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Different Advice on Structuring Compilers

And Proving Them Correct

ABSTRACT: Our advice is this: the semantics of a language
is itself an algebra, in which there are sorts for both gyntactic
and semantic objects; the semantic functions or valuatiors are
among the operations of this algebra. An implementation of a
language is a representation of the semantic algebra in the
sense of Hoare. By the use of associative and distributive laws,
one obtains representations of continuation functions which look
like machine code; the function which simulates the application
of continuations to states looks like a conventional stack machine.
We prove the correctness of such an implementation for the

language given in L. Morris's 1973 paper.



Different Advice on Structuring Compilers

and Proving Them Correct

5 Introduction

The conventional advice about the structure of compiler
correctness proofs is that the source language is an initial
algebra whose signature is specified by its grammar, and that
the source semantics, compiler, target semantics, and coding
or decoding functions (relating source and target meanings)
are (or should be) homomorphisms between algebras of this
signature. This point of view was stated in various forms
L1, 7, 10, 21]1. Our purpose is to give somewhat different
advice.

Our advice is this: the semantics of a language is itself
an algebra, in which there are sorts for both syntactic aad
semantic objects; the semantic functions or valuations ar: among
the operations of this algebra. An implementation of a language,

whether it be an interpreter or a compiler, is a represenczation

of the semantic algebra in the sense of Hoare [6]1. To prove the
correctness of such a representation, one must give an "abstraction
function" which is a homomorphism from the implementation algebra
to the semantic algebra. The initiality of the source language
is still important, however, since it is used in the conssruction
of the abstraction function.

The diagram for this notion of correctness is shown in
Figure 1.1. We are using continuation semantics, so that the

domain of "source meanings" consists of functions from states



to answers. An important operation in the semantic algebra is
therefore "apply," which applies these functions to states,
yielding answers.

In the implementation algebra, we assume that source programs
are represented by themselves, although we could instead choose to
let the so-called source programs, which are actually parse trees,
be represented by strings of characters, and label the leftmost
vertical arrow with "parse." We have chosen to let states and
answers represent themselves, but this assumption is also
unnecessary.

The key choice in the diagram is the representation of source
meanings. Reynolds [15] essentially used the programs thsmselves
as representations, letting ¢ = "source semantics"; then the
operation labelled "target machine" became an interpreter. In
[281, we showed how we could introduce special-purpose comnbinators
to eliminate bound variables and use associativity to redice trees
of combinators to an almost-linear format. The resulting trees of
combinators have an obvious interpretation as source meanings and
look like code for a virtual machine of the kind often considered
in programming languages [14]. The function which simula:es
application, taking representations of source meanings and states
to yield answers, looks like a typical stack machine with a
standard fetch-execute cycle.

In this paper, we actually carry through the proof o?
correctness for the language in Lockwood Morris's 1973 paper

[10]. The proof that the left-hand square of Figure 1.1



commutes is easy. The proof that the target machine is partially
correct is also easy, using subgoal or fixpoint induction. The
hardest part of the proof is showing that the target machine halts
sufficiently often. For this we adapt Plotkin's proof of the
completeness of his operational semantics for LCF [13].

Section 2 presents the language, using Morris's direct
semantics, and converts it to continuation semantics. In section
3, we derive the representations of source meanings and tae
compiler. In section 4, we derive the target machine and prove
its correctness. In section 5, we paste these results tozether
to match the methodology we have presented. In section 6, we
give a more leisurely tour of the antecedents of this worxk and

present some extensions and conclusions.
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2. The Language

Table 2.1 shows our version of the language(¥*) Since [10, 12,
21] differ on several details, we have had to make some choices.
N 1s the cpo of the integers with 1. Id is an unspecifi=d
flat domain of identifiers. B is the 3 point cpo of boolzans.
The commands are standard, and include compounds, which wzre
absent from [10]. Following [0], we have included addition as
the only arithmetic operator; clearly nothing is to be leirned
by generalizing further. We have included conditional exbressions,
which were not in [10]. Again, we have simplified the syatax of
boolean expressions to equality and conjunction. Additional
relational operators would add nothing, but we have retained
the "short-cutting" evaluation rule for conjunction.

The semantics follows Morris's. It is a direct semantics.
We use Morris's ¥-notation:

p*q = Xo.p(qo¥l)(qo+2)

Here the + 1s used to select elements from a tuple; application
takes precedence over projection, so qo+l means (qo)+1l. We
use three valuations: ©0C, DA, DB, for Direct semantics of
Commands, Arithmetic expressions, and Boolean expressions.

b + x,y denotes the strict conditional defined by

tt+x,y = x
ffrx,y = y
E¥E T = K,

(¥) Tables and figures appear at the end of the sections which
refer to them.



Y denotes the minimal-fixed-point operator, and ocl[a/I] denotes
AJ.(dJ=I)»a,0d

as usual; this operation takes precedence over application, S0

nola/I] denotes n(ola/Il). <-,-> denotes the palring operator.

With this notation, our transeription is very close to Morris's

original. We use "state" for Morris's "environment" as more in

keeping with current usage.

Since this is a direct semantics, our first task is to
convert 1t to a continuation semantics. The techniques for this
are falrly well-known [17, 20, 24, 26]. Table 2.3 gives the
continuation semantics. L * M denotes the cpo of all strict
continuous functions from L to M, i.e., those continuous
f:L»M such that fi=1. 1In the absence of procedures, it is easy
to prove the required equivalence result, using techniques such
as those in [17, 26]. We first need some lemmata.

