Multiprocessing CODA: Applying PLITS Formalism

to a Quasi-parallel Model of SCHEME¥*
by

Joseph R. Ginder

Indiana University

TECHNICAL REPORT NO. 92

MULTIPROCESSING CODA: aPPLYING PLITS FORMALISM
TO A QUASI-PARALLEL MoDEL oF SCHEME*®

JOSEPH R, GINDER
INDIANA UNIVERSITY

MAY, 1980

* Submitted to the Department of Computer Science in
partial fulfillment of the requirements for the Bachelor
of Arts degree in Computer Science with Honors.

Multiprocessing CODA: Applying PLITS Formalism

to a Quasi-parallel Model of SCHEME

Abstract:

Coda is an iterative interpreter for SCHENE, a
dialect of LISP. SCHEME is an applicative-crder,
lexically-scoped, full-funarg lambda calculus system.
The CODA interpreter evaluates tail-recursive functions
without net growth of the LISP interpreter stack. When a
stack is needed, it 1is kept explicitly in the form of
continuation-links, collections of registers to be used
for evaluation of an expression. Multiprocessing is
simulated by the CODA interpreter, allowing processes to
execute "in parallel”™. Multiprocessing is available with
either shared environments or distributed processing.
Monitors can easily be defined as processes with a unique
environment; communication is facilitated by a
PLITS-like message passing system. Primitive operztions
are provided for message manipulation, process
synchronization, and new process creation. The entire

system is implemented in LISP.

Multiprocessing CODA: Applying PLITS Formalism

to a Quasi-parallel Model of SCHEME

l. Introduction

CODA is an iterative interpreter capable of
interpreting either LISP or SCHEME [12] exprescions.
LISP exXpressions are evaluated in the wusual menner,
lambda-expressions being closed in the execution
environment. SCHEME is an applicative-crder,
lexically-scoped, full-funarg dialect of LISP;

lambda-expressions are closed in the defirition

environment [12]. In both cases, the interpreter stack
is kept explicitly in the form of continuation 1links
(c=1links), which are collections of the interrreter
register values at the time when that 1link was rpushed

onto the stack.

The major part of this project was to implement a
version of this interpreter in which multiprocessirg was
simulated ("quasiparallel" [9]). This was accomplished
without confining the multiprocessing to either a
distributed processing or shared environment nodel;
rather both are available. Processes are usually defined
as SCHEME expressions using the "LABELS" syntax (see [12]
for discussion of LABELS). Particular instances of
process definitions are specified at the initiaticn of

multiprocessing or through use of the "create-process"

primitive. Each process is then evaluated 1in the
specified environment until it returns a value (or
indefinitely if no final value is reached). It should be
emphasized that no fairness is guaranteed or implied for
process evaluation -- the processes are evaluated ore at
a time in a completely random order, for one cycle of the
interpreter and then suspended. A cycle is defined as
one evaluation of the #pc# register. 1In practice, this
usually means evaluating one top 1level element of the
current expression register. This may entail recovering
a value from the environment or determining that the
current element is a list and pushing a c-link onto the
c-link stack for this 1list to have its elements
evaluated. The stack is popped after the last element of
the current expression is evaluated. Values are cé&rried
from c¢-1link to c¢-link in the accumulator register. A
cycle may last for several times longer than usual if the
form being evaluated has the property "INDIVISIBLE". 1In
this case, the entire form is completely evaluated kefore

suspension of the process.

Shared environments are facilitated by csimply
passing the same environment pointer to several processes
in the interpreter call. Note that partially <chared
environments would result from passing processes pointers
to different parts of the same environment. A process
modifies its environment using either of the assicnment

primitives "aset"™ or "cset". These assignment operctions

-

are indivisible operations. The primitive "aset"
modifies the environment by changing an o0ld bindingy if
one is found, or adding a new pair (identifier, valuz) to
the END of the current environment (NCONC [10,13]). This
is an assignment that is visible to all processes sharing
the environment in which the assignment was ‘made.
"Cset", alternatively, is a primitive that always aids a
new pair onto the front of the environment. This ineans
that the scope of this binding is as narrow as possible,
and is no greater than that of any argument bindings of
the expression being evaluated; as soon as the c-liak is

popped, it will disappear.

Distributed processing is accomplished by specifying
either a null environment at process initiation, or
specifying a unique environment to which no other process
has a pointer. The assignment primitives work exactly

the same as with shared environments.

The implementation of these assignment primicives
and several other multiprocessing primitives introduced a
new property name for functions into the interprater.
These functions are defined with property-name
"INDIVISIBLE". When the interpreter "GET"s an
indivisible property of an identifier, any processing
guided by that definition takes place immediac:zely.,
without interruption, but otherwise exactly as any other

pProcessing.

The remainder of this paper 1is organized into
several sections and appendices. The next section
contains a discussion of new primitives defined for use
in this system. The third section 1is made up of a
discussion of various examples. A conclusion follows
these sections. The code for the system is includad in
several appendices along with several notes on the

implementation of the system.

2. Primitives

Process creation and manipulation 1is accomplished
through the use of the following primitives. Several are
based in part on various procedures defined by Hansen for
the RC 4000 operating system [5] and by Holt, et. al.
[8]1. The implementation of primitives was under:aken
with Hoare”s axiomatic approach [7] in mind.
(create-process <progess—definition>

<environment>

<process-name>)
Here, <process-definition> is a form to be multiprocessed
by the interpreter; <environment> is a list of pairs or
NIL; and <process-name> is an identifier to be used by
other processes to refer to the process being created.
"Create-process" sets up a suspended process closure
which will, when activated, evaluate the
process—-definition in the specified environment. of

course, many instances of the same process-definition may

be active in parallel.

(activate <process—name>)
This primitive activates the suspended process refearred
to by <process—-name> by placing it in the ponl of

processes being evaluated.

(deactivate)
The primitive "deactivate" makes a suspended proacess
closure of the calling process and removes it from the

pool of processes being evaluated.

(aset <name> <value>)
"Aset" is an indivisible operation that binds the value
specified by <value> to the identifier specifi=d by
<name> (ie. "SET", not "SETQ" as in [10,13]). This
operation either wupdates an already present name-value

pair or adds a new pair at the end of the environment.

(cset <name> <value>)
"Cset is analagous to "aset" except that "cset" always
adds a new pair, name-value, to the £front of the

environment.

(termination-value <process-name>)
This primitive returns the value to which the process
referred to by <process-name> evaluated upon termination.
This value is the contents of the #accumulator# register

at process termination (see Appendix B).

(suicide)
The primitive "suicide" immediately terminates execution
of the «calling process, prints a suicide message, and
leaves a suicide note as the value of the process. This

primitive executes uninterruptedly.

(extantp <process-name>)
This predicate returns T if the process referred to by

<process—-name> is in the active process pool.

Communication between processes in a distributed system
can be defined within any of several paradigms for message
passing. Synchronization between processes is accomplished
using message passing in a unique way within each paraiigm.
In Feldman®s PLITS system [2,3], a process sends a message
and then proceeds with execution; synchronization is
accomplished by causing a process to wait until an
appropriate message is available upon issue of a "reczive"
command. In Hoare“s CSP system [6], the reverse option is
in effect: process waiting occurs when a "send" is issued
until the destination process issues a "receive"”. 1In Brinch
Hansen”s DP system [4], communication must be exchanga2d in
both directions before either process can proceed. In any
of these paradigms, the other paradigms can be simulated.
This system employs a paradigm not quite 1like any of the
above, but very close to PLITS. PLITS-like communication
takes place when the "send" and "receive-wait" primitives
are used. Messages are lists of pairs, or environmants;
and messages are given a source pair and transaction pair --
both as in PLITS. A description of communication primitives

follows.

(close-communications)
The primitive "close-communications" closes the calling
process® queue so that no messages can be delivered.

This is an indivisible operation.

(open—-communications)
This primitive opens the calling process” queue so that
messages can be delivered. This is also an indivisible

operation.

(send <destination> <message>)
"Send" delivers the message <message> to the process
referred to by the identifier <destination>. <message>
is a list of pairs (a PLITS message) created by the
primitive "create-message". If the process being sent to
has closed itself to communication, "send" returns NIL

and no action is taken.

(receive <source> <transaction>)
This primitive attempts to retrieve a message from the
queue of the calling process that is from the process
referred to by <source> and about the subject identified
by <transaction>. It should be noted that <source> and
<transaction> can both be specified as null, thereby
enabling a message from any process or about any subject
to be retrieved. If no appropriate message is found, NIL
is returned and no action taken; if more than one
appropriate message is present in the queue, the oldest

is taken.

