An Exploration of Relationships between Reflective
Theories

Anurag Mendhekar
Xerox Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304,U.S.A

Daniel P. Friedman™
Indiana University
Bloomington, IN 47405, U.S.A

Abstract

There have been individual notions of reflection in different branches
of logic and computer science. Apart from an intuitive connection be-
tween these notions about a “meta” level, there is little understanding
of relationships between them. In this paper, we present a preliminary
report of an exploration of a deeper understanding of these relation-
ships. The three notions we are going to explore are: logical, compu-
tational and monadic. Based on the logical notion, we setup a frame-
work of desirable properties with which to evaluate the other forms
of reflection. Computational reflection does not satisfy some of these
properties, while monadic reflection does. Computational reflection is,
however, of greater utility, since it allows finer control over program
implementation. Based on some of this understanding, we show how
this utility of computational reflection can be achieved in the frame-
work of monadic reflection by separating base-code from meta-code,
and restricting them in certain ways. This allows us to use the reason-
ing mechanisms provided by the call-by-value A-calculus for reflective
programming.

1 Introduction

There are notions related to reflection in many fields of logic and computer
science. The intuition behind all these notions of reflection is the broad

*Research partially supported by NSF grant CCR-9302114

245

notion of access to a “meta-level”. For example, the proof of Godel’s In-
completeness theorem vitally depends on the notion of “truth” predicates,
which provide access at the object language level, to the deduction power of
the meta-theory. Logicians have been attempting to make sense of “truth”
and its meaning for a long time. There is a large body of work that deals
with the study of truth. For the sake of uniformity in this paper, let us call
this field of study logical reflection.

Computational reflection has now become an important tool in language
design. In this form of reflection, access is provided to the implementation
structure of a system in a principled and uniform manner. This has proved
to be important in improving the quality of software—for better maintain-
ability and performance.

More recently, and from a theoretical perspective, monads [9] have been
proposed as a way of organizing the meta-level so that the semantics of
diverse “computational effects” (such as side-effects and continuations) can
be expressed in a uniform manner by appropriately adjusting a very small
part of the meta-level organization. This form of reflection is known as
monad reflection.

In this paper we study the relationship between these forms of reflection
in a mathematical sense. Our motivation for studying this is simply that we
seek a theoretical understanding of computational reflection. As reflection
becomes more widely used, it is increasingly important that any language
that incorporates reflection must be designed so that programs written in
that language are easy to read, write and debug. This requires a reasoning
mechanism, either formal or informal.

While the other two fields mentioned above have had deep logico-math-
ematical grounding, computational reflection is as yet poorly understood,
despite much early work in the semantics of reflection [2, 17]. We hope to
build a mathematical understanding of computational reflection by exploit-
ing its connections with other forms of reflection. This paper is a preliminary
report on this work.

We begin with logical reflection, and how truth predicates are under-
stood. Using constructive principles, we relate truth predicates in logic to
a language with reflective operators. Based on this analysis, we establish
certain criteria that will help in reasoning about reflection. Using these crite-
ria, we evaluate other notions of reflection in programming languages: static
reflection, monadic reflection and computational reflection. We show that
monadic reflection has many desirable properties, but in many cases, lacks
the utility of computational reflection. Based on some of this understand-

246

ing, we show how this utility of computational reflection can be incorporated
into monadic reflection.

2 Reflection in Logic: Truth Predicates

Truth predicates are well known. These are predicates introduced in a the-
ory to reason about propositions in the theory itself. Truth predicates are
defined over representations of propositions and they hold for all those repre-
sentations for which the corresponding propositions are true. Tarski [16] was
the first to formalize this definition of truth under his famous “Convention
T, also known as the Tarski biconditionals:

o . A o T("A")
T-introduction TCAY T-elimination 1

For simplicity, we assume a positive (no negation), implicational logic
with a single predicate T. T-introduction incorporates the fact that if A
holds, then the predicate T holds for the name of A. T-elimination afirms
that the reverse also holds: if 7" holds for the name of some sentence A, then
A holds.

