Inspiring Distribution in Distributed Computatior
by
Robert E. Filman
Daniel P. Friedman
Computer Science Department
Indiana University

Bloomington, Indiana 47405

TecHNIcAL ReporT No. 99
INSPIRING D1STRIBUTION IN DISTRIBUTED COMPUTATION

RoBerT E. FiLman
DanieL P. Friepman

DecemBer, 1980

This material is based upon work supported by the llational

Sclence Foundation under Grants MCS77-22325 and MC$-790-4183.

Inspiring Distribution in Distributed Computation

1] Introduction

The marvels of miniaturized silicon are leading to a world
of cheap microprocessors. These microcomputers bring with them
the hope of faster and cheaper versions of the conventional, main
frame computer - an army of small automata, eager to increment
and loop, ready to go out and solve our computing problens.
However, as any manager of a large software project can hAssure
you, a large collection of dumb computing agents does nos add up
to a working program. Microprocessors need to be told not only
what to do, but how to do it. They need to cooperate and
communicate in their processing task - but their cooperasion must
not turn into a bureaucracy, expending more energy on

communication than production.

One of our interests is that of organizing the soluiion of
computing problems in a distributed environment. Towards this
end, we have been studying models of distributed processing,
economic systems, and heuristic programming algorithms. While
our work is still in a preliminary stage, we have acquired a
broad knowledge of programming models for distribution ard

heuristic models for problem solution.

Page 2

A distributed processing system is characterized by several

attributes:

1) There must be multiple processing elements, all
capable of concurrent, asynchronous program execution.

2) The processing elements must communicate (transfer
information) between themselves, though there is a cohst
(time delay) associated with this transfer. This
criterion contrasts purely concurrent, shared memory
systems from "true distributed computation".

3) The processing elements should all be used as full
computers — not merely i/o channels - though some of them
may be distinguished by possession of particular
peripheral devices.

4) No processor should be able to perceive the global
state or global time of the system.

5) The communication mechanisnm ought to be directed --
communications should have both a specific origin and a
specific destination. This implies that (psuedo)
broadcast communication mechanisms are somewhat suspect.
If a system wishes to broadcast as a syntactic shorthand
for a series of directed communications, then the cost of
that broadcast should be proportional to the number of
destinations.

6) One should be able to arbitrarily increase the
processing capacity of the system by the addition of new
processors. If one can add or delete processors

dynamically, without stopping and resetting the system,
so much the better.

Of course, these are criteria for distribution. Just as a
penguin is a bird (though it might not match the Platonic ideal
of birdhood), one can speak of a distributed system that does not
have all of the characteristics of this ideal. The mentzl image
of the ideal distributed system is a graph; the vertices of the
graph are processing elements; the edges, communication

channels. The ideal distributed system will be adaptable to any

Page 3

connected graph. However, architectures that require a
particular graph (complete, or star, for example) may still be

interesting.

The above describes a distributed processing system in
physical terms. Just as the most effective programming languages
have not been those that provide the programmer with the most
transparent view of the machine hardware (far from it!),! the most
successful languages for programming distributed systems probably
ought to shield the programmer from the communication primitives

and processor allocations of the actual machines.

2] Models and Languages

There have been many proposals for models and languages for
distributed processing. We have been examining some of these
(particularly Actors [Hew], ADA [Weg], Concurrent Processes
[MiM], CSP [Hoa], Dataflow [Den, ArG], Distributed Processes
[BrH], Exchange FPunctions [Zav], Prons [FrWw], Networks o7
Parallel Processes [KaM], PLITS [Fel], and Shared Variables
[LyF]). We are particularly interested in the ability of each
programming model to easily express problem solving

organizations.

These are a diverse set of models; the authors have had
different goals in their creation. Some, like the Milne-Milner

and Lynch-Fischer models, spring from purely mathematical

Page 4

concerns (correctness, complexity). Others, such as Distributed
Processes, are especially interested in the kind of resource
allocation issues inherent in operating systems. We shall
identify six major dimensions of a distributed problem sblving
system.

