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CONS SHOULD NOT EVALUATE ITS ARGUMENTS

The consdtructor function which allocates and fills
records in recursive, side-effect-free procedural
languages is redefined to be a non-stnlct (Vuille-
min 1974) elementary operation. Instead of evalu-
ating its arguments, it builds suspensions of them
which are not coerced until the suspension is
accessed by a strict elementary funetion. The
resulting evaluation procedures are strictly more
powerful than existing schemes for languages such
as LISP. The main results are that Landin's streams
are subsumed into McCarthy's LISP merely by the
redefinition of elementary functions, that invoca-
tions of LISP's evaluator can be minimized by\re-
defining the elementary functions without redefining
the ipterpreter, and as a strong conjecture, that
redefining the elementary functions yields the
least fixed-point semantics for McCarthy's evalua-
tion scheme. This new insight into the role of
constructor functions will do much to ease the in-
terface between recursive programmers and itevative
programmers, as well as the interface between
programmers and data structure designers.

INTRODUCTION

It is common to perceive functional evaluation as
requiring argument evaluation to be completed be-
fore actual functional application begins. In com-
puter programs, however, there has been considerable
development of delayed argument evaluation through
schemes such as call-by-name in ALGOL 60. Probably
because of obsessipn with arithmetic examples,

which are strict (that is, reguire all arguments in
evaluated form), it has been commonly assumed that
all elementary functions were strict. During the
course of a project on compilation of pure recursive
LISP 1.0 (McCarthy et al. 1962) source code into
iterative object code, we have uncovered a critical
class of elementary functions which probably should
never be treated as strict: the functions which

T R Ny B T | 1 L i

2
2




258 CONS Should Not Evaluate its Arguments

allocate or Cc0ndtruect data structures.

We use the term coné to refer to this class of
functions and later to refer to a particular func-
tion which allocates records of two fields. The
term is common to several list processing languages
(McCarthy et al. 1962; Burstall, Collins, and
Popplestone 1971) which require that the arguments
to conéd fix the values of the fields in the new
record. This requirement is essential to our analy-
sis because we assume a side-effect-free evaluation
scheme in order to guarantee the integrity of envi-
ronments which are passed subliminally about the
system.

It is our thesis that the fields of a newly allo-
cated record can be filled with a structure repre-
senting the suspended evaluation of the respective
argument, instead of the walue of that argument, as
is done on systems with strict implementation of
consd. If all other elementary functions are able
to detect these suspensions and to force evaluation
only at the time that the wvalue is genuinely criti-
cal to the course of the computation (necessary to
the value of the main funetion), then the results
are the same as those of a strict evaluation scheme
whenever both converge. Convergence is more likely
in the new scheme since potentially divergent yet
immaterial argument evaluation can be avoided. In
programming terms the scheme allows exponential im-
provement in run times at the cost of linear degra-
dation of the elementary system functions' times
and of space overhead in dragging around environ-
ments. We are interested in the insights provided
for the recursion-compiler problem bescause the role
of constructors is critical in the definition of
the source language.

Hoare (1975) has discussed the role of cond in
building recursive data structures. The power of
these structures is welcome because our restriction
to purely recursive programs allows us no other
kind. The language model we shall use is McCarthy's
LISP, known in its basiec form as LISP 1.0 or pure
LISP. We owe a great deal to his definition and
description of the language in terms of its own
structures using only five elementary functions.
The major results of this paper, in effect, have
been implemented on his system with dramatic
effects on his semantics resulting from simply
changing three of these five functionms.

Landin approached the non-strict implementation
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of cons in his discussion of streams (Landin 1965).
He describes three elementary functions which accom-
plish a cons strict in only one of its two parameters.
This version is satisfactory when the pvecursion
pattern is peculiarly linear and when semantic
improvements available from these structures

within the interpreter can be ignored.

The remainder of this paper is divided into Ffive
sections followed by conclusions. Section I is a
brief introduction to LISP notation as interpreted
in this paper. Section II presents definitions of
the five elementary functions used for the defining
language. They provide that conéd does not evaluate
its arguments, but delays them in a form detectable
and coercible by two of the other four strict ele-
mentary functions. Results in this section are
proofs that McCarthy's interpreter built with these
elementary functions is properly more powerful than
it was as originally specified, and a strong conjec-
ture that the new interpreter, in faet, gives the
least fixed-point semantics for LISP. Section III
presents a practical implementation for suspensions
which prevents repeated coercion of the same sus-
pension. This is accomplished by storing the ulti-
mate value back into the node which ought to have
contained it in the original interpretation scheme,
replacing the suspension which led to it.

Section IV relates Landin's streams to LISP as in-
terpreted with the new cond. Streaming is shown to
be less powerful by considering cases where evalua-
tion should not follow a sequential pattern. An
analogy between streams and sequential files is ex-
tended to an analogy between suspensions and random
access (overlapping tree structure) files whieh
suggests that file handling may be impliecit in pro-
gramming style. In Section V we consider familiar
functions whose arguments are to be selectively
evaluated which have hitherto begen implemented in
LISP as special forms but now are expressible as
ordinary functions.
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I. LISP

The five elementary functions presented by McCarthy
will be called :ecaxr, :cdr, :consé, :eq, and :afom,
These functions are redefined in two ways to allow
the interpretation of cond to postpone evaluation
of its arguments. In both cases the five are sim-
ply called car, cdr, cons, eq, and atom. Our first
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260 CONS should Not Evaluate its Arguments

redefinition is sufficient for the theoretical
results in Section II and even Section IV, but are
extremely inefficient. The versions of basic fune-
tions presented in Section I1I yield a system of
equivalent power, but are more efficient and these
definitions are used in both Section IV and Section
V.