(send-wait <destination> <message> <continuation>)
"Send-wait" attempts to deliver a message to the queie of
the process referred to by <destinations> until it is
successful. This means that if the queue is closed, the
calling process will wait until it is opened. This does
not mean that the destination process must "receive" the
message; it only means that it must be Qquzued.
<continuation> is a form that will become the new
expression to be evaluated by the interpreter after the
message is successfully sent. In essence, this primitive
sends the messade after waiting however 1lon3j is
necessary, and then <continuation> acts as a GOTD to
specify further processing.

(receive~wait <source>

<transaction>

<identifier>

<continuation>)
The primitive "receive-wait" causes the calling process
to attempt to receive a message from the process
specified by <source> about the subject identified by
<transaction>. Either or both of these descriptions of
an appropriate message can be specified as null so that
any messade will match that description. If no message
is present, then the process must wait until one becomes
available; if a message is available, it is retrieved
and bound to an identifier in the calling process”
environment, <identifier> (using aset). This is

necessary because receive-wait (like send-wait) uses the

-0-

<continuation> expression to specify further processing
after a reception is made, so no value is returned from
receive-wait -- but the message must be made accessible

to the calling process in some way.

(clearq)
"Clearq" is a primitive that deletes all messages from
the queue of the calling process. It is an indivisible
operation, but usually should be called while a process

has closed itself to communication.

(openp <process-name>)
This predicate returns T if the process referred t> by
<process-name> is open for communication, NIL otherwise.

It is an indivisible operation.

(closedp <process-name>)
This predicate returns the opposite of the value retarned
by "openp" under the same conditions. It is also

indivisible.

(create-message <slot-list> <transaction>)
"Create-message" returns a PLITS-like message of the
slots (pairs) specified by <slot-list> with slots for
"FROM" and "ABOUT" added in. All of these slots are

accessible and modifiable using the provided primitives.

(slot-assign <slotname> <value> <message>)
This primitive assigns <value> as the value of the slot

with name <slotname> in the message <message>. I[f no

=10-

slot with the specified slot name exists, then one is

created and assigned to.

(slot-value <slotname> <message>)
The primitive "slot-value" returns the value of the slot
with slotname <slotname> in <message>. If the requssted
slot does not exist, the message "SLOT-NOT-FOUND" is

returned to avoid confusion with NIL slot-values.

(presentp <slotname> <message>)
This predicate returns T if a slot with slotname

<slotname> is found in <message>, NIL otherwise.

Communication between processes is intended to be
much 1like that in a PLITS system [2,3]. Messages are
pairs or slots of identifiers and values, much 1like a
LISP environment. (One difference between a messag= and
a LISP environment is that in a message an identifier can
only appear once.) Each message has a "FROM" slot aad an
"ABOUT" slot added by the "create-message" primitive. If
sending of messages is confined to the use of the "send"
primitive, and receiving is confined to the use of the
"receive-wait" primitive, synchronization is like that of

a PLITS system.

Other types of synchronization are also possible.
For instance, waiting upon issue of a "send" can come
into the model when processes can close themselves to
communication and "send-wait"™ is used. Note, howaver,

-11-

that this wait is only until the destination process
declares 1its gqueue open, not until the destination
process receives the message. The "receive" primitive
allows a process to attempt a message reception without
risking the wait possibility inherent to "receive-wait".
Brinch Hansen”s DP [4] synchronization can be attained by
having the sending process "send", then immediately
"receive-wait"; while the receiving process
"receive-waits" and then immediately "sends". Hoare”s
CSP [6] synchronization can be attained by having the
sending process "send" and immediately "receive-wait";
while the receiving process would "receive" and
immediately release the waiting sender by sending a

reply.

Most of the wusual SCHEME primitives [12] are
implemented. Explanations of these primitives are in
"The Revised Report on SCHEME, a Dialect of LISP".
Specifically, the primitives "labels", "catch", "IF",
"define", "evaluate", and "QUOTE" are available.
Standard ILISP [l] primitives are available also, but
primitives of this sort called directly from an
expression evaluated by the CODA interpreter must be of
type SUBR, LSUBR, or EXPR (ie. FSUBRS are

unrecognized!).

i

3. Examples

The examples below serve to illustrate the wuse of
the primitives described in section two and to show the
various ways in which multiprocessing can be used in this
system. Note that examples of both shared environment

multiprocessing and distributed processing are given.

Example 1 -- Use of "labels"”

The following example illustrates the use of the
CODA interpreter for evaluating common SCHEME "labels"
expressions [12]. No communication takes place;

standard SCHEME is multiprocessed.

(DEFPROP LABO1
(NIL labels
((PLUSS
(LAMBDA (A B)
(IF (ZEROP A) B (PLUSS (SuUBl A) (ADDLl B))))))
(PRINT (PLUSS 5 7)))
VALUE)

(DEFPROP LABO02
(NI, labels
((MEMBER2
(LAMBDA (A L)
(IF (NULL L)
NIL
(IF (F1L A (CAR L)) T (MEMBER2 A (CDR L)}))))
(F1 (LAMBDA (El1 E2) (EQ El E2))))
(MEMBER2 1 (QUOTE (2 3 1 4 5))))
VALUE)

(DEFPROP LAB
(NIL labels
((PLUX
(LAMBDA (A B)
(IF (ZEROP A) B (ADD1l (PLUX (SUBL A) B))))))
(PLUX 3 7))
VALUE)

R

(DEFPROP LAB2
(NIL labels
((UNION
(LAMBDA (A B)
(IF (NULL A)
B
(IF (IN (CAR A) B)
(UNION (CDR A) B)
(CONS (CAR A) (UNION (CDR A) B))))))
(IN
(LAMBDA (A B)
(IF (NULL B)
NIL
(IF (EQ (CAR B) A) T (IN A (CDR B)))
(UNION (QUOTE (A B C D)) (QUOTE (A C E G)))
VALUE)

))))
)

(DEFPROP LAB3
(NIL labels
((FIB
(LAMBDA (N)
(IF (ZEROP N)
i
(IF (ZEROP (SUB1l N))
1
(PLUX (FIB (SUBl N))
(FIB (SUB1 (SUBL N))))))))
(PLUX
(LAMBDA (N M)
(IF (ZEROP N) M (ADD1 (PLUX (SUBL N) M))))))
(FIB 6))
VALUE)

(DEFPROP CAl
(NIL catch
SURPRIZE
(labels
((REMB
(LAMBDA (L)
(IF (EQ (CAR L) (QUOTE DOG))
(REMB (CDR L))
(IF (EQ (CAR L) (QUOTE HELP))
(SURPRIZE (QUOTE WOW))
(CONS (CAR L) (REMB (CDR L

1)) ¥
(REMB (QUOTE (WHEN DOG I DOG HELP ME))

1))
)))
VALUE)

= B

(DEFPROP CA2
(NIL catch
SURPRIZE
(labels
((REMB (LAMBDA (A L) (REMB2 A L)))
(REMB 2
(LAMBDA (B Q)
(IF (NULL Q)
NIL
(IF (EQ (CAR Q) B)
(REMB2 B (CDR Q))
(IF (EQ (CAR Q) (QUOTE HELP))
(SURPRIZE Q)
(CONS (CAR Q) (REMB2 B (CDR Q)1)))))))

(REMB (QUOTE DOG) (QUOTE (WHEN DOG HELP ME)))))
VALUE)

(DEFPROP CALL2
(NIL EVALUS

(LIST LABOl NIL (QUOTE POl))
(LIST LABO2 NIL (QUOTE P02))
(LIST LAB NIL (QUOTE Pl))
(LIST LAB2 NIL (QUOTE P2))
(LIST LAB3 NIL (QUOTE P3))
(LIST CAl NIL (QUOTE P4))
(LIST CA2 NIL (QUOTE P5)))

VALUE)

.15

* (EVAL CALL2)

PROCESS:

Pl

terminated

PROCESS:

P02

terminated

12

PROCESS:

POl

terminated

PROCESS:

P5

terminated

PROCESS ¢

P4

terminated

PROCESS:

P2

terminated

PROCESS:

P3

terminated

((value-record P1 10)
(value-record P02 T)
(value-record POl 12)
(value-record P5 (HELP ME))
(value-record P4 WOW)
(value-record P2 (B DA CE G))
(value-record P3 13))

~-16-

Example 2 -- Simple Communication

The following examples illustrate the use of the
basic communication primitives. Process creation and
activation is also shown; along with message
manipulation. Two eXecutions are shown to exhibit the
equivalence of explicit process specification in the
"EVALU8" expression and process creation and activation
by another process. "PROCESS4" creates a message,
updates it, and then sends it to "PROCESS3". "PROCESS3"
waits until message reception is possible, then retrieves
a value from the message and prints it. "PROCESS5" is

used as a start-up process for "PROCESS3" and "PROCESS4".

