process is one for which the rate of change of the Hamiltonian is slow
with respect to the characteristic time of the system (i.e., the time scale over which
changes to the system occur). If we denote the characteristic time scale for changes
in the system by T c and the time change over which the Hamiltonian changes as
T H, then we denote the condition for an adiabatic process as

TH � Tc (14.18)

In quantum mechanics, an adiabatic process is one for which the initial Hamil-
tonian H init slowly changes to some different, final Hamiltonian H final:

Hinit →
slowly

Hfinal (14.19)

with the time scale over which this occurs being T H. The adiabatic theorem tells
us that if a system is in the nth energy eigenstate of H init, it will also be in the nth
energy eigenstate of H final if the change is adiabatic. For a change to be adiabatic,
the time scale of the change must be proportional to the energy gap between the
ground state and the lowest excited state:

T ∝ 1

�E
(14.20)

Example 14.2

A particle is in an infinite unsymmetric square well of width a; the potential is

V (x) =
⎧⎨
⎩
+∞ x<0
0 0 ≤ x ≤ a

+∞ x〉a

It is known that the particle is in the ground state. What is the state of the system if the width
of the well is very slowly widened to 3a?
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Solution

In this case H init is just the Hamiltonian for Example 14.1. The system starts off in the ground
state for which we set n = 1 in (14.15), giving

ψinit (x) =
√

2

a
sin
(π

a
x
)

(14.21)

The energy of the particle is found using (14.14), which is

Einit = �2π2

2 ma2

For H final, the energy eigenstates are found by letting a→3a in (14.15). These are

ψn(x) =
√

2

3a
sin
(nπ

3a
x
)

, n = 1, 2, 3, . . . (14.22)

with energies

En = �2π2

18 ma2
n2, n = 1, 2, 3, . . . (14.23)

We see that widening the well lowers the energies. The adiabatic theorem tells us that if
the well is widened slowly, that a system in the nth energy eigenstate of H init will go to the
nth energy eigenstate of H final. Since we started in the ground state, we end up in the ground
state of the new Hamiltonian, which is found from (14.22). We obtain

ψfinal (x) =
√

2

3a
sin
( π

3a
x
)

The final energy of the particle is

Efinal = �2π2

18ma2

What sort of time scale should be used to implement the change? We can give the time
required by looking at (14.5) where we have an expression of the form e−iEt/�. The characteristic
time can be estimated from

tc = �

�E
= �

(4�2π2/2ma2)− (�2π2/2ma2)
= 2ma2

3�π2
(14.24)

where we took the energy gap to be between the ground state and the first excited state, which
is found by setting n = 2 in (14.14) giving E2 = 4�2π2/2 ma2. So, if the time over which the
walls of the potential well are expanded satisfies

T � 2 ma2

3�π2

the process will be adiabatic.
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ADIABATIC QUANTUM COMPUTING

Adiabatic quantum computation uses adiabatic processes to do a computation using
the following steps:

• Create an initial state of qubits that will be used to calculate the result of a
computation.

• Start with an initial Hamiltonian, and very it slowly (adiabatically) so that it
transforms into a final Hamiltonian whose eigenstates encode the solution.

Let’s look at the process more formally. The adiabatic process starts with a
known easy to prepare Hamiltonian. This Hamiltonian should have a ground state
that is easy to create. The quintessential example is a Hamiltonian consisting of
Pauli operators

Hinit = −
∑

j

X(j) (14.25)

Next let’s select a problem Hamiltonian . The ground state of the problem Hamilto-
nian encodes the solution to the problem we are trying to solve:

Hfinal =
∑

x

cx |x〉〈x| (14.26)

An interpolation Hamiltonian is used to connect H init and H final. If T is the total
time over which the computation is completed, and we let s = t /T and 0≤ s ≤ 1,
then

H̃ = (1− s)Hinit + sHfinal (14.27)

Example 14.3

Describe how the Hadamard gate can be implemented using adiabatic quantum computation.