The notation used throughout the paper for form
invocation is the S-expression of MecCarthy. The
invocation (f a b ¢) asks that the funection, f, be
applied to the arguments a, b, and e¢. Usually this
means that the values of the three actual parameters
are to be bound to the three formal parameters
in the interpretation of the body of £, but there
are exceptions. If f were a special form (McCarthy
1962), then the list of the three unevaluated
arguments would be bound to the first actual
parameter of £f. IFf f were defined with a nontrivial
atom as its formal parameter list, as discussed in
Section V, then the list of the three values associ-
ated with the arguments would be bound to that atom.

A £is% is a sequence of zZero or more atomic
elements or lists. A list is also written using the
parenthesis notation; whether the interpreter
accesses it as an expression rather than as a value
determines whether evaluation will occur. The empty
list is denoted by the atom NIL*; the value of
(:car z) is the first element on the list, z; the
remainder of the list, z., exclusive of (:car z) is
(:cdr 2); (:cons q z) gives the list which is the
list z with the form g stuck on the fronmt.

A little of the record manipulation of LISP is
needed for Section III. Atoms are references to
distinguishable structures, The rest of the data
structure is represented by references to records
of two fields: the A-fiefd and the D-f4ielfd. New
nodes are available through :eond which places its
two arguments in the A-{{Lefd and D-gf{eld, respec-
tively. The functions :cas and :cdi extract the
respective fields from a reference to a non-atomic
structure. The predicate :iafom tests if its argu-
ment is atomic¢, and the predicate :eq tests if its
two atomic arguments are the same. On non-atomic
arguments !¢¢ is undefined.

#*Symbol strings composed entirely of upper case
letters are constants; that is, they evaluate to
themselves. LISP provides the function quofe for
this role; only atoms may be quoted.
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We have made a notational change in the syntax
of conditional expressions which needs to be
explained only to LISPers who have thus far breezed
through this section. MeCarthy's conditional form,
cond, requires its tail to be structured as a series
of lists of two elements which are often called
"cond-pairs." Rather than introduce the redundant
extra parentheses which make the pairings explieit,
we use the commenting keywords L4, Zthen, elsedlf,
and efse to group and to enhance legibility. In
the interpreter we define c¢ond to take its predi-
cates and selections unpaired as one long alterna-
ting list. The reader who wishes to interpret an
invocation of cond literally should ignore the com-
menting keywords.

For example, we postulate the predicate 4dame
which is defined only in terms of :eq and :atom,
exclusive of the other three elementary functions
whose semantics are altered in this paper.

(same sexp atm) = (cond
if (:atom sexp) then (:eq sexp atm)
efse NIL).

This function is a convenient way of avoiding
applications of :eq to non-atoms in the interpreter.
In many implementations :eq is a reference compara-
tor, which is sufficient for its semanties but also
provides unnecessary comparisons on. non-atoms.

Even in McCarthy's Appendix B interpreter feq is
applied to (potential) non-atoms in a manner which
we judiciously avoid with same.

II. ALLOCATING WITH INCOMPLETE CONTENTS

Definition: A function is strdet 4in L1448 ith param-
efen 1if divergence of its 5% argument implies the
function diverges with that argument.

Definition: A function is sficed (Vuillemin 1974)
if it is strict in all of its parameters.

A strict function may be evaluated by evaluating
all of its arguments before 'its definition is
Lnterpreted If it is strict in only a few’
parameters then the corresponding arguments may be
evaluated first. 1In an environment where all func-
tions are strict, the behavior is like the call-by-
value scheme of ALGOL 60. Vuillemin specifies that
all elementary (machine level) functions, except
conditional expressions, are striet, although other
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functions need not be. The foundation of our
scheme is that we weaken this requirement.

In recursive programming languages the role of
the constructor function, here called cons (McCarthy
1963; Burstall, Collins and Popplestone 1971), is
to allocate a new node from the available space
pool and to Ffill its fields with its arguments.
Languages with iterative control structures and
assignment statements separate these two operations
with sequential statements, allowing fields to be
undefined while other operations intervene. In both
protocols, the value returned by cond is a reference
to the allocated node.

Definition: A form is an unevaluated expression.
Definition: An envdironment is a function which maps
formal parameters to their values.

Deginiiion: A suspension is a data structure, acces-
sible only to the interpreter of a program, which

is composed of a form and an environment for the
form's eventual evaluation.

A suspension provides enough information to eval-
uate a form whenever its value is needed. This ob-
tains because an environment is not subject to side-
effects which could invalidate delayed evaluation.
Several languages like LISP and SIMULA (Dahl and
Nygaard 1966) allow the environment to be. accessible

as a single data structure. By hiding the environ-
ment in a data structure inaccessible to the user,
we avoid such a situation. The function, suspend,

takes a form and an environment as arguments and
creates a suspension from them. The auxilliary
selector functions, foam and env, are defined over
suspensions to return the respective fields. There
is also a type predicate, susdpended*.

Our cond allocates a fresh node from available
space and fills the appropriate fields with a
suspension for each argument. This specification
makes no assumption about the number of fields
within a node, but assumes each field must be large
enough to hold a reference to a suspension instead
of the eventual value of the suspension. Our
examples will presume a node of only two fields,

*From these definitions, suspend, gfoam, and env
act very much like :coné, :can and :edh. The dif-
ference is that the nodes created by suspend and
iconsd are disjoint and clearly distinguished by
suspended whose domain is the set of references
within the system.
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which is a model sufficient to represent a node of
any size through the "naturally corresponding" list
structure described for trees by Knuth (1975). This
convention of suspending arguments for consd allowvs
it to be non-strict yet never allows the contents of
an allocated node to be undefined. The value re-
turned by c¢oné, as in the earlier protocols, ik -a
reference to the newly allocated node.

First Redefinition of the Primitives

We present a reinterpretation of the elementary
functions for LISP. The elementary predicates, at
least, will not be confused because

(eq q v) = (:eq q r)
and
(atom q) = (:atom q) .

Cons is a 4pecial form (McCarthy 1962) which takes
two arguments that became a single list of two

forms bound to its first formal parameter. Whatever
environment exists at the time of invocation of

cons is bound to the second formal parameter. We
define cons through scons:

(scons arg env) =
° (:cons (suspend (:car args) env) re
(suspend (:car (:cdr args)) env)) .