(DEFPROP PROCESS3
(NIL labels
((Rw
(LAMBDA NIL
(receive-wait (QUOTE PROCESS4)
(QUOTE TRANZ2)
(QUOTE RWM)
(QUOTE (CONT)))))
(CONT
(LAMBDA NIL
((LAMBDA (X) (PRINT SV))
(aset (QUOTE SV) (slot-value (QUOTE A) RWMI)))))

(RW))
VALUE)

I

(DEFPROP PROCESS4
(NIL labels
((s (LAMBDA NIL (send (QUOTE PROCESS3) MS)))
(A
(LAMBDA NIL
((LAMBDA (X) (S8))
(slot—-assign (QUOTE SV)
(ADD1 (slot-value (QUOTE SV) MS))
MS)))))
((LAMBDA (X) (&))
(aset (QUOTE MS)
(create-message (QUOTE ((A 1) (sv 0)))
(QUOTE TRANZ2)))))
VALUE)

(DEFPROP PROCESS5
(NIL (LAMBDA (X)
((LAMBDA (Y)
((LAMBDA (Z) (activate (QUOTE PROCESS4)))
(activate (QUOTE PROCESS3))))
(create-process PROCESS4 NIL (QUOTE PROCESS4))))
(create-process PROCESS3 NIL (QUOTE PROCESS3)))
VALUE)

—] B

* (EVALU8 (LIST PROCESS3 NIL @PROCESS3)
(LIST PROCESS4 NIL @PROCESS4))

PROCESS:

PROCESS4

terminated

1l

1

PROCESS:

PROCESS3

terminated

((value-record PROCESS4 (queue))
(value-record PROCESS3 1))

* (EVALU8 (LIST PROCESS5 NIIL. @PROCESS5))

PROCESS:

PROCESS5

terminated

PROCESS ¢

PROCESS4

terminated

1

1

PROCESS:

PROCESS3

terminated

((value-record PROCESS5 PROCESS4)
(value-record PROCESS4 (queue))
(value-record PROCESS3 1))

=G

Example 3 -- Process Manipulation

The following examples demonstrate the use of the
"receive-wait"™ and "aset" primitives, along with several
process manipulation primitives ("deactivate" and
"activate") and predicates. Notice that activating the
processes in different orders affects the internal path
of evaluation of the two processes (1 and 2).
"PROCESS2A" is a start-up process for "PROCESS2". When
it is wused to create "PROCESS2", "PROCESS1" deactivates
itself until "PROCESS2" is created and can reactivata it.
The different wvalues for the message-slot "A" show the

differing paths of execution between the samples.

(DEFPROP PROCESS1
(NIL labels
((CONT
(LAMBDA NIL
(IF (presentp (QUOTE A) RWM)
(slot-value (QUOTE A) RWM)
(suicide))))
(CLoop
(LAMBDA NIL
(IF (extantp (QUOTE PROCESS2))
(receive-wait (QUOTE PROCESS2)
(QUOTE TRANL)
(QUOTE RWM)
(QUOTE (CONT)))
(deactivate (QUOTE (CLOOP)))))))
(CLOOP))
VALUE)

(DEFPROP PROCESS2A
(NIL (LAMBDA (X) (activate (QUOTE PROCESS2)))
(create-process PROCESS2 NIL (QUOTE PROCESS2)))
VALUE)

-20-

(DEFPROP PROCESS2
(NIL IF
(extantp (QUOTE PROCESS1))
(IF (openp (QUOTE PROCESS1))
(send (QUOTE PROCESS1)
(create-message (QUOTE ((B 7) (A 8) (C 9)))

(QUOTE TRAN1)))
(suicide))
((LAMBDA (X)
(send (QUOTE PROCESS1)
{create-message (QUOTE ((B 1) (A 2) (C 3)))
(QUOTE TRAN1))))
(activate (QUOTE PROCESS1l))))
VALUE)

e i [

* (EVALU8 (LIST PROCESS1 NIL @PROCESS1)
(LIST PROCESS2A NIL @PROCESS2A))

PROCESS:

PROCESS2A

terminated

PROCESS:

PROCESS2

terminated

PROCESS:

PROCESS1

terminated

((value-record PROCESS2A PROCESS2)
(value-record PROCESS2 (gueue))
(value-record PROCESS1 2))

* (EVALU8 (LIST PROCESS1 NIL @PROCESS1)
(LIST PROCESS2 NIL @PROCESS2))

PROCESS:

PROCESS2

terminated

PROCESS:

PROCESSL

terminated

((value-record PROCESS2 (queue))

(value-record PROCESS1 8))

* (EVALU8 (LIST PROCESS2 NIL @PROCESS2)
(LIST PROCESS1 NIL @PROCESS1))

PROCESS:

PROCESS2

terminated

PROCESS:

PROCESS1

terminated

((value-record PROCESS2 (queue))

(value-record PROCESS1 8))

— D

Example 4 -- Synchronization

These sample executions serve to further illustrate
the use of communication primitives for synchronization.
Note that in these two examples, the order of
specification influences the wvalue to which "PROCZSS6"
converges. "PROCESS7" floods the dqueue of "PROCZISS6"
with useless messages until a certain counter valie is
reached. At this point, "PROCESS7" sends a meaniagful
message to "PROCESS6". Once alerted, "PROCESS6" clears
its queue of the useless messages and prepares to receive
another meaningful message. The value of message-slot
"B" jndicates that the correct message was, 1in fact,

recognized and used.

(DEFPROP PROCESS6
(NIL. labels
((RWG
(LAMBDA NIL
(receive-wait (QUOTE PROCESS7)
(QUOTE TRANG)
(QUOTE RWM)
(QUOTE (CONTG)))))
(CONTG
(LAMBDA NIL
((LAMBDA (X)
((LAMBDA (Y) (RWH))
(send (QUOTE PROCESS7)
(create-message NIL (QUOTE TR)))))
(clearq))))
(RWH
(LAMBDA NIL
(receive-wait (QUOTE PROCESS7)
(QUOTE TRANH)
(QUOTE RWM)
(QUOTE (CONTH)))))
(CONTH (LAMBDA NIIL (slot-value (QUOTE B) RWM))))
(RWG))
VALUE)

PR

(DEFPROP PROCESS7

(NIL labels
((Sl (LAMBDA NII (send (QUOTE PROCESS6) MG)))
(S2 (LAMBDA NIL (send (QUOTE PROCESS6) MH)))

(Mw
(LAMBDA NIL
(receive-wait (QUOTE PROCESS6)
NIL
(QUOTE RWM)
(QUOTE (S2)))))
(INCR
(LAMBDA NIL

((LAMBDA (X) (aset (QUOTE LC) (ADDL LC)))
(slot-assign (QUOTE B)
(ADD1 (slot-value (QUOTE B) Mi))

MH))))
(INI
(LAMBDA NIL
((LAMBDA (X)
((LAMBDA (Y)
(aset (QUOTE MG)
(create-message NIL (QUOTE TRANG))))
(aset (QUOTE LC) 1)))
(aset
(QUOTE MH)
(create-message (QUOTE ((A T) (B 0)))
(QUOTE TRANH))))))
(LOOP
(LAMBDA NIL

(IF (EQ LC 5)
((LAMBDA (X) (MW)) (Sl1))
((LAMBDA (X) ((LAMBDA (Y) (LOOP)) (INCR)))
(s2))))))
((LAMBDA (X) (LOOP)) (INI)))
VALUE)

=20

* (EVALU8 (LIST
(LIST

PROCESS:
PROCESS7
terminated
PROCESS:
PROCESS6
terminated
((value-record
(value-record

* (EVALU8 (LIST
(LIST

PROCESS :
PROCESS7
terminated
PROCESS:
PROCESS®6
terminated
((value-record
(value-record

PROCESS6
PROCESS7

PROCESS7
PROCESS6

PROCESS7
PROCESS6

PROCESS7
PROCESS6

NIL @PROCESS6)
NIL @PROCESS7))

(queue))

4))

NIL @PROCESS7)
NIL @PROCESS6))

eue))

—Q
i

-25-

Example 5 -- Shared Environment

In this example, several instances of the same
processes are specified in the call to "EVALU8". They
are all given a pointer to the same environment in order
that the effects of several processes” accessing the same
environment can be demonstrated. This competition in
environment accessing is signalled by the appearancze of
1“’s in the output. According to the internal tests of
these processes, a "1" should never be printed, but the
updating of "A"™ by other processes between the test and

print expressions allow a "1" to be output.

