
CELLULAR AUTOMATA: IS RULE 30 RANDOM?

DUSTIN GAGE
UNIVERSITY OF MAINE - FARMINGTON

ELIZABETH LAUB
SUSQUEHANNA UNIVERSITY

BRIANA MCGARRY
CENTRAL MICHIGAN UNIVERSITY

DR. KEN SMITH - FACULTY ADVISER

DEPARTMENT OF MATHEMATICS

CENTRAL MICHIGAN UNIVERSITY

Abstract. Dr. Stephen Wolfram, developer of Mathematica, claims that Rule
30 can be used as an effective encryption scheme due to its random qualities.

We investigate this claim by using a battery of statistical tests as well as

identify properties that help characterize its security if used for encryption.
The results provide evidence that Rule 30 shows adequate randomness for a

high level of security with weaknesses isolated to even window sizes.

1



2 GAGE, LAUB, MCGARRY

1. Introduction

Cellular automata is a relatively new development in modern science. It consists
of simple progressions from algorithms, or Rules, over time. The purpose of this
research was to investigate a claim made by Dr. Stephen Wolfram. Dr. Wolfram
believes that the use of a particular algorithm, which he referred to as Rule 30,
produces a binary sequence that is sufficiently random and can be used as a secure
encryption system.

Rules are formed through a definition of the 23 = 8 possible progressions of three
cells (the cell, the cells left-hand neighbor, and the cells right-hand neighbor). Each
of these progressions gives a single output, producing a new cell and creating a three
to one mapping. The Rules are then named using these progressions as shown in
Fig. 1. The name of the Rule can be found by arranging the progressions, starting
from the left with seven base two (111)2, descending to zero (000)2, and converting
this base two number to base ten. In doing this, there are 28 = 256 possibilities,
and therefore 256 possible Rules.

Rule 30 is a function that maps three

Figure 1: The name of each rule is given
by the base 10 representation of their
output. This is the set of parameters
and outputs for Rule 30.

bits to one bit according to the equa-
tion:

f(a, b, c) = a + b + c + bc.

Another way to execute Rule 30 is
to “look at each cell and its right hand
neighbor. If both of these were white
on the previous step, then take the color
of the cell to be whatever the previous

color of its left-hand neighbor was. Otherwise, take the new color to be opposite
of the left hand neighbor” [4]. A visual correspondence with how Rule 30 behaves
can be seen in Fig. 2 where Rule 30 acts on every cell in a row of zeros and ones
to produce a new row. This process is then repeated.

The practical applications of cellular au-

Figure 2: This is the progression
of a configuration with one value
one site using Rule 30. Random
behavior is observable and worthy of
investigation.[5]

tomata can be seen in multiple fields of science
and social science. They range from computer
science, technology, physics, biology, and math,
to economics, psychology, philosophy, and even
art [4]. The research we have focused on ap-
plies mainly to cryptology and random num-
ber generation.

Before any further mention of randomness,
a definition must be established. The concept
of “random” can be described in a variety of
ways. The definition we have referred to in
our research can be credited to Dr. Solomon
Golomb, a professor at the University of South-
ern California. Dr. Golomb proposed three postulates for randomness, which he
classified as preliminary steps. If a binary string passes all three postulates, the
string can be considered as pseudo-noise and qualifies for further inspection. The



CELLULAR AUTOMATA: IS RULE 30 RANDOM? 3

first postulate states “If p is even then the cycle of length p shall contain an equal
number of zeros and ones. If p is odd then the number of zeros shall be one more
or less than the number of ones” [1]. The second postulate says “In the cycle of
length p, for each i for which there are at least 2i+1 runs, 1

2i of the runs have length
i. Moreover, for each of these lengths, there are equally many gaps and blocks” [1].
Finally, the third postulate asserts “The out-of-phase autocorrelation is a constant”
[1]. Essentially, the third postulate is simply the notion of independent trials. To
pass this postulate, it must be impossible to predict the next value of the strip from
previous values.

Definition 1. A cell’s right-hand neighbor is the cell immediately to its right,
and a cell’s left-hand neighbor is the cell immediately to its left.

Definition 2. Window Size is the number of binary bits for a given automata.

Remark. For finite window sizes, the boundary condition for the first and last bit
of a configuration is to make them adjacent and effectively “wrap” the window.

Definition 3. A Seed is the combination of 0’s and 1’s where the automaton begins
its iterations.

Definition 4. A State Diagram is a structure that contains all 2N binary config-
urations, where N is the window size. The diagram is a digraph with each configu-
ration as a vertex and directed edges showing their progression under the Rule,(Fig.
3).