A) Does the model provide for a fixed number of processes
(Fixed), or does it allow for process creation and destruction
(Var)? Can new process types be dynamically defined (DyDef)?

B) Does the model provide a "send and forget" commuhication
facility (Mess : messages), or does it require communicants to
coordinate their information exchange (Coor)? Does the receiver
of a message have primitive control of the incoming messhage queue

(QC)?

C) Are the communication channels between processes
predetermined (Pre), or or can processes dynamically establish
connections (Dyn)? Is there an implicit complete graph [CG) (any
process has (or can acquire) communication links to any other))?
Here we refer to the "software" communication channels between
processes.

D) Is the relationship between communicants symmetric (Sym),
or asymmetric (Asym)? Here we are referring to the symmetry
involved in creating the information transfer, not to the
symmetry of information flow. Message sending and procedure
calling are thus asymmetric operations; exchange functions are
not.

E) Is the system "call be need" (Need), computing only when
a result is required, "call by value" (Value), processing and
preparing results without regard to the ultimate use?

F) Does the model provide abstract data types (ADT)?

Page 5

The preliminary state of this comparision is presented bzlow.

Model A B C D 5 P
Actors DyDef Mess Dyn-CG Ksym Value** ADT
ADA Fixed Coor-QC Pre Asym Value ADT
CP/MiM DyDef Coor Pre Sym

CSP/Hoa Var Coor Pre Sym*** Value

DFlow Fixed Mess Pre Asym Value

DP/BH Fixed Mess Pre Asym Value ADT
ExF/Zav Pixed Mess Pre Sym Value

Frons DyDef* Mess Dyn-CG Sym Need

NPP/KaM DyDef* Coor Dyn Asym Need

PLITS Var Mess~QC Dyn-CG Asym Value ADT
SV/LyF Fixed Mess Pre Sym Value

Notes:

* Not essentially a "processes" systenm.

** Has a "delay" operator to simulate call-by-neei.

*AKX In the CSP model, connection is made "almost"

symmetrically. There are input guards, but not output ghards.
Kieburtz and Silberschatz [KiS] have discussed the diffi:ulties
in removing this asymmetry. Bernstein [Ber] has proposed a
possible implementation of output guards.

A distributed problem solver, of the form envisioned
earlier, will need to be able to acquire new processes
dynamically (perhaps even define new process types), have
flexible communication channels, and some sort of "send and
forget" primitive. Data abstraction is a useful tool; 1t will
likely make the task of building dynamic distributed syssems
easier. Queue control is of less obvious value, and can be

simulated with "advising functions" [Tei].

Dynamic communication channelling is desirable, but
difficult. Obviously, there is not a small factory attached to
our distributed system, taking sand and sunshine in one end, and
adding components to the network out the other. An alternate

mechanism might be literal broadcasting - it should be possible

Page 6

to build microcomputers with radio receivers and transmitters,
capable of tuning to specific channels for particular
communications. (This model might work especially well with both
a centralized organization (radio is an effective tool of an
autocracy) and with a production system formalism (get the latest

updates to the working memory on channel 102), see below).

3] Sociological and Heuristic Strategies

There is a distinction among models of distributed computing
between what we will call the "diffusing control" and
"interacting agents" approaches. Is the computation initiated by
activating one process, which then creates and initiates lits
sub-processes, activation (and problem context) diffusing
outward? Or is the system a number of independent agents, always
vigilant, entertaining requests from their neighbors, but
otherwise tending to their own affairs? The perspective is
important. At the hardware level, agents clearly interact;
there is no magic for creating a new physical processor.

However, at a certain level of programming abstraction, ignorance
of the actual processor allocation becomes desirable. Thoe
language at that level can still choose to be hierarchical
(diffusing) or heterarchical (interacting). There are merits to
each approach. If control diffuses, then the sender of al control
message must be prepared for the failure of the receiver.
Independent, interacting agents do not start with this cohceptual

difficulty. Rather, greater effort must be made in such systems

Page 7

to get the agents working together on a problem. If agehts do
nothing except make progress on useful problems, the loss of a

processor may be only a minor inconvenience.