(DEFPROP MLABL
(NIL labels
((F1
(LAMBDA NIL
((LAMBDA (X) ((LAMBDA (Y) (F1l 7)) (PRINT A)))
(aset (QUOTE A) 0))))
(F11
(LAMBDA (N)
(IF (ZEROP N)
(QUOTE DONE)
((LAMBDA (X) (F11 (SUBl N)))
(aset (QUOTE A) 1))))))
(F1))
VALUE)

T o

Page 27

(DEFPROP MLAB2
(MLAB2
labels
((F1
(LAMBDA NIL
((LAMBDA (X) ((LAMBDA (Y) (F1l 7)) (PRINT A)))
(aset (QUOTE a) 0))))

(F11
(LAMBDA (N)
(IF (ZEROP N)
(F1)
((LAMBDA (X) (Fll (SUBL N)))
(aset (QUOTE A) 1))))))
(F1))
VALUE)
(DEFPROP SE
(NIL (A 7))
VALUE)

(DEFPROP CALLl
(NIL EVALUS

(LIST MLAB2 $E (QUOTE P1))
(LIST MLABl $E (QUOTE P2))
(LIST MLAB2 $E (QUOTE P3))
(LIST MLAB2 $E (QUOTE P4))
(LIST MLABl SE (QUOTE P5)))

VALUE)

=

* (EVAL CALL1)

cCOoOO0OoO0O

PROCESS:
P5
terminated
PROCESS:
P2
terminated

POHOMHMHOOHODODOOMFROODOOOHFOO

>

=8

Example 6 -- Dining Philosophers

A solution to the dining philosophers problen is
given on the following page along with sample executions.
The first process definition is that of the process that
creates and activates the fork-monitor and philosophers.
It was included in order to illustrate the use of the
"create-process" and "activate” primitives. Sequeatial
execution of expressions is accomplished through the use

of embedded lambda-expressions.

The fork-monitor keeps a 1list that tells of the
availability of each fork. For example, philosopher
three requires forks two and three to eat, so if he were
the only philosopher eating, the list would look like
this: (T NIL NIL T T). Obviously, the key is to allow
only the fork-monitor to update this list in ordsr to
avoid timing errors. It should be noted that while this
solution prevents a second philosopher from doing
anything bu; putting forks down or waiting while a Ffirst
is waiting for one or both of his requested forks, it
also prevents that second philosopher from using a fork
that the first philosopher might not be using until he

can find one more, as in [9].

The fork-monitor process begins by execiting
initialization code and issuing a receive-wait for any
message. After a message is received, the continuation

expression 1is specified to be the function that decodes

=

the message to determine whether +the philosopher that
sent the message is trying to pick-up or put-down forks.
Once a message requesting forks has been received, only
messages from philosophers desiring to put forks down are
received until the request can be granted. Once this
type of "eat" request is satisfied, any message can be
accepted. (Note that the list of pairs, PN-PAIRS is used
simply to match a philosopher process with positions on
the fork-condition 1list: PHILS 1is to identify a
process-name with a position number on the fork-condition

list.)

The philosophers are five instances of the
philosopher process definition. Each philosopher
attempts to eat, then think, then eat, ... etc. until
the system is stopped. The order of the philosophers”
eating and thinking in the following sample executions is
determined by a combination of the order of activation
and the random selection of processes to be

multiprocessed by the interpreter.

_30...

(DEFPROP start-dinner2
(NIL
labels
({1
(LAMBDA NIL
(create-process fork-monitor NIL (QUOTE FM))))
(c2
(LAMBDA NIL
(create-process philosopher NIL (QUOTE PHIL1l))))
(C3
(LAMBDA NIL
(create-process philosopher NIL (QUOTE PHIL2))))
(c4
(LAMBDA NIL
(create-process philosopher NIL (QUOTE PHIL3))))
(C5
(LAMBDA NIL
(create-process philosopher NIL (QUOTE PHIL4))))
(cé
(LAMBDA NIL
(create-process philosopher NIL (QUOTE PHILS5))))
(A1l (LAMBDA NIL (activate (QUOTE FM))))
(A2 (LAMBDA NII (activate (QUOTE PHIL1))))
(A3 (LAMBDA NIL (activate (QUOTE PHILZ2))))
(A4 (LAMBDA NIIL (activate (QUOTE PHIL3))))
(A5 (LAMBDA NIL (activate (QUOTE PHIL4))))
(A6 (LAMBDA NIL (activate (QUOTE PHILS5))))
((LAMBDA (A)
((LAMBDA (B)
((LAMBDA (C)
((LAMBDA (D)
((LAMBDA (E)
((LAMBDA (F)
((LAMBDA (G)
((LAMBDA (H)
((LAMBDA (I)
((LAMBDA (J)
((LAMBDA (K)
((LAMBDA (L) (suicide)) (2A6)))
(a4)))
(A2)))
(A5)))
(a3)))
(Al)))
(c6)))
(C5)))
(c4)))
(Cc3)))
(c2)))
(cl)))
VALUE)

)

31.

(DEFPROP start-dinnerl

(NIL
labels
{ (€1
(LAMBDA NIL
écreate—process fork-monitor NIL (QUOTE FM))))
(C

(LAMBDA NIL
(create-process philosopher NIL (QUOTE PHIL1))))

{C3

(LAMBDA NIL

(create-process philosopher NIL (QUOTE PHIL2))))
(c4

(LAMBDA NIL

(create-process philosopher NIL (QUOTE PHIL3))))
(C5

(LAMBDA NIL

(create-process philosopher NIL (QUOTE PHIL4))))
(C6

(LAMBDA NIL

(create-process philosopher NIL (QUOTE PHILS))))
(Al (LAMBDA NIL (activate (QUOTE FM))))
(A2 (LAMBDA NIL (activate (QUOTE PHIL1))))
(A3 (LAMBDA NIL (activate (QUOTE PHIL2))))
(A4 (LAMBDA NIL (activate (QUOTE PHIL3))))
(A5 (LAMBDA NIL (activate (QUOTE PHIL4))))
(A6 (LAMBDA NIIL (activate (QUOTE PHILS5))))

((LAMBDA (A)
((LAMBDA (B)
((LAMBDA (C)
((LAMBDA (D)
((LAMBDA (E)
((LAMBDA (F)
((LAMBDA (G)
((LAMBDA (H)
((LAMBDA (I)
((LAMBDA (J)
((LAMBDA (K)
((LAMBDA (L) (suicide)) (26)))
(A5)))
(Ad)))
(A3)))
(a2)))
(al)))
(C6)))
(C5)))
(c4)))
(C3)))
(c2)))
(cl)))
VALUE)

)

- ot

(DEFPROP fork-monitor
(NIL
labels
((pickup
(LAMBDA (I)
(IF
(ANDD (fork-cond (MOD5 (SUBLl I))) (fork-cond 1))
(give-forks I)
(ready-wait I))))
(ready-wait
(LAMBDA (I)
(IF
(fork-cond (MOD5 (SUB1l I)))
(receive-wait
(phil (MOD5 (ADDL I)))
(QUOTE THINK)
(QUOTE RWM)
(QUOTE
((LAMBDA (X)
(pickup
(MOD5
(SUBl1 (VALUE (slot-value (QUOTE FROM) RWM))))))
(putdown (VALUE (slot-value (QUOTE FROM) RWH))))))
(receive-wait
(phil (MOD5 (SUB1 1I)))
(QUOTE THINK)
(QUOTE RWM)
(QUOTE
((LAMBDA (X)
(pickup
(MOD5
(ADD1L (VALUE (slot-value (QUOTE FROM) RWH))))})
(putdown
(VALUE (slot-value (QUOTE FROM) RWM))))))) 1)
(give-forks
(LAMBDA (I)
((LAMBDA (X)
((LAMBDA (Y)
((LAMBDA (Z)
(receive-wait NIL NIL (QUOTE RWM) (QUOTE (decode))))
(send (phil I) (create-message NIL (QUOTE =AT)))))
(set~-fork-cond I NIL)))
(set-fork-cond (MOD5 (SUBl I)) NIL))))
(putdown
(LLAMBDA (I)
((LAMBDA (X)
(send (phil I) (create-message NIL (QUOTE THINK))))
((LAMBDA (Z) (set-fork-cond I T))
(set-fork-cond (MOD5 (SUBL I)) T)))))

-33~

(decode
(LAMBDA NIL
(IF
(EQ (QUOTE EAT) (slot-value (QUOTE ABOUT) RWM))
(pickup (VALUE (slot-value (QUOTE FROM) RWM)))
((LAMBDA (X) (receive-wait NIL
NIL
(QUOTE RWM)
(QUOTE (decode))))
(putdown (VALUE (slot-value (QUOTE FROM) RWM)))))))
(MOD5
(LAMBDA (N) (IF (ZEROP N) 5 (IF (EQ N 6) 1 N))))
(ANDD (LAMBDA (El1 E2) (IF E1l E2 NIL)))
(phil (LAMBDA (N) :(nth PHILS N)))
(fork-cond (LAMBDA (N) (nth FORKS N)))
(set-fork-cond (LAMBDA (N V)
(RPLACA (NTH FORKS N) V)))
(VALUE (LAMBDA (PN) (CADR (ASSOC PN PN-PAIRS))))
(INI
(LAMBDA NIL
((LAMBDA (X)
((LAMBDA (Y)
(aset (QUOTE FORKS) (QUOTE (T T T T T))))
(aset (QUOTE PHILS)
(QUOTE (PHIL1 PHIL2 PHIL3 PHIL4 PHILS5)))))
(aset
(QUOTE PN-PAIRS)
(QUOTE
((PHIL1 1) (PHILZ2 2)
(PHIL3 3)
(PHIL4 4)
(PHIL5 5))))))))
((LAMBDA (X) (receive-wait NIL NIL (QUOTE RWM) (QUOTE (decode))))
(INI)))
VALUE)