Lemma 2.1

(1) If n is striet, so is Semeclcmdln
(11) If k is strict, so is Semalaelx
(111) 1If k' is strict, so is Semblbelk'.

Proof: By structural induction, noting that (Ab.b + 7,g)
is always strict, and if fog i LfnL ++s are all strict, s¢ is
Ue. g

Lemma 2.2 ne(f¥*g) = (nef)¥g. O

Lemma 2.3 If n is strict, then ne(Ab.b>f,g) = Ab.b+n:f,neg.

Lemma 2.4 1If n is strict, and for all f, ne¢f = P{ne), then

ne¥¢ = Yy.

O



Proof: See [17]. O

Theorem 2.1 If n and «k are strict, then

(1) Semeclemdln = neDeclcmd]

(ii) Semalaelk k¥DAlae]

i

(111i) Semblbelk = «*DB[bel

Proof: See Appendix. [J

Corollary. Semplcmd] = DClemdl. O

There is more than this, of course, in converting from direct
To continuation semantics, e.g. when procedures are involved. Our
methcdology starts with a continuation semantics; we have done the

translation explicitly because of our desire to be faithful to the

benchmark of [101].



Domains

Syntax

oqHJ
o+ =

Cmd

Ae

Be

(13031:2:000)

Ida-»N
Booleans (iL,tt,frf)

::= continue

Id := Ae

if Be then Cmd else Cmd
Cmd ; Cmd

while Be do Cmd

i:i= 0 | 1

Id

Ae plus Ae

Cmd result Ae

let Id be Ae in Ae
if Be then Ae else Ae

::= Ae = Ae

Be and Be

Table 2.1 Syntax of the Language



Valuations

DC : Cmd+S+S
DA : Ae+S+NxS
PB : Be+S+BxS
Equations:
DClcontinuelo = o
DC[I:=ael = (Av.olv/I])*DAlael
DCIif be then cmdl else cmd2] = (Ab.b+PClemdll,DClcmd2])*DB[bel
DClemdl;emd2] = DClemd2]eDClcmdl]
DClwhile be do cmd] = Y(Af.(Ab.b>feDClcmdl,Ac.0)*¥)0B[bel)

DAJO] = Xo.<0,0>
DA[1l] = Xo.<1l,0>
DA[I] = Ao.<oIl,o>

DAlael plus ae2] = (Avr(kv20.<v +v2,c>)*DAﬂae2B)*7AﬁaelB

i
DAllcmd res ael] = DAlael]DElcmd]
DAllet I be ael in ae2] =
(lvlcl.((lvgqg.<v2,02E011/I]>)¥DAHae2J)£01Ev1/IJ))*DAEaelB
DBllael = ae2] = (Avl.(Av202<v1=v2,02>)*9Aﬁae2ﬁ)*vkﬂaelﬂ

DBlbel and be2] = (Ab.b+vBlbezl,(ko.{ff,b>)*UBﬂbeL]

Table 2.2 Direct Semantics
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Domains

n: N Integers

I: Id Identifiers

o: S=Id-»N States

b: B Booleans

n C=S+LN Command continuations

k: K=N»,C Expression continuations

K: BC=B+LC Boolean continuations
Valuations

Semp: Cmd-C

Semec: Cmd=+C-C

Sema: Ae=+K->C

Semb: Be-+BC~»C

Equations

Sempllemd ] = Semelemd](Ao.o)

Semclcontinuel = An.n

SemelI:=ae] = An.Semalael(Avo.nolv/I])

Semel[if be then cmdl else cmd2] =
An.Semblbel(Ab.b+>SemelcmdlIn,Semelcmd2]n)

Semellecmdl; emd2] = An.Semeclcemdl](Semelcemd2]ln)

Semelwhile be do cmd] = An.Y(A6.Semblbe](Ab.b+Seme[emdld,n))

Sema0] = Axk.xkO

Semall] AK.k1

SemalI] Ako.k(oI)o

Semaflael plus ae2] = AK.Semaﬁaelﬂ(lvl.Semaﬂaezﬂ(hvz.m(vl+v2)))
Semallcmd res ael] = Ak.Semelcemd]l(Semalaelk)

Sema[let I be ael in ae2] =

kK.Semaﬂael](Avlal.SemaEae2E(Av202.nv202[a11/1l)(cl[vl/I]))

Table 2.3 Continuation Semantics
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Semalif be then ael else ae2] =
Ac.Semblbe]¢Ab.b+Semalaellk,Semalae?lk)
Sembllael = ae2] = AK.SamaEaelﬂ(Avl.SemaﬂanB(kvz.x(v1=v2)))

Semb[bel and be2] = Ak.Semb[bell(Ab.b+>Semblbe2]k,k(ff))

Table 2.3 Continuation Semantics Continued
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3. Derivation of the Compiler

We next follow the strategy laid out in [281. We first
introduce special purpose combinators to eliminate bound variables
from the equations in Table 2.3. This gives a simple reprz=senta-
tion of program phrases as trees. We then use distributivz and
assocliative laws to reduce the trees to standard forms. Last,
we derive a machine which simulates the application of the tree
representations as functions.

Table 3.1 gives a list of the special-purpose combinasors we
will use. We have adopted the convention of putting "compile-time"
information on the left of the equality. Table 3.2 shows =he
semantic equations rewritten using the new combinators.