While extremely simple, the T-biconditionals incorporate our basic in-
tuitions about a meta-level: 7' is about the base language, and its behavior
reflects that of the theory.

3 The Constructive Approach

One of the standard ways of relating logical concepts with computational
ones is through the use of the Curry-Howard isomorphism [5]. This isomor-
phism allows formulae in a logic to be interpreted as types in a suitable
computational domain. Proofs of the propositions correspond to programs
of that type. We define reductions on proofs so that execution of the pro-
gram yields a result that is considered to be a witness of the proposition
being proved.

This construction for intuitionistic logic is well understood, and we re-
peat it here only briefly. We take typed A-calculus terms as proofs and use
standard reductions to extract witnesses. Examples of term construction
are: A-introduction corresponds to pairing, A-elimination to projecting out
components of a pair; V-introduction to disjoint unions, V-elimination to

247

dispatch based on the union; —-introduction to procedures and modus po-
nens to application and so on. The rules of the logic can be considered to
be typing rules of the corresponding operators.

How can we interpret truth predicates this way? We must first intro-
duce operators into the A-calculus that correspond to truth predicates. Let
us define operators f} (reify) and | (reflect) to correspond to (i.e., with typ-
ing rules) 7T-introduction and T-elimination. Let us call these operators
reflective operators. These operators must be given a computational inter-
pretation consistent with the constructive interpretation of truth predicates.
What is the constructive interpretation of truth predicates? Let us look at
T-introduction. If we are given a proof p for a sentence A, then {ip must
give a proof of the assertion that a proof for A exists. We can simply take
this proof to be p. The proof of T("A") is witnessed by some representation
of p. This is what ffp must evaluate to. T-elimination can be interpreted
similarly. Given a proof p of the existence of a proof of A, {p must give rise
to a witness for A.

Let us take an example. It is often attractive to optimize functions at
run time based on information available when all the data to a program
is available. No widely used programming language actually supports this.
What we would like to write is a function f that takes in the representation
of a function ¢ and returns a new representation of g that is optimized
based on run-time information. The new g can now be incorporated in the
program. Suppose that we have written f. How can we think about a
program that uses f? Let us consider a function R, say of type A — A. A
run-time optimization of this can be written as follows: Y(f(f1R)). We take
a representation of R using {, process it through f, and incorporate the
optimized function using |}. Let us try to look at this program as a proof.
The way to read the following is that the proposition to the right of the ™" is
a formula and the term to its left is a proof of that formula. The horizontal
lines represent application of inference rules, and the rule used is written to
the right of the line.

M (T-intro) f:T(A— A) — T(A — A) .

IR TA= A o s e
LSMR)): A=A

This also can be read in another way: as an inference of the type of
U(f(ftR)). The formula to the right of the "’ is the type of the term to the
left of ":". The horizontal lines are applications of type-inference rules.

248

4 Equivalence of Proofs

Since we are interpreting proofs as programs, our ability to reason about
these programs is determined by what programs we consider to be equivalent
to one another. For A-calculus terms, this equality is given by the calculus
itself. With the introduction of reflective operators, our calculus must be
augmented with rules about how programs containing reflective operators
behave. In this section, we state some desirable properties of these operators,
without actually giving a real operational semantics to these operators. In
later sections, we instantiate the semantics of these operators with existing
ones to evaluate them in the context of these properties.

Our first observation is that the rules T-introduction and 7T-elimination
are symmetric. This suggests that the operators f and § ought to be in-
verses of each other. Indeed, going back and forth between a proof and its
representation does not change the proof itself, or its representation. We
propose the following equalities. If p proves A, p = ft{p and p = Uftp. Let
us call these properties inverse-1 and inverse-2, respectively.

Our second observation is that if we decide that representations of two
proofs are equal, the proofs must be equal. This gives rise to the following
rule: If M and N are equal and give rise to a representation of p, y M = §N.
Let us call this rule the reflection property. Similarly, we would like to have:
If M and N are equal and give rise to a representation of p, fM = ftN. Let
us call this rule the reification property.