Solution

First we recall the action of the Hadamard gate. This gate creates superposition states out of
the computational basis in the following way:

H |0〉 = |0〉 + |1〉√
2

, H |1〉 = |0〉 − |1〉√
2



ADIABATIC QUANTUM COMPUTING 311

In the computational basis the Hadamard gate has the representation

H = 1√
2

(
1 1
1 −1

)

In order to implement the Hadamard gate using adiabatic quantum computation, we need to find
a Hamiltonian that will create superposition states out of the computational basis, and we need to
find an initial Hamiltonian with a ground state that is easy to prepare. One such Hamiltonian is

Hinit = −|0〉〈0| + |1〉〈1|

The matrix representation of this Hamiltonian is

Hinit
.=
(〈0|Hinit |0〉 〈0|Hinit |1〉
〈1|Hinit |0〉 〈1|Hinit |1〉

)
=
(−1 0

0 1

)

The characteristic equation is

0 = det |Hinit − I | = det

∣∣∣∣
(−1 0

0 1

)
−
(

λ 0
0 λ

)∣∣∣∣ = det

∣∣∣∣−1− λ 0
0 1− λ

∣∣∣∣ = −1+ λ2

Therefore the eigenvalues of the matrix (the Hamiltonian H init) are

λ0,1 = ±1

The eigenvalues of the Hamiltonian are the energy levels that the system can assume. The
ground state has the lowest energy, so the ground state in this case corresponds to λ0=− 1.
The eigenvector corresponding to this eigenvalue is found from(−1 0

0 1

)(
a

b

)
= −

(
a

b

)

We obtain the equations

−a = −a, ⇒ a = 1

b = −b, ⇒ b = 0

We chose a = 1so that the eigenvector is normalized (has unit norm). The eigenvector
corresponding to λ0=− 1 is the ground state of H init:

|u0〉 =
(

1
0

)
= |0〉

A similar procedure taking λ1= 1 gives the second eigenvector of H init:

|u1〉 =
(

0
1

)
= |1〉
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Now let’s look at the final Hamiltonian. We can create a superposition state with

Hfinal = −|0〉〈1| − |1〉〈0| =
(

0 −1
−1 0

)
= −X

Let’s explicitly calculate the eigenvectors even though some readers may know what they are.
First we have the characteristic equation

0 = det
∣∣Hfinal − I

∣∣ = det

∣∣∣∣
(

0 −1
−1 0

)
−
(

λ 0
0 λ

)∣∣∣∣ = det

∣∣∣∣−λ −1
−1 −λ

∣∣∣∣ = λ2 − 1

⇒ λ0,1 = ±1

The ground state is found by taking the lowest energy, which is the smallest eigenvalue.
So choosing λ0=− 1, we have

Hf inal |v0〉 =
(

0 −1
−1 0

)(
a

b

)
= −

(
a

b

)

This yields the equations

−b = −a

−a = −b

⇒ a = b

We can compute the value of the coefficients by “normalizing” the vector

1 = (a∗ a∗
) (a

a

)
= 2 |a|2

⇒ a = 1√
2

Hence the eigenvector is

|v0〉 = 1√
2

(
1
1

)
= 1√

2

(
1
0

)
+ 1√

2

(
0
1

)
= |0〉 + |1〉√

2

A similar procedure applied to λ1= 1 give the eigenvector corresponding to the excited
state of H final

|v1〉 = 1√
2

(
1

−1

)
= 1√

2

(
1
0

)
− 1√

2

(
0
1

)
= |0〉 − |1〉√

2

So we have our initial and final states that correspond to the output of the Hadamard gate.
To implement a Hadamard gate H |0〉 = (1/

√
2)(|0〉 + |1〉) using adiabatic quantum com-

putation, we proceed as follows:

• We prepare the system in the ground state of H init, which is |ψ0〉= |0〉.
• We evolve the Hamiltonian using H (s)= (1− s)H init+ sH final by which the process

evolves slowly.
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• By the adiabatic theorem, when t =T (s = 1), the system is in the ground state of the
final Hamiltonian:

|v0〉 = |0〉 + |1〉√
2

So we have implemented a Hadamard gate.

EXERCISES

14.1. Derive (14.5) by solving the differential equation that results from (14.1).
Assume that (14.5) is a separable solution of the form (14.4), and the constant of
integration is the energy E.