Definition 5. A Cycle is a loop in the state diagram.

Definition 6. A Tail is a sequence of configurations in the state diagram to which
the progression will not return. In other words, something that is part of a tail is
not in a cycle.

Definition 7. An End Point is a configuration on the tail that has no predecessors
in the progression.

Definition 8. A Branch Point is a configuration which has two or more prede-
cessors in the progression.

Definition 9. A Test Strip is a binary strip found by selecting one cell in the seed
and following the cell straight down through a given number of iterations. (This is
chosen by the tester.)

Remark. Test strips are used for statistical testing. The seed typically used in this
research to produce test strips was a single one and the rest zeros. The bit with a
value of one in the seed was the bit that was followed to generate the test strip.

Definition 10. Let G be a permutation group acting on a set X. Let C be a
collection of colorings of X. Then c1, c2 ∈ C are equivalent provided there is a
permutation f ∈ G such that f ∗ c1 = c2. Thus, two colorings are inequivalent
provided that they are not equivalent [6].



4 GAGE, LAUB, MCGARRY

Figure 3: This is the state diagram for window size 4 under Rule 30. The
arrows denote the direction of progression, and the cycle of maximum
length is circled. Branch points have two or more arrows pointing at
them(i.e. 1110), and end points have none(i.e. 0011).

Our research focused on both the local and global aspects of Rule 30 which consist
of single strips of binary data and the overall structure of the automata, respectively.
The local approach involved performing statistical tests for randomness on test
strips of different lengths and different window sizes. The global approach involved
inspecting the complete state diagram of the automata for different window sizes
for which many different characteristics were examined including sizes of cycles,
amounts of cycles, and amounts of tails.

2. Procedure

2.1. Local Structure. Looking at a single strip of data and using statistics to
evaluate it allows for a local look at different window sizes and Rules. Two computer
programs were used to investigate and quantify properties of Rules, including Rule
30, for different window sizes. The first program output test strips with each bit
separated by commas, as well as the size of the cycle, and the size of the tail that
preceded the cycle. This program allowed for a decision of what Rule and what
seed to start with at the time of compilation, and capped out on a window size of
36 bits. The other program output a stream with line breaks between every bit,
and allowed for any window size. The program allowed for a decision of the starting
seed, a Rule, how many bits to run, and the window size all at run time.

Using these two programs, we were able to gather a working collection of strips
on which to run statistical tests. The main source of tests was a statistical battery
package distributed by the National Institute of Standards and Technology (NIST).
From this package, we were able to run tests on the collection of strips previously
gathered. The tests that correspond to Dr. Golomb’s three postulates of random-
ness are the frequency test, the runs test, and the spectral test, respectively. All of
the tests were compared to a chi-square distribution in order to find p-values nec-
essary for hypothesis testing [3]. In addition to statistical tests, the NIST program
included an option to test binary streams created by a variety of random number
generators (RNG’s) [3].



CELLULAR AUTOMATA: IS RULE 30 RANDOM? 5

Another program utilized for running statistical tests was MiniTab. This pro-
vided another runs test that used a normal distribution comparison to find the
corresponding p-values for test strips. This program was only used for smaller win-
dow sizes where the cycle lengths were explicitly known. This ensured that the
strips tested were aperiodic by keeping their length shorter than the cycle length.
The MiniTab runs test was also used to test strip sizes of 1,000 bits and 50,000 bits.

The NIST Maurer’s Universal Test stream length requirement of 387,840 was too
large for small window sizes to be tested, so a third program was written by Dr.
John Daniels, a statistics professor at Central Michigan University. This program
was written in SAS, a statistical programing language, and was used for smaller
strip sizes. The use of the NIST package and Dr. Daniel’s program allowed us to
test strips for their compressibility across all window sizes.

2.2. Global Structure. If the level of local randomness is found to be at an
acceptable level, we must then turn to the global perspective of Rule 30 to identify
properties that either help or hinder its use as an encryption system. Most of
this work was done using computers with reliance on empirical evidence due to
the exponential nature and computational intractability of Rule 30[5]. Dr Wolfram
focused on the maximum cycle lengths for increasing window size, but there is only
minimal data published about the tails on those cycles. Keeping track of both the
cycles and tails is computationally more difficult, so an algorithmic approach was
required to gather such data.