4.1 Discussion

Why are these properties desirable? If we are to think about other forms of
reflection in terms similar to the well-understood truth predicate, then it is
desirable that the observations we glean from truth predicates be guides for
evaluating the others. Access to meta-level is the fundamental commonality
in the forms of reflection that we have talked about above. Truth predicates
incorporate this commonality without committing to specific operational
semantics. This leads us to believe that reflective properties of truth pred-
icates are properties about a fundamental intuition about reflection that
we have. As we see later, this belief is borne out by the fact that those
languages that violate even one of these properties have more complicated
theories (i.e., they are, in some sense, harder to think about).

The four properties elucidated above incorporate certain basic notions
of how we want to think about reflective operators. The inverse properties

249

assert that a term and its representation. while differentiated. correspond
intimately with each other. This is important because when programming
reflectively, we think of manipulating representations. The awareness that
this representation corresponds to the actual term is important in helping
us reason about programs.

The other two properties are necessary for referential transparency to
hold, which is, in general, a useful property for reasoning mechanisms to
have.

5 Reflection in Programming Languages

We have now set up a general framework in which to evaluate various notions
of reflection in programming languages. We have deliberately stayed away
from concrete operational semantics and mainly set up some general prin-
ciples that we think are important for reasoning about reflective programs.
We have been talking about “representations” in very abstract terms, but
have made no commitments to what this representation should really look
like.

In the next few sections, we instantiate our abstract concepts with verv
concrete ones in order to examine how they stand with respect to this frame-
work.

5.1 Static Reflection: quote and eval

Let us start with the simple operators quote and eval present in a language
such as Lisp. Lists are used as representations of programs and quote is a
mechanism for reifying programs. An added restriction is that guote is not
affected by variable bindings. i.e., (lambda (x) ’(x)) will always return
the list (x), regardless of what argument is actually passed to the procedure.
Eval takes a quoted program, evaluates it, and returns the result.

Let us see how these operators behave with respect to our rules. For
Inverse-1, ’ (eval ezp) is clearly not equal to erp. This is because we use
a list-representation for programs. For Inverse-2, (eval erp) =ezp holds,
provided ezp is a closed term. It is easy to see that the Reflection rule also
holds for this operational semantics. The reification rule, however, fails.
This can be seen by taking two equal terms: ((Az.z)3)and 3, but "((Az.z)3)
is not equal to 3.

Muller [10] develops a theory for these operators and demonstrates that
adding these operators affects equational reasoning-some things that we

250

think ought to be true turn out not to be so. Clearly, from a reasoning
point of view, this operational semantics is unsatisfactory.

5.2 Monad reflection

Let us now examine another kind of reflective operational semantics, based
on monads. Monads are a category theoretic concept that can be used to
express a wide variety of computational effects. We do not get into the
category theoretic details of this, but instead refer the reader to Moggi [9].

Tt and § are defined in terms of two operators: 5 and _* called inclusion
and extension respectively, and these operators must satisfy the following
properties:

n*=1d
fron=f
(f70g)" = (f7og™)

Intuitively, 7 injects a value into a representation of the value and _*
transforms a function that takes a value into a function that takes the rep-
resentation of that value. By defining 7 and _* suitably in the base language,
the user can control representations of the value.

Moggi gives a semantics for the operators {t and | through a translation
using 7 and . Filinski [4] shows that this can be done instead by using
control operators shift and reset. While a theoretical definition of these
operators is rather involved, it is easy to explain them in informal terms.
using the concept of execution stacks. reset places a marker on the execu-
tion stack. The operator shift takes a procedure as an argument. It takes
the continuation up to (but not including) the marker closest to the top of
the execution stack, converts it to a procedure and passes it to its argument.
The continuation is non-aborting. shift, however, is aborting and pops the
execution stack up to (and including) the marker placed on the stack.
Filinski defines the operators {} and |} as follows:

frezp =qer (reset(n ezp))
lezp =ger (shift(Ak.(k™ezp)))
Let us now examine what properties these operators satisfy.
1. Inverse-1:

™M (reset(n(shift(Ak.(k*M)))))

(n*M)
M

1]

Il

2. Inverse-2: This property is satisfied. The proof is tedious but straight-
forward, and we omit it here for brevity. Intuitively, however, this can
be seen simply by observing that reifying the monad and reflecting
it without modification is an identity operation. The proof depends
upon the fact that shift and reset are being used in a restricted
manner.