Lemma 3.1 (i) Bk+1(a,8)x = Bk(a,ﬂx)

(ii) Bl(a,kx.x) a. 0O

Theorem 3.1 The equations of Table 3.2 agree with those of

Table 2.3.
Proof: No induction is necessary; we merely expand the
combinators in Table 3.2 and use afn-conversions to reclain the

equations of Table 2.3. We do five illustrative cases.
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Assignment Command

B, (Semalael,storeI)
= An.Semallael](sfoneln) (Def. of Bl)
= An.Semalael(Avo.nolv/I]) (Def. of stone)

Conditional Command

Bl(Sembﬂbeﬂ,teétl(Samcﬂcmdlﬂ,Semcﬂcdeﬂ))

An.SembEbe](teétl(Semcﬂcmdlﬂ,Semcﬂcdeﬂ)n) (Def. of B,)

]

An.Semb([bel(Ab.b+SemelcmdlIn,Semelemd2]n) (Def. of teétl)
While Command
Loop(Semblbel,Semclcmdl])
= An.Y(A6.Semb[bed(Ab.b+Semelcemd]6,n))
Addition Expressions
Bl(Semauael],82(Semaﬂae23,add))
= lx.SemaﬂaelB(Bz(SamaEaeE},add)n)
= XK.Samaﬁaell(Bl(Samaﬂaeﬂ,addK)) (Lemma 3.1 (1))
= AK.Samaﬁaelﬂ(Avl.Semaﬂaezﬁ(addel))
= AK.Samaﬂaelﬂ(Avl.Semaﬂae2](lvz.K(v1+v2)))
Let-expressions
Bl(SemaﬂaelB,B (4aueI,82(Semaﬂae2B,unéaueI)))
= hn.Semaﬂael](Bl(aaueI,B (Semafae2],unsavel))x)
= RK.Samaﬂaelﬂ(éaueI(Bz(SemaEaeEl,un¢aueI)K))

= A

Fa

.Semaﬁaelﬂ(aauaI(Bl(Samaﬂae2E,unaauaIK)))

= AK.Semaﬂael](lvlcl.Bl(SemaEaezﬂ,unaaueIK)(olI)(cltvl/IJ))

= AK.Semauaelﬂ(Avlol.3emauae2£(unéavelnfoll))(clLvl/Il))

= KK.SemaEaelB(lvlal.Samaﬁae2](kv202.szoz[dll/lj)(cl[Jl/I])).



14

The formulation of Table 3.2 suggests a simple tree-siructured
representation, e.g.

RepelI:=ae] = (B, Repallae] [store I1]

Repalael plus ae2] = [B, Repalaell [B, Repalae2] addll
we can do better, however, by using the following properties of the
combinators to linearize the trees as much as possible:

Theorem 3.2

(1) B, (B,(a,8),¥) = By 1(a,B(8,y))  if pal
(31) Bk(continue,s} = B
(441) Bk(teétl(a,s),y) = teétk(Bk(a,Y),Bk(B,Y))
Proof:

(1) Bk(Ep(a,B),Y)xl...xkxk+l...xk+p_1

Bp(a,s)(yxl...xk)xk+l...xk+p_1

u(s(yxl...xk)xk+1...xk+p_l)

a(Bk(B,Y)xl...xkxk+l...xk+p_l)

(11) Bk(continue,B)xl...xk = continue(sxl...xk: = Bxl...xk.

(5ii) Bk(taétl(a,s),y)xl...xk

]

zaézl(u,s)(yxl...xk)

Ab.b+a(7xl...xk),s(yxl...xk)
= A.bqb"Bk(a,Y)xloonxk,Bk(BSY)xlo-oxk
Zest, (B, (a,y),B, (B,Y)) O

We can now write a simplification function simpl, as shown in
Table 3.3. Let ¢(t) Dbe the value obtained by interpretirg the
symbols of t as the corresponding functions. (This is pcssible

because the trees form an initial algebra [41).
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Theorem 3.3 For any t, 44impL(t) halts, and ¢(simpl(t)) = ¢(t).

Proof: To see that s4mpf halts, observe that each recursive
call on 44impl either decreases the number of nodes in the tree or
the number of B's which are left sons of B's. The second part is
immediate from Theorem 3.2. [

We now write down the compiler in Table 3.4. Like mcst simple
compilers, it runs by structural induction.

Theorem 3.4

(1) ¢(Compplpgm]) = Semplpgm]
(11) ¢(Compelemd]) = Semelcmd]
(111) o¢(Compalael) = Semalae]
(iv) ¢(Compblbel) = Semblbel

Proof: By structural induction. Comparing Table 3.4 with
Table 3.2, most of the cases are immediate, being simple trans-
criptions. By Theorem 3.3, 44impf preserves ¢, and by Lemma 3.1
(11), padding with continue preserves ¢. This takes care of the
two remaining cases. [

Figures 3.1-3.2 show the code produced for a simple program.
The purpose of the continue's in the code for the while-command
is to simplify the format of the output of simpf.

Let instructions and sequences be defined by the gramnar of
Table 3.5. Then we have:

Theorem 3.5 Compplpgm] is a sequence.

Proof: We start by assuming that a sequence could be any
tree, and show that no arrangements other than those in tasle 3.5

actually occur. First, note that simpl preserves the righ:most
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leaf of its argument. Since simpf is called with either halt or
continue as 1ts rightmost leaf, the result with have either halt
or continue as 1ts rightmost leaf. Furthermore, any right son
node other than the original rightmost node will eventually be
converted into a left son by the first rule. Finally, any B or

test which appears as a left son is eliminated. [



Bk(a,B) = Axl...xk.a(sxl...xk) (k 2 0)

halt = \o.o (e C)
conzinuel = An.n (e [€+C])
conzinue2 = AK.K (e [BC=BC])

dtonel = Anvo.nolv/I]
Iaétkas = AXj...X b.D > (axl...xk),(sxl...xk) (k= p)

Loopra

An.Y(A6.Tt(Ab.b = ab,n))

Loadiv AK KV

LoadIl = Ako.k(ocI)o

add = AKvlvz.K(vl+V2)

sdavel = Jkvo.k(oI)olv/1]
unsavel = kmvlvgcg.nvzogfvl/lj
equal = Akvv,.k(v=V,)

Table 3.1 Auxiliary Combinators
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Semplemd] = BO(SemcﬂcmdB,hatz)

Semelcontinue] = continuel

Semcl[I:=ae] = Bl(SemaﬂaeB,éto&eI)

Semc[if be then cmdl else cmd2] = Bl(Sembﬂbej,teétl(SemcﬂcmdlB,SemcEcmd2ﬂ))
Semelemdljemd2] = Bl(Semcﬁcmdlﬂ,Semcﬂcmd2B)

Seme[while be do cmd] = Loop(Semblbe],Semelcmd])

Semal0] = Loadio

Sema[1l] Loadil

SemaI] LoadI

0l

Semafael plus ae2] = Bl(Semauaeln,Bg(SamaEaezﬂ,add))

Semafcmd res ael] = B, (Semclemd],Semafael)

Semaflet I be ael in ae2] = Bl(SemaﬂaelB,Bl(éauaI,B (Semalae2],unsavel)))
Sema[if be then ael else ae2?] = Bl(Sembﬂbe],teétl(SQmaﬁaelﬂ,Samaﬂae2ﬂ))

Semblael

ae2] = Bl(Semaﬂaell,32(Semaﬂae2ﬂ,equa£))
Sembl[bel and be2] = Bl(Sembﬁbel],teétl(SembEbe2ﬂ,£aadiff))

Table 3.2 Equations Rewritten Using Auxiliary Combinators
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éimpﬁ[ﬁk [Ep o Bl vl = Simp£[§k+p_l o [B, 8 v1]

6&mp£[§k halt yv] = simply

6me£[§k continue yv] = simply

éimp£[Bk [test, o B] y1 = [test, 44impl(B, a y1 44impL[B, B YI1I
44mpL[B, o B] = [By 44mplLo s4mplB] if none of above cases apply

Simplt = ¢ otherwise

Table 3.3 Simplification of Tree Representations
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Compplcmd] = Aimpﬂtgo Compelemd] Chaltl]

Compellcontinue] = [continuel}

CompelI := ae] = [B, Compalae] [store I1]]

Compelif be then cmdl else cmd2] = [B; Compblbel [test, Ccmpelemdl]
Ccmpelemd2] 11

Compellemdl; cmd2] = [El Compellemdl] Compelcmd2] J

Compellwhile be do emd] [loop 4me£[§1 Compblbe] continue,’

Aimpﬁtsl Compellemd] continue]]J

Compall0] = [loadi 0]
Compalll] = [loadi 1]
CompalI] = [load I]

Compalael plus ae2] = (B, Compalaell [B, Compalae2] [addll]
Compallcmd res ael] = Egl Compellecmd] Compalae]]
Compalllet I be ael in ae2] =

[B, Compalaell [B; [save I] [B, Compalae2] [unsave I111]

Compalif be then ael else ae2] =

[El Compblbe] Etestl Compallael] Compalae2}] 11
Compbllael = ae2] = [gl Compalael] [52 Compalae2] [equallll
Compblbel and be2] = E§l Compblbell [testl Compblbe2) [loadi ff11]

Table 3.4 The Compiler
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<ins>

<seqg>

[store I]

[loop <seq> <seq>]
[loadi vl

[load I

Ladd]

[save I]

Lunsave Il
lequall

Chalt]
[continue]

[B,, <ins> <seq>]

[testk <seqg> <seqg>]

Table 3.5 Grammar for Simplified Representations

23
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4. Derivation of the Machine

We next develop a machine to interpret sequences. If o 1is
a sequence, ¢(a) may be of type W' + C where
W=N+B+ C + BC (witnessed values)
We wish to define a function Mn: Seq - (Repw)n + S »+ S such that
Mnaxl.:.xno = (¢a)(¢wxl).L.(¢wxn)c
where ¢W denotes the decoding function for Repw. The l:zst two
summands in W are required because unlike (101, we have only
trees in our representations, not graphs. Hence a while-loop must
stack "return addresses" for its test (a boolean continuation) and
for its body (a command continuation). To facilitate this, we intro-
duce two more combinators:
£oopbodyk1a8xl...xk = Ab.b =» a(ioopra(ﬁxl...xk)Lsxl...xk
£aopzopkra8xl...xk = Eoopta(Bxl...xk)
A representation of W will be either a number, a boolean, or built
from these combinators. ¢w is the evident decoding function.
The machine is given in Table 4.1. Conceptually, Mn has a

"programcounter " o, a stack Xyse0s% (with the top at the right-

n
hand end), and a state o. The subscript n indicates thz number
of entries in the stack. Typically, the contents of the program
counter is a sequence [Ep ins Bl. The action of the machine may
be derived by considering:

MnEEp ins B]xl...x o]

po_I_l. . .Xn
Bp(insss)xlu ° .prp_'_l. L] 'ch

ins(Bxl...xp)xp+l...xnc
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where we have suppressed the ¢'s. The instruction sees the
continuation, the top n-p entries on the stack, and the store.
This agrees nicely with the functionalities of auxiliary combi-
nators, now reborn as opcodes, in Table 3.1. The parameter p
gives the number of stack entries which are protected from the
current instruction. In most cases, the invariant that

[§p ins B]xl...x represents a value of type C provides an

n
adequate constraint on n and p. Note that the machine has
something quite clcse to a conventional fetch-execute cycle:

the instruction ins is fetched, and the program counter is

advanced to B. A number of such machines are constructed in

(281, which also shows how to derive a machine from the defini-
tion of the combinators, and how to eliminate the subscripts on

the B's. (All this owes much to [15]). Forsaking the constructive

approach momentarily, we state:

Theorem 4.1 If ¢(seq)(¢wx1)...(¢wxn) e C and

Mn(seq)xl...xnc halts, then Mn(seq)xl...x o = ¢(seq)(¢wx;)...(¢wxn)0.

n
Proof: We interpret Table 4.1 as a set of recursion

equations defining the functions Mk’ with the proviso that if no
left-hand side is applicable, the resulting computation fails to
halt. We may then use subgecal induction [11]. Alternatively,
since the definition is tail-recursive, we may regard it as a
rewriting system and use induction on the length of the conputa-

tion. 1In this example the two are equivalent. We do selected

cases:
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Tes Mo[haltjo = g = halto

& Mk[Ek [store I1] BIXy...x, 0

= Mk_lel...xk_l(G[xk/I]) (Xk €N to get t:rpe
compatibility)
. (¢B)(¢wxl)-c-(¢ka_1)(0[¢ka/ll) (Induc. Hyp)

étonel((¢8)(¢wxl)...(¢ka))c

Bk(étonelstﬁs){‘wal)- . (¢ka)0

¢([B, [store I BI) (% ) e .. ($yx )
From this example, we learn that the ¢'s only get in the way most
of the time; we shall omit them whenever possible from now on.
3. Mk[gk [load I] BIXy...x)0
= Mk+16xl...xk(cl)o (Def. of M)

Ll

(Bxl...xk)(UI)c (IH)

ZoadI(Bxl...xk)o

Bk(ﬁoadl,s)xl...xkc

Note that the subscripts on M and B must agree for the types to be

compatible.
b, Mk+2[§k Ladd] BIXq et oKy y o0
= Mk+lsxl"'xk(xk+l+xk+2)q (Def. of M)
= (Bxl...xk)(xk+l+xk+2)q (IH)

= add(Bxl...xk)xk+lxk+20
= Bk(“dd’B)xl"'xkxk+1xk+2°
5. M.[B, [loop 7 al Blxy..,x,0
= MlT[looEbodxk TaB X...x.]0
= 7(Ab.b » a(toopra(sxl...xk)),sxl...xk)c
= £oopra(8xl...xk)o
= Bk(ioopTa,B)xl...xko.
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6. To show the correctness of the two continue instructions,
note that the only values of the correct type which can appear on

the stack must be built by loopbody and looptop. Hence

Mz[continuezltloopbodyk T o B xl...xk]bc =

b -+ Mla[looptogk TapB xl...xk]c,ﬂ Bxl...xkc

]

b - a(ﬁooptapkraﬁxl...xk)c,sxl...xko IH)

1l

b + a(ﬂoopta(sxl...xk))c,ﬁxl...xko

(b » a(ioopra(sxl...xk)),Bxl...xk)c

(ﬂoopbadyrasxl...xk)bc

aontinue2(£oopbodyk1a8xl...xk)bo.

M [continueljtlooptopk T a B xl...xkjo

Mktgk [loop T al Blxq...x, 0

Bk(£00p1a,8)xl...x ol

k

£oopta(8xl...xk)o

cont&nual(ﬁoopta(sxl...xk))c

continue, (Looptop, TaBxy...%, )0, a

Theorem 3.6 may be regarded as showing that M 1is socund
(or partially correct) with respect to ¢. We must now show that
M is complete with respect to ¢. It is at this point that
congruence relations seem to be introduced [19, pp. 340-34717.
Continuing our metaphor of machine code as syntactically vinegared
lambda-terms, we proceed instead by adapting Plotkin's proof of
the completeness of the operational semantics for PCF [13]

Theorem 4.2 If ¢(seq)(¢wxl)...(¢wxn) e C and

¢(seq)(¢wxl)...(¢wxn)c ¥ L& then Mn(seq)xl...xhc halts.
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Proof: We define the notion of computability for terms of

type W and W'+ 8 + 8 as follows:
(1) a term B representing an element of W 1s computable
iffe
(a) B 1s a constant of type N or B
or (b) B 1is of type C and for every o, if
(¢WB)0 71, then'Ml[continuel]BU halts
or (¢) B 1s of type BC and for every o and every
constant b of type B, if (¢w8)bo # L, then
M2[continue218bc halts
(11) a sequence a of type W' > 8 > 8 is computabls iff
for any computable XiseooXy € W, and any o, if

($0) (0% ) (85D v v+ (dy%,) € C and ($a) (4yxy) ... (dyx )0 # L, then
Mnaxl...xno halts. (end of definition of computability.)

We need only show that every sequence is computable, and every
stacked term is computable. We proceed by structural inducztion on
sequences. All the cases except those pertaining to loops are easy;
we do store for an example:

Assume BsXys...,%, are computable, ¢([B,  [store I] B) (9g5%4)
(¢;%,) € C and ¢(LB, [store I] B1)(9yxq) ... (dyx Jo # 1. Note that
x, must be of type N, so ¢W(x ) = x,. Then

L # ¢([B, [store I B)(¢y%q)evo(dyx Jo = éto&elf(¢6)(thl) - (dyxy))o

= (08) (9y%1)) v - (dyX, 1) (0Loyx /T1)
Since B,xl,...xn are computable, -n_lel...xn_l(U[xn/IJ) halts.
Since this equals Mn[§n [store Il BIxy...x 0, the latter nalts

also. Hence [B, [store I1 81 1s computable.
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The only hard case 1s showing that loop, looptop, and loopbody

preserve computability. To do this, introduce the "bounded" loop
combinators:

V(O) = Af.L

y(P+1) _ sp v (Pl

£oop(p)1a = An.V(p)(Aa.r(Ab.b > af,n))

(p)
Zoopbodyk TABX] « v Xy

(p)

tooptopép)rasxl...x = Loop Ta(Bxl...x

k k)

and add to the machine the rules:

(p+1)

M, [B, [loop T al BlxXy...x0 =

Mlt[loogbodgfp).r a B Xy .xk]c
(p)

1~
T

b - Mlu[looptopép) T a B xl...xk]c, Mksxl...xkc

(p)

1r
.48

Mz[continuezltloopbody T o B xl...xk]bc =

MlEcontinueljtlooptop T o B xl...xk]c =

M, LB, [loog(p) T alxy...x, 0.

Clearly each bounded combinator preserves computability (by
induection on p).
If ¢ and t' are terms, define ¢t s t' 1iff t can be

obtained from t' by replacing some occurrences of loop, .ooptop,

and loopbody by bounded versions. Now, if Mnaxl...xnc halts,
a < a', and X; < x{, then Mna'xl'...xn'c = Mnaxl...xnc, since
every move of M involving bounded combinators can be mimicked
by unbounded combinators performing the same manipulations on o.
(This is like Lemma 3.2 in [13]).

Now we can show that the loop instruction preserves computa-

bility. Let T,G,B,Xl,...,x all be computable, and

n

= Ab.b » a(ﬁoop(p)ra(sxl...xk)),Bxl...xk

(p 2 0)

(p 2 0)

(p 2 0)



¢([B, [loop T ol B1) (¢yxq) e .. (dyx, )0 # L.

Then Looptano # 1. Since Looptoano = L|£00p
p

some p such that zoop(p)ranc # 1. Hence Mktgk[loog(p) T al Blx,...

k
halts. Hence M [B, [loop T al Blx;...x, 0 halts. The cases for
loopbody and looptop are similar. [

M Chaltlo = o

Mk+l[ggggk o B]xl...xkbc = Db -+ Mkaxl...xko,Mkal...xkc
M, [B, [store I] Blxj...X,0 = M _1Bxq...x, q00x, /1]

M, [B, [loadi vl Blxy...x, 0 = M, BX;...X, VO

M (B, [load Il Blx;...x,0 = My 4q 8%+ .%, (0T)0

Mk+2[Ek (add] BIxj«- X Xy 1%y o =

M LB

+1 LBy [save I B]xl...xkxk+lc =

M

ez 2

k

My B%q -

[unsave I1 BIXj...X X Xy 450
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Let
(p)

no= (08) (byxy)ee. ($yx,) .

Tono there nust be

Mk+18xl"‘xk(xk+l+xk+2)°

..xk(ol)c[xk+l/I]

= Mk+15X1--'kak+2°[Xk+1/I]

M o[By [equall BIX .o Xy Xy (9% 00 = Mk+18x1"‘xk(xk+l=xk+2)c

Mktgk [loop T al B]xl...xko = Mlt[loopbodgk T o B xl...xk:c

M2[continu92][100pboqylc T o B xl...xk]bc

b+M1a[loc>ptoEk T % B xl...xkjc, Mkal...xko

Ml[continuel][looptoplc T et B xl...xk]o =

M LB, [loop T al Blxj...

Table 4.1 Machine for Interpreting Representations
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B.e Putting It All Together

In Section 1, we stated that the data type of the implementa-
tion was to be a representation of the data type of the s=mantics,
that is, there was to be a homomorphism (abstraction func:ion)
from the implementation algebra to the semantic algebra. In this
section we will list the sorts and operations of these aljzebras,
and show how the theorems of Sections 3 and 4 fit togethe: to show
the existence of the homomorphism.

Tables 5.1-5.3 show the two algebras. They have 9 sorts:

L for the four kinds of phrases (syntactic sorts), 4 for the
meanings of the phrase sorts (semantic sorts), and one for states.
There are 5 operations: one for the semantics of each sort and
one showing the result of a program-meaning applied to a state.

In both algebras, the carriers for the syntactic sorts are the
sets of phrases of each syntactic category, as given in Teble 2.1,
and the carrier for the sort of states is Just Id » N, the domain
of states.

In the semantic algebra S, the carriers for the semantic sorts
are the appropriate semantic domains. The functions for the four
semantic operations are the four valuations defined in Table 2.3,
and the function for application is jJust functional application.

