
“Everything is everything” revisited:
shapeshifting data types with isomorphisms and

hylomorphisms

Paul Tarau

Department of Computer Science and Engineering
University of North Texas
E-mail: tarau@cs.unt.edu

Abstract. This paper is an exploration of isomorphisms between ele-
mentary data types (natural numbers, sets, finite functions, graphs, hy-
pergraphs) and their extension to hereditarily finite universes through
hylomorphisms derived from ranking/unranking and pairing/unpairing
operations.
An embedded higher order combinator language, provides any-to-any
encodings automatically.
A few examples of “free algorithms” obtained by transferring operations
between data types are shown. Other applications range from stream
iterators on combinatorial objects to succinct data representations and
generation of random instances.
A longer version of the paper, together with its literate Haskell program
is available at http://arXiv.org/abs/0808.2953.
Keywords: computational mathematics, ranking/unranking, Ackermann
encoding, hereditarily finite sets and functions, pairing/unpairing, Haskell
data representations

1 Introduction

Kolmogorov-Chaitin algorithmic complexity is based on the existence of various
equivalent representations of data objects, and in particular (minimal) programs
that produce them in a given language and encoding [22, 6, 4].

Analogical/metaphorical thinking routinely shifts entities and operations from
a field to another hoping to uncover similarities in representation or use [20].

Compilers convert programs from human centered to machine centered rep-
resentations - sometime reversibly.

Complexity classes are defined through compilation with limited resources
(time or space) to similar problems [9, 10].

Mathematical theories often borrow proof patterns and reasoning techniques
accross close and sometime not so close fields.

A relatively small number of universal data types are used as basic building
blocks in programming languages and their runtime interpreters, correspond-
ing to a few well tested mathematical abstractions like sets, functions, graphs,
groups, categories etc.

Hence everyone explicitly or implicitly knows that ultimately, “everything is
everything” through lower common denominators like bitstring representations
in computer memory. From hackers and compiler writers to combinatorialists
and experimental mathematicians, it is not uncommon to shapeshift between
various data types. Means as simple as binary editors, union types or overlapping
variable definitions are generously providing such alternate views.

A less obvious leap is that if heterogeneous objects can be seen in some way
as isomorphic, then we can share them and compress the underlying informa-
tional universe by collapsing isomorphic encodings of data or programs whenever
possible.

Sharing heterogeneous data objects faces two problems:

– some form of equivalence needs to be proven between two objects A and
B before A can replace B in a data structure, a possibly tedious and error
prone task

– the fast growing diversity of data types makes harder and harder to recognize
sharing opportunities.

Besides, this rises the question: what guaranties do we have that sharing
accross heterogeneous data types is useful and safe?

The techniques introduced in this paper provide a generic solution to these
problems, through isomorphic mappings between heterogeneous data types, such
that unified internal representations make equivalence checking and sharing pos-
sible. The added benefit of these “shapeshifting” data types is that the functors
transporting their data content will also transport their operations, resulting in
shortcuts that provide, for free, implementations of interesting algorithms. The
simplest instance is the case of isomorphisms – reversible mappings that also
transport operations. In their simplest form such isomorphisms show up as en-
codings – to some simpler and easier to manipulate representation – for instance
natural numbers.

Such encodings can be traced back to Gödel numberings [11, 13] associated
to formulae, but a wide diversity of common computer operations, ranging from
wireless data transmissions to cryptographic codes qualify.

Encodings between data types provide a variety of services ranging from free
iterators and random objects to data compression and succinct representations.
Tasks like serialization and persistence are facilitated by simplification of reading
or writing operations without the need of special purpose parsers. Sensitivity
to internal data representation format or size limitations can be circumvented
without extra programming effort.

In the context of algorithmic information theory, one can interpret data struc-
tures like graphs and program constructs like loops or recursion as compression
mechanisms focusing on sharing and reuse of equivalent blocks of information.
In this case, maximal sharing acts as the dual of minimal program+input size.
With this in mind, shapeshifting through a uniform set of encodings would ex-
tend sharing opportunities accross heterogeneous data and code types.