3. Reflection and reification Properties: It is easy to see that these prop-
erties are also satisfied by monadic reflection. 7 and _.* are defined
so that if M = N, then M = nN and if M = N then M~ = N~
Moreover, shift and reset also behave similarly.

We see that from a perspective of reasoning mechanisms, monadic re-
flection has desirable properties.

5.3 Computational Reflection

In the original conception of Reflection [14], the idea is to make available
operators that provide access to the complete state of the computation. A
theory for this is presented by Mendhekar and Friedman [8]. We present a
brief overview of this theory.

In this theory, it is assumed that the implementation is a rewrite system
and maintains two pieces of state: The term it is rewriting and the sub-term
that is the next redex. Reification returns some representation of these two
pieces of state. Reflection takes such a representation and installs it as
the state of the rewrite system. The representation is chosen so that it
differentiates syntactically between terms. It is, in fact, a desirable property
that reflective programming differentiates between two seemingly equivalent
programs. This is what provides programmers with control over how their
programs get implemented. If we only have representations that are based
on equivalence classes of terms, reflective properties will be mostly useless.

A consequence of this representation decision is that the theory is not a
conservative extension of the lambda calculus—things that we think ought to
be true turn out not to be so. This follows from the fact that the reification
property is not satisfied. Many obvious equivalences between programs are
not provable in this theory. The other three properties are satisfied by this
theory.

252

6 Violating the Reification Property

Reflective programming derives its appeal from allowing programmers to
manipulate representations in order to achieve gains in performance and
maintainability. One implication of this is that there is an ontological as-
sumption that representations can be changed without changing the meaning
of the program. This ontological assumption is in direct contradiction with
the reification property.

In this sense, the violation of the reification property is vital to reflection
in programming languages being useful.! On the other hand, this violation
leads to a loss of reasoning power. How can we strike a balance between
these two? How can we make reflection in programming languages easy to
reason about and useful? We examine the answer to this question in the
rest of this section.

Our first observation is that reflection is mostly used in a principled
way: We usually define abstractions that use reflective operators and these
abstractions are used everywhere within the program. This is referred to as
separation of concerns. If we assume this to be the norm, then we would like
that our reasoning about the program be supported in a similar manner. We
would like to separately reason about reflective and non-reflective parts of
the program and be assured that interaction between them is unproblematic.

As a trivial example, consider the case where we have a lambda-calculus
based language with reflective operators, but in all our programs, we never
use a reflective operator. We can surely use the A-calculus to reason about
this program. Another example is a restricted use of reflective capabilities
when we only look at the representation procedures to determine how many
variables they need. This might be necessary, for example, when we want
to use reflection to build tracing into our procedures. A way to do it would
be to take the procedure P in question, determine how many arguments it
takes, and construct a wrapper procedure that prints these arguments before
passing them on to P. This is a very limited use of reflection. Moreover,
only part of the representation information is being used and so we can use
(informal) A-calculus reasoning mechanisms to reason about programs that
use tracing procedures (ignoring the fact that tracing causes characters to
be printed on the output stream).

Our second observation is that the framework of monadic reflection has

'This is not to say that monad reflection is not useful. That would depend on the nature
of the application. Its applicability, however, is limited where explicit manipulations of
representation are required, and we believe this to be the general case.

253

the properties we desire. Can it be augmented so that it still maintains its
properties but allows a higher degree of reflection?