-34-

(DEFPROP philosopher

(NIL labels
((seek-eat

(LAMBDA NIL

((LAMBDA (X)
(receive-wait
(QUOTE FM)
(QUOTE EAT)
(QUOTE RWM)

(QUOTE ((LAMBDA (Z) (seek-think)) (eat)))}))
(send (QUOTE FM)
(create-message NIL (QUOTE EAT))))))

(eat
(LAMBDA NIL
(print3 (QUOTE PHILOSOPHER:)
#pn#
(QUOTE :::EATING!!))))
(print3

(LAMBDA (A1 A2 A3)
((LAMBDA (X) ((LAMBDA (Y) (PRINC A3)) (PRINC A2)))

(PRINT Al))))
(seek-think
(LAMBDA NIL
((LAMBDA (X)
(receive-wait
(QUOTE FM)
(QUOTE THINK)
(QUOTE RWM)
(QUOTE ((LAMBDA (Z) (seek-eat)) (think)))))
(send (QUOTE FM)
(create-message NIL (QUOTE THINK))))))

(think
(LAMBDA NIL
(print3 (QUOTE PHILOSOPHER:)
#pon#
(QUOTE :::THINKING:::)))))
(seek-eat))

VALUE)

-35-

* (EVALU8 (LIST start-dinnerl NIL @SD))

PROCESS::
SD
SUICIDE!
PROCESS:
SD
terminated

PHILOSOPHER: PHILl:::EATING!!
PHILOSOPHER: PHILl:::THINKING:::
PHILOSOPHER: PHIL2:::EATING!!
PHILOSOPHER: PHIL2:::THINKING:::
PHILOSOPHER: PHIL3:::EATING!!
PHILOSOPHER: PHIL3:::THINKING:::
PHILOSOPHER: PHIL4:::EATING!!
PHILOSOPHER: PHIL4:::THINKING:::
PHILOSOPHER: PHILS5:::EATING!!
PHILOSOPHER: PHILS5:::THINKING:::
PHILOSOPHER: PHILl:::EATING!!
PHILOSOPHER: PHILl:::THINKING:
PHILOSOPHER: PHILZ2:::EATING!!
e

i+

* (EVALU8 (LIST start-dinner2 NIL @SD)})

PROCESS::
SD
SUICIDE!!
PROCESS:
SD
terminated

PHILOSOPHER: PHILZ2:::EATING!!
PHILOSOPHER: PHIL4:::EATING!!
PHILOSOPHER: PHIL2:::THINKING:::
PHILOSOPHER: PHILl:::EATINGI!!
PHILOSOPHER: PHIL4:::THINKING:::
PHILOSOPHER: PHIL3:::EATING!!
PHILOSOPHER: PHILl:::THINKING:::
PHILOSOPHER: PHILS5:::EATING!!
PHILOSOPHER: PHIL3:::THINKING:::
PHILOSOPHER: PHILZ2:::EATING!!
PHILOSOPHER: PHIL5:::THINKING:::
PHILOSOPHER: PHIL4:::EATING!!
PHILOSOPHER: PHILZ2:::THINKING:::
PHILOSOPHER: PHILl:::EATING!!
PHILOSOPHER: PHIL4:::THINKING:::
PHILOSOPHER: PHIL3:::EATING!!

~c

“C

—
e

BB

4. Conclusion

This multiprocessing system provides an elegant
means of defining processes in either a shared
environment or distributed processing model.
Communication and synchronization can be modeled after
any of several distributed processing paradigms. Various
primitives are provided for process creation, activation,
deactivation, and internal assignment; along with the
standard SCHEME primitives. The interpreter stack is
handled explicitly in the form of continuation 1links
(c-links), and various new function properties are

available.

Acknowledgement

I would like to acknowledge the aid given me on this
project by Daniel Friedman of the Computer Science
Department of Indiana University, under whose guidance
this project was undertaken. His advice and direction in
developing this system have proved invaluable. I would
also 1like to acknowledge the aid of my wife Susan;
without her patient proofreading of several drafts of
this thesis, the present version would be much less

readable.

37.

10.

11.

12.

13,

Bibliography

Robert J. Bobrow, Richard R. Burton, Jeffrey M. Jacobs,
Daryle Lewis. UCI LISP Manual. PDP-10 docunen-
tation.

Jerome A. Feldman. A Programming Methodology for
Distributed Computing (among other things). Technical
Report 9, Department of Computer Science, University
of Rochester.

Jerome A. Feldman. High level programming for distributed
computing. CACM 22, 6 (June, 1979), 353-367.

Per Brinch Hansen. Distributed Processes: a coacurrent
programming concept. CACM 21, 11 (November 1978),
934-941.

Per Brinch Hansen. RC 4000 Software Multiprogramming
System. A/S Regnecentralen. (1969).

C. A. R. Hoare. Communicating sequential processes.
CACM 21, 8 (August, 1978), 666-677.

C. A. R. Hoare. Parallel Programming: An Axiomatic
Approach. Computer Languages, vol. l. Pergamon
Press, Belfast, 1975.

R. C. Holt, G. S. Graham, E. D. Lazowska, and M. A. Scott.
Structured Concurrent Programming with Opera:ing
Svstems Applications. Addison-Wesley Publisiaing
Company, Reading, 1978.

Wn H. KaniSCh; R. Ho Perrott: Co At R- Hoare[
Quasiparallel Programming. Software Practic: and
Experience, vol. 6, pp 341-356.

John McCarthy, Paul W. Abrahams, Daniel J. Edwac:ds,

Timothy P. Hart, Michael I. Levin. LISP 1.5 Programmer”s

Manual, The M.I.T. Press, Cambridge, 1962.

Stuart C. Shapiro. Techniques of Artificial In:elligence,
142-143. D. Van Nostrand Company, New York, 1979.

Guy Steele and Gerald Sussman. The revised report on
SCHEME, a dialect of LISP. AI Memo 452, (January,
1978) , MIT.

Lynn H. Quam and Whitfield Diffie. LISP 1l.6.

Stanford Artificial Intelligence Proﬁect,

Stanford, 1973.

38

Appendix A -- Implementation Notes

Message gueues
Each process” queue is a linear list of all messages sent
to that process since its queue was last cleared or since
its creation and activation. Message reception entails

retrieving the oldest satisfactory message in the quzue.

Deactivated processes, newly created processes
These processes are stored as suspended processes in an
alternate pool of processes awaiting activation. No
process is guaranteed to be activated from out of this

pool.

DATA structures
Several data structures are defined using DATA and
DATADEF . These functions are used to define a data
structure and automatically write functions for changing

or retrieving the fields of the structure. [11]

INDIVISIBLE
This property name specifies that the function with this
property is to be evaluated uninterruptedly. The
interpreter, upon retrieving a function of this type,
sets the value of a particular register #ind$# to T. As
long as this register is T, the function 1is evaluated.
once the c¢-link is popped, #ind# resumes its normal

value, NIL.

39

EVALUS
This initial call to the interpreter returns a value
which 1is a sequence of the process name and termination
value pairs for each process that was terminated during

evaluation.

RANDOM
The interpreter requires that the additional package of
arithmetic primitives be loaded into the LISP system so

that RANDOM will be defined.

LISP
The interpreter is implemented in UCI LISP, and may not
run in other versions of LISP. However, any changes that

might be needed would be quite minor.

s =

Appendix B -- CODA Interpreter Code

The top level call to the interpreter is througa the
function "EVALUS8"; the driver 1is in the function
"repeateval". The actual evaluating code is containad in
the two functions "dlcode" and "dscode". Varcious
registers are used throughout the interpreter code and

the communication primitives code:

texp# the expression being evaluated

#envi the environment used for evaluation
fevld that part of #exp# already processed
#unl# that part of #unl# still to be processed
tpc# the current interpreter code being uszd

#clink# the explicit CODA stack
$ind# indicates whether exp is INDIVISIBLS:
#pn# the name of the active process
#accumulator# this register collects the
result of evaluating the #exp# of the current
c-link. It serves as a means of carrcying
information over from one c-link of the stack
to the rest. When an expression is
completely evaluated, this register con:tains

the wvalue.