The selectors, cai and cdr always assume their argu-
ment is a reference to a node allocated by :cons,
. and never yield a suspension as a result,

(car q)
(edr q)

inm

(eval (form (:car q))(env (:cam g)));
(eval (form (:cdr q))(env (:edr q))).

If the evaluation process traverses other suspen-
sions, those other suspensions are only encountered
within ecair and c¢dr so evaliuation continues. Ewval-
uation within those two functions, called coercdion,
terminates when an atom or an application of cons
is encountered.

Observation 1: The structures built with 4cons
have the property that the nodes allocated by :cons
only contain references to nodes allocated by Sud-
pend, and that the nodes allocated by suspend con-
tain only references to nodes allocated by :coné or
to atoms.

The evaluation scheme specified appears to be
the same as the usual call-by-value protocol similar
to that of ALGOL 60. There is a very significant
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difference: not An when evaluation occunrs, but
in how far evatfuation proceeds. When call-by-name
forces evaluation on an actual use of a formal param-
eter, it forces a complete evaluation because the
ALGOL 60 model presumes that all elementary func-
tions are striet, at least, in one parameter. In
our LISP model with suspensions, eons is mot strict
in any argument, so evaluation stops at the first
application of cons. As a result, the coercing of

a suspension "bottoms ‘out" much sooner than the
forced evaluation of a similar parameter called-by-
name. [Ior example, if £, g, and h are functions and
X, ¥, and z are arguments to these functions, then
evaluation of

(car (cons (cons (f x)(g y)) (h 2)))

does not cause evaluation of either (f x), (g y), or
(h z). It returns a reference to

(cons (£ x) (g y))

after performing two storage allocations with :cond
and constructing four suspensions with 4usdpend. In
the evaluation of

(car (cons (f x) (cons (g y) (h z))))
the form
(cons (g y) (h z))

is converted into a sugspension instead of being
evaluated, and since that suspension is not acces-
sible to any permanent environment it will never be
coerced. It, like the suspension for (h z) in the
former example, is lost to the system garbage col-
lector.

We postulate a LISF evaluator for the side-
effect-free language known as LISP 1.0 (McCarthy
1962, Chapter one). The appendix presents an in-
terpreter patterned after MeCarthy's. The eval/
apply interpreter is the same interpreter using
McCarthy's elementary Ffunctions.

We present an example below which does not
really fit the language LISP 1.0 because it uses the
data structure "number'" and arithmetic. We use the
example in +-later proofs about the eval/applfy LISP
1.0 system which depend on order of evaluation
rather than on the propertijes of arithmetic. We
choose to violate the data type of LISP 1.0 in order
to present an example of a function which generates
a familiar infinite sequence. All arithmetic
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N - -
functions are strict.

Exampfe: The infinite sequence %, %, %,...,%2....
can be expressed by (terms 1) where
(terms n) = (cons(reciprocal(square n})

(terms (addl n))).

This sequence has partial sums which converge to
w?/6, but that property is not critical to the
following discussion. The important fact is that
evaluation of (terms n) does not immediately diverge;
it results in a node referéncing two suspensgions.
The interpretation of this value may, nevertheless,
reflect its divergent behavior. An attempt

to print it would diverge because the print routine
traverses list structures using strict elementary
functions in order to find printable atomic ele-
ments. Other uses of (terms 1) do not reflect its
potential divergence. For instance, extracting the
third term in the sequence can be accomplished by
the form

(car (cdr (cdr (terms 1)))).

The value 1/9 results from the construction of six
suspensions during the allocation of three nodes,
and neeciprocal and Square are invoked only conce
during the coercion of one pf those six suspensions.

First Results

The first results establish that McCarthy's LISP
1.0 interpreter, here called :eval/:apply, is
strictly less powerful than the same interpreter,
called evaf/apply, which interprets car, cdi, and
cond as described above. The prototype interpreter,
presented in the appendix, forms the basis for this
argument under two interpretations: ‘eval/:apply
is obtained by substituting faai, :adi, and :sconsd
for all instances of cax, cdr, and 4cons in The
eval/apply interpreter: We shall refer to a para-
meter p of the former interpreter as :{pP to make the
substitution appear more complete.

There are several occurences of ilcan, :eda, and
icond in the prototype code; these are not to be
changed. They exist because the interpreter builds
structurés, argument lists and environments, and
searches them. The use of :fcond is required to
build these structures, but the mon-strict cond is
only available through the interpreter at this time,.




266 CONS Should Not Evaluate its Arguments

There is no choice but to use MeCarthy's original
functions for these purposes. In Theorem 3 we shall

return to bootstrap the interpreter so that these
occurrences of CO0KNd are alsec non-strict.

Because the first three results rest on program-
correctness arguments (Manna and Pnueli 1970), we
must define three relations which will describe the
behavior of the two interpreters for the three kinds
of data structures used: wvalues, argument lists,
and environments.

Defindition: The relation "<v" » read "coerces to
value," is defined as follows:

i) If (atom a) then a <v a 3

ii) If (not (atom y)) and x <y, ¥ ‘then both

(car x) <, (:car y) and (edr x) <, (:edr y) .
Deginition: The relation "<," » read "coerces to
arglist," is defined as follows:

i) NIL <, NIL ;

ii) If » <, 5 and x el then
(:cons »r x) <, (:comns s y) .

Deginition: The relation "<e" ,» read '"coerces to

environment," is defined as follows:

i) NIL <_ NIL ;

i) If Catom &) ; <y S and x <e ¥ then
(:cons (:cons a ») x) o (:cons (:cons a s) y).

i
&
=
5

It is fortunate for testing the above relations
that the predicates, aifom and :afom, as well as eq
and :eqg, coincide.