7 Reflective Monads

We examine a solution to the question raised above in this section. We
use separation of concerns and partition a program into its reflective and
non-reflective components. By “reflective” we mean those parts that explic-
itly manipulate representations of values. We cast these restrictions in the
framework of monads, at the same time relaxing some of the assumptions
that are used when dealing with monads. We call the resulting structure
a reflective monad. At the outset, we mention that while monads have
categorical underpinnings, in this section we are not concerned with them.

Let us clarify the framework in which we develop reflective monads. In
the following, we assume that the base calculus is the typed call-by-value
A-calculus, denoted by A,-calculus. Apart from assuming that every term is
type-correct, we do not explicitly mention types. Representations of terms
of type A have the type T("A"). Furthermore, we differentiate between
values and their representations. Moreover, A - M = N does not imply
that the representations of M and N are the same. As we saw before,
this is a crucial ontological assumption and it permits us to make finer
differentiations between terms. We denote the representation of a term M
as "M". Furthermore, we postulate an operation | such that | "M™= M.

We introduce the concept of a reflective monad that is similar to that of
the monad, but has the following restrictions. The code for _* is written in a
language without reflective operators. It is, however, allowed to manipulate
and construct representations, through the use of the | operator, and other
representation destructuring functions. Furthermore, this is the only code
which is allowed to do this. We refer to this as the meta-code of the program.
All other code is referred to as the base code. The base code is not allowed
to construct term representations, except by using . These restrictions are
such that they can be enforced syntactically.

The separation of concerns we desire is achieved through these restric-
tions. By disallowing the base code from manipulating term representations,
we have encapsulated all reflective representation manipulations into the
code for _*.? This separation of concerns allows us to use separate reason-

A usability question arises. We have only one _* function for a program. How can it
be used to incorporate different kinds of meta-control at different points in the program?

254

ing mechanisms for base-code and meta-code. An important consequence of
this is that the reasoning mechanism for base-code can use all four of our
desirable properties.

We must also address the question of the nature of representations. The
actual representation we choose depends upon the reflective capabilities we
want the language to have. Some languages might decide to provide a full
representation of the term and its context (as the theory described in Sec-
tion 5.3). Others might simply choose to provide a simple interface. An ex-
ample is call/cc in Scheme, where manipulating the continuation explicitly
is not allowed, but a procedure-like interface is available. The assumption
we make in the following is that the full representation of a reified context
is rarely of any use. It is more important to have detailed representations
of what goes into a context.?

7.1 The Reflective Monad

A reflective monad is a monad where 7 and _* have the following behavior.
nM returns "M". Also, 7 is not defined on open terms. _* is responsible
for extending a given function to take a representation of its arguments.
Furthermore, 7 and _* must satisfy the monad properties described above.

Reflective monads differ from regular monads in subtle but important
ways. The most important difference is that the reification property does
not hold a priori. This is not true in regular monads, where 7 is assumed to
be a function that satisfies the axioms of the A-calculus.

Another difference is that regular monads allow values of the monad
type to be constructed explicitly (i.e., without invoking f}). In fact, they
sometimes require it. For example, with the non-deterministic monad that
uses a list representation, the only way to construct a non-singleton set of
multiple values is to explicitly construct it as a list.

7.2 Preserving the Reflection Property

If the meta-code were free to manipulate representations in an arbitrary
manner, the reflection property would breakdown. This is because the meta-
code could become sensitive to spurious differences in representation. We

We can solve this by appropriately tagging reified entities so that _* can dispatch based
on this tag.

3This restriction is not crucial: we can build a similar theory if we choose not to have
this restriction, but it simplifies the presentation.

255

have, however, the second reflective monad axiom that f*"M™ = (fM).
Therefore, we have the following theorem: if M = N, f*"M" = f*"N". The
implication of this is that even if the meta-code makes distinctions between
intensional aspects of terms, what it finally does must be faithful to what
the terms mean. This might disallow many valid reflective programs, but it
makes reasoning for a large number of reflective programs much easier.