T =

(DEFPROP INTERPRETER

(INTERPRETER ceval
neval
returnto
return
doeval
dlcode
doevlis
dscode
evalu8
Xevalu8
nevaleach
nevalhelp
repeateval
restore-registers
registers
register-download
register-upload
terminate
suspend
Jueue-position
QUOTE
define
LAMBDA
IF
evaluate
catch
labels
aset
aseth
setrl
cset)

VALUE)

(DEFPROP ceval
(LAMBDA (X A) (:= #clink# (register-download)) (doeval X))
EXPR)

(DEFPROP neval
(LAMBDA (X N) (:= #env# N) (doeval X))
EXPR)

(DEFPROP returnto

(LAMBDA (V C) (:= #clink# C) (return V))
EXPR)

=

(DEFPROP return

(LAMBDA (V)
(:= #accumulator# V)
(if #clink#
(then (register-upload))
(else
(error (QUOTE PROCESS-RAN-OUT)
$exp#
(QUOTE FAIL-ACT)))))
EXPR)
(DEFPROP doeval
(LAMBDA (X) (:= #exp# X) (:= #pc# (dlcode)))
EXPR)
(DEFPROP dlcode
(LAMBDA NIL
(QUOTE
(COND ((atomp #exp#)
(return
(COND ((OR (constantp #exp#) (primop #exp#))

$exp#)
((assoc #exp# #env#) (two assoc))
(T (symeval #exp#)))))
((get (one #exp#) (QUOTE QUICK))
(return (EVAL get)))
((get (one #exp#) (QUOTE SLOW))
(APPLY (QUOTE ceval) (EVAL get)))
((get (one #exp#) (QUOTE MOVING))
(APPLY (QUOTE neval) (EVAL get)))
((get (one #exp#) (QUOTE MACRO))
(:= #exp# (APPLY get (LIST #exp#))))
((get (one #exp#) (QUOTE INDIVISIBLE))
(:= #ind# T)
(APPLY (QUOTE doevlis)
(LIST (LIST get) (CDR #exp#))))
(T
(APPLY
(QUOTE doevlis)
(if (AND (NOT (atomp (CAR #exp#)))

_(same (one (CAR #exp#)) (QUOTE LAMBDA)))
(then (LIST (LIST (CAR #exp#)) (CDR #expi)))
(else (LIST (LIST) #exp#))))))))
EXPR)
(DEFPROP doevlis
(LAMBDA (E U) (:= #evl# E) (:= #unl# U) (:= #pc# (dscode)))

EXPR)

=43~

(DEFPROP dscode
(LAMBDA NIL
(QUOTE
(COND (#unl#
(ceval
(CAR #unl#)
(QUOTE
(doevlis (snoc #evlf# #accumulator#)
(CDR #unl#)))))
((atomp (CAR #evl#)) _
(return (APPLY# (CAR #evl#) (CDR #evl#))))
((same (one (CAR #evl#)) (QUOTE LAMBDA))
(neval
(three (CAR #evl#))
(bindup (two (CAR #evl#)) (CDR #evl#) #env#))
((same (one (CAR #evl#)) (QUOTE BETA))
(neval
(three (two (CAR #evl#)))
(bindup (two (two (CAR #evl#)))
(CDR #evl#)
(one (three (CAR #evl#))))))
((same (one (CAR #evl#)) (QUOTE DELTA))
((returnto (two #evl#) (two (CAR #evl$))))
T
(error (QUOTE BAD-FUNCTION-EVARGLIST)
#exp#
(QUOTE FAIL-ACT))))))
EXPR)

(DEFPROP evalu8
(LAMBDA (PL) (Xevalu8 (MAPCAR (QUOTE EVAL) PL)))
FEXPR)

(DEFPROP Xewvalu8
(LAMBDA (LOP)
(if (NULL LOP)

(then NIL)

(else (:= #process-queue-seqg#
(CONS NIL (makepgs (threes LOP))))
#deactivated-pn-seg# (LIST NIL))
#running-pn-seq# (CONS NIL (threes LOP) |)
#closed-seg# (LIST NIL))
#not-activated-process-seg# (LIST NIL))
#numprocs# (LENGTH LOP))
repeateval (nevaleach LOP)))))

wowouonu

(:
(:
(:
(:
(:
(
EXPR)

(DEFPROP nevaleach

(LAMBDA (LOP) (MAPCAR (QUOTE nevalhelp) LOP))
EXPR)

Bl

(DEFPROP nevalhelp
(LAMBDA (LP)
(neval (one LP) (two LP))
:= #pn# (three LP))
(suspended-process (LIST)
NIL
#exp#
#envé
(LIST)
(LIST)
#pc#
(anchor)
¥pni))
EXPR)

(DEFPROP repeateval
(LAMBDA (pp)
(PROG (valueseq processpool)
(:= processpool (CONS NIL pp))
(:= valueseq (LIST NIL))
looplabel:
(if (drainedp processpool)
(then (RETURN (CDR valueseq))))
(:= #running-process# (random-integer #numprocst))
(restore-registers #running-process#)
indivisiblelabel:
(execute #pc#)
(if #ind# (then (GO indivisiblelabel:)))
(if (finished)
(then (terminate #running-process#))
(else (suspend #running-process#)))
(GO looplabel:)))
EXPR)

(DEFPROP restore-registers
(LAMBDA (RN)
(PROG (suspension)
(:= suspension (nth (CDR processpool) RN))
= faccumulator# (&accumulator suspension))
#ind$# (&ind suspension))
#exp# (&exp suspension))
#env# (&env suspension))
#evl# (&evl suspension))
#unl# (&unl suspension))
#pc# (&pc suspension))
#clink# (&clink suspension))
#pn# (&pn suspension))))

&0 o0 o0

|| | | | T | O

o — p—, — p— p— g—
L1} L]

e o8 o0 o0

EXPR)

-45-

(DEFPROP registers
(LAMBDA NIL
(suspended-process #accumulator#

$#ind#
$exp#
$envi
fevl#
#unl#
¥pc#H
#clink#

#pn#))
EXPR)

(DEFPROP register-download

(LAMBDA NIL

(clink #ind# #exp# #env# #evl# #unl# A #clink# #pn#))
EXPR)

(DEFPROP register-upload
(LAMBDA NIL

#ind# ($ind #clink$#))
fexp# (Sexp #clink#))
#env# (Senv #clink#))
$evlf (Sevl #clink#))
#unl# (Sunl #clink#))

tpc# (Spc #clink#))

#pn# (Spn #clink#))
#clink# (Sclink #clink$#)))

*8 00 00 08 08 09

o p— — | —, — p—

LL]

=N owonwownn

EXPR

(DEFPROP terminate
(LAMBDA (N)
(if (NOT (deactivatedp #pn#))
(then (addvalue valueseg
(value-record #pn# #accumulator#) !
(print (QUOTE PROCESS:)
#pn#
(QUOTE terminated))))
(remove-nth N processpool)
(remove-nth (queue-position #pn#
(CDR #process-queue-seqg#) |
#process-queue-sedq#)
(DREMOVE #pn# #running-pn-seq)
(:= #numprocs# (SUBl #numprocs#)))
EXPR)

(DEFPROP suspend

(LAMBDA (N)

(replace (nth (CDR processpool) N) (registers)))
EXPR)

i

(DEFPROP queue-position
(LAMBDA (PN PQS)
(PROG (POSN TPQS)
(:= POSN 1)
(:= TPQS PQS)
gplabel:
(if (NULL TPQS) (RETURN 0))
(if (same PN (process-~name (CAR TPQS)))
(then (RETURN POSN))
(else (:= POSN (ADD1l POSN))
(:= TPQOS (CDR TPQS))
(GO gplabel:)))))
EXPR)

(DEFPROP QUOTE
(two #exp#)
QUICK)

(DEFPROP define
(setrl (two #exp#)
(LIST (QUOTE BETA) (three #exp#) (LIST)))
QUICK)

(DEFPROP LAMBDA
(LIST (QUOTE BETA) #exp¥ #envi)

QUICK)
(DEFPROP IF
(LIST (two #exp#)
(QUOTE
(doeval
(COND (#accumulator# (three #exp¥))
(T (four #exp#))))))
SLOW)

(DEFPROP evaluate
(LIST (two #exp#) (QUOTE (doeval #accumulator#)))
SLOW)

(DEFPROP catch
(LIST (three #exp#)
(CONS (LIST (two #exp#) (LIST (QUOTE DELTA) #cliak#))
#envi#))
MOVING)

_l7—

(DEFPROP labels
(LIST
(three #exp#)
((LAMBDA (Y)
((LAMBDA (Z)
((LAMBDA (B) (NCONC (replace Y B) #env#))
(MAPCAR
(QUOTE
(LAMBDA (D)
(pair (one D) (LIST (QUOTE BETA) (two D) 2))))
(two #exp#))))
(LIST Y)))
(LIST NIL)))
MOVING)