The first theorem says that whenever the :eval/
tapply interpreter converges then the eval/appfy inte:
preter converges to a related value from related inpw

Theonem 1: 1If form Ko :form and env <, ‘env

TS A ety oy S

then (eval form env) i (:eval :form :env) .
Proof: The program-correctness induction proceeds
on six invariantly true predicates:

1. If form 5 :form and env <o ‘emnv then

(eval form env) e (:eval :form :env) ;
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2. If En s :fn and args <, ‘args and
env <_ :env then (apply fn args env) <v
(:apply :fn :arg :env) ;

3. If £pi1 e :fpl and apl S :rapl and
env <_ :env then (pairlis fpl apl env) <,
(:pairlis :fpl :apl :env) ;

4. If (atom at) and env <g ‘env  then

(assoc at env) <, (:assoc at :env) ;

5. If  unargs <, ‘umargs and env <s ‘env  then

(evlis unargs env) < (:evlis :unargs :env) ;

g. If Tai) < :tail and env ‘e tenv  then

(evcon tail env) <, (teveon :tail :env) .

e L1 T Ve R RN

Lemma: If «x <g ‘X and y €y ¥ then

(car x) € (:ear :x) ; (edr x) <, (redr :x) ;

¢

(scons x y) < (:scomns :x :¥)

The first two conclusions are trivial: vacuously

when x is an atom and by definition of 8 otherwise.

In the last case (using 4cond from the appendix)

(scons x y) = (:cons (:cons (ecar x) y)
(:cons (car (cdr x)) ¥v))

which is clearly not an atom. Moreover,

(eval (car x) y) and
(eval (car(edr x)) y) .

(car (scons x y))
(cdr (scons x y))

However,

(:eval (:car :x) :y) and

(:car (:scons :x :y)
X :y) (:eval (:car (iedr :x)):y).

(:cdr (:scons

nun

)
)
Because (car x) £ (:car :%) and (car(cdr x)) e

(:car(:ecdr x)) by the first part of the lemma, and
because of invariant Predicate 1 the result is
established. 0O

Results like this lemma are easily obtained for
the other relations, and similar results on afom
and e¢q are available because these predicates are
identical in both interpreters. The proof of
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Theorem 1 now degnerates into a line-by-line analysis
of the recursive code. We shall only present
the arguments on two lines: one from "eval" and one
from "apply."

Consider the CONS line in "eval." We want to
show that if form <y :form and env <e ienv and

(not (:atom :form)) and (:atom (:car :form)) and
(:eq (:car :form) CONS) then the following are all
true:

(not (atom form)); (atom (car form));
(eq (car form) CONS);
(scons(cdr form)env) s (:scons(:cdr:form):env),

The proof is easy with the lemma. The first three
fall from it and the definition of S They and

the lemma applied twice give the last regquired
result verifying Predicate 1 for this case.

Finally, consider the CAR line in "apply." Assume
that fn y VbR 3 ADZE <a targs , env <e tenv ,

(:atom :fn) , and” (:eq :fn CAR) . From the defi-
nition of <, we have (:car args) <4 (:car :args)

and thence by the lemma (car (:car args)) S

(:car (:car :args)) establishing this case for
Predicate 2.
The remainder of the proof is tediously similar.ll

Theorem 2: McCarthy's evaluation scheme with our
three elementary functions, eval/apply, can evaluate
forms on which the unmodified evaluator, :eval/
tapply, diverges.

Proog: The example which appeared above will suf-
fice: (car{cdr(edr(terms 1)))) which extracts the
third term from an infinite sequence. N

Next we postulate a system for eval/apply boot-
strapped upon itself so that the occurrences of
econsd in the prototype interpreter in the appendix
now create suspensions. We ecall this system the
dupenintenphreten for reasons which will become
apparent. In the resulting system there is only one
breed of cons, the kind that suspends its arguments,
and only one breed of car and edr, the kind which
coerce suspensions.

The superinterpreter is not hampered by two kinds
of errors which normally cause a function to diverge
in :evalfapply. The first case arises from the cons



FRIEDMAN, WISE 269

in evlis. When this cons is strict every actual
parameter is evaluated; if it is an expression only
involving strict operators, such as (quotient 1 0),
then evaluation is complete and divergence implies
that the form being evafuated diverges immediately
(call-by-value). If, however, the cond in evlis is
the suspending kind, then argument evaluation is
delayed until the result is accessed by the applica-
tion of a strict elementary function to a formal
parameter sometime later during the course of inter-
pretation (call-by-name). All non-elementary func~
tions are assumed to be strict in no parameters until
then.

Another error which can be avoided by the
suspending cond (see pairnfis) is that of insufficient

arguments. (Paintis builds the environment, binding
formal and actual parameters.) The only way in

which this error will be caught is, again, as a
result of a strict elementary function being applied

directly or indirectly to the formal parameter which
is unbound because of the error.

Theorem 3: The superinterpreter is properly more
powerful than the interpreters of Theorem 1.

Proog: The equivalence of the interpreters when
:eval/ :apply or eval/apply converges is established
through a proof much like that of Theorem l, but
simpler because with only one cond there is only one
"coerces to" relation for all structures. The fol-
lowing example converges under the superinterpreter
by escaping the pitfalls of argument evaluation and
parameter binding by postponing the construction of
its internal data structures. JDefine the function
second as

(second x y z) =y .
The form,
(second (quotient 1 0) 3)

evaluates to 3 in spite of the strictly divergent
first argument and the missing.third argument. N

Exampfe: As an example of a form whose evaluation
diverges in LISP 1.0, even under the superinterpre-
ter, we offer

((label gardenpath

(A (x) (cdr (cons x (gardenpath x) )) )
) NIL) .

In the evaluation under the superinterpreter the

A 4 s ol

§
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arguments to eond are suspended, but the second sus-
pension is continually coerced by application of the
strict elementary function cdx.