7.3 An example

Let us reconsider the run-time optimization example again. Suppose that
we bind this run-time optimized procedure to a variable and use it in our
code. We can extend the example in Section 3 in the obvious way to do
this:4

(let ((g (reflect (f (reify R)))))
(g args ...))

This, however, violates our restrictions since we are now using f in base

code.
In the reflective monad, we write this code a little differently:

Base code:

(let ((g (reflect (reify R))))
(g args ...))

The code for _* is as follows:

(define star
(lambda (k x)
(if (run-time-optimizable? x)
(k (down-arrow (f x)))
(k (down-arrow x)))))

Here we are assuming the existence of a function that recognizes run-
time optimizable functions. This could be done, for instance, by checking
for membership in a list of predeclared optimizable functions. Also note the
use of down-arrow to convert from representations to terms.

*We switch to a Scheme-like notation here. This notation is easier to work with for
larger examples. We have used textual names for the operators: reflect for §, reify for
{}, star for _*, eta for and down-arrow for |.

256

The way this example works is that when reflect passes on the reified
value to its context (in this case the let binding, denoted in the meta-code
by k), it processes it through star. This is when the meta-code gets a
chance to manipulate the reified value. In our case, this is when the run-
time optimization happens. The monad laws, of course, guarantee that this
reified value is not changed semantically—only representationally.

Let us examine whether star satisfies the monad laws. The interesting
case is the second law: (™M) = (hM). We can see that this holds,
because our optimizing function f is an optimizer and does not change R
semantically.

As an example of reasoning using the inverse property, in the base code,
we can use inverse-1 to conclude that this program is semantically equiv-
alent to (R args ...). This is because we know that star satisfies our
restrictions.

8 Theoretical Results About Reflective Monads

We have seen how reflective monads are useful in separating out reflective
and non-reflective parts of a program. In this section, we develop theoretical
results about reflective monads. We are interested in showing that the four
desirable properties hold within the framework of reflective monads. We do
this by developing a A-theory for it and by showing that this theory is a
conservative extension of the call-by-value A-calculus.

Both inverse-1 and inverse-2 hold because reflective monads obey monad
laws. The reflection property also holds because of monad laws. The only
property that does not hold a priori is the reification property. This section
takes into account the restrictions placed on reflective programs as given
above and forces a rule in the theory that would make the reification prop-
erty hold for the theory. We show that this is sound by proving that if the
restrictions above are satisfied for all reflective programs, the theory is con-
sistent. It is further shown that the theory is a conservative extension of the

icall-by-value A-calculus. The implication of this is that conventional reason-

ing mechanisms need not be discarded to incorporate reflective capabilities
in a language.

Let us define the syntax for our (base) language. The syntax is basically
that of the A -calculus but also allows ({term) and (fiterm) as terms, where
|l and 1} are as defined for monadic reflection. This set of terms is denoted
AR.

257

Let us now turn our attention to the semantics, which we present as an
equational theory. We assume that the base language is call-by-value. We
use 3, to denote call by value (3-reduction. The semantics is described by
a translation into the A,-calculus extended with the monad functions. We
equip A,-calculus with the axioms for 7 and _*. Let us call the resulting
theory /\Tlv_" (The 7n here stands for the n monad operator, and not the
extensionality axiom of the A,-calculus.)

The translation is as follows. We first translate all the || and 1 terms, us-
ing the translation given in section 5.2. We use the standard CPS-translation
to get a term in A, .. This whole translation is denoted by [] . Let us
define a theory Agp such that if M and N are terms in Ag, we say that
ArFE M = N iff ’\T]‘_' = [M]Cps = [N]Cps.

Let us illustrate this translation on the base-code in example 7.3. By
the first translation we get:

(let ((g (shift (lambda (k) (star k (reset (eta R)))))))
(g args ...))

CPS converting this, assuming that this is the whole program, we get:

(star-cps
(lambda (v) (let ((g v)) (g args-cps ... top)))
(eta R)
top)

Here the suffix -cps indicates results of CPS conversion. top stands for the
top-level continuation. We also assume that the procedure bound to R is

CPS’ed.