2 An embedded data transformation language

We will start by designing an embedded transformation language as a set of op-
erations on a group of isomorphisms. We will then extended it with as set higher
order combinators mediating the composition of encodings and the transfer of
operations between data types.

2.1 The group of isomorphisms

We implement an isomorphism between two objects X and Y as a Haskell data
type encapsulating a bijection f and its inverse g. We will call the from function
the first component (a section in category theory parlance) and the to function
the second component (a retraction) defining the isomorphism. We can organize
isomorphisms as a group as follows:

X Y
...

f = g−1

...

g = f−1

data Iso a b = Iso (a→b) (b→a)

from (Iso f _) = f

to (Iso _ g) = g

compose :: Iso a b → Iso b c → Iso a c

compose (Iso f g) (Iso f’ g’) = Iso (f’ . f) (g . g’)

itself = Iso id id

invert (Iso f g) = Iso g f

Assuming that for any pair of type Iso a b, f ◦ g = ida and g ◦ f = idb, we can
now formulate laws about isomorphisms that can be used to test correctness of
implementations with tools like QuickCheck [7].

Proposition 1 The data type Iso has a group structure, i.e. the compose op-
eration is associative, itself acts as an identity element and invert computes the
inverse of an isomorphism.

We can transport operations from an object to another with borrow and lend
combinators defined as follows:

borrow :: Iso t s → (t → t) → s → s

borrow (Iso f g) h x = f (h (g x))

borrow2 (Iso f g) h x y = f (h (g x) (g y))

borrowN (Iso f g) h xs = f (h (map g xs))

lend :: Iso s t → (t → t) → s → s

lend = borrow . invert

lend2 = borrow2 . invert

lendN = borrowN . invert

The combinators fit and retrofit just transport an object x through an
isomorphism and and apply to it an operation op available on the other side:

fit :: (b → c) → Iso a b → a → c

fit op iso x = op ((from iso) x)

retrofit :: (a → c) → Iso a b → b → c

retrofit op iso x = op ((to iso) x)

We can see the combinators from, to, compose, itself, invert, borrow,
lend, fit etc. as part of an embedded data transformation language. Note that
in this design we borrow from our strongly typed host programming language its
abstraction layers and safety mechanisms that continue to check the semantic
validity of the embedded language constructs.

2.2 Choosing a root

To avoid defining n(n− 1)/2 isomorphisms between n objects, we choose a Root
object to/from which we will actually implement isomorphisms. We will extend
our embedded combinator language using the group structure of the isomor-
phisms to connect any two objects through isomorphisms to/from the Root.

Choosing a Root object is somewhat arbitrary, but it makes sense to pick
a representation that is relatively easy convertible to various others, efficiently
implementable and, last but not least, scalable to accommodate large objects up
to the runtime system’s actual memory limits.

We will choose as our Root object finite sequences of natural numbers. They
can be seen as as finite functions from an initial segment of Nat, say [0..n], to
Nat. We will represent them as lists i.e. their Haskell type is [Nat]. Alternatively,
an array representation can be chosen.

type Nat = Integer

type Root = [Nat]

We can now define an Encoder as an isomorphism connecting an object to Root

type Encoder a = Iso a Root

together with the combinators with and as providing an embedded transformation
language for routing isomorphisms through two Encoders.

with :: Encoder a→Encoder b→Iso a b

with this that = compose this (invert that)

as :: Encoder a → Encoder b → b → a

as that this = to (with that this)

The combinator with turns two Encoders into an arbitrary isomorphism, i.e.
acts as a connection hub between their domains. The combinator as adds a
more convenient syntax such that converters between A and B can be designed
as:

a2b x = as A B x

b2a x = as B A x

Root

A B

.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.........................
............

b

............
............

............
............

............
............

............
............

............
............

............
............