(DEFPROP aset
(LAMBDA (TVN TVAL) (aseth TVN TVAL #env#))
INDIVISIBLE)

(DEFPROP aseth
(LAMBDA (VN VAL ENV)
((LAMBDA (PAIR)
((LAMBDA (Z) VAL)
(COND (PAIR (RPLACA (CDR PAIR) VAL))
(ENV (NCONC ENV (LIST (LIST VN VAL))))
(T (:= #env# (LIST (LIST VN VAL)))))))
(ASSOC VN ENV)))
EXPR)

(DEFPROP setrl
(LAMBDA (VAR VAL) (aset VAR VAL) VAR)
INDIVISIBLE)

(DEFPROP cset

(LAMBDA (VN VAL) (:= #env# (CONS (LIST VN VAL) #env#)).
INDIVISIBLE)

=HB

Appendix C -- Communication Primitives Code

(DEFPROP COMMLIST

(NIL create-message
slot-assign
slot-value
NO-SLOT-MES
presentp
&process—queue-record
NO-PQR-MES
extantp
openp
closedp
closedpexpr
close-communications
open-communications
suicide
suicide-EXPR-layer
clearqg
descriptor
receive-wait
simple-dowmload
wcsetup
rwait-closure
receive
receiveh
dmatchp
send
send-wait
swait-closure
create—-process
anchor?2
activate
activateh
deactivate
dcsetup
termination-value
value)

VALUE)

(DEFPROP create-message
(LAMBDA (SLOT-LIST TRAN)
(NCONC (LIST (LIST (QUOTE FROM) #pn#)
(LIST (QUOTE ABOUT) TRAN))
SLOT-LIST))

EXPR)
(DEFPROP slot-assign

(LAMBDA (SN VAL MES) (aseth SN VAL MES))
INDIVISIBLE)

_ugm

(DEFPROP slot-value
(LAMBDA (SN MES) (two (SASSOC SN MES (QUOTE NO-SLOT-MES3))))
INDIVISIBLE)

(DEFPROP NO-SLOT-MES
(LAMBDA NIL (QUOTE slot-not-found))
EXPR)

(DEFPROP presentp
(LAMBDA (SN MES) (ASSOC SN MES))
INDIVISIBLE)

(DEFPROP &process-queue-record
(LAMBDA (PN PQS) (SASSOC PN PQS (QUOTE NO-PQR-MES)))
EXPR)

(DEFPROP NO-PQR-MES
(LAMBDA NIL (QUOTE no-process—-queue-record-found))
EXPR)

(DEFPROP extantp
(LAMBDA (PN) (MEMBER PN #running-pn-seq#))
INDIVISIBLE)

(DEFPROP openp
(LAMBDA (PN) (NOT (MEMBER PN #closed-seq#)))
INDIVISIBLE)

(DEFPROP closedp
(LAMBDA (PN) (MEMBER PN #closed-seq#))
INDIVISIBLE)

(DEFPROP closedpexpr
(LAMBDA (PN) (MEMBER PN #closed-seq#))
EXPR)

(DEFPROP close-communications
(LAMBDA NIL (NCONC #closed-seqg# (LIST #pn#)))
INDIVISIBLE)

(DEFPROP open-~communications
(LAMBDA NIL (DREMOVE #pn# #closed-seq#))
INDIVISIBLE)

(DEFPROP suicide
(LAMBDA NIL (suicide-EXPR-1layer))
INDIVISIBLE)

(DEFPROP suicide-EXPR-layer
(LAMBDA NIL
($ind #clink# NIL)
(Spc #clink# NIL)
(print (QUOTE PROCESS:) #pn# (QUOTE SUICIDE!!!))
(LIST (QUOTE SUICIDE) #accumulator#))
EXPR)

= e

(DEFPROP clearqg
(LAMBDA NIL

(aseth #pn# (QUOTE (queue)) (CDR #process-~queue-seq#))
INDIVISIBLE)

(DEFPROP descriptor
(LAMBDA (QR) (message-description (about QR) (from QR))
EXPR)

(DEFPROP receive-wait
(LAMBDA (F A MID continuation)
((LAMBDA (R)
(if R
(then (aseth MID R #env#) (wcsetup continuation))
(else (:= #pc# (rwait-closure))
(:= #clink# (simple-download)))))
(receive F A)))
EXPR)

(DEFPROP wcsetup
(LAMBDA (C)
(neval C #env#)
(¢= #ind# NIL)
#evl# (LIST))
#unl$# (LIST))
#clink# (simple-download))
#accumulator# (LIST)))

(2
(:
(3
(:
EXP

)

=0 nuwu

(DEFPROP rwait-closure
(LAMBDA NIL
(LIST (QUOTE
(LAMBDA (FR AB MI CO) (receive-wait FR AB MI CO)))
(LIST (QUOTE QUOTE) F)
(LIST (QUOTE QUOTE) A)
(LIST (QUOTE QUOTE) MID)
(LIST (QUOTE QUOTE) continuation)))
EXPR)

(DEFPROP receive
(LAMBDA (F A)
(receiveh F
A
(queue
(&process-queue-record
#pn#
#process—-queue-seq#))))
EXPR)

-

(DEFPROP receiveh
LAMBDA (F A Q)
(COND ((NULL (CDR Q)) NIL)
((dmatchp (message~description F A)
(description (CADR Q)))
((LAMBDA (MSG) (RPLACD Q (CDDR Q)) MSG)
(message (CADR Q))))
(T (receiveh F A (CDR 0Q)))))
EXPR)

(DEFPROP dmatchp
(LAMBDA (REQD ACTD)
(OR (AND (wildp (source REQD)) (wildp (transaction REQD)))
(AND (wildp (source REQD))
(same (transaction REQD) (transaction ACTD)) |
(AND (same (source REQD) (source ACTD))
(wildp (transaction REQD)))
(AND (same (source REQD) (source ACTD))

(same (transaction REQD) (transaction ACTD)).))
EXPR)

(DEFPROP send
(LAMBDA (DEST MES)
(if (NOT (closedpexpr DEST))
(then
(NCONC (queue
(&process-queue-record
DEST
#process-queue-seqg#))
(LIST
(message-record
(message-description (from MES) (about HMES))
MES))))
(else NIL)))
EXPR)

(DEFPROP send-wait
(LAMBDA (DEST MSG continuation)
(if (send DEST MSG)
(then (wcsetup continuation))
(else (:= #pc# (swait-closure))
(:= #clink# (simple-download)))))

ihn

EXPR)

(DEFPROP swait-closure
(LAMBDA NIL
(LIST (QUOTE (LAMBDA (DS MES CON) (send-wait DS MES CON)))
(LIST (QUOTE QUOTE) DEST)
(LIST (QUOTE QUOTE) MSG)

(LIST (QUOTE QUOTE) continuation)))
EXPR)

-52-

(DEFPROP create-process
(LAMBDA (DEF ENV PN)
(NCONC #not-activated-process-seq#
(LIST
(suspended-process (LIST)
NIL
DEF
ENV
(LIST)
(LIST)
(dlcode)
(anchor?2)
PN))))
EXPR)

(DEFPROP anchor?

(LAMBDA NIL

(clink NIL (LIST) (LIST) (LIST) (LIST) (LIST) (LIST) P’N))
EXPR)

(DEFPROP activate
(LAMBDA (PN) (activateh PN #not-activated-process-seg#.)
EXPR)

(DEFPROP activateh
(LAMBDA (PN NAPS)
(COND ((NULL (CDR NAPS)) NIL)
((EQ PN (&pn (CADR NAPS)))
(NCONC processpool (LIST (CADR NAPS)))
(NCONC #process-queue-sedg#
(LIST (LIST PN (LIST (QUOTE queue)))))
(:= #numprocs# (ADDl #numprocs#))
(DREMOVE PN #deactivated-pn-seqg#)
(NCONC #running-pn-seg# (LIST PN))
(RPLACD NAPS (CDDR NAPS))
PN)
(T (activateh PN (CDR NAPS)))))
EXPR)

(DEFPROP deactivate
(LAMBDA (continuation)
(dcsetup continuation)
(NCONC #not-activated-process-seqg# (LIST (registers)).
(NCONC #deactivated-pn-seqg# (LIST #pn#))
#pn#)
EXPR)

53

(DEFPROP dcsetup
(LAMBDA (C)
(neval C #env#)
(:= #ind# NIL)
#evl# (LIST))
$#unl# (LIST))
#clink# (anchor))
#accumulator# (LIST)))

=0 unn

(
(
(
(
EXP

o

(DEFPROP termination-value
(LAMBDA (PN)
(if (childprocessp PN)
(then (value PN #child-value-seqg#))
(else (value PN valueseq))))
EXPR)