8.1 Re-introducing the Reification Property

Let us now consider the following rule, called the representation rule: M =
N — (nM) = (nN). Is this a valid rule to add to /\77‘_,? On the face of it,
it certainly isn’t. Look, however, at all the restrictions we have placed on
the base code. It cannot manipulate representations. Furthermore, the only
place where such manipulation is allowed (i.e., the meta-code) is required
to produce results that ultimately are independent of specific representation
decisions. There are no base-code contexts that distinguish (nM) and (nV),
when M = N.

Therefore, adding the rule should cause no problems. We must, however,
prove this. From now on we write /\TI: to mean the theory that includes

258

the above rule. The first theorem we prove establishes a correspondence
between)\77‘_- and A,. This theorem is used to prove other properties such
as consistency and conservative extension.

We begin by defining an erasure function £[.] that replaces all occur-
rences of nM with £[M] and k*M with (k£[M]). These correspond to
using an identity monad.

Elz] = =
El(Az.M)] = (Az.E[M])

Eln] = Az.z
E(MN)] = (E[M]E[N])
EMN)] = (EIM]EIN])

An important point to note is that erasure commutes with the substitution
operation. We call this the substitution-erasure lemma. The proof is a

straightforward induction on the structure of terms, and we omit it here for
brevity.

Lemma 1 A, -+ M = N —), F £[M] = £[N].

Proof: By induction on the derivation of ’\r)._‘ FM=N.

Basis: M = N axiomatically. We have the beta axiom, and the monad
axioms. In all cases, we see that the consequent holds. We appeal to the
substitution-erasure lemma for the beta axiom. The other interesting case
is when we use the axiom (f*"M") = (fM). By erasure, the left hand side
gives us (E[f]E[M]), which is the erasure of the right hand side.
Induction: The interesting case is when the derivation ends with an ap-
plication of the representation rule: if M = N then nM = nN. By era-
sure, £[nM] = E[M] and E[nN] = E[N]. By the induction hypothesis,
ElnM] = E[M] = E[N] = E[nN].

Theorem 1 (Correspondence). Ag - M = N —)\, F E[[M]eps] = EMN]pel-

This follows immediately from the definition of derivability in Ag and the
above lemma.

Theorem 2 \g is consistent.

Proof: The proof of consistency is by contradiction. Take [and K as terms.
From the definition of £[.], £[[1]] = [[].pe and E[[K],,] = [K]ps If AR
were inconsistent, Ag - I = K, and hence A, + [I]_ = [K]__, which is a

cps cps’
contradiction. Therefore, Ag is consistent.

259

Theorem 3 Ap is a conservative extension of A,,.

Proof: One direction is given by the correspondence theorem. The other
direction follows from the fact that the rules and axioms of Ag contain
those of A,.

From the above theorems, we have established that the addition of the
representation rule to the theory is not problematic logically. This also
means that the reification property holds for reflective monads. Further-
more, we have established that we can continue to use reasoning mecha-
nisms of the A,-calculus, because the theory is a conservative extension of
the A, -calculus.

9 Related Work

This paper draws from a large body of literature in constructive logic,
A-calculus and category theory. It was inspired by Lambek [6] and Scott
[12]. Both explore interesting relationships between logic, computation and
category theory, using the Curry-Howard isomorphism as a basis.

Constructive theories have been used as theories for program verification
and construction for some time now. Martin-Lof’s theory of types (7] is one
of the most visible of such theories. A good introduction to the the Curry-
Howard isomorphism is given by Howard [5].

Danvy and Filinski [1] have studied the control operators shift and
reset. Plotkin [11] introduces the call-by-value A-calculus. Moggi [9] intro-
duces the notion of monads. Filinski [4] shows how monadic reflection can
be achieved with control operators shift and reset. Other work on build-
ing calculi for control operators includes that by Felleisen (3] and Sitaram
[13]. Talcott [15] presents an intensional theory of function and control ab-
stractions. Wand and Friedman [17] and Danvy and Malmkjaer [2] have
presented formal semantics of reflection.