In order to meet and extend the published information gathered about Rule 30,
the computer programs we developed used inequivalent colorings to increase the
computational efficiency to produce results in a timely manner. Colorings in this
context refer to the unique sequences of zeros and ones that make up a configuration.
Since the boundary conditions effectively wrap the window, each configuration has a
cyclic nature and we can partition all of the possible configurations, or “colorings,”
into equivalence classes for window size N based on the symmetries of the cyclic
group of order N , CN . This property is sometimes denoted as shift invariance,
and by examining only one of the elements in each class, the number of necessary
computations is brought down to approximately 2N

N . As the size of the window
grew, identifying the inequivalent colorings themselves became a computational
challenge, and so the Gray Code[6] was utilized to increase this efficiency.

Remark. Given a configuration X on window size N , when X is written in base
10, all of its equivalent colorings are of the form X ∗ 2n(mod2N − 1)for(n ≥ 0).

The Gray Code[6] exhibits symmetries within the inequivalent colorings that
improve the computational efficiency of searching for them spread throughout 2N

possible configurations for window size N. A consequence of the above remark is
that the equivalent colorings will be separated by powers of two and thus, half of
the configurations do not need to be checked. This means that the Gray Code can
produce the list of inequivalent colorings by searching 2N−2 configurations. The
searching process can be improved further by writing the configurations in base 10
and using the modular relationship from above to check equivalence. The use of
Polya’s Counting Theorem[6] which generates the number of inequivalent colorings
with a specific number of ones and zeros was used to improve the performance as
well.



6 GAGE, LAUB, MCGARRY

The Gray Code describes an ordering of n-tuples which can be used as a consis-
tent ordering across all window sizes in the case of cellular automata. The ordering
of the Gray Code is useful later on when looking for weaknesses across window
sizes in regard to security and reliability as an encryption system. Using the above
methodology, we produced and compiled data in its entirety for window sizes less
than 25 and corrected previously published data for window sizes less than 36.

3. Results

3.1. Local Results. Using the variety of programs to which we had access, we
were able to create a large battery of statistical tests and a large table of p-values.
Appendix 1 includes information about various window sizes of Rule 30, as well as
Rule 45, Rule 89, and RNGs. Our null hypothesis for the statistical tests was that
the strip was random. Highlighted [Appendix 1] are p-values that indicate failure of
the null hypothesis at 95% and 99% confidence intervals. (α = 0.05 and α = 0.01)

3.2. Global Results. Table 1 shows the number of each cycle length present in
the state diagram for window size 5 to 24 with the max cycle separated from the
rest. The table also shows the percent of all configurations that show up in tails
versus cycles, and the dominance by tails is easily seen even for small window
sizes. Since a good encryption system is dependent on the percent of total vertices
evolving to the max cycle, the trend in those vertices was calculated and found to
be approximately 2(0.928N−0.1017) for window size N using the last column.

Window
Size

Length
of Max
Cycle

Tails
in Max
Cycle

Other Cycles % in
Tails

% in
Cycles

% in
Max

5 5 5 1x1 81.25 18.75 93.75
6 1 12 2x1 95.31 4.69 96.88
7 63 2 7x4, 1x1 28.13 71.88 60.16
8 40 15 1x8, 3x1 80.08 19.92 87.50
9 171 27 1x72, 1x1 52.34 47.66 80.86
10 2x 15 42 1x5, 3x1 96.29 3.71 82.03
11 154 53 11x17, 1x1 83.30 16.70 75.73
12 4x 102 127 1x8, 4x3, 3x1 89.48 10.52 93.46
13 832 66 1x260, 1x247, 1x91, 1x1 82.53 17.47 31.74
14 1428 265 2x133, 1x112, 1x63, 1x14, 7x4,

3x1
88.29 11.71 84.56

15 1455 432 5x30, 5x9, 15x7, 4x5, 1x1 94.58 5.42 92.70
16 6016 316 1x4144, 3x40, 1x8, 3x1 84.30 15.70 90.87
17 10846 2237 1x1632, 1x867, 1x306, 1x136,

1x17, 1x1
89.47 10.53 95.65

18 2844 1721 6x186, 1x171, 1x72, 6x24, 3x1 98.34 1.66 81.61
19 3705 500 1x247, 1x133, 1x38, 1x1 99.21 0.79 27.82
20 2x 6150 2492 4x3420, 4x1715, 1x580, 5x68,

4x30, 1x15, 1x8, 1x5, 3x1
96.76 3.24 73.40

21 2793 2201 7x597, 21x409, 1x63, 21x44,
1x42, 7x4, 1x1

99.21 0.79 9.62

22 2x 3553 240 1x3256, 2x781, 1x154, 2x77,
11x17, 3x1

99.63 0.37 94.90

23 38249 10489 1x4784, 1x138, 1x1 99.49 0.51 99.85
24 185040 15601512 1x5448 8x366 2x312 24x20 4x102

1x40 1x8 4x3 2x1 1x1
98.84 1.16 94.10

Table 1. Cumulative Data for window sizes 5 to 24 under Rule 30.