..........................

a−1

..
..
............

b−1

..
...

a

...a2b = as B A

...
b2a = as A B

We will provide extensive use cases for these combinators as we populate our
group of isomorphisms. Given that [Nat] has been chosen as the root, we will
define our finite function data type fun simply as the identity isomorphism on
sequences in [Nat].

fun :: Encoder [Nat]

fun = itself

3 Extending the group of isomorphisms

We will now populate our group of isomorphisms with combinators based on a
few primitive converters.

3.1 An isomorphism to finite sets of natural numbers

The isomorphism is specified with two bijections set2fun and fun2set.

set :: Encoder [Nat]

set = Iso set2fun fun2set

While finite sets and sequences share a common representation [Nat], sets are
subject to the implicit constraint that all their elements are distinct1. This
suggest that a set like {7, 1, 4, 3} could be represented by first ordering it as
{1, 3, 4, 7} and then compute the differences between consecutive elements. This
gives [1, 2, 1, 3], with the first element 1 followed by the increments [2, 1, 3]. To
turn it into a bijection, including 0 as a possible member of a sequence, another
adjustment is needed: elements in the sequence of increments should be replaced
by their predecessors. This gives [1, 1, 0, 2] as implemented by set2fun:

set2fun is | is_set is =
map pred (genericTake l ys) where

ns=sort is

l=genericLength ns

next n | n≥0 = succ n

1 Such constraints can be regarded as laws that we assume about a given data type,
when needed, restricting it to the appropriate domain of the underlying mathemat-
ical concept.

xs =(map next ns)

ys=(zipWith (-) (xs++[0]) (0:xs))

is_set ns = ns==nub ns

It can now be verified easily that incremental sums of the successors of numbers
in such a sequence, return the original set in sorted form, as implemented by
fun2set:

fun2set ns =
map pred (tail (scanl (+) 0 (map next ns))) where

next n | n≥0 = succ n

The resulting Encoder (set) is now ready to interoperate with another Encoder:

∗ISO> as set fun [0,1,0,0,4]

[0,2,3,4,9]

∗ISO> as fun set [0,2,3,4,9]

[0,1,0,0,4]

As the example shows, this encoding maps arbitrary lists of natural numbers
representing finite functions to strictly increasing sequences of (distinct) natural
numbers representing sets.

3.2 Folding sets into natural numbers

We can fold a set, represented as a list of distinct natural numbers into a sin-
gle natural number, reversibly, by observing that it can be seen as the list of
exponents of 2 in the number’s base 2 representation.

nat_set = Iso nat2set set2nat

nat2set n | n≥0 = nat2exps n 0 where

nat2exps 0 _ = []

nat2exps n x =
if (even n) then xs else (x:xs) where

xs=nat2exps (n ‘div‘ 2) (succ x)

set2nat ns | is_set ns = sum (map (2^) ns)

We will standardize this pair of operations as an Encoder for a natural number
using our Root as a mediator:

nat :: Encoder Nat

nat = compose nat_set set

The resulting Encoder (nat) is now ready to interoperate with any other En-
coder:

∗ISO> as fun nat 2008

[3,0,1,0,0,0,0]

∗ISO> as set nat 2008

[3,4,6,7,8,9,10]

∗ISO> as nat set [3,4,6,7,8,9,10]

2008

∗ISO> lend nat reverse 2008

1135

∗ISO> lend nat_set reverse 2008

2008

∗ISO> borrow nat_set succ [1,2,3]

[0,1,2,3]

∗ISO> as set nat 42

[1,3,5]

∗ISO> fit length nat 42

3

∗ISO> retrofit succ nat_set [1,3,5]

43

The reader might notice at this point that we have already made full circle
- as finite sets can be seen as instances of finite sequences. Injective functions
that are not surjections with wider and wider gaps can be generated using the
fact that one of the representations is information theoretically “denser” than
the other, for a given range:

∗ISO> as set fun [0,1,2,3]

[0,2,5,9]

∗ISO> as set fun $ as set fun [0,1,2,3]

[0,3,9,19]

∗ISO> as set fun $ as set fun $ as set fun [0,1,2,3]

[0,4,14,34]

4 Generic unranking and ranking hylomorphisms

The ranking problem for a family of combinatorial objects is finding a unique
natural number associated to it, called its rank. The inverse unranking problem
consists of generating a unique combinatorial object associated to each natural
number.