10 Conclusions

This paper explores connections between computational, logical and monadic
reflection. Using constructive principles, we present design guidelines for re-
flective programming languages. We evaluate some existing programming
languages based on these design guidelines and show that only monadic
reflection satisfies them.

260

Keeping in mind these design guidelines and the desirable intensional
aspects of reflection, we propose a monadic framework for computational
reflection in programming languages. The resulting framework maintains
the desirable properties of monads, but allows finer distinctions to be made
between representations.

One goal of reflection in programming languages is to enhance the power
of a programmer to control how a program is implemented. Such a goal
loses its appeal if a side-effect of achieving it is a loss of the ability of
the programmer to reason about the program using conventional reasoning
mechanisms. In this paper, we have also shown that this goal can be achieved
without sacrificing reasoning power. The theory we have developed is a
conservative extension of the A, -calculus.

References

[1] Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceed-
ings of the Seventeenth Annual ACM Symposium on the Principles of
Programming languages, pages 151-160, 1990.

[2

Olivier Danvy and Karoline Malmkjzr. Intentions and extensions in a
reflective tower. In Proceedings of the ACM Conference on LISP and
Functional Programming, pages 327-341. ACM, 1988.

(3

M. Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba.
A syntactic theory of sequential control. Theoretical Computer Science,
52:205-237, 1987.

[4

Andrzej Filinski. Representing monads. In Proceedings of the Twenty-
First Annual ACM Symposium on the Principles of Programming lan-
guages, Portland, Oregon, pages 446-457, 1994.

[5] W. Howard. The formulas-as-types notion of construction. In J. R.
Hindley and J. P. Seldin, editors, To H.B. Curry: Essays on Combina-
tory Logic, Lambda-Calculus and Formalism, pages 479-490, 1980.

(6] J. Lambek. From the A-calculus to cartesian closed categories. In
J. R. Hindley and J. P. Seldin, editors, To H.B. Curry: Essays on
Combinatory Logic, Lambda-Calculus and Formalism, pages 375-402,
1980.

(7] P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

261

g

=

(10]

(1]

(12]

(13]

(14]

Anurag Mendhekar and Daniel P. Friedman. Towards a Theory of Re-
flective Programming Languages. In OOPSLA 1993 Workshop on Re-
flection and Meta-level Architectures. Washington D.C. (Available from
http://www.parc.xerox.com/eca), 1993.

Eugenio Moggi. Computational lambda-calculus and monads. In IEEE
Symposium on Logic in Computer Science, pages 14-23, 1989.

Robert Muller. M-LISP: A Representation-independent dialect of LISP
with reduction semantics. ACM Transactions on Programming Lan-
guages and Systems, 14:589-616, 1992.

G. D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theo-
retical Computer Science, 1:125-159, 1975.

D.S. Scott. Relating Theories of the Lambda Calculus. In J. R. Hindley
and J. P. Seldin, editors, To H.B. Curry: Essays on Combinatory Logic,
Lambda-Calculus and Formalism, 1980.

Dorai Sitaram. Models of Control and Their Implications for Program-
ming Language Design. PhD thesis, Department of Computer Science,
Rice University, April 1994.

Brian Cantwell Smith. Reflection and semantics in a procedural lan-
guage (Ph. D. thesis). Technical Report TR-272, Laboratory for Com-
puter Science, MIT, 1982.

Carolyn Talcott. The Essence of Rum: A theory of the intensional
and ezxtensional aspects of Lisp-type computation. PhD thesis, Stanford
University, 1985.

Alfred Tarski. The semantic conception of truth. In L. Linsky, editor,
Semantics and the Philosophy of Language, pages 13-47. University of
[llinois Press, 1952.

M. Wand and D. P. Friedman. The mystery of the tower reavealed:
A nonreflective description of the reflective tower. Lisp and Symbolic
Computation, 1:11-38, 1988.

262