Rosen (1973) has established least fixed-point
results for a nondeterministic version of LISP and
Wand (1975) has established related results for
Reynold’'s (1972) style interpreters. It is clear
that our superinterpreter operates deterministically
and that the evaluator never descends the evaluation
tree any deeper than required by the strict elemen-
tary functions within MecCarthy's interpreter. As a
result, it appears that the only weaknesses in
Rosen's and Wand's proof can be avoided without
changing the description of the interpreter in the
appendix.¥®

Stnong conjecture: The superinterpreter yields the
least fixed-point semantics for McCarthy's :eval/
:apply LISP 1.0 evaluator.

Another approach to the conjecture may be based on
the facts that the interpreter performs pure call-by-
name (leftmost substitution rule) and that all elemen-
tary functions are 'sequential' (Vuillemin 1974) as
they are eventually coerced. In particular, an argu-
ment to CON4 is only coerced as if it were part of
the form [car(cons...)) or (ecdrlcons...) each of
whieh is sequential; the other elementary funetions
are strict.

Henderson and Morris (1976) have independently
discovered a "lazy" evaluation scheme for LISP which
is presented with lucid examples and Scott-Strachey
semantics. Their scheme is no less powerful than
ours because they also provide a non-strict cons.

By the strong conjecture, then, their scheme is
equivalent in power to ours.

III. SUICIDAL SUSPENSIONS

The scheme for implementing suspensions described in
the previous section is terribly impractical for a
running interpreter because a suspension is coerced
again and again for every access to its value by a
strict function., By Observation 1 a traversal of a
data structure requires invocation of evaluation at
every turn, and if the structure is traversed a
second time, then the evaluations will all be
repeated, just to get the same result (because

susgended environments do not change).
*For another perspective, however, see deBakker

BETP—
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With the predicate, suspended, defined over all
references within the system, as described in the
previous section, we can medify the definition of
car and ecdr to prevent any repeated coercions of the
same suspension. After the evaluation of the first
coercion on a suspension the value is stored in
place of the reference to the suspension. Future
accesses which would have found and coerced- the sus-
pension are instead directed straight to the final
value which is referenced in the same way, but is
not suspended.

In the last section we saw that changing the cons
used by the interpreter from strict to non-strict
had the effect of changing all user functions from
call-by-value to call-by-name. The introduction of
the storing versions of car and cdi into the inter-
preter has the effect of changing the call-by-name
scheme into a call-by-delayed-value (Vuillemin 1974)
scheme. Then no argument to any function will be
evaluated until it is required by a strict elemen-
tary function within the interpreter, and after that
it will never be evaluated a second time.

Obsenvation 2: There is at most one reference to
every suspension in the system.

That reference is in the node allocated by the
function :eoné for which both invocations of
suspend in the system are arguments. (We emphasize
that the functions foam, env, duspend, suspended,
ican, :edr, and :coné are not available to the user,
and that the interpreter only uses them to define
the elementary functions cai, edr, and cons.)
Moreover, the only time this reference is accessed
after its creation is during the evaluation of caxr
or cda of that node.

Let aplacliba be a function of two arguments
defined similarly to aplaca of LISP 1.5 (McCarthy
1962).  The first argument is a node allocated by
icond and the second is a value of some sort.
RpLacfiba performs four steps:

--Notes the reference in the A-f{eld of the node,
N, which is the first argument;
--Stores the reference to its second argument in

the A-f4ield of N;
--Liberates (returns to available space) the
single node whose reference was noted above;
--Returns the value of the second argument as
its value.
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RplLaclibd is defined similarly for the D-{§ield.
Rplacliba and aplaclibd are not available to the
user. In our applications the liberated node will
always be a suspension and the replaced value will
always beé a reference te an atom or to a node origi-
nally allocated by :eons.

Since coercions only occur within caxr and cdr, it
is those functions which we change in order to avoid
repeating them.

(car node) = (cond
if (suspended (:car node)) Zhen
{(rplacliba node (eval (form (:car node))
(env (:car node))))
else (:car node) ) ;

(cdr node) = (cond
44 (suspended (:cdr node)) Zhen
(rplaclibd node (eval (form (:cdr node))
(env (:cdr node))))
else (:ecdr node) ) .

If the desired reference is to a suspension, it is
coerced and the resulting reference is inserted in
place of the original reference. The liberation is
possible based on Observation 2 and the conditional
test within each function. After replacement there
is neither necessity nor ability to access the sus-
pension. If the reference isn't to a suspension,
then that replacement has already occurred and the
value is directly accessible.

Theorem 4: Theorems 1, 2, and 3, and the strong
conjecture apply as well to the interpreter using
the definition of car and cdt of this section.

The proof is a trivial program-ceorrsectness argument
outlined informally above. N

Theorem 5: Using the new functions can and cdn
defined here, the number of calls to eval within the
superinterpreter during the course of evaluating any
form is less than or equal to the number of calls
under McCarthy's :eval/:apply scheme.

Proog: Since the Ffunection :cond is strict under
McCarthy's scheme, evaluation of its arguments
always precedes its application. The only evalua-
tions which are suspended in our scheme are precise-
1y those resulting from applications of cons. The
suspended arguments are eventually evaluated at most
once, however. Since we accept his interpreter
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(essentially) without change, the relation between
the numbers of invocations of evafl follows. N

The interpreter which uses the new cond with
suicidal can and edr is remarkably efficient. 4
consd allocates three new nodes instead of just one
as in ‘:eval/:appfy, but avoids the (perhaps infinite)
time required to evaluate its arguments. Environ-
ments tend to get dragged around the system,
preserved from garbage collection by suspended refer-
ences, but argument evaluation is avoided until
absolutely necessary and environment construction,
itself, is suspended. On coercion of a suspension
from within caxr or cdx the node carrying the suspen-
sion is automatically released, and when all suspen-
sions to a particular environment have been coerced,
then that environment may finally be garbage col-
lected. The only ultimate storage cost results from
suspensions which are never coerced. That space is
always balanced by the time saved in not evaluating
forms to useless arguments as indicated by Theorem
S. We have, therefore, modified the system by
inereasing linearly the time required for three of
the elementary functions at the expense of space
required to carry around potentially unneeded enwvi-
ronments. However, that storage cost enables us to
save time by reducing potentially exponential
computation time, and even potentially divergent
computation, back to practical limits.