4.1 Pure hereditarily finite data types

The unranking operation is seen here as an instance of a generic anamorphism
mechanism (an unfold operation), while the ranking operation is seen as an in-
stance of the corresponding catamorphism (a fold operation) [15, 24]. Together
they form a mixed transformation called hylomorphism. We will use such hylo-
morphisms to lift isomorphisms between lists and natural numbers to isomor-
phisms between a derived “self-similar” tree data type and natural numbers. In
particular we will derive Ackermann’s encoding from hereditarily finite sets to
natural numbers.

The data type representing hereditarily finite structures will be a generic
multiway tree with a single leaf type [].

data T = H Ts deriving (Eq,Ord,Read,Show)

type Ts = [T]

The two sides of our hylomorphism are parameterized by two transformations f
and g forming an isomorphism Iso f g:

unrank f n = H (unranks f (f n))

unranks f ns = map (unrank f) ns

rank g (H ts) = g (ranks g ts)

ranks g ts = map (rank g) ts

Both combinators can be seen as a form of “structured recursion” that propagate
a simpler operation guided by the structure of the data type. For instance, the
size of a tree of type T is obtained as:

tsize = rank (λxs→1 + (sum xs))

Note also that unrank and rank work on T in cooperation with unranks and
ranks working on Ts.

We can now combine an anamorphism+catamorphism pair into an isomor-
phism hylo defined with rank and unrank on the corresponding hereditarily
finite data types:

hylo :: Iso b [b] → Iso T b

hylo (Iso f g) = Iso (rank g) (unrank f)

hylos :: Iso b [b] → Iso Ts [b]

hylos (Iso f g) = Iso (ranks g) (unranks f)

Hereditarily finite sets Hereditarily finite sets will be represented as an En-
coder for the tree type T:

hfs :: Encoder T

hfs = compose (hylo nat_set) nat

The hfs Encoder can now borrow operations from sets or natural numbers as
follows:

hfs_union = borrow2 (with set hfs) union

hfs_succ = borrow (with nat hfs) succ

hfs_pred = borrow (with nat hfs) pred

∗ISO> hfs_succ (H [])

H [H []]

∗ISO> hfs_union (H [H []]) (H [])

H [H []]

Otherwise, hylomorphism induced isomorphisms work as usual with our embed-
ded transformation language:

∗ISO> as hfs nat 42

H [H [H []],H [H [],H [H []]],H [H [],H [H [H []]]]]

One can notice that we have just derived as a “free algorithm” Ackermann’s
encoding from hereditarily finite sets to natural numbers:

f(x) = if x = {} then 0 else
∑

a∈x 2f(a)

together with its inverse:

ackermann = as nat hfs

inverse_ackermann = as hfs nat

Hereditarily finite functions The same tree data type can host a hylomor-
phism derived from finite functions instead of finite sets:

hff :: Encoder T

hff = compose (hylo nat) nat

The hff Encoder can be seen as another “free algorithm”, providing data com-
pression/succinct representation for hereditarily finite sets. Note, for instance,
the significantly smaller tree size in:

∗ISO> as hff nat 42

H [H [H []],H [H []],H [H []]]

As the cognoscenti might observe this is explained by the fact that hff provides
higher information density than hfs, by incorporating order information that
matters in the case of sequence and is ignored in the case of a set.

5 Pairing/unpairing

A pairing function is an isomorphism f : Nat×Nat→ Nat. Its inverse is called
unpairing.

We will introduce here an unusually simple pairing function (also mentioned
in [28], p.142).