14.2. Verify that the unit of time in (14.24) is seconds by taking a to be in meters
and doing dimensional analysis. The units of � are joule-seconds.

14.3. A square well is gradually decreased from width a to 1
2a. If the change is

adiabatic and the system starts off with the particle in the first excited state, what is
the energy of the particle when the width is 1

2a?

14.4. Consider the implementation of a CNOT gate using adiabatic computation.
Take

H0 = 3|00〉〈00| + 2|01〉〈01| + |10〉〈10|
H1 = 3|00〉〈00| + 2|01〉〈01| + |11〉〈11|

H01 = |10〉〈11| + |11〉〈10|

and let

H(s) = (1− s)H0 + sH1 + s(1− s)H01

Follow the procedure used in Example 14.3 and show this system can be used to
implement a CNOT gate.
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CLUSTER STATE QUANTUM
COMPUTING

Cluster state quantum computing is a model that does not rely on quantum gates
to do its processing. This measurement based model can instead simulate the uni-
tary dynamics of quantum mechanics. Since quantum gates are implemented using
unitary operators, quantum computation can be simulated or implemented using the
cluster state model.

A cluster state is a multiple-qubit state that is processed by a series of measure-
ments. Each time a measurement is made, the result of the measurement is used to
select the basis used for the next measurement—so this type of quantum computa-
tion involves a feedback loop. Cluster state quantum computing can be summarized
in two steps:

• Initialize a set of qubits in some state. For example, start with |+ 〉 and then
apply controlled phase gates to the states.

• Measure the qubits in some basis. As the measurement process is repeated,
the choice of basis each time is determined by the previous measurement
results, creating a feedback process.

Quantum Computing Explained, by David McMahon
Copyright 2008 John Wiley & Sons, Inc.
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A controlled phase operation is the controlled-Z gate with matrix representation
in the computational basis

CZ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ (15.1)

The effect of applying the controlled phase gate is to entangle the states.

CLUSTER STATES

Cluster states are represented by graphs, which are a set of nodes or vertices and
edges. Each vertex is a qubit, while the edges represent controlled phase gates. An
example is shown in Figure 15.1.

As stated above, we begin cluster state quantum computation by initializing
each of the qubits in the | + 〉 state. Then we apply controlled phase gates to qubits
that are neighbors in the graph.

Cluster State Preparation

The first step required in cluster state preparation is to prepare a product state of
the form

|+〉C = |+〉⊗n (15.2)

For example, we can prepare the cluster state

which is two qubits, represented by the two vertices in the graph and a single
controlled phase operation applied to them, represented by the line connecting the
qubits. The initial product state is then

|+〉C = |+〉 ⊗ |+〉 (15.3)

Vertices are qubitsEdges are cphase 
gates

Figure 15.1 Cluster state quantum computation is represented by a graph
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Step two is to apply the controlled phase gate. For example, we can apply a
controlled-Z gate given by

S = 1

2
(I ⊗ I + Z ⊗ I + I ⊗ Z − Z ⊗ Z) (15.4)

to obtain

S|+〉 ⊗ |+〉 = 1

2
(I ⊗ I + Z ⊗ I + I ⊗ Z − Z ⊗ Z)|+〉 ⊗ |+〉

= 1

2

[( |0〉 + |1〉√
2

)( |0〉 + |1〉√
2

)
+ (Z ⊗ I )

( |0〉 + |1〉√
2

)( |0〉 + |1〉√
2

)

+ I ⊗ Z

( |0〉 + |1〉√
2

)( |0〉 + |1〉√
2

)

−Z ⊗ Z

( |0〉 + |1〉√
2

)( |0〉 + |1〉√
2

)]

= 1

2
[|00〉 + |01〉 + |10〉 − |11〉]

This entangled state is represented by

Example 15.1

Consider three qubits arranged in a triangle. What states result in creating the graphs?

Solution

We denote the upper qubit as qubit 1, the left lower qubit as qubit 2, and the right lower qubit
as qubit 3. The initial state is the product state
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|+〉 ⊗ |+〉 ⊗ |+〉 =
( |0〉 + |1〉√

2

)( |0〉 + |1〉√
2

)( |0〉 + |1〉√
2

)

= 1√
8
(|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |101〉 + |110〉 + |111〉)

(15.5)

Now let’s review the operation of the controlled-Z gate. The first qubit acts as the control
qubit and the second qubit acts as the target qubit. If the first qubit is 0, we do nothing to the
second qubit. If the first qubit is 1, we apply a Z gate to the second qubit. Remember,

Z|0〉 = |0〉, Z|1〉 = −|1〉 (15.6)

To obtain the first graph, we need to apply the controlled-Z gate to qubits 1 and 2 and
then to 2 and 3. Applying the CZ gate to qubits 1 and 2 to (15.5), we obtain

|ψ ′〉 = 1√
8
(|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |101〉 − |110〉 − |111〉) (15.7)

The first qubit in each term acts as the control. In the first four terms the control is 0, so we do
nothing to the target. It’s a 1 in the last four terms, but the target is a 1 giving a sign change
only for the last two terms.

Now we apply the CZ gate to qubits 2 and 3. So the second qubit is the control and the
third qubit is the target. We obtain

|ψ�〉 = 1√
8
(|000〉 + |001〉 + |010〉 − |011〉 + |100〉 + |101〉 − |110〉 + |111〉) (15.8)

We have labeled this the lambda state, since the graph takes the form of a (tilted)
lambda:

To obtain the other graph, we need add a link between qubits 1 and 3. This is done by
applying a CZ gate to these two qubits in the state (15.8). When this is done, we have

|ψ�〉 = 1√
8
(|000〉 + |001〉 + |010〉 − |011〉 + |100〉 − |101〉 − |110〉 − |111〉) (15.9)

We obtained this state by applying a Z gate to the third qubit whenever the first qubit was a
1. This state corresponds to the graph



ADJACENCY MATRICES 319

ADJACENCY MATRICES

An adjacency matrix is a way to represent a graph with a matrix. The rows and
columns of the matrix are labeled by the vertices of the graph. If there is an edge
joining the vertices represented by a given row, column entry, then that matrix
element is a 1; otherwise, it is a zero. For example, consider

1

2 3

where we have added labels to each vertex for convenience. With three vertices,
the adjacency matrix will be 3× 3. There are edges between 1 and 2 and 2 and
3. This tells us that there will be 1’s in matrix elements (1, 2), (2, 1), (2, 3), and
(3, 2). All other matrix elements will be zero, giving

A =
⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠

In the case examined in the previous example, we had

2 3

1
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Now vertices 1 and 3 are connected, meaning that we have to add 1’s to the (1, 3)
and (3, 1) matrix elements. So the adjacency matrix is

A =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠

STABILIZER STATES

An operator A is a stabilizer of a state |ψ〉 if

A|ψ〉 = |ψ〉 (15.10)

So a stabilizer is just an operator with an eigenvector that has eigenvalue+1. This
suggests immediately that the identity operator is a stabilizer, since

I |ψ〉 = |ψ〉

Now consider the state

|+〉 = |0〉 + |1〉√
2

Notice that

X|+〉 = X|0〉 +X|1〉√
2

= |1〉 + |0〉√
2

= |0〉 + |1〉√
2

= |+〉

Hence stablizer of the |+〉 state are the operators X , I . This is commonly denoted by
writing {X , I }. This single-qubit state has two operators in the stabilizer. Generally,
if the state contains n qubits, then the stabilizer will be made up of 2n commuting
operators.

Now consider the Bell state

|β00〉 = |00〉 + |11〉√
2

Notice that

(X ⊗X)|β00〉 = (X|0〉)(X|0〉)+ (X|1〉)(X|1〉)√
2

= |11〉 + |00〉√
2

= |β00〉

It’s also true that

(Z ⊗ Z)|β00〉 = (Z|0〉)(Z|0〉)+ (Z|1〉)(Z|1〉)√
2
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= (|0〉)(|0〉)+ (−|1〉)(−|1〉)√
2

= |00〉 + |11〉√
2

= |β00〉

Therefore two stablizers of the Bell state |β00〉 are

±X ⊗X, ±Z ⊗ Z

Consider an array of qubits, which we denote by A. A cluster state on and
element a of this array is defined by a stabilizer of the form

−1kXa ⊗ Zi (15.11)

where i identifies a neighbor of a . Stabilizers for an n-qubit cluster state can be
written as

S1 = X(1)Z(2)

...

Sj = Z(j−1)XjZj+1 j = 2, 3, . . . , n− 1 (15.12)

Sn = Z(n−1)X(n)

where we use the notation that A(j) means the operator A is applied to the j th qubit.
For example, the stabilizers for a 2-qubit cluster state are

S1 = X(1)Z(2), S2 = Z(1)X(2) (15.13)

For an example let’s find the stabilizer for the state

|ψ−〉 = 1

2
[|00〉 + |01〉 + |10〉 − |11〉] (15.14)

Now

|ψ−〉 = CZ|++〉 = 1

2
CZ(|0〉 + |1〉)(|0〉 + |1〉)

= 1

2
CZ(|00〉 + |01〉 + |10〉 + |11〉)

= 1

2
(|00〉 + |01〉 + |10〉 − |11〉)
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To find the stabilizer, we look for operators that satisfy

A(1)B(2)CZ|++〉 = A(1)B(2)|ψ−〉 = |ψ−〉

The Pauli operators square to the identity, so CZ =CZI =CZXX . It can be shown
that CZXX =YYCZ , This means that

|ψ−〉 = CZ|++〉 = CZXX|++〉 = (YY )CZ|++〉 = YY |ψ−〉

So YY is a stabilizer. We can also show that

CZ = CZXI = XZCZ

CZ = CZXI = CZIX = ZXCZ

This tells us that XZ , ZX also satisfy XZ |ψ−〉= |ψ−〉, ZX |ψ−〉= |ψ−〉. Of course,

CZ = CZII = IICZ

So the stabilizer for the |ψ−〉 state is {YY , XZ , ZX , II }.

ASIDE: ENTANGLEMENT WITNESS

Since cluster states involve entangled states of n qubits where n can be greater than
2, we might ask how can we determine whether or not a multiple qubit state is
entangled? We can attempt to answer this question using an observable known as
an entanglement witness . The way that we can use an entanglement witness W is
to examine its expectation value for a given state |ψ〉. If the state is separable, then

〈W 〉 = 〈ψ |W |ψ〉>0 (15.15)

Some of the time the entanglement witness will tell us if the state is entangled.
This is when the expectation value is negative

〈W 〉 = 〈ψ |W |ψ〉 < 0 (15.16)

Let’s examine this in detail for two states. The GHZ state is an entangled state of
three qubits

|GHZ〉 = |000〉 + |111〉√
2

(15.17)
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An entanglement witness is

W = 1

2
I − |GHZ〉〈GHZ| (15.18)

= 1

2
I − 1

2
(|000〉〈000| + |000〉〈111| + |111〉〈000| + |111〉〈111|)

Next consider the separable state

|ψ〉 =
( |001〉 + |111〉√

2

)
=
( |00〉 + |11〉√

2

)
|1〉

Hence qubits 1 and 2 are entangled, but qubit 3 is not. We are interested in what is
the expectation value of W as given by (15.18) for this state We have

〈W 〉 = 〈ψ |W |ψ〉

=
( 〈001| + 〈111|√

2

)
W

( |001〉 + |111〉√
2

)

Now

W

( |001〉 + |111〉√
2

)
=
[

1

2
I − 1

2
(|000〉〈000| + |000〉〈111| + |111〉〈000|

+|111〉〈111|)]
( |001〉 + |111〉√

2

)

=
( |001〉 + |111〉√

2

)
− 1

2

( |000〉 + |111〉√
2

)

So the expectation value is

〈W 〉 =
( 〈001| + 〈111|√

2

)[( |001〉 + |111〉√
2

)
− 1

2

( |000〉 + |111〉√
2

)]