The idea of "useful progress" may be a foreign notion. Most
conventional programming languages are a-step-at-a-time,
imperative formulations. The validity of the successive|steps is
entirely dependent upon the successful completion of the previous

steps.

There are other formulations for expressing computable
functions. Production systems (such as [New]) are examples of
such a formalism. A production system consists of two parts: a
working memory and a set of productions. Each production has two
pieces, a "pattern" and an "action". When some part of the
working memory matches the pattern of a particular production,
that production "fires", executing its action. Actions zre
programs; they typically add elements to the working menory.
Elements are never removed from the working memory. Thus, the
firing of a production never makes another production's firing

cease to be walid.

Formal logic shares this property: the proof of a theorem
does not invalidate the truth of any other theorem. Programming
languages predicated on this idea of "incremental discovery"

could be more easily distributed.

Page 3

The Sting operator [FrW] is similiar in effect. Sting is an
interlock-free test-and-set primitive. The intent is to|"sting"
an object with a value. If the particular object to be stung has
already been stung (by someone else) the operation becomes a
"no-op". Thus, if a swarm of processors are working on a
problem, the first "sting" of the answer is permitted to| succeed.
The others, if they find the problem already solved, can proceed

to other tasks; if not, their change has no global effec¢t.

4] Bconomic Models

Distributed computing networks are not the only
organizations that require internal cooperation and
communication. Human economic activity shows both some of the
same requirements, and some of the same goals as a distributed
computing network. There are some interesting parallels between
human economic systems, and potential organizational models for

distributed systems.

How are economies organized? One important dimension is
centralization. In a centralized system, there is a master
directorate (node) that sets the goals of the system, and divides
the task into sub-pieces, with each sub-task specified for a
particular worker. When the task is modular and well-deiined it
is possible to organize a distributed system in this fashion.
Efficiency can be achieved in such a structure if the task is

well understood, and the initial allocation of sub-goals and

Page 9

resources can be made to reflect this understanding. However,
central planning does not lend itself well to ill-defined
problems. Additionally, there may be a communications overload
from the planning node to the workers, while most of the
communication ability of the system, between the working nodes,
goes underutilized. A centralized system has the capacity to
respond coherently to the occurrence of a dramatic changeé in the

problem space.

It is only a small step from a fully centralized economy to
a partially centralized (hierarchical) model. The central
authority defines the major tasks. These are parcelled out to
regional sub-authorities, each of whom is allotted a rescurce of
workers. This structure can be iterated. At the limit, |it
resembles a corporate hierarchy tree. Hierarchical organization
can respond well to local aberrations. Its response to dramatic
global changes is somewhat slower, however, as command must
filter through several command layers. As any distributed systen
must have its elements physically distributed in the three
dimensional world, a hierarchical system has the potentizl of

reflecting this physical reality.

An alternate approach to processor organization is & laissez

faire economy. Each task has certain goals and an allocsgtion of
currency. Currency can be used to purchase processor power and

to generate new tasks. When a task has exhausted its currency,

Page 10

it can appeal to its own source (banker) for more. Its banker
can then decide, on the basis of the results that the task
presents, whether to grant that task more resources. Ths scheme
can be applied recursively, to the banker's banker, and so forth,
back to the resources of the human who originated the rejuest.
Such a scheme lends itself to ill-defined tasks, ones whare a
promising line can be recognized, but not necessarily geherated,
and to "useful progress" programming models. While such systems
are not fragile, there are difficulties in both focusing the
organization in the presence of a rapidly changing envirpnment,
and in terminating the activity of tasks that have ceased to be
useful. This kind of mechanism is essentially what was cmployed
in the agenda priority schemes of Lenat [Len]; it paral.els some

remarks of Hewitt.

One could also imagine distributed systems organized as
mixed economies (partially centralized, and partially free
market) or as indicative planned systems (with centralized goals

and directives shaping a free market economy.)

Smith's Contract Nets [Smi] is another proposed system for
distributed organization. Processes that have sub-problems
broadcast their request to the other processes. A free process,
or one that has particular knowledge about that task, "bids" to
obtain the contract. Contract Nets are a protocol; Smith does

not go into how an arbitrary system might be organized tc perform

Page 11

a contract approach.

5] Conclusions

Distribution promises inexpensive and efficient computation.
To realize that promise, much work needs to be done both to
define the right models for distribution, and to select ‘the
appropriate algorithms for apportioning computations among

processes.

Acknowledements

We thank John Barnden, Jim Burns, Mitch Wand and Dare Wise
for comments and conversations that helped us during the
development of these ideas. Research reported herein was
supported (in part) by the National Science Foundation under

grants numbered MCS79-04183 and MCS77-22325.

References

[ArG] Arvind, Gostelow K. and Plouffe, K. The (Preliminary) Id
Report: An Asynchronous Programming Language and
Computing Machine. Technical Report 114, Dept. of
Information and Computer Science, University of
California, Irvine (May, 1978).

[Ber] Bernstein, A. J. Output Guards and Nondeterminisn in
"Communicating Sequential Processes". ACM
Trans. Programming Languages and Systems 2, 2 (April 1980)
234-238.

[BrH] Brinch Hansen, P. Distributed Processes: A Concurrent
Programming Concept. CACM 21, 11 (November 1978) 934-941.

[Den]

[Fel]

[Frw]

[Hew]

[Hoa]

[KaM]

[KiS]

[MiM]

[New]

[Smi]

[Tei]

Page 12

Dennis, J. B. PFirst Version of a Data Flow Procedure
Language. In B. Robinet (ed.) Programming Symposium
Springer, Berlin, (1974) %62-376.

Feldman, J. A. High Level Programmming for Distributed
Computation. CACM 22, 6 (June 1979) 35%-367.

Friedman, D. P. and Wise, D. S. An approach to fair
applicative multiprogramming. In G. Kahn (ed.),
Proceedings of International Symposium on Semantics of
Concurrent Computation, Springer, Berlin (1979) 203-225.

Hewitt, C., Attardi, G. and Lieberman, H. Securilty and
modularity in message passing. Proceedings of thie First
International Conference on Distributed Systems, 1REE,
(1979) 347-358.

Hoare, C. A. R. Communicating sequential processes. CACM
21, 8 (August 1978), 666-677.

Kahn, G. and MacQueen, D. Coroutines and networks of
parallel processes. In B. Gilchrist (ed.), Information
Processing 77, North-Holland, Amsterdam (1977), 993-098.

Kieburtz, R. B. and Silberschatz, A., Comments on
"Communicating Sequential Processes". ACM

Trans. Programming Languages and Systems 1, 2 (Ockober
1979) 218-225.

Lenat, D. B. Automated Theory Formation in Mathemhatics.
oth International Joint Conference on Artificial
Intelligence, Cambridge, Massachusetts, (1977), 833-842.

Lynch, N. and Fischer, M. On describing the beharior and
implementation of distributed systems. In G. Kahn (ed.),
Proceedings of International Symposium on Semantitcs of

Concurrent Computation, Springer, Berlin (1979) 147-171.

Milne, G. and Milner, R. Concurrent Processes and their
syntax. JACM 26, 2 (April 1979), 302-321.

Newell, A. Production systems: models of contro.
structures. In W. Chase (ed.) Visual Information
Processing, Academic Press, New York, 1972, pp. 463-526.

omith, R. The contract net protocol: high-level

communication and control in a distributed problen solver.
Proceedings of the First International Conference on

Distributed Systems, IEEE, (1979) 135-107.

Teitelman, W. Interlisp reference manual. Xerox Palo

Alto Research Center Technical Report. Palo Alto,
California (October 1979).

Page 13

[(Weg] Wegner, P. Programming with ADA: an Introduction by
Means of Graduated Examples, Prentice-Hall, Englewood
Cliffs, New Jersey (1980).

[Zav] Zave, P. and Fitzwater, D. R. Specification of
Asynchronous Interactions Using Primitive Punctions.
Technical Report 598, Dept. of Computer Science,
University of Maryland, College Park, Maryland (1377).