The function bitpair works by splitting a number’s big endian bitstring
representation into odd and even bits, while its inverse bitunpair blends the
odd and even bits back together.

type Nat2 = (Nat,Nat)

source (x,_)= x

target (_,y)= y

bitpair :: Nat2 → Nat

bitpair (i,j) =
set2nat ((evens i) ++ (odds j)) where

evens x = map (2∗) (nat2set x)

odds y = map succ (evens y)

bitunpair :: Nat→Nat2

bitunpair n = (f xs,f ys) where

(xs,ys) = partition even (nat2set n)

f = set2nat . (map (‘div‘ 2))

The transformation of the bitlists is shown in the following example with
bitstrings aligned:

∗ISO> bitunpair 2008

P 60 26

-- 2008:[0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1]

-- 60:[0, 0, 1, 1, 1, 1]

-- 26:[0, 1, 0, 1, 1]

We can derive the following Encoder:

nat2 :: Encoder Nat2

nat2 = compose (Iso bitpair bitunpair) nat

working as follows:

∗ISO> as nat2 nat 2008

(60,26)

∗ISO> as nat nat2 (60,26)

2008

A reason pairing/unpairing operations are important, is that they can encode
complex objects (when interpreted as cons+head+tail operations) and ultimately
code - for instance simple LISP or λ-calculus programs and interpreters.

6 Cons-Lists with Pairing/Unpairing

The simplest application of pairing/unpairing operations is encoding of cons-lists
of natural numbers, defined as the data type:

data CList = Atom Nat | Cons CList CList

deriving (Eq,Ord,Show,Read)

First, to provide an infinite supply of atoms, we encode them as even num-
bers:

to_atom n = 2∗n
from_atom a | is_atom a = a ‘div‘ 2

is_atom n = even n && n≥0

Next, as we want atoms and cons cell disjoint, we will encode the later as odd
numbers:

is_cons n = odd n && n>0
decons z | is_cons z = bitunpair ((z-1) ‘div‘ 2)

cons x y = 2∗(bitpair (x,y))+1

We can deconstruct a natural number by recursing over applications of the
unpairing-based decons combinator:

nat2cons n | is_atom n = Atom (from_atom n)

nat2cons n | is_cons n =
Cons (nat2cons hd)

(nat2cons tl) where

(hd,tl) = decons n

We can reverse this process by recursing with the cons combinator on the CList
data type:

cons2nat (Atom a) = to_atom a

cons2nat (Cons h t) = cons (cons2nat h) (cons2nat t)

The following example shows both transformations as inverses.

∗ISO> nat2cons 123456789

Cons

(Atom 2512)

(Cons

(Cons

(Cons

(Cons (Atom 0) (Atom 0))

(Cons (Atom 0) (Atom 0))

)

(Atom 1)

)

(Atom 27)

)

∗ISO> cons2nat it

123456789

We obtain the Encoder:

clist :: Encoder CList

clist = compose (Iso cons2nat nat2cons) nat

The Encoder works as follows:

ISO> as clist nat 101

Cons (Atom 2) (Cons (Atom 0) (Cons (Atom 0) (Atom 0)))

and can be used to generate random LISP-like data and code skeletons from
natural numbers.

7 Directed graphs and hypergraphs

We will now show that more complex data types like digraphs and hypergraphs
have extremely simple encoders. This shows once more the importance of com-
positionality in the design of our embedded transformation language.

7.1 Encoding directed graphs

We can find a bijection from directed graphs (with no isolated vertices, corre-
sponding to their view as binary relations), to finite sets by fusing their list of
ordered pair representation into finite sets with a pairing function:

digraph2set ps = map bitpair ps

set2digraph ns = map bitunpair ns

The resulting Encoder is:

digraph :: Encoder [Nat2]

digraph = compose (Iso digraph2set set2digraph) set

working as follows:

∗ISO> as digraph nat 2008

[(1,1),(2,0),(2,1),(3,1),(0,2),(1,2),(0,3)]

∗ISO> as nat digraph it

2008

7.2 Encoding hypergraphs

Definition 1 A hypergraph (also called set system) is a pair H = (X,E) where
X is a set and E is a set of non-empty subsets of X.