IV. IMPLICATIONS FOR FILE STRUCTURE

In this section we consider ‘the implications of
suspensions on communicaticn with external devices.
The requirement that the environment of a conversa-
tion be freezable as part of a suspension demands
random access files in order to provide easy resto-
ration of the device upon an unanticipated thaw. A
useful model for the properties of sequential files
may be found in Landin's concept of a stream (Landin
1965; Burstall, Collins, and Popplestone 1971;
Hewitt et al. 1974; Burge 1975),

Landin describes a 4fneam as a particular type of
function which represents a sequence. A streanm is
applicable to an empty list of arguments and
produces a pair whose first element is the next item
in the sequence and whose second element is a stream
for the remainder of the sequence. This definition
provides for a potentially infinite sequence using
only strict functions by depending on the user to
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control the expansion of a stream through explicit
application of the successively generated streams.
If we assume that the application of a stream is
implicit in referring to it, then a stream may be
viewed as the result of a eond strict in its first
argument. In that view Landin's cobservation (1965) tha:
streams "enable us to postpone the evaluation of the
expressions specifying the items of a list until
they are actually needed" is true only if
lists are always processed from left to right with-
out skipping any entries. This knowledge is avail-
able in some circumstances in particular sequential
input/output which Landin was prepared to model.

The only operations which need be defined for a
stream are these:¥

(hs 8) £ the finst element of s;
£ the stream representing all but (hs s);
(prefixs % s) £ the stream whose first element
! is the value of X and whose
remainder is s; and
(nulls s) £ TRUE when the stream is empty,
FALSE otherwise.

Since streams cannot be arguments to any other ele-
mentary funetion in the system, we can compare our
system to the Landin system on the basis of these
operations.

Theonrem 5: IMcCarthy‘s LISP 1.0 with our elementary
functions can model Landin's streams.

Proof: TFor every occurrence of (hs s) substitute
(car s); for (ts s) substitute (ecdr s); for (prefixs
x s) substitute (cons x s); for (nulls s) substitute
(same s NIL) in any program using Landin's streams.
The semantics are the same because the strict
elementary functions car and cdi coerce suspensions
planted by coné in the same way that Landin's h4 and
X4 apply the function, s, to get the next pair. N

Theorem 6: McCaprthy's LISP 1.0 with our elementary
functions can model more than Landin's streams.

Proog: The result obtains because (prefixs x s)
evaluates its first parameter completely. The two
systems would be equivalent if we had defined cond
to be striet in its first parameter. The example in
Section II of the sequence of terms which sums to

:
IR
-1
&
:

#In these definitions we have chosen the names
from Burge (1975) rather than Landin (1965).

e
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m2/6 offers a simple counterexample for Landin's
streams. Consider the Boolean form

(equal (car (cdr (terms 1))) .
(car (cdr (ecdr (terms Q))))) .

Our evaluation scheme returns the wvalue TRUE because
the two terms selected from the sequence are both
1/4. Had we defined fenams with Landin's Ffunction
phegixs as

(terms n) = (prefixs(reciprocal(square n))
(terms (addl n)) ),

then the form would diverge because of a division by
zero. W

For the remaining discussion on streams the funec-
tion prefixs is treated as conéd except that it is
strict in its first parameter. This makes i1t parti-
cularly useful for describing sequential files, Let
the function #ead be defined as on many LISP sys-
tems: #xead is a function of zero parameters which
removes the next form from the input file and returns
it as value. Then the function 4npuf could be
defined to identify the entire file without
necessarily reading it:

(input) = (prefixs (read) (input)) .

If one were then careful to access the input file in
order, one could then refer to (car (input)), the
first form on input and (cdr (edr (input}))), the
remainder of the file after the first two forms. The
outer level interpreter "listening loop" for an
interactive system might be written as one funection,
outputf whose value is passed to the printen:

(output s) = (prefixs (eval (car s) NIL)
(output (edr =))) .

The monitor invocation of (output (input)) runs the
interpreter and results in an appropriate output
stream.

Consider the function 4npuf with cons substituted
for predixs and a predicate endoffile:

(input') = (cond
Lf (endoffile) then NIL
else (cons (read) (input')) ) .

If we invoke the form (reverse (input')) our expec-
tation would be that this invocation would reverse
the forms taken from the input file. However,
because nead is suspended until the results of
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reverse are accessed, and because xread is a side-
effecting function, the eventual effect if the
reverse is printed is to copy the input unchanged be-
cause the first read forced still gets the first form
from input. Thus (output(reverse(input'))) and (output
(input')) transfers the input file to the output file
essentially unchanged, but (output(reverse(input)))
actually prints the reversal! The error is that the
side-effects of #head cannot be carried in the envi-
ronments within the suspensions. If the value of
(input') is taken to be a random-access file (as if
it were a data structure within the machine) then

the result would be the expected one.

We argue that Landin's streams fit the requirement
of sequential files. (See the dynamic L£i8f of POP2
(Burstall, Collins and Popplestone 1971).) Because
predixs is strict in its first argument it is impos-
sible to access the remainder of the sequence without
noticing the existence of the first element. On the
other hand, the non-strict cons lends itself to
manipulation of random-access (tree structured) files
as an extension of the rest of memory: one can move
across the tree at a high level without being
bothered with details at inferior levels.

In an extremely lugid discussion of streams,

Burge (1975) develops the notion of a stream-function

as a coroutine structure. With the suspension model
of eond the same structure may be being traversed by
several functions at once: when a suspension is

coerced by one funection, the value generated by the
coersion is left behind in the place of the suspen-
sion for others to find if they need it. One
interesting effect of this interpretation is that
coroutines are written without any conscious effort
by the programmer. The parts of the structure which
are actually evaluated, as opposed to those which
remain suspended, and the order in which evaluation
occurs are not easily predicted from outside the
system.