(DEFPROP value
(LAMBDA (PN VS)
(COND ((NULL VS) (QUOTE no-value))
((same PN (%pn (CAR VS))) (%value (CAR VS)))
(T (value PN (CDR VS)))))
EXPR)

Bl

Appendix D -- Help Functions

(DEFPROP HELPLIST
(HELPLIST if

VALUE)

nth

print
replace
finished
expand
position
randigit
constantp
primop
bindup
pairlis
anchor

DATA

DATADEF
assoc

get

makepgs
remove-nth
addvalue
deactivatedp
childprocessp
random-integer)

(DEFPROP if
(LAMBDA (IFEXP)
(COND ((NULL (cdr3 IFEXP))
(RPLACA

MACRO)

(T

(RPLACD
IFEXP
(LIST

(RPLACA (consequent IFEXP)

(QUOTE COND)))

(RPLACA

(RPLACD
IFEXP

(predicate IFEXP))))

(LIST (RPLACA (consequent IFEXP)
(predicate IFEXP))
(RPLACA (alternative IFEXP) (QUOTE T))))

(QUOTE COND)))))

(DEFPROP nth

(LAMBDA (L N)

EXPR)

(CAR (NTH L N)))

..55

(DEFPROP print
(LAMBDA (PL)
(LIST (QUCTE MAPC)
(QUOTE (QUOTE PRINT))
(LIST (QUOTE MAPCAR)
(QUOTE (QUOTE EVAL))
(LIST (QUOTE QUOTE) (CDR PL)))))
MACRO)

(DEFPROP replace
(LAMBDA (O N) (RPLACA (RPLACD O (CDR N)) (CAR N)))
EXPR)

(DEFPROP finished
(LAMBDA (Fl) (replace Fl1 (QUOTE (NULL #pc#))))
MACRO)

(DEFPROP expand
(LAMBDA (L. FN)
(if (NULL (CDR L))
(then (CAR L))
(else (LIST FN (CAR L) (expand (CDR L) FN)))))
EXPR)

(DEFPROP position
(LAMBDA (A L)
(PROG (POSN TL)
(:= POSN 1)
(:z= TL L)
poslabel:
(if (NULL TL) (RETURN 0))
(if (same A (CAR TL))
(then (RETURN POSN))
(else (:= TL (CDR TL))
(= POSN (ADDl1l POSN))
(GO poslabel:)))))
EXPR)

(DEFPROP randigit
(LAMBDA NIL (FIX (TIMES 10 (RANDOM))))
EXPR)

(DEFPROP constantp

(LAMBDA (A)

(OR (NUMBERP A) (NOT A) (same A (QUOTE T))))
EXPR)

(DEFPROP primop

(LAMBDA (A)
(GETL. A (QUOTE (SUBR EXPR LSUBR))))
EXPR)

(DEFPROP bindup
(LAMBDA (VARL VALL AL)
(if (AND (atomp VARL) (NOT (NULL VARL)))
(then (CONS (LIST VARL VALL) AL))

(else (pairlis VARL VALL AL))))
EXPR)

(DEFPROP pairlis
(LAMBDA (NL VL NV)
(if (NULL NL)
(then NV)
(else
(CONS (LIST (CAR NL) (CAR VL))
(pairlis (CDR NL) (CDR VL) NV)))))
EXPR)

(DEFPROP anchor
(LAMBDA NIL
(clink NIL (LIST) (LIST) (LIST) (LIST) (LIST) (LIST) ipn#))

EXPR)

(DEFPROP DATA
(LAMBDA (TYFLDS)
(CONS (PUTPROP
(CAR TYFLDS)
(LIST (QUOTE LAMBDA)
(QUOTE (FLDS))
(SUBST
(CAR TYFLDS)
(QUOTE TP)
(QUOTE
(CONS (QUOTE TP)
(MAPCAR (QUOTE EVAL) FLDS)))))
(QUOTE FEXPR))
(DATADEF (CADR TYFLDS)
(QUOTE (CDR (EVAL (CAR TNEW)))))))
FEXPR)

_57...

(DEFPROP DATADEF
(LAMBDA (FIELDS CDRS)
(COND
((NULL FIELDS) NIL)
(T
(CONS
(PUTPROP
(CAR FIELDS)
(LIST
(QUOTE LAMBDA)
(QUOTE (TNEW))
(SUBST
CDRS
(QUOTE cCCS)
(QUOTE
(COND
((NULL (CDR TNEW)) (CAR CCS))
((RPLACA CCS (EVAL (CADR TNEW)))
(EVAL (CAR TNEW)))))))
(QUOTE FEXPR))
(DATADEF (CDR FIELDS) (LIST (QUOTE CDR) CDRS))))))
EXPR)

(DEFPROP assoc
(LAMBDA (EX NV) (:= assoc (ASSOC EX NV)))

EXPR)
(DEFPROP get
(LAMBDA (A ID) (:= get (GET A ID)))
EXPR)
(DEFPROP makepgs
(LAMBDA (PNs)
(MAPCAR (QUOTE
(LAMBDA (PN)
(LIST PN (LIST (QUOTE queue)))))
PNs))
EXPR)

(DEFPROP remove-nth
(LAMBDA (N P)
(APPLY (QUOTE (LAMBDA (CL) (RPLACD CL (CDDR CL))))
(LIST (NTH P N)))
P)
EXPR)

(DEFPROP addvalue

(LAMBDA (VS NV) (NCONC VS (LIST NV)))
EXPR)

(DEFPROP deactivatedp

(LAMBDA (PN) (MEMBER PN #deactivated-pn-seqg#))
EXPR)

-58-

(DEFPROP childprocessp
(LAMBDA (PN) (MEMBER PN #child-pn-seq#))
EXPR)

(DEFPROP random-integer
(LAMBDA (N) (ADDl (FIX (TIMES N (RANDOM)))))
EXPR)

(DEFPROP MACDEFLIST
(NIL MACRO-DEFINE MACRO-IZE MACLIST LCLIST)
VALUE)

(DEFPROP MACRO-DEFINE
(LAMBDA (PAIRS)
(MAPC (QUOTE
(LAMBDA (PAIR) (MACRO-IZE (CAR PAIR) (CADR PAIR))))
PAIRS))
EXPR)

(DEFPROP MACRO-IZE
(LAMBDA (NICENAME REALNAME)
(PUTPROP NICENAME
(LIST (QUOTE LAMBDA)

(QUOTE (EX))
(LIST (QUOTE RPLACA)
(QUOTE EX)

(LIST (QUOTE QUOTE) REALNAME)))
(QUOTE MACRO)))
EXPR)

(DEFPROP MACLIST

(NIL. (about (LAMBDA (E) (two (two E))))
(from (LAMBDA (E) (two (one E))))
(process—-name CAR)
(gqueue CADR)
(execute EVAL)
(error print)
(pair LIST)
(wildp NULL)
(drainedp (LAMBDA (E) (NULL (CDR E))))
(rac (LAMBDA (E) (CAR (LAST E))))
(rdc (LAMBDA (E) (REVERSE (CDR (REVERSE E)))))
(snoc (LAMBDA (L. A) (APPEND L (LIST A))))
(onep (LAMBDA (E) (ZEROP (SUB1 E))))
(one CAR)
(two CADR)
(three CADDR)
(four CADDDR)
(five (LAMBDA (E) (CADR (CDDDR E)
(six (LAMBDA (E) (CADDR (CDDDR E)
(seven (LAMBDA (E) (CADDDR (CDDDR
(cdr2 CDDR)
(cdr3 CDDDR)
(cdr4 (LAMBDA (E) (CDR (CDDDR E))))
(cdr5 (LAMBDA (E) (CDDR (CDDDR E))))

59

)))
)))
E))))

(cdré (LAMBDA (E) (CDDDR (CDDDR E))))

(ones (LAMBDA (E) (MAPCAR (QUOTE CAR) E)))
(twos (LAMBDA (E) (MAPCAR (QUOTE CADR) E)))
(threes (LAMBDA (E) (MAPCAR (QUOTE CADDR) E)))
(fours (LAMBDA (E) (MAPCAR (QUOTE CADDDR) E)))

(fives (LAMBDA (E) (MAPCAR
(QUOTE (LAMBDA (L)

(CADR (CDDDR L))))

E)))

(predicate CADR)

(consequent CADDR)

(alternative CADDDR)

(block PROGN)

(same EQ)

(rember REMOVE)

(ncdr NTH)

(:= SETQ)

(atomp ATOM)

(symeval EVAL)

(change replace))
VALUE)

(DEFPROP LCLIST

(NIL. (trace TRACE)
(untrace UNTRACE)
(grindef GRINDEF)
(grinl GRