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Deriving Target Code As a Representation

Of Continuation Semantics

ABSTRACT: We extend Reynolds' technique for deriving
interpreters to derive compilers from continuation semantics.
The technique starts by eliminating A-variables from the se-
mantic equations through the introduction of special-purgpose
combinators. The semantics of a preocgram phrase may be repre-
sented by a term built from these combinators. We then use
associative and distributive laws to simplify the terms. Last,
we build a machine to interpfet the simplified terms as the
functions they represent. The combinators reappear as the
instructions of this machine. We illustrate the technique

with three examples.
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1. Introduction

In this paper, we shall attack the question of how a deno-
tational semantics for a language is related to an implementation
of that language. Typically, one constructs the semantics of a
target machine and a (suitably abstract) compiler, and proves
a congruence between the two different semantics [121.

Our approach is quite different. Starting with a continua-
tion semantics for the source language, we construct, via a series
of transformations and representation decisions, a target machine
and a compiler. A typical semantics has functionality

P : Pgms + [Inputs + Outputs]
A compiler/target machine, on the other hand, uses the pair of
functions:

Compilfe : Pgms -+ Reps

Machine : Reps =+ [Inputs =+ Outputs]

where Reps is some domain of representations of functions

Inputs + Outputs. The purpose of the machine is thus to inter-
pret these function representations.

One may then consider a spectrum of tradeoffs between com-
pilers and machines. Reynolds [20] showed how one could analyze
a semantics and arrive at a tree-structured representation; the
resulting machine looks like an interpreter. Wand [34%] :considered
how one could use cleverer representations of functions. We use
these ideas to arrive at representations which look like typical
assembly code, with machines that look like typical "abstract lan-
guage processors " [1l8], Such an abstract language processor may

be implemented either by emitting appropriate code sequences for
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the "real" machine or by interpreting the language-machine code; ei-
ther may be done at either the conventional or microcode levels
L29].

This work also owes a great deal to Mosses [16], which con-
tributed the key idea that one should work with not the language
but the semantic algebra -- that is, the abstract data type which
is the target of the original semantic function. If one correctly
implements that algebra, then one has correctly implemented the
language.

Our primary concern in this paper is the development of some
heuristics for analyzing the compilation process. Hence we are
not concerned with the automatic analysis of semantic descriptions
[7, 23], nor are we concerned with the software engineering
problem of verifying actual compilers (as opposed to compilation
algorithms). Likewise, we shall only hint at methods of broof;
we plan to report on this topic elsewhere.

We shall present three examples in this paper. The first,
addition expressions, gives a simple introduction to thess
techniques. For the second, a language with procedures, 4e
derive a simple stack processor similar to the SECD machine [9].
For our third example, we derive another processor for this
language, in which lexical scoping is used to optimize ths machine
structure.

Section 2 gives an introduction to our methodology. Section
3 shows how addition expressions are treated, and compares the

techniques of [20] to ours. Sections 4 and 5 give the two



processors for the procedure example. Section 6 discusses
correctness proofs, and in Section 7, we compare our techniques

to previous work.



2. Methodology

We consider the semantics of a programming language *to be
given as an enrichment of some semantic algebra. That is, one
starts with a collection of semantic domains and some operations
for manipulating those elements, and then one adds appropriate
syntactic domains and semantic valuations as new sorts and
operators in the algebra. Thus, the original algebra might

consist of sorts including

In Inputs
Out Outputs
C = [In =+ Out] Transformations

and an operator
apply : C x In =+ Out
To extend this to a language semantics, one would add a naw sort
Pgm Programs
and a new operator
P Pem o B
The output of pregram p on input x is then given by tae term
apply(P(p),x). This is somewhat different from the conventional
view, in which the syntactic domains belong to a different algebra
from the semantic domain, and the valuation P appears as a
homomorphism. We follow the conventional practice, however, of
using particular algebras rather than equationally-specified
ones (cf. [16, 33]). The reasons for this choice are discussed

in Section 7.



An implementation of this semantics is a representation of
the semantic algebra in the sense of Hoare [6]: an algebra of
concrete values (the "implementation algebra'") with a homomorphism
(Hoare's "abstraction function") from the concrete values to the
abstract ones (See Figure 2.1). We shall develop representations
of C which look like machine code; the functions corresponding

to apply will look like machines,
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Figure 2.1 The Relationship between the semantic and

implementation algebras. The homomorphism
goes up from lower-level concepts to the
higher-level concepts they represent.



3. Addition Expressions

Let us consider addition expressions. Let V be some
unspecified domain of values, and let "+" denote an arbitrary
binary operator on V. Table 3.1 gives a continuation senantics
for addition expressions over V. This familiar example 1llus-
trates our notation, which is largely standard [12, 26, 30].

We do not use open-face brackets {[...] around syntactic argu-
ments, but we do use conventional brackets in a manner similar
to Quine's quasi-quotes [19,26]. We also incorporate syntax
into the domain definitions, as in the definition of Exp

The issue is how to represent the domain C. The "obvious"
representation would consist of lambda-expressions, which could
then be interpreted by a lambda-calculus machine, e.g.[25]. We
would like, however, to consider other representations. To do
this, we replace the lambda terms by appropriate combinators.

For example, we might introduce auxiliary functions:

haltt = Avo.v
geteh = AIko.k(o(I))o

addl

kaBK.a(kvl.s(lv2.K(vl+v2)))
and rewrite our three equations as

Pe Eehalt

EI

f§etehl
E[el + 92] = addl(Eel)(Eez)
This suggests that we represent the result of E (an element

of K+ C) as a tree structure:



Domains
\'
Id
Exp = Id | [Exp + Exp]
S =Id -V
c =8 =+ ¥
K =% =% g
Valuations
P s Bxp + €
£ = Exp > K+ {
Equations
Pe = Ee(Avo.v)
EI = Ago.k(o(I))o

Values

Identifiers

Expressions

States

Command continuations
Expression continuations

Evaluate program
Evaluate expression

E[el + e2] = AK.Eel(lvl.Eez(lvg.n(vl+v2)))

Table 3.1. Continuation Semantics for Addition Expressions
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This is the same analysis as [20], and, when carried through,
yields an interpreter with a stack that represents C. All R
does is give an internal representation of the original expres-
sion. Given a representation of the form [QQQ% o Bl], the
interpreter stacks B with an appropriate tag and proceeds to
consider «. This behavior is quite different from that of
the standard compiler for this kind of expression, a postfix
representation with a stack machine, which stacks only velues,
never code,.

Let us try a different route for variable eliminaticn.

We observe that in the equation for Ele. + 92], the lambda-

1

variables need to be routed to the operand parts of applications.

This suggests that we may use a generalization of the combinator

B = AaBx.oa(Bx). TFor k = 0, let Bk be a combinator defined by:
Bk(a,B)xl...xk = a(Bxl...xk)

Then
E[el + e2] = kK.Eel(Avl.Ee2(1v2.K(vl+ v2)))
2 Bl(Eel,AKvl.Ee2(kv2.K(vl+v2)))
= Bl(Eel,Sz(Eez,knvlv2.K(vl+v2)})
If we introduce add = lKvlvz.K(vl+v2), we derive the following

equations:
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Pe

BO(Ee,haﬁt)

EI fdetchl

E[el + e2] = Bl(Eel,Bz(Eez,add))

This suggests a representation as a tree in which the internal

nodes are labelled with B's and the leaves are labelled with

ng
Hip
HE=
et
'3

add, and [fetch I]. This would not look promising, except for the

following:
Proposition (B is right-associative): If p 2 1, then
B, (B (a,8),Y) = B (a,B,(8,Y))
Proof:

B (B (@,8),Y)x . uxy )

Bp(a,B)(Yxl...xk)xk+l...xk+p_l

= a(B(Yxl...xk)xk+l...xk+p_l) (since p 2 1)

= a(Bk(B,Y)xl...xkxk+l...xk+p_l)

= L I .EID.
Bk+p-1(“’3k(3’Y))x1 e+p-1 ?

One might have wished for full associativity in this propo-
sition, and we shall show how to achieve it in Section 7. The present
version, however, allows us to convert any such tree into a
linear form, in which the left son of any B-node is either a

[fetch I] or an add; the halt will be the rightmost leaf >f the

binary tree. This may be done by a function #oZ&:
not[B [B o Bl vyl=nrot[BalB B v1]

aai[g
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noX[B add B] = [B add rnoZtB]



We may now write down the representation functions:

CP 3 Exp » Rep,,

CE : Exp Repy e

CPe = n0t[B CEe halt]
CEI = [fetch I]
CELe, + e,] = #0%[B CEe

[B CEeQ add]l]

11

We have suppressed the subscripts on the B's; we shall see that

they may be reconstructed from context.
typical expression and its representation.

precisely the standard postfix code!

Figure 3.1 shows a

Note that this is

It will be convenient to have a notation for the function

denoted by a tree. We use the symbol "Y" (the hacek) for this.

v . . .
We use the hacek either as a prefix or superfix operator; thus

v

L

ntx
[1]+1]

dd B] = B(add,§). The "v" operation is the abstraction

function in Figure 2.1, and may be constructed using the initial

algebra property of trees [5].

(X+Y)+ 2 /E “

(L)

(t)

Figure 3.1 (a) an addition expression; (b) internal
sentation without 20f; (c) internal representation using 2of.

repre-
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Now all we must do is write a function M:RepC + S8 » V which
decodes these representations. Unfortunately, the lambda expres-
sions associated with the fragments of codé turn out to be not
only of types C and K = V + C, but of type vl > ¢ for n 2 0.
Intuitively, n corresponds to the number of operands to be
absorbed from the stack, i.e. the length of the stack. We must
write a family of functions

Mn: Rep vl s ¢

where Rep_ refers to the domain of representations of V = C.
3 p

Repn consists of trees whose left sons are [fetch I] or ad

whose right sons are similar trees or the leaf halt. We Ffirst

consider what Mn should do with a tree whose left son i3

Logren 1
M [B [feteh I1 Blx,...x 0 (1)
= B (§etehl,B)n . uux O (2)
= 5ezahz(§xl...xn)o (3)
= (Bx ...x )(a(I))o (%)
i Mn+lel...xn(o(I))c (5)
Here we have expanded C = § » V, so M_: Rep = VB > s > v, Mo's

job is to take a representation of an element of v? - C, a tuple

in Vn, a state 0, and apply the function to get an answar.

Since we know what each of the tags in the tree denotes, Wwe know
that the desired answer is (2). Since fefchl is of type X + C, and
B(4etchI,B) is of type v® + ¢, we conclude that B must be of "type

n

V' + K and the subscript on B must be n. (Note that B is just

a flavor of composition). This gets us to (3). The defiaition
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of fefch gets us to (4), which we recognize as equivalent to (5).
We may analyze the behavior of add in the same way:
B & &8 @
Mn[: ggg B]x]_ xnd

. B(add,ﬁ)xl...xnc

v
= add(sxl"'xn-Q)xn—lxnU (6)
v
= Bxl"'xn—Z(xn—l+xn)0 (.79
= Mn—lel'°'xn—2(xn—l+xn)c

We need to show that the subscript on B was n-2. If B's

subscript was p, then B must be of type vP > K so that

(Bxl...xp) can be used as an argument to add in line 6. Since
add is of type K = v? & gy Bp(add,B)xl...xp must be of tvpe
2

V® > C. Therefore n = p + 2. To get to line (7), we use the

definition of add. Last,

= x (Definition of halt).
The result is summarized in Table 3.2.

What have we accomplished? The function in Table 3.2 is in
iterative form [10] and is therefore easily realizable us.ing a
finite state control. The machine looks at the left son oflthe

tree. If it is a fetch, the appropriate value is added to the

right-hand end of the x's; if it is an add, then the two right-
most values are removed and replaced with their sum. In e¢ither
case, the machine goes on to the right son. The sequence of

values X

1%, behaves as a stack with the top at the right.
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Our M is thus unmasked as the familiar stack machine for

postfix expressions, with three instructions: fetch, add, and

n*

alt, and a familiar fetch-execute cycle of operation. Thae
combinators Bk’ which we originally conceived simply as
argument-steerers, have become sequencers (similar to Mosses' ¥
[16]). What is new is the fact that we derived the structures of
the machine directly from the semantics, without explicit use
of operational considerations. Consequently, the correctaess
of the machine and compiler may be obtained much more easily.
This is in contrast to the conventional approach, in which the

language and machine are given independently, and in which

their correspondence must be painstakingly established.

Mn[g [£§§§Q | B]xl...xnd = Mn+18xl...xn(01)0
Mn+2[§ add B]xl...xn+20 = Mn+lel'°'xn(xn+l+xn+2)0
Mlgg%§x10 =

Table 3.2 Stack machine for addition expressicns
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4., Procedures

We now apply this technique to a less trivial examplz.
Table 4.1 shows the semantics of a simple expression language
with procedures and input-output. Expressions are either
identifiers, A-expressions (procedures), input-output statements,
or applications. Values are either basic values (which are left
unspecified) or function values (V »- K > C). States, an unspeci-
fied domain, abstracts the state of the input-output streams.
Also left unspecified are:
inditenv : Env an initial environment
halt ¢ kK = ¥ % 8§ » A an initial expression continuation,
which extracts an "answer" from a
value and a state
dodo & K » V> ¢C an input-output operation which
takes a value, and a state, and
returns a value and a possibly
altered state
A procedure expects a parameter and an expression continuation
when it is invoked. In an application, the operator is evaluated
first, the operand is evaluated second, and then the function
is applied. The do40 operation provides a way to alter the state.
doiokvO is generally equal to Kv'o', where v' is a suitable
value to be returned to DOIO's caller, and 0' is a possibly
altered state. The functionality of dodo, however, allows it
to initiate an error and ignore the continuation K. The ability

to model such behavior is an important advantage of continuation

semantics.
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Domains
Id Identifiers
Exp :: = IdI[A Id Exp] Expressions
I[DOIO Expl
ILExp Exp]
B Basic Values
V=B+ [Vv=>K-=>CC] Values
Env = Id = V Environments
S States
A Answers :
C =8 %A Command continuations
K=V-=>2¢C Expression continuations
Valuations
P Exp = C
E Exp = Env > K =+ C

Equations

Pe = (Eedindfenv)halt

EIpk = ¥(pl)

ELA I elpk = k(Aak'.Ee(pla/I])k')
ELDOIO elpk = Eep(Av.dodlokv)

E[el e2]pK = Eelp(kf-Ee2p(la.faK))

Table 4.1 A Simple, Almost-Applicative Language

For this example, we introduce the family of combinators Dk:

Dk(a,s)pxxl...xk = ap(Bprl

The Dk's are right-associative for all k 2 0, under the trans-

...xk)

formation Dk(Pp(m,B)sY) (a,Dk(B,Y)). We now eliminate

Dk+P
all the A-terms in the definition, in the by-now familiar way;
the operators are designed to take advantage of the Dig:

fetchl = Apk.k(pI)

pushcelosurela = Apk.k(rak'.a(pla/Ilk')

L0t = Apkvo.dodokve = Ap.dodo

apply = Apkfa.fak

relurn = APKV.KV = ApPK.K
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With these operators, we may rewrite the equations as:

Pe

DO(Ee,nezuan)(initanv)(haiz)
EI

fetchl

E[A I ] = puéhﬂﬂobunel(ﬂo(fe,netunn))
ELDOIO e] = DO(Ee,LOZ)

E[el e

2] — 90(Eel,92(Ee2,app£y))

Again, the D's are right-associative, so we can associate them
to the right, just as we did in the previous example, to pget the

following compiler:

CPe

n
&
o
&
i
o
o
m
o
{5
4]
ot
=
3
s
L

CEtI

1
Lo
Hh
14
t
0
=g
—
—

CELDOIO e] = 2oZ[D CEe iogt]

CE[el e,] = no%lD CEel [D CEe, applyll

2

where 70t performs the association to the right, as before. The

result will be code sequences in the following grammar:

===z =

instr ::= jot | apply | [fetch I] | [pushclosur:z I seq]

As before, an instruction sequence is a representation of a func-
5 n ; o i
tion Env » V© + C, so we must come up with a family of functions

for interpreting these sequences.

The desired relation is:

M = Bo¥
kBprl...xko = Bpmxl...xko

The machine will have a "program counter" (B), an "enviroament
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register" (p), a continuation (k), a local stack (x .xk), and

l,.t
a state (0). We initialize the machine with MOS(LnLIenU)

Wed

alt.
We begin the analysis of the machine by considering the

fetch cycle, with

{1
[{e]
et

Mk[g iot Blokx, ...x O

1 k
= Dk-l(LOI’é)pExl"'xkc (intention)
g % 1
Lotp(épxxl...xk_l)xkd (Def'n of D)
= doio (Bo¥ ) (Def'n of 4Lot)

Let us assume that this application of d040 behaves normally.

Then for some appreopriate v' and d', this quantity is equal to

v 1 L]
(gpkxl...x l)v o

k-

8 1
MkBprl...x viats

Thus, execution of an ;g; instruction alters the top of the
stack and the state. An argument like the one for add guarantees

'that the subscript on the D is k-1. We next consider pushclosure:

Mk£E [pushclosure I ol B]pxl...xkc

==========

Dk(puéhc£03uke1a,8)pxl...xkc

puéhcﬁo&u&elap(spxl...xk)c

Bpx ...xk(AaK'.ap[a/I]K')o

X
At this point we are temporarily stymied, since this equa:ion
requires us to push a function on the stack, and our machines

so far have not had the capability to deal with functions except
through their representations. We, therefore change our stack

to store not items from V, but items from Repw, where

Repw =V + RepV+K+C
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and we assume our machine has some mechanism for distinguishing
"real" basic values, "real" function values, and "represented”
function values. Since we shall alsoc need to bind identifiers
to represented function values, we can no longer use real en-
vironments, but must use representations, which we choose as

RepEnv = Id » Repw

(We shall consider other checices in the next section). The
: ’ 4 _ Yvvy v
desired relation is thus Mksprl"'xko = épnxl...xkc.

We now define
closurelIop = Aak'.apla/I]k?
and finish the previous calculation to deduce:

X, 0

SRS SIS EZCE o Pl

5E§ ...xk(a£06unelap)c

k

L

My . BPKx

"

1 ss=z===

We next do apply:

M _[D apply Blpkx. ...x 0

k= ===== 1 k

= Dk 2(app£y,§)prl .§kc

& appiyp(épnx a Vk 2)§k l§k°
= k 1 k(é ...§k_2)0

We then have three cases, depending on the value of X1 1f
it is a "represented" function value, we continue with:

M [D apply B]prl...xk [g%ggggg I« pﬁxkc
— ch&uneIap‘x (§5¥§ ...§k 5

k
VvV v

= Q(p'[x, /T (BBKR ... %, _,

= Mya(p'[x,/11)(BoKx,
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Thus, we should start the body o of the procedure with noth-

ing on the stack, and with the expression continuation BpPKx_ ...x

1 k-2°

Again, we define an appropriate combinator:

netptpspxxl...xp = Bprl"'xp

to yield:

i S

= Moa(p'[xk/I])[gggpg B p K xl...xk_2]0

The machine has managed to stack the return address B and the
calling environment p, and has entered the code o of the
procedure with the appropriately extended environment p':xk/I].

Two cases remain. If X1 is a "real”™ value in V - K » C, then

the machine must be able to apply it. Such values correspond to
primitive operations which were in the initial environmen:. The
development in this case will be analogous to iot. Last, any
other value causes an error, which can be treated in a similar
fashion.

fetch works as before:

Mk[E [£§§§E 0 | B]prl...ka

v

vVvy
vk(ﬁazahz,é)pxxl...xka

52tch15(§5§§l...§k)o

Vv v v
pxl...xk(pl)c

H

1]

Mk+lﬂﬂxxl...xK(pI)0

This leaves return:

VVVYyY
helurnpKxo

VVvy
KX0O
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If Kk 1s a retpt, then we can proceed:

M.returnplretpt B p' K Xy oo xp}vo

JEE=ssse’ ==Emss P
= B0k ... _vo
l'.. p
= 1
Mp+pr KX +ooX VO

so the value is pushed onto the calling routine's stack.

Another possibility is that basic values include con-
tinuations (as in SCHEME [28, 351), in which case the machine
would have to handle this as it does other primitive operations.

If v 4ds QQ%E’ then

and the machine halts. Because RepK is built up solely using

[}=2

and retpt, these are the only possibilities. The machine

2l

et

is summarized in Table u4.2. Note that we could recast our

derivation into a proof by subgoal induction [15] or fixpoint

induction that if Manle...xnc halts, its answer is equal
VVV ' ;
to prl...xnc, as desired.

We close this section by doing one peephole optimization
on this machine. Consider tail-recursive calls [28]. Our

machine does not do these iteratively, because the code g@nerated

stack. We can, however, avoid this by noting that the subscript

of D must be 0, and calculating:
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"

Do(appiy,&etunn)pra

applyp(returnpk)fa

applypkfa (Definition of zefturn)
and continuing as before. Thus the stacked continuation will
be used instead of a new one being created. We may patch the
machine accordingly. This gives a formal justification for the

iterative interpretation of tail recursion. Alternatively, we

writing the semantics of [A I el as

E[A I el = pushelosurneI(Ee)
The machine would then have to deal with arbitrary instructions
as the right-hand argument to D. This, however, would have

substantially complicated the presentation.

Mk[g [fetech I] Blpkx,...x. 0 = M Bprl...xk(pI)o

2==== 1 k “k+1
M D [pushclosure I ol Blokx)...x0

% Moy Borny - ooy Lolpsurs 1o plo
Mk+2[D apply S]Qle...xk[g%ggggg I a p'lac

= Moa(p‘fa/I])[ggEgEk B PRX; e xk]o
Mk+l[2 iot B]prl"'xk+ld = Mk+prle...xkv'0'

(v',0' as described in text)

]
BipF B.OK: i xk]vc

=
|
p]
(]
+
o
iz
=]
©
l=3
(O o
"
it
<
Q
n
=
"
~
&
<
Q

Table 4.2 Machine for the almost-applicative language
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5. Lexical Scoping

The language we treated in the last section is "lexically
scoped.” It is well-known that in such a language, identifiers

may be bound at compile time, that is, the symbolic identifiers

a display [18], and these displacements may be computed at compile
time. We shall demonstrate this property using our techniques.

In the previous section, we let RepEnv = Id = Repw. In
this section, we shall see how environments are built using

the combinator

1

extlpa AJ.if J=I then a else pJ
We will use this combinator to get a better representation of
environments.
We begin by changing the formulation of P from

Pe = DO(Ee,&etukn)(Lnitanu)(haﬂt)
to Pe = BO(DO(Ee,nezunn),initenu)hazt
Our plan for representing Pe is toc associate the 0's to the
right as before, and then to distribute the BG to get the
environment information to the individual instructions where it
can be used. To formulate a sufficiently general distribution
law, however, we must introduce a new family of combinatcrs $

defined by

. 5 v )
n

S n(a,B)al...apxx vem® = OE 1

> 1 s l...aP(Bal...aplcx

We may then state the distribution law as:

Proposition Bp(Dk(a,B),Y) = spk(Bp(a’Y)’Bp(B’Y))'
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Using this proposition, we can push the B's inwards. Ve next
investigate what happens when a B reaches an instruction. We
turn first to the case of closures, since that is where ve

expect environmental information to be built up. The following

combinators will be useful:

sk, £ = Xa. wead KK(FE_owaa. )

. P 1 P 1 P
exfIpa = AJ.if J=1I then a else pdJd
getIp = pI

Now, E[A I el Apk.k(Aak'.Ee(extIpa)k')

= Apk.k(ha.Ee(extIpa))

= lpK.K(Bl(Ee,extIp))

- puéhl(xp.Bl(Ee,exIIp))
= puéhl(82(Ee,extI))

Adopting this version of E[AX I e], we can then see what happens
when Bp reaches it:
BP(pubhl(Bz(Ee,QXZI)),T)
= Kal...ap.puéhl(Bz(Ee,ein))(Tal...ap)
= Ag,vved KaB(D (Ea extI)(Ta, «.+d_))
P 2 1 p

1
= Xal...apK.K(Bl(Ee,axtI(Ta ..ap)))

1

= Aal...aPK.K(Bp (Ee,BP(extI,T))al...ap)

1

= puéhp(ﬁp l(Ee,Bp(extI,T)))

+
The new environmental information Bp(extI,T) can now be
rubbed against the code for the procedure e. This also reveals

what this "environmental information" is: nothing other than
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our old friend the symbol table, a function which takes a
p-tuple of values and produces an environment. For convenience,
define:

tabﬁao = Andtenv

I = .
Iabﬂep+l T Bp(extl T)

Then the distribution law will be applied only to terms of the

form B (a,T), where T = fabfe I (ZLable I (...%table ...))
p PP p 4

-1"p-1
and IP,..,I0 is a sequence of not-necessarily-distinct identi-
fiers. Letting T continue to denote this table, it is easy

to show that Tal...apJ = as, where J = max{kllk = J}, provided

this set is non-empty (i.e., J is found in symbol table 7), and

Tal...apJ = Andifenvd if J is not found in T. Let

g = d.
1 P 3
v

K _fa_sued,., =
p 1 P

selec .a
Pl

We may now see how a fetch utilizes the symbol table:

B (E1,t)
p

BP(ApK.K(pI),T)

Bp(puéhl(gatI),T)

Aal...ap.puéhl(getI)(Tal...ap)

lal...apK.K(ral...apI)

lal...apK.K(aj) (3 = max{k|Ik=I})

push (selec .)
p Pl

Thus the identifier may be replaced by a displacement (the éeﬁecpj).

If I is not found in T, then we finish the calculation as
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follows
B CEI.T)
P
= Aal...aPK.K(Tal...aPI)
= la....a k.k{indtenvi)
1 P

pubhp(Kp(initanvI))
We also need to deal with Bp(a,T) where o is apply, -0, or
rnefunrn; we define
apply a_ ...a kfa = faxk
PP yp 1 p
Then
B_(apply,t) = apply
P p
and similarly for {0 and zetunrn.
Now we are prepared to write the compiler. The compiler
uses a three-step strategy:
(1) generate the '"naive" code
(2) associate the D's to the right, using 2o

(3) distribute the symbol table information to the in-
structions and perform variable binding.

Table 5.1 shows the semantic equations for the language, and

the compiler is in Table 5.2. 1In a traditional compiler, of
course, these steps are intertwined; one could obtain suzh an
algorithm from ours by using pipelining techniques such 1s those
in [3, 34]. As before, we have suppressed the subscripts in

the representations since that information is readily available
at run time. Figures 5.1 - 5.3 show the evolution of code in

the compiler.



With the representation developed, we now must design a
machine to interpret the representations. In general, ar
instruction sequence represents a function of the form

S (a,B): VPa> g+ v? > 5>

pn
where o 1is an instruction. We may deduce the behavior of

the machine as before. The length of the display is p and

27

the number of entries in the current stack frame is n. Again,

we shall need to put both wvalues and representations of func-
tions and continuations on the stack, so the functionaliiy
required is

M _: Rep > Rep’ > Rep, » Rep ' = S > A

pn pn K

where Reppn = representations of vP s Kk > v > 5 > &

and RepP = [V + Repy, vsc 1P
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We plug in:
M & ®» @ LI I i ‘-- i
pn[§ [EEEE [gg%gg.]] S]al aprl xnd (Push identifier)
= push (selec. da ... (§§ ce 8 KX, ...X )0
b P 1 s YRR | n
B BB, AL
—_— l..l l’ - naj
= Mp,n+18al' .a le...x ajc
M S ‘v S ¥ i 1
pn[g [EEQQ [X v1] B]al aPle X O (Push immediate)
V.V v v v Vv
= pudh (K vda_ ...a (Ba...+a €X...sX )0
P P P 1 P 1 p 1
= 5% 3 KX X Vo
- ll.l p l".x
= M ces S
p,n+lBal aPle X vO
Mpn[S [push [§ o BI1] Y}al...a KXjeoox O (Push closiure)
v ¥ v v WV vV VvV v
= puéhP(Sp+l,l(a,B))al...a (Yal...aprl...xn)o
vV v vv v v v v
= L I S
Ya, a_Kx, .. xn( BEL 5 l(a é)a a )o
vV YARAY v
e 'Y-al...api(xl...x (dcﬁodepaaa .-.a )0
= | % W e s e e & U
Mp,n+lYal aPle -x_[delose o« B a; P]
where dcﬁaéapaﬂal...ap = Sp+1,l(a,3)al...a
M__[S iot Bla,...a_kx SRS Y (I0-transfer)
pn = === 1 v S
v v v v vv v v
= Lof a-- ap(éal. .aprl. .xn_l)x (o]
(YARVAY v v
= doao(Ba s a will le...xn_l)xnc
) 3 v gv v s ( ' EEEE 4)
= Ba P KX eeoX as in Section
- 1 1
= M nBal .a le...xn_lv a
Mp [S apply Bla 10 -3pKX .. .x O (Apply)
v v VAR2Y, v v v
= apply al .a (éal...anle...xn_2)xn_lxnc
v
= xn (ﬁ ...a le...x -2)0
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If X 1 = [Qg%gggr a B bl"°br]’ then we continue:
= dcio&arégﬁl...ﬁr§n(§;l...;r¥§l...§n_2)c
. sr+l’l(é,§)ﬁl...ﬁrﬁn(nexp:p,n_2§§l...§p¥§l...§n_2)o
= Mr+l,0[§ a B1b,...b x [retpt B a; ... &, By s xn_2]o

Observe how the display stored in the closure has been installed
as the machine's display and how the actual parameter X has

been correctly placed at the top of the display. Finishing up:

Mplggggggal...ap[ggggg B8 by, ... br K Xy ees xn]Vﬂ (Return)

= natunnpﬁl...gp(éﬁl...ﬁrﬁxl ..§n)¥c

BB Y

= Mr,n+lel"’berl"'xnvc
Moy (zetarn)(baltivo = halivo (Seep)
This machine is summarized in Table 5.3. Iterative interpreta-

tion of tail recursion may be achieved by the same modification

as before.



Equations

Pe

BG(DO(Ee,&eIunH),Lnitanu)haiz

£l = puéhl(geII)

ELA I e] = puéhl(82(DO(Ee,n2tunn),extI))
E[DOIO e] = D (Ee,Li0%)

E[el el = 00(Eel,Dl(Ee2,app£y))

2

Auxiliaries

l:

puéhpf = Xal...apK.K(fal...aP)

getl = Ap.pl

halt_ = Aa....a_.halt
P P

nefurn = ApKv.Kv
extI = ApvJ.if J = I then v else pd
Lot = Ap.dodo

apply = Apkfa.fak

Combinators

Bp(a,B) Aa ...ap.a(Bal...ap)

1

Dn(a,B) Apnxl...xn.ap(Bprl...xn)

Table 5.1 TFormulation of the semantic equaticns
for the language.
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CPe = disZn[B not[D CEe returnl Egg%go]

CEI = [push [get Ill

CE[A I el = [push [B #0ot[D CEe returnl] [ext I11]

CELDOIO e] = [D CEe iotl

CE[el e2] = [D CEelEQ CEe2 applyll

no£[D [D o Bl y] = #0£[D a [D B Y]]

n02[D « Bl = [D o n0tB] a # [D x yl

noto = a o # [D x yl]

distn[B [D o Bl 1] = [g d4stxr[B a 1] distx[B B t]]

Latrll gpply T1 = spply

distn[B iot T] = iot

disdxlE perury Tl = petums

distn[B [push [B o lext I]J1] t] = [push distn[B o [table 1111

distn[B [push [get I1] 7] = [push [selec j11 (j computed as in text)

distn[B [push [get I1] t] = [push [K inditenvi]] (I not in T)
Table 5.2 Compiler using symbol table
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([x X [CPLUS X1 ONE]]
[DOIO ONE1]]

(8)

2 TATLE
o
Joh|

o)
e D
Q EXT X \
S o A’PPLY

TOR
o8 &

loT

CET oNe
@ \APPLY e

er)( APPL?
GET oNe

Figure 5.1 Source code and code before rotation.
(We imagine [DOIO ONE] is a read
operation).



Figure 5.2

APPLY Retwen

Code after rotation, but before distribution
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RETUEN

Figure 5.3 Code after distribution.
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n
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returna,...a [retpt B b

pl====== 1 p ====E=

Table 5.3

n i

ol KM T
p 1 n

vo

l. L] .aPleOOQXnU

[dclose o a' a, ... a_lo
n P P

v'g! (as before)

Display Machine
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6. Correctness of the Method

This paper has been devoted to a heuristic development of
the methodology rather than to proofs of its correctness. We
can, however, give some hints about how such proofs go. As
discussed in Section 2, we need to show that the "abstraction
function" in Figure 2.1 is a homomorphism. In that diagram,
all the vertical arrows are the identity map, except for the
one from Repln*Out to In + Out, which is given by ¥, 7
general, one might deal with RepIn and RepOut as well. We need
to show that the left-hand square and the right-hand wedge
commute. The commutativity of the left-hand square, V(Ce) = Pe,
states the correctness of the compiler: the compiler procuces
the right code. This portion is easy, since the rotatior and
distribution operations in the compiler all preserve v. The
right-hand wedge, MBo = §o, asserts the correctness of the
virtual machine: the machine interprets the code properly.

We prove this portion by establishing an appropriate

Yvvy v

%X 0 = PpKx..v.X ds This jis
n n

generalization, e.g. ManKx 1

1t
proven by considering the inequalities separately. As irntimated
previously, it is easy to restructure our derivation of the
machine's action into a proof by fixpoint induction of the L
direction. For the case of non-reflexive domains, Plotkin's

method of induction on types may be used to establish the reverse

inequality, as in [17]. We have done one such proof and hope
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to report on it elsewhere. 1In the presence of reflexive domains,
there seems to be no alternative at present to the use of con-
gruence relations [12, 21, 22, 27] to establish 2. This is the
same two-part strategy used in the second congruence proof in

v
[27]; Stoy's functions E, A, etc. correspond to our .
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7 Related Work

Previous work on compiler correctness has centered on
proving the equivalence of independently given semantics and
machines. The proofs have generally proceeded by structural
induction on the phrases of the source language, using algebraic
techniques in lesser or greater degree to organize the proof.
Work on this line includes [4, 11, 13, 14, 31]. Typically, a dia-
gram similar to Figure 7.1 is involved. The most delicate
portion of these proofs lies in stating the relation betwveen
source and target meanings (in the uncertain bottom arrows) in
a way strong enough to support an induction. Typically, such an
induction hypothesis says that a source-language express: on,
when compiled and executed in any suitable run-time context,
leaves the source-semantics wvalue of the expression on the top

of the stack and leaves the rest of the centext unchanged.

Soure Lﬂﬂaiw?. em“?‘*k‘ ,‘:ﬁr%d' Lﬂ"amgc

Source Tasrg-d'
Stwmontics : S{mm‘h'c.s

b 4 ﬁ
Seurce Meow rias. - (or) BN MEGwmés,
e

Figure 7.1 Diagram for previous correctness proofs
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Unfortunately, this strategy works only if the source
semantics is "direct," i.e. if the notion of "the value of a
subexpression” is meaningful in the semantics. All of tte
papers cited above use direct semantics. If, however, ore
wishes to deal with realistic programming language features,
such as input-output or hairy contrel structure, one must
proceed almost immediately to continuation semantics [12), in
which the notion of the value of a subexpression is meaningless.

The key which enables us to escape from Figure 7.1 is Mosses'
idea of emphasizing the notion of implementation or simulation
of data types as a measure of compiler correctness. Our work
may be regarded as an extension and simplification of Mosses'.
Our combinators B serve a role similar to the 7 oper-

k
ation in [16]. The major difference is that in T = the sub-
script counts the number of items passed from the first zction
to the second, whereas in Bk’ the subscript counts the number
of items protected from the first argument. A major conceptual
difference is that we use models in preference to Mosses'
equationally-specified classes of algebras (adopted from [33]).
We have used models in this work because we did not know how
to extend abstract sequencers such as -+ to handle escépes,

nonlocal Jjumps, etc. The development of such a theory is a

major area for work.
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For a smooth theory, it would be convenient to replace
right-associativity by full associativity. To do this, let

Cj(a,B) = AK.a(Bj(B,K)). Then {Cj | 3 2 0} v {B | x = 0}

k+1

forms a fully associative family of operations under the
following rules:

3, Bk+l(8j+l(a,8),y) = (o (B,Y))

Pl gl P eBea g

(B,Y))

(Cj(a,B),Y) By (B

Bk+l k+31+%

3. C5(By, (a,B),Y) = By (0,0 (B,7))

4, Cj(Ck(a,B),Y) — Cj(a,8k+j+l(6,y)) if k 2|5

5. Cj(ck(a,s),y) = Ck(a,cj_k(B,Y)) 1E 9 2k%
The T operators similarly fall into two groups (Mosses. private
communication). Combinators like Bk have also been ut:ilized by

[1, 2, 321, among others, in a variety of contexts.

A second key idea is the adopting of Hoare's view of im-
Plementation and the use of v to give a machine-indeperdent
semantics of the target code. This enabled us to factor the
problem into compiler correctness and machine correctness. It
also allowed the consideration of alternative representations,
begun in [34].

The methodology we have used is extendable to other

language features. Tests, ccnditionals, and escapes present

no difficulties, nor do other phrase types such as commards.
A more interesting problem is dealing with sequential repre-

sentations of code. While tree-structured code is a vialle
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alternative for custom machines [25, 35], conventional machines
deal with instructions stored sequentially in memory. I: should
be possible to show that such code is a representation of the
tree-structured code, using techniques such as those in _8,
Sec. 2.3.3]. It should also be possible to treat clever repre-
sentations of the stack and environment, such as spreading the
stack across several registers [24%, 35], or the static-chain
representation, in which the environment is embedded in +he
stack [18]. Another possibility is the use of infinite repre-

sentations, which may in turn be represented by cyclic pointer

structures [23].
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8. Conclusions

We have presented a method for deriving compilers and
abstract machines from the continuation semantics for a lLanguage.
The technique involves choosing special-purpose combinators to
eliminate A-variables in the semantics, and discovering standard
forms for the resulting terms to obtain target code which
represents the meaning of the source code. The abstract machine's
job is to interpret these representations as functions. The
approach seems capable of handling fairly complex languages and
deriving interesting machines for them. We hope in the near

future to extend and formalize the technique.
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