CELLULAR AUTOMATA: IS RULE 30 RANDOM? 7

Table 2 shows the maximum cycle length, ΠN , for window size N from 4 to 36.
A similar table was published[5], so the work provided to produce these results was
to confirm the previously published data. The rows shown in bold differ from the
previously published data where the numbers for maximum cycle were lower than
the ones found during our research. The trend in maximum cycle calculated using
the data below with Dr. Wolfram’s data for window sizes 37 to 54 was found to be
2(0.621x+0.5081).

N ΠN log2(ΠN )
4 8 3
5 5 2.32
6 1 0
7 63 5.98
8 40 5.32
9 171 7.42
10 15 3.91
11 154 7.27
12 102 6.68
13 832 9.70
14 1428 10.48
15 1455 10.51
16 6016 12.55
17 10846 13.40
18 2844 11.47
19 3705 11.86
20 6150 12.59
21 2793 11.45
22 3553 11.79
23 38249 15.22
24 185040 17.50
25 588425 19.17
26 312156 18.25
27 240300 17.88
28 249165 17.93
29 1466066 20.48
30 374265 18.51
31 2841150 21.44
32 2002272 20.93
33 2038476 20.96
34 5656002 22.43
35 18480630 24.14
36 2237472 21.10

Table 2. Maximum cycle lengths ΠN found for cellular automata under

Rule 30 for window sizes 4 to 36. The rows in bold signify the data that

differs from[5].

An important consequence of the window’s shift invariance involves the presence
of configurations with cyclic order less than the window size. This is a result of
symmetry due to the divisors of the window size. For a given window size N ,
there exist configurations that can be partitioned into d identical configurations
of length N

d . This means that the order of the entire configuration must be N
d .

Since the boundary conditions will be satisfied by each partition as if they were
in an N

d window, the entire configuration will evolve as if it were a window size of
length N

d , and for this reason, we call them Divisor Cycles. When Rule 30 mimics
a window size of N

d on a true window size of N , the Divisor Cycle formed must
also be identical as seen in Fig. 4. Divisor Cycles consist of configurations that
are effectively “trapped” since they are fully determined by a smaller window size.
They, in turn, play an important role in producing large amounts of bad seeds that
could cause an entire window size to be considered unacceptable for encryption.



8 GAGE, LAUB, MCGARRY

It is easily shown that the fraction of con-
1101 + 1101 → 11011101
0001 + 0001 → 00010001
1011 + 1011 → 10111011
0010 + 0010 → 00100010
0111 + 0111 → 01110111
0100 + 0100 → 01000100
1110 + 1110 → 11101110
1000 + 1000 → 10001000
1101 + 1101 → 11011101
Figure 4: An example of a Divisor
Cycle on a window size of 8. The
Divisor Cycle mimics a cycle on a
window size of 4.

figurations in Divisor Cycles tends exponen-
tially to zero as window size increases, but
there is a caveat in that observation. The end-
point of a state diagram in a window size N is
not necessarily going to produce another end
point when doubled and trapped in a window
size of 2N . The easiest example to observe
is the sequence of N − 2 cells with value zero
and 2 adjacent cells with value one,(000..011).
It can be shown that there is no configura-
tion that maps to this in any window size,
but it can also be shown that when doubled,

(000..011000..011), it is always a branch point. This means that for any given win-
dow size N , the cycle that the above configuration evolves to will produce more
tails that evolve to Divisor Cycles in window size 2N .

Window Size Lost Tails % Added to Divisor Cycles
6 54 100
8 16 8
10 150 27.03
12 180 17.39
14 862 6.47
16 5648 10.26
18 39582 15.72
20 172230 32.97
22 66321 3.13
24 240750 1.52

Table 3. Trapped configurations caused by the conversion of an end point to a
branch point on a Divisor Cycle

The number of tails trapped by this situation is not necessarily negligible as
seen in Table 3. In the case of window size 20, for example, over 30 percent of
the tail vertices in the state diagram evolve to Divisor Cycles. If Dr. Wolfram’s
observation that the only configuration with more than two predecessors is the all
1’s configuration on window sizes divisible by 3, the trapped new tails must be
limited to only the doubling of window sizes [5]. This is true since the conversion
of an end point to a branch point from a trapped configuration caused by three
or more identical partitions would give rise to a branch point with three or more
predecessors.

4. Discussion and Conclusions

4.1. Local. The statistics suggest that these strings show adequate local random-
ness to be used as a RNG and possibly used for encryption. When looking at their
cycle lengths, one would expect them to fail all tests that exceed this cycle length.
Appendix 1 shows this to be the case most of the time. In the instances that a
window size fails a test associated with one of Dr. Golomb’s postulates, the other
p-values are irrelevant (for that size strip). A failure of one of these tests indicates
that the strip was not random; consequently no further testing is necessary.

Dr. Wolfram believes Rule 30, with a window size of 200, is adequate for a
RNG. Only failing one statistical test out of the entire battery (not corresponding



CELLULAR AUTOMATA: IS RULE 30 RANDOM? 9

to one of Dr. Golomb’s postulates), it appears to follow a window size of 200 will
be adequate, as far as local randomness is concerned.

Although various window sizes of Rule 30 fail some statistical tests, some of the
RNG’s also fail a few statistical tests. Therefore, Rule 30 is at least as good as
some currently accepted RNG’s. However, in order to know that this will be secure
for encryption, different seeds must be taken into account, and evaluating global
properties will do this.

4.2. Global. The inability to easily determine whether a configuration evolves to
the max cycle means that the explicit knowledge of which configurations do not
evolve to the max cycle, (“bad seeds”), might never be achieved, so with security in
regard to encryption, a suitable replacement of this knowledge is empirical evidence
suggesting the fraction of bad seeds tends exponentially to zero. The percent of
allowable bad seeds in practice is application-specific, but it would be a safe estimate
to consider 99% of the total configurations evolving to the max cycle as a lower
bound on that requirement. Table 2 shows only one window size, 23, that meets
this 99% requirement. The smaller window sizes would have no true application as
an encryption system, so this table is mainly used to identify trends and show the
cumulative data of their respective state diagrams. The empirical trend in vertices
evolving to the max cycle is approximately 2(0.928N−0.1017) which bodes well for
sufficiently large window sizes to meet the 99% requirement.

Table 3 does introduce a source for large amounts of bad seeds that may be
present in window sizes too large to be fully analyzed. The conversion of an end
point to a branch point on the Divisor Cycles is presumably restricted to even
window sizes, and empirical evidence suggests that there is no apparent trending
to identify when a Divisor Cycle will produce large amounts of bad seeds. Unless
a pattern in this trapping of new tails is discovered, it is safer to consider all even
window sizes to be suspect in regard to encryption security and reliability.

5. Acknowledgements

This research was done with assistance from faculty adviser Dr. Ken Smith.
There was also assistance given by Dr. John Daniels with SAS program writing.
Funding was provided by the National Science Foundation Research Experience
for Undergraduates program and Central Michigan University’s Summer Scholars
Program. Programs written during our research process are available upon re-
quest: please contact Dustin Gage at lorenzgage@hotmail.com or Briana McGarry
at blmcgarry@gmail.com.

6. Further Research

(1) Examine other fields (such as GF(4))
(2) Examine window sizes larger than 24 (which will involve either a faster

computer or more efficient algorithms)
(3) Finding a pattern for the best window sizes
(4) Examine Rules similar to Rule 30 in more detail (i.e. Rule 45 and Rule 89)



10 GAGE, LAUB, MCGARRY

References

[1] Beker, Henry and Fred Piper. Cipher Systems, The Protection of Communications. New
York: Wiley-Interscience Publication (1982)

[2] Maurer, Ueli. “A Universal Statistical Test for Random Bit Generators.” Journal of Cryp-

tology 5, no. 2, 1992, pp. 89-105.
[3] Rukhin, Andrew, et al. A Statistical Test Suite for Random and Pseudorandom Number

Generators for Cryptologic Applications. NIST special publication 800-822; Revised 15 May

2001. http://nist.gov.
[4] Wolfram, Stephen. A New Kind of Science. Illinois: Stephen Wolfram LLC, 2002.

[5] Wolfram, Stephen. “Random Sequence Generation by Cellular Automata.” Advances in Ap-
plied Mathematics 7, 1986, pp. 123-126.

[6] Brualdi, Richard. Introductory Combinatorics Third ed.. New Jersey: Prentice Hall Inc, 1999.