We can easily derive a bijective encoding of hypergraphs, represented as sets of
sets:

set2hypergraph = map nat2set

hypergraph2set = map set2nat

The resulting Encoder is:

hypergraph :: Encoder [[Nat]]

hypergraph = compose (Iso hypergraph2set set2hypergraph) set

working as follows

∗ISO> as hypergraph nat 2008

[[0,1],[2],[1,2],[0,1,2],[3],[0,3],[1,3]]

∗ISO> as nat hypergraph it

2008

8 Applications

Besides their utility as a uniform basis for a general purpose data conversion
library, let us point out some specific applications of our isomorphisms.

8.1 Combinatorial generation

A free combinatorial generation algorithm (providing a constructive proof of
recursive enumerability) for a given structure is obtained simply through an
isomorphism from nat:

nth thing = as thing nat

nths thing = map (nth thing)

stream_of thing = nths thing [0..]

∗ISO> nth set 42

[1,3,5]

∗ISO> take 3 (stream_of hfs)

[H [],H [H []],H [H [H []]]]

8.2 Random instance generation

Combining nth with a random generator for nat provides free algorithms for
random generation of complex objects of customizable size:

random_gen thing seed largest n = genericTake n

(nths thing (rans seed largest)) where

rans seed largest =
randomRs (0,largest) (mkStdGen seed)

∗ISO> random_gen set 11 999 3

[[0,2,5],[0,5,9],[0,1,5,6]]

∗ISO> head (random_gen hfs 7 30 1)

H [H [],H [H [],H [H []]],H [H [H [H []]]]]

This is useful for further automating test generators in tools like QuickCheck
[7].

8.3 Succinct representations

Depending on the information theoretical density of various data representations
as well as on the constant factors involved in various data structures, significant
data compression can be achieved by choosing an alternate isomorphic represen-
tation, as shown in the following examples:

∗ISO> as hff hfs (H [H [H []],H [H [],

H [H []]],H [H [],H [H [H []]]]])

H [H [H []],H [H []],H [H []]]

∗ISO> as nat hff (H [H [H []],H [H []],H [H []]])

42

In particular, mapping to efficient arbitrary length integer implementations
(usually C-based libraries), can provide more compact representations or im-
proved performance for isomorphic higher level data representations.

8.4 Experimental Mathematics

We can compare representations sharing a common datatype to conjecture about
their asymptotic information density.

For instance, after defining:

length_as t = fit genericLength (with nat t)

sum_as t = fit sum (with nat t)

size_as t = fit tsize (with nat t)

one can conjecture that finite functions are more compact than sets asymptoti-
cally

∗ISO> length_as set 123456789012345678901234567890

54

∗ISO> length_as fun 123456789012345678901234567890

54

∗ISO> sum_as set 123456789012345678901234567890

2690

∗ISO> sum_as fun 123456789012345678901234567890

43

and then observe that the same trend applies also

to their hereditarily finite derivatives:

∗ISO> size_as hfs 123456789012345678901234567890

627

∗ISO> size_as hff 123456789012345678901234567890

91

8.5 A surprising “free algorithm”: strange sort

A simple isomorphism like nat set can exhibit interesting properties as a build-
ing block of more intricate mappings like Ackermann’s encoding, but let’s also
note a simple “free algorithm” – sorting a list of distinct elements without ex-
plicit use of comparison operations:

strange_sort = (from nat_set) . (to nat_set)

∗ISO> strange_sort [2,9,3,1,5,0,7,4,8,6]

[0,1,2,3,4,5,6,7,8,9]

This algorithm emerges as a consequence of the commutativity of addition and
the unicity of the decomposition of a natural number as a sum of powers of 2.

8.6 Other applications

A fairly large number of useful algorithms in fields ranging from data compres-
sion, coding theory and cryptography to compilers, circuit design and computa-
tional complexity involve bijective functions between heterogeneous data types.
Their systematic encapsulation in a generic API that coexists well with strong
typing can bring significant simplifications to various software modules with the

added benefits of reliability and easier maintenance. In a Genetic Programming
context [19] the use of isomorphisms between bitvectors/natural numbers on one
side, and trees/graphs representing HFSs, HFFs on the other side, looks like a
promising phenotype-genotype connection. Mutations and crossovers in a data
type close to the problem domain are transparently mapped to numerical do-
mains where evaluation functions can be computed easily. In the context of Soft-
ware Transaction Memory implementations (like Haskell’s STM [12]), encodings
through isomorphisms are subject to efficient shortcuts, as undo operations in
case of transaction failure can be performed by applying inverse transformations
without the need to save the intermediate chain of data structures involved.

9 Related work

The closest reference on encapsulating bijections as a data type is [2] and Con-
nan Eliot’s composable bijections Haskell module [8], where, in a more complex
setting, Arrows [14] are used as the underlying abstractions. While our Iso
data type is similar to the Bij data type in [8] and BiArrow concept of [2],
the techniques for using such isomorphisms as building blocks of an embedded
composition language centered around encodings as natural numbers are new.

Ranking functions can be traced back to Gödel numberings [11, 13] associated
to formulae. Together with their inverse unranking functions they are also used in
combinatorial generation algorithms [23, 18, 32, 25]. However the generic view of
such transformations as hylomorphisms obtained compositionally from simpler
isomorphisms, as described in this paper, is new.

Natural number encodings of hereditarily finite sets have triggered the inter-
est of researchers in fields ranging from Axiomatic Set Theory and Foundations
of Logic to Complexity Theory and Combinatorics [33, 16, 1, 3, 17, 21]. Compu-
tational and data representation aspects of finite set theory have been described
in logic programming and theorem proving contexts in [27, 26].

Pairing functions have been used in work on decision problems as early as [29,
30]. A typical use in the foundations of mathematics is [5]. An extensive study
of various pairing functions and their computational properties is presented in
[31].

10 Conclusion

We have shown the expressiveness of Haskell as a metalanguage for executable
mathematics, by describing encodings for functions and finite sets in a uniform
framework as data type isomorphisms with a group structure. Haskell’s higher
order functions and recursion patterns have helped the design of an embedded
data transformation language. The framework has been extended with hylomor-
phisms providing generic mechanisms for encoding hereditarily finite sets and
hereditarily finite functions. In the process, a few surprising “free algorithms”
have emerged, including Ackermann’s encoding from hereditarily finite sets to
natural numbers. A longer version of the paper, covering isomorphisms to data

types as parenthesis languages, dyadic rationals, functional binary numbers, per-
mutations, binary decision diagrams and their hereditarily finite derivatives is
available at http://arXiv.org/abs/0808.2953.

References

1. Alexander Abian and Samuel Lamacchia. On the consistency and independence of
some set-theoretical constructs. Notre Dame Journal of Formal Logic, X1X(1):155–
158, 1978.

2. Artem Alimarine, Sjaak Smetsers, Arjen van Weelden, Marko van Eekelen, and
Rinus Plasmeijer. There and back again: arrows for invertible programming. In
Haskell ’05: Proceedings of the 2005 ACM SIGPLAN workshop on Haskell, pages
86–97, New York, NY, USA, 2005. ACM Press.

3. Jeremy Avigad. The Combinatorics of Propositional Provability. In ASL Winter
Meeting, San Diego, January 1997.

4. Cristian Calude and Arto Salomaa. Algorithmically coding the universe. In De-
velopments in Language Theory, World Scientific, pages 472–492, 1994.

5. Patrick Cégielski and Denis Richard. Decidability of the theory of the natural
integers with the cantor pairing function and the successor. Theor. Comput. Sci.,
257(1-2):51–77, 2001.

6. Gregory J. Chaitin. A theory of program size formally identical to information
theory. J. Assoc. Comput. Mach, 22:329–340, 1975.

7. Koen Claessen and John Hughes. Testing monadic code with quickcheck. SIG-
PLAN Notices, 37(12):47–59, 2002.

8. Connan Eliot. Data.Bijections Haskell Module.
http://haskell.org/haskellwiki/TypeCompose.

9. Stephen Cook. Theories for complexity classes and their propositional translations.
In Complexity of computations and proofs, pages 1–36, 2004.

10. Stephen Cook and Alasdair Urquhart. Functional interpretations of feasibly con-
structive arithmetic. Annals of Pure and Applied Logic, 63:103–200, 1993.

11. K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

12. Tim Harris, Simon Marlow, Simon L. Peyton Jones, and Maurice Herlihy. Com-
posable memory transactions. Commun. ACM, 51(8):91–100, 2008.

13. Juris Hartmanis and Theodore P. Baker. On simple goedel numberings and transla-
tions. In Jacques Loeckx, editor, ICALP, volume 14 of Lecture Notes in Computer
Science, pages 301–316. Springer, 1974.

14. John Hughes. Generalizing Monads to Arrows. Science of Computer Programming
37, pp. 67-111, May 2000.

15. Graham Hutton. A Tutorial on the Universality and Expressiveness of Fold. J.
Funct. Program., 9(4):355–372, 1999.

16. Richard Kaye and Tin Lock Wong. On Interpretations of Arithmetic and Set
Theory. Notre Dame J. Formal Logic Volume, 48(4):497–510, 2007.

17. Laurence Kirby. Addition and multiplication of sets. Math. Log. Q., 53(1):52–65,
2007.

18. Donald Knuth. The Art of Computer Programming, Volume 4, draft, 2006.
http://www-cs-faculty.stanford.edu/∼knuth/taocp.html.

19. John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

20. George Lakoff and Mark Johnson. Metaphors We Live By. University of Chicago
Press, Chicago, IL, USA, 1980.

21. Alexander Leontjev and Vladimir Yu. Sazonov. Capturing LOGSPACE over
Hereditarily-Finite Sets. In Klaus-Dieter Schewe and Bernhard Thalheim, edi-
tors, FoIKS, volume 1762 of Lecture Notes in Computer Science, pages 156–175.
Springer, 2000.

22. Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its
applications. Springer-Verlag New York, Inc., New York, NY, USA, 1993.

23. Conrado Martinez and Xavier Molinero. Generic algorithms for the generation
of combinatorial objects. In Branislav Rovan and Peter Vojtas, editors, MFCS,
volume 2747 of Lecture Notes in Computer Science, pages 572–581. Springer, 2003.

24. Erik Meijer and Graham Hutton. Bananas in Space: Extending Fold and Unfold
to Exponential Types. In FPCA, pages 324–333, 1995.

25. Wendy Myrvold and Frank Ruskey. Ranking and unranking permutations in linear
time. Information Processing Letters, 79:281–284, 2001.

26. Lawrence C. Paulson. A Concrete Final Coalgebra Theorem for ZF Set Theory.
In Peter Dybjer, Bengt Nordström, and Jan M. Smith, editors, TYPES, volume
996 of Lecture Notes in Computer Science, pages 120–139. Springer, 1994.

27. Carla Piazza and Alberto Policriti. Ackermann Encoding, Bisimulations, and OB-
DDs. TPLP, 4(5-6):695–718, 2004.

28. Stephen Pigeon. Contributions à la compression de données. Ph.d. thesis, Univer-
sité de Montréal, Montréal, 2001.

29. Julia Robinson. General recursive functions. Proceedings of the American Mathe-
matical Society, 1(6):703–718, dec 1950.

30. Julia Robinson. Finite generation of recursively enumerable sets. Proceedings of
the American Mathematical Society, 19(6):1480–1486, dec 1968.

31. Arnold L. Rosenberg. Efficient pairing functions - and why you should care. In-
ternational Journal of Foundations of Computer Science, 14(1):3–17, 2003.

32. Frank Ruskey and Andrzej Proskurowski. Generating binary trees by transposi-
tions. J. Algorithms, 11:68–84, 1990.

33. Moto-o Takahashi. A Foundation of Finite Mathematics. Publ. Res. Inst. Math.
Sci., 12(3):577–708, 1976.