Our generalization of cond to non- strict is,
therefore, a generalization of Landin's prefixs in
the same way that, as Landin demonstrated, prefixs
is a generalization of the strict :cond. The
difference is that the structures built with the non-
strict €0M4s can have the evaluation of the expres-
sions specifying any part of the overlapping tree
structure postponed until they are needed.
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V. FUNCTIONS WHICH SELECTIVELY EVALUATE ARGUMENTS

The use of the nop-strict cond within the interpreter
in a way which suspends argument evaluation until the
parameter is used by a strict elementary function
enables certain special forms (McCarthy 1962) to be
treated as functions. In order to define some of
these special forms, we allow a certain class of
functions which take an arbitrary number of arguments.
The definition of these functions will be flagged by
exactly one formal parameter directly following A
which will be bound to the List of (suspended) eval-
uated arguments. For example, the function £44% can
be defined as the function (A x x) so that if forced,
it evaluates to the list of its (arbitrary number of)
evaluated arguments. In orde? to facilitate writing
recursions on lists of arguments we use a notation
for applying a function to a list of arguments. The
notation <f x> calls for an application of the func-
tion, f, to the list of evaluated arguments which
result from the evaluation of x. Thus, (f a b c) is
synonomous with <f (list a b ¢)>, and in LISP 1.5
(McCarthy 1962, Appendix B), <f x> means

(apply (function f) x NIL). :

The logical connectives, and and ox, are defined
in LISP to take an arbitrary number of arguments and
to evaluate them from left to pright. The first argu-
ment which evalutes FALSE (pespectively, TRUE) for
the special form and ( o4 ) terminates evaluation
returning that value; if the argument list is
exhausted then the value which results is TRUE
( FALSE ). The explicit order of evaluation requires
care in a system implemented with strict elementary
functions, because these special forms are not strict
in any parameter after the first argument which eval-
uates to FALSE ( TRUE ). However, in the system
whiech uses the nomn-striect conéd internally, evaluation
is automatically suspended so that and { 04 ) becomes
a function yet its strictness property remains the
same.

and = (A x (cond
4if (same x NIL) then TRUE
elsedlf (car x) then <and (ecdr x)>
else FALSE)) ;
or = (A x (cond
éﬁ (same % NIL) fhen FALSE
seif (car x) then (car x)
else <or (cdr x)> )) .

The superinterpreter gives the correct results

f
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with these definitions because the cond within evldis
suspends evaluations. The pattern of the recursion
with (edr x) in and ( o4 ) would allow this program
to work even if evfd{s were implemented with prefixs
in place of cons, because that cdr coerces a
suspended evlis only when the value of the cax is
needed.

The function, Lf-then-else, requires the cons
rather than the prefdixs within ev£is because it does
not necessarily access its arguments in order.
Again, we treat Lf-then-else as a function, rather
than as a special form.

(if-then-else p q r) £ (cond
i p then q
else v ) .

By generalizing {f-then-else we can write

conditional = (A x (cond
Af (same x NIL) Zhen NIL
elsedlf (same (ecdr x) NIL) then (car x)
elsedf (car x) Lhen (car (cdr x))
else <conditional (ecdr (edr x))> )) .

This condifional does not use the cond-pairs of
MeCarthy's interpreter. Moreover, we could not write
conditional as a funetion if it did. Instead, forms
in odd-numbered argument positions (except the last)
are treated as predicates, and the forms in the
respectively following (even-numbered) positions are
taken as the associated values. With this simpli-
fication, the program is free from superfluous
bracketings and the evaluator prepares for condition-
al evaluation (which is suspended) by a normal invo-
cation on evlis. Only the odd-numbered arguments

are actually evaluated until a non-NIL value is found.

CONCLUSIONS

The result of any mechanical evaluation scheme is
usually passed as a final structure to some print
routine which traverses it displaying the elementary
parts as part of a picture of the answer. We have
proposed an evaluation scheme in which the structure
building function (condtructor) is nom-strict so that
evaluation of its arguments is delayed until they are
needed by the strict elementary functions. Therefore,
the first evaluation of suspended arguments might be
delayed until the traversal procedure within the
print routine. If the only ultimate use of a result
is to display it, then the only computations
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necessary are those which directly contribute to the
value displayed. We have proposed a very simple
scheme for accomplishing this behavior in a nicely
structured interpreter (LISP 1.0) simply by parti-
tioning the five elementary functions into the striet
and the non-strict.

We have implemented the elementary functions and
the interpreter described in Section III, boot-
strapping on an existing LISP implementation®. The
appendix reflects an interpreter for our versiocn of
LISP; it appears very similar to MeCarthy's. Signi-
ficant differences in the behavior of the interpreter
arise because the uses of e0né by the interpreter
also cause suspensions. The use in eviis suspends
argument evaluation; the use in padrlis suspends
environment construction; the uses in apply, carlis,
and cdrfis suspend construction of the multiple-
valued structures which result from our operation of
functional combination discussed elsewhere (Friedman
and Wise 1976a, 1976b). All the resulting suspen-
sions are coerced whenever they occur as arguments
to the strict elementary functions, If MeCarthy's
evaluator is taken intact and interpreted with our
elementary functions, the evaluation scheme becomes
properly more powerful. We strongly conjecture that,
in fact, this interpretation yields the least fixed-
point semantics for his evaluator.

In a previous paper (Friedman and Wise 1975) we
propose the compilation of recursive programs into
iterative machine code. The source code was to be
restricted te a "stylized" language in oprder to
assure the mechanical translatioem. That paper con-
centrated on the peculiar role of cond in a recur-
sive program, which may be reinterpreted in light of
the discussion herein. The result of a function
which recursively builds a list using consd, when run
under the interpreter which we propose here, develops
its answer in a top-down order as the suspensions are
coerced in the traversal within padint. The normal

*It is noteworthy that the popular technique of
implementing context-switching with "shallow bindings"
and a push-down-list does not allow environments to
be saved within suspensions, because suspensions are
passed from nested environments out to enclosing
environments. See Moses (1970) and Sandewall (1971)
for further discussion of the problems with shallow
binding schemes involving the role of function in
LISP.
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recursion (McCarthy's) builds the result bottom-up.
The goal of iterative code is closer with the natural
transformation of bottom-up to top-down code readily
available from our understanding of the role of
suspensions.
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APPENDIX

The appendiz is in two sections. The firsl is a
summary of the definitionas of LISP's elementary
functions as set forth in Sections II and TIT,
Funetions preceded by a colen (:) refer to
McCarthy's five elementary funclicns. The second
section is a prototype interpreter referenced in
Sections II and V.,
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E€emendany functions foa Section 11 proofs
For the :evaf/:apply interpretler:

(tscons :ab tenv) =
(:cons (:eval (:car :tab) :env)
(:eval (:car(:cdr ab)) :env) );

(:car :x) 2 (:car :x);
(iedr :x) = (:edr :x);
(teq x

) = seg wx ooyl
{:atom :x) = (:atom :x},

For the evalfapply inLerpreter:

(¢cone ab env) =
(tcons (:cons (car ab) env)
(:cons (car(edr ab)}) env) )
(eval (:car(:icar =})
{:cdr(:icar x)) )3
(cdr %) = (eval (:car(:ecdr x))
{ sedrlircdr %)) )3
Ciien: 0 g )a
(:atom =).

Elementary funciions fon Section 111's practical
Anteapneten

1l

{car x)

{eg = y)
(atom =)

(scons ab enwv) =
{:cons (suspend (car ab) env)
(suspend (car(ecdr ab)) anv) );
(car %) = (cond
4§ (suspended (:car x)) then
(rplacliiba x (eval (form(:car x))
(env(:car x}) ))
else (:car x) )
“(edr x) = (cond
£f (snspended (:cdr x)) then
(rplaclibd % (eval (form(:cdr x))
(env(:cdr %)) ))
efse (:edr =) );
(eq = ¥) = (:eq x y)3
(a2tom %) = (:atom x).

Prolotype Linteapreilen follfowing Mcﬁanthg'# (1962)

The following interpreter serves two purposes in the
paper. The proofs in Section Il vefer to the '
unbracketed lines with appropriate substitutions
made for the uncoloned occurrences of the eclementary
functions, The bracketed lines provide for formal
.parameter structures suggested in Section YV and for
funct§0nal combination (Friedman and Wise 1978a,
1976b). '
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The function dame, defined by

(same sexp atm) 2 (cond

if (atom sexp) then (eq sexp atm)
else NIL),

is assumwed to avoid misinterpretatlion due to undefined
values of eg in apply.

The prototype inteapreten [Bracketed lines are ignored
in Section 1I.]

(eval form env) = (cond
44 (atom form) fthen (asscc form env)
.eldedd (atom (car.form)) fthen (cond
L4 (e (cay form) QUOTE) Zhen (car(cdr form))
edsedf (eq (car form)} CONS) ZLhen :
(scone {(ecdr form) env)
efself (eq (car form) COND) then
(evecen (cdr form) env)
else (apply (car form){evlie (cdr Form)
env) env) )
else (apply (car form)(evlis (cdr form) env)
anv) )

(apply fn args env) = (cond
L4 (atom fn) Lhen (cond
4§ (eq fn CAR) zhen (car(:car args))
edself (eq £n CDR) then (ecdr(:car avgs))
elself (eq fn LQ) then
(eq (:car args)(:car(:cdr args)))
elseif (eq fn ATOM) then (atom (:car arps))
elseld (eq fn NIL) fhen NIL
efse (apply (eval fn env) args env) )
elsedq (same {car In) LAMBDA) then
{eval (car{cdr(cdr #£n)))
(pairlis (car(edr fn)) args env))
edsedff (same (car fn) LABEL) then
(apply (car(edr(edr fn))) args
(:cons (:cons (car(edr f£fn))
(car(edr(cdyr fn)))) env))
Letseif (anynull args) then HNIL ]
felse (cons (apply (car fn) (carlis args) env)
(apply (cdr £n) (edrlis args) env)}])
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(pairlis fpl apl env) = (cond
if (atom Fpl) then env
else (:cons (:cons (car fpl)(:car apl))
(pairlis (cdr £fpl)(:cdr apl) eanv)) )}

C(pairlis fpl apl env) = (cond
44 (atom fpl) then (cond
if (eq fpl NIL) then env .
else {(:cons (:cons fpl apl) env))
efse (pairlis (car fpl)(:car apl)
; (pairlis (cdr fpl)(:cdr apl) enwv)))]’
(assoc at env) = (cond

Lf (eq (icar(:car env)) at) then (:cdrl:car env))
else (asscve at (:cdr env)) )

(evlis unargs env) = (cond
44 (atom unargs) fhen NIL
ekse (:cons (eval (car unargs) env)
(evlis (cdr unargs) env)) )

(evecon tail env) = (cond
Af (atom tail) thenm NIL .
elsedy (atom (edr tail)) Lhen
(eval (car tail) env)
elsesy (eval (car tall) env) then
{eval (car{edr tail)denv)
else (evoon (cdr(edr tail)lenv) )

[(anynull lis) = (cond
4§ (dtom 1is) fhen FALSE
elsedlf (same (:car lis) NIL) them TRUE
else (anynull (:cdr 1is))-) 1
[{carlis mtx) £ (cond
Lf (atom mtx) Lhen NIL
efse (cons (ecap(:car mty))
{earlis (sedr mtx))) 3 1

[(edrlis mtx)}) = (cond
L§ (atom mtx) £Lhen NIL
efse (cona (edr(:car mtx))
(cdrlis (:ecdr mtx))) ) ]