In the implementation algebra T, the carriers for the semantic
sorts are the sets of representations. For pgm, this is tae set
of sequences; for the others it is the set of tree representations
of appropriate type. The functions for the four semantic operations

are the four compiling functions defined in Table 3.5. The function
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for application of a program-meaning o to a state o 1s the
result of running the machine MO on o and o. We may now
state the main theorem:

Theorem 5.1 The representation function ¢ extends to a

homorphism from T +to S.

Proof: Let the homomorphism be given by ¢ on the iour
semantic sorts and by the identity on the other five sorts. We
must show that the homomorphism preserves the five operations of
the algebras. For the semantic operations, this is just Theorem

3.4. For application, we calculate

apT(a,c) = Moac
(¢a)o (Thms 4.1-4.2)

aps(¢a)c. O

Corollary. Semclpgmlo = MO(ComppEpgmB)c = PClemdlo. 0

[



Operations

spgm:
scmd:
sae
sbe
ap

sorts for program phrases

sorts for meanings of phrases

sort of states

pgm - mpgm
cmd -+ memd
ae = mae

: be -+ mbe

mpgm,st -+ st

Table 5.1 Signature of the Algebras
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Sorts

EEES

cmdS

ae

—

be

S
S

mpgm

memd

=

ae

mbe

st

Operation

S
S
S
S
S

S

Spgm

S

scmds

sae

sbe

ap

S

Cmd (See Table 2.1)
Cmd

Ae

Be

C (See Table 2.3)
C~+>C

K=+¢C

BC >~ C

Id + N

Semp (See Table 2.3)
Semc
Sema
Semb

ANC.no

Table 5.2 The Semantic Algebra S
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Sorts
Egg? = Cmd
emd’ = cmd
gg? = Ae
QQT = Be
EEEQT = sgequences of type C
mcde, maeT, mbeT = tree representations of appropriate type
E_T = Id + N
Operations
spng = Compp (See Table 3.5)
scde = Compe
saeT = Compa
sbeT = Compb
apT = MD (See Table 4.1)

Table 5.3 The Implementation Algebra T
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6 Related Work, Extensions, and Conclusions

In this section we will discuss the precessors of this work.
Reynolds [15] introduced the basic techniques for converting from
direct to continuation semantics. Sussman & Steele [20] used
continuation-passing as a key element of their implementat:on of
SCHEME. Wand & Friedman [24] considered algorithms for the
conversion from direct to continuation form and various devices
for executing representations of continuations (see, in particular,
the second paragraph of Section 4 of [241). Conversion from direct
fo continuation semantics has also been studied by Reynolds [16]
and Sethi & Tang [17, 18]1. Motivated by [2], Wand [26] studied
the optimizations avallable by using continuation representations
cleverer than the simple list structures used previously.

In [23], which extended the material in [15] on removal of
higher-order functions, we introduced the idea of putting syntactic
and semantic objects in the same algebra and making evaluation an
operation. This proposal was in distinction to the approach of the
ADJ group [41, in which evaluation appeared as a homomorph:ism
between algebras. Hoare [6] presented the idea of an implementation
as a simulation, and introduced the notion of an abstraction function.
In [25], we used this idea to argue that a "data type" was the final
object in the category of its implementations. This improved on
[231, which made no clear distinction between models and imnplementa-

tions.
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This distinction was studied at length in [27]1. Similar ideas
were expressed in [3]. Our idea of implementation is merely a
change in emphasis from the definition in [5], which definz=d an
implementation of algebra Al in algebra A2 as (very rouighly)
an injective homomorphism from Al into a quotient algebr: of
A2. We have merely concentrated on the map from A2 to iks
quotient (the abstraction function).

Mosses L12] extended [23] to postulate that the targe: of a
denotatlional semantics should be an "abstract data type", i.e.
an equationally defined algebra, rather than a particular lattice.
He then suggested that a target machine was an implementation in
the sense of [5]. His work is, of course, a direct continuation
of [21] and its predecessors, including [1, 7, 9, 101.

In [28], we applied the ideas of [261 to [12] and considered
cleverer representations of continuations. The idea of code as a
finite representation of a function also appears in [8]. This
paper extends [28] by presenting the techniques for actually doing
the proof of correctness for the implementation.

In contrast to Mosses [12], we have used "concrete" data
types, i.e. specific algebras, rather than "abstract" ones. The
notion of implementation seems to be more complex for "abstract"
data types than for "concrete" ones, because one must deal not
only with the semantic "abstraction function" but with syntactic
functions ("interpretation") which run the other way. For example,
a map Zl - 22 (translation of operator symbols) yields a orgetful

functor from Ez—algebras to El—algebras. This seems to be a
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source of confusion in the literature. This is discussed in a
somewhat different context in [27]. It would be useful to rework
the results of this paper in an abstract axiomatic setting.

Our proof is surely not so elegant as that of [21]. \VYever-
theless, we feel our proof gains in comprehensibility what it lacks
in formality. The separation of representation from recursion-
removal (i.e. passage from direct to continuation semantics) seems
to be an important step towards cleaner proofs. Furthermore, our
approach directly attacks the problem, acknowledged by the authors
of [21]1, that their commutative diagram "is not, in itself,
'compiler correctness.'" Note also that, notwithstanding our
general advice, we still rely heavily on the initiality of the
source language to construct the abstraction function ¢ and
most of the operations in the algebras. A more formal treatment
should be developed.