= 〈001|001〉√
2

+ 〈111|111〉√
2

− 〈111|111〉√
2

= 〈001|001〉√
2

= 1√
2

Since

〈W 〉 = 1√
2
>0
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we know that the state is separable. What about the GHZ state? In that case

〈W 〉 = 〈GHZ|
(

1

2
I − |GHZ〉〈GHZ|

)
|GHZ〉 = 〈GHZ|

(
1

2
|GHZ〉 − |GHZ〉

)

= 〈GHZ|
(
−1

2
|GHZ〉

)
= −1

2
〈GHZ | GHZ〉 = −1

2
< 0

This result confirms that the GHZ state is entangled. So W seems to be a good
entanglement witness.

CLUSTER STATE PROCESSING

To get an idea of how cluster state computation works, we consider measurements in
the Z eigenbasis, the X eigenbasis, and the Y eigenbasis. We will do so considering
a linear cluster, that is,

. . . . . .

In each of the following examples we will apply a measurement to the middle
qubit, which is represented by the third circle from the left. First we do a measure-
ment in the Z eigenbasis. We represent this by writing the operator in the graph
vertex

. . . Z

A measurement in the Z eigenbasis has two effects on the cluster:

• Break the connections (edges) between that qubit and the rest of the cluster.
• Remove the qubit.

After step one, we have

. . . Z

After step two, the new cluster is

. . .
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Now consider a measurement in the X eigenbasis

. . . X

The two steps in this case are as follows:

• Remove the qubit.
• Join the neighboring qubits together into a single logical qubit.

Step one, remove the qubit.

. . . 

Step two, join the neighboring qubits into a single logical qubit.

. . .

The single logical qubit represents 0 with |++ 〉 and 1 with |−−〉.
Finally, we consider processing by measurement in the Y eigenbasis.

. . . Y

The two steps this time are

• Remove the qubit from the cluster.
• Link together the neighboring qubits left behind.

Implementing the first step, we have

. . . 

Now we link the two neighbors:

. . .
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To summarize, we prepare a cluster state by creating an initial product state of
several qubits in the |+〉 state. Then we apply controlled phase gates to neighboring
states. Graphically, a vertex or circle represents a qubit in the |+〉 state, while lines
or edges joining circles together represent controlled phase gates applied between
the qubits that are joined by that line.

Processing can be done with measurements in the Z , X , and Y bases. In each
case, when a measurement is made, we remove that qubit from the cluster. If the
measurement was made in the Z basis, then we break the connections that existed
between that qubit and the rest of the cluster. If the measurement was in the X basis,
we join the neighboring qubits together to form a new logical qubit in the |++ 〉,
| −− 〉 basis. Finally, if the measurement is made in the Y basis, we simply join
together the left behind neighbors.

So cluster state quantum computing utilizes single-qubit measurements. Because
entanglement in a cluster state is destroyed by the measurements, a cluster state can
only be used once. For this reason a cluster state computer is sometimes referred to
as a one-way quantum computer.

Example 15.2

A Hadamard gate can be implemented with five qubits in the cluster state model as follows:
We start with the input state

|ψin〉 = |+〉⊗5 = |+ ++++〉

Then we entangle the five qubits by applying the unitary operator

S(5) =
∏

S

where S is given by (15.4). Last we measure the first four qubits using

X ⊗ Y ⊗ Y ⊗ Y

EXERCISES

15.1. Apply a Hadamard gate to qubits 1 and 3 of the |ψ�〉 state (15.8), and show
that this results in the GHZ state

|ψ〉 = 1√
2
(|000〉 + |111〉)
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15.2. What is the adjacency matrix for

2 3

1

15.3. If , show that |0〉⊗ |0〉, |0〉⊗ |1〉, |1〉⊗ |0〉 do not acquire a phase under the
action of S but that |1〉⊗ |1〉 acquires a phase of π .

15.4. Following Example 15.2, describe how to implement a π /2 phase gate.

15.5. Are±X⊗X, ±Z⊗Z stabilizers of all the Bell states?

15.6. Write down the stabilizers for the GHZ state:

|GHZ〉 = |000〉 + |111〉√
2
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