Another area for improvement is the treatment of loops. Our
machine stacks a "return address" on loop entry. It would be
better to compile into a flow chart with a loop in its graph, as
[10] and [21] do. We conjecture that we can do this by modifying
the compiler to produce an infinite tree as the representaiion of
a loop. We could then produce flow charts as a finite representa-
tion of this infinite tree.

Our use of the "computability" property, adapted from [22] by
Plotkin [13], provides an alternative to the ﬁse of congruence
relations for proving termination (which is theilr primary purpose

in [19]). We did not need to define this property by induction
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on types, as did [131, because of the simplicity of our machine.
This suggests that it may be possible to use this technique even
in the presence of reflexively defined types. We hope to explore

this possibility further.
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Appendix. Proof of Theorem 2.1.

Proof: By structural induction. In fact, (i)-(iii) are
enough to derive the equations for Semc, Sema, and Semb [2, 221].
We do a few illustrative cases.

l. Assignment Command:

neDCII := ael

ne((Avo.olv/I1)¥DAlael)

= (neAve.olv/I]1)¥DAlael (Lemma 2.2)
= (Avo.nolv/I])*DAlael
= Semallae](Avo.nolv/I]) (IH)

Seme[[I:=aeln
2. Conditional Command

neDCIif be then cmdl else cmd2]

ne((Ab.b » DClecmdl],PClemd2])*DB[be])

(ne(Ab.b » DCIcemdl],PClcmd2]))*DPBlbel

(Ab.b » neDClecmd@ll,nePClcmd2])¥DBlbel (Lemma 2.3)

Semblbe](Ab.b » neDClcmdll,nePClcmd2]) (IH)

Semblbel(Ab.b + Semeclcmdlln,Semelemd2]n) (IH)

Semeif be then cmdl else cmd2ln
3. While Command
neDClwhile be do cmd]
= ne(Y(Af.(Ab.b + foDElcmdl,Ac.c)*¥DBlbe]))
We want to use Lemma 2.4 with
¢ = Af.(Ab.b » feDClcmd],ro.0)¥DB[bel
Then, using lemmas 2.2 and 2.3, we get

ne¢f = (Ab.b =+ nefeDClcmdl,n)*DB[be]
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Therefore, we set
Y = A8.(Ab.b > 6¢DClcmdl,n)*DBlbe]
so Y(nef) = nedf. So,

neDClwhile be do cmdl]

ne¥é
= Yy (by Lemma 2.4)
Y(A6.(Ab.b > 6¢DClcmd],n)*DBlbel)

Y(A6.Semblbel(Ab.b + Semelcmd]6,n)) (IH)

Seme[while be do cmdlin
b, Addition expressions. For expressions, it is useful to
define two auxiliary valuations
Vlaelo = DAlaelovl
Slaelo = DAlaelov2
which extract the value and store components of the semantics.

Expanding the ¥-compositions in DA[ael plus ae2]o, we deducze

Ylael plus ae2lo laello + V[ae21(Slaello)

Slael plus ae2l]o = §lae2](Slaello)
The induction hypothesis may be restated as Semalaelxo=x(V]iaelo)(Slaelo)
we may then calculate:

(k¥DAlael plus ae2l)o

k(Vlael plus ae2]o)(Slael plus ae2]o)
k(Vliaello + Viae2](Slaello))(Slae2]1(Slaello))

= (Avlol.n(v1+VEae2Ecl)(SﬂaeEBUIJ)(UEaech)(Sﬂaelﬂc) (B_l)
= Samaﬁaelﬂ(kvlcl.x(v1+Vﬂae2ﬂol)(Sﬂa92301)) (IH)
= Semalaell(Av;0; . ((AV,0,.k(v,+v,)0,) (VIae21o) ) (STae2)o;)))  (871)

Semaﬂael](kvlol.Semaﬂae2B(szcz.m(vl+v2)02)ol) (IH)



42

Semaﬂaelﬂ(lvl.Semaﬂae2ﬂ(kv2.K(vl+v2))) (n-reduction)

Semaffael plus ae2ln
The strategy of inverse beta-reduction in the lines marked (B_l)
was independently discovered and named "factorization" in both
[24]1 and [171.

5. Let-expressions. We again use the auxiliary equations.
DAllet I ©Dbe ael in ae2]o

= (Avlcl.((Av202.<v2,02[01I/IJ>)*DAHanE)(cl[vl/l]))

(Vlaello)(Slaello)
((Av2c2.<v2,02[8Haelch/I]>)*DAEaeEB)((SEaelBo)[Vﬂael]c/I])

(Av,0,.<v,,0,(SlaelloI/I>)(Vliae2]((Slaello)[Vlaello/I1))
(Slae2]((Slaello)Vliaello/I1))
Hence,
(c*¥DA[let I be ael in ae2])o =
= (Av,0,.kv,0,[SlaelloI/I1)(Vliae2]((Slaello)[Vlaello/I1))
(Stae2]((Slaello)[Vliaello/I1))
= ((Avy0,.(Av,0,.nv,0,00,1/11) (Viae2] (o Lv, /1))
(Stae2] (o, [v,/11)))

(Vlaello)(Slaello)) (factorigzation)

Semaﬂaelﬂ(lvlol.(lvgcz.nvzoz[clI/I])(Vﬂae2ﬂ(oltvl/IJ)) (IH)
(SﬁaeEB(Gl[Vl/I])))

Semaﬁael](kvlcl.SemaEae2E(kvzaz.nvzcztolI/I])(Ulfvl/I])) (IH)

Semallet I be ael in aze2lko a.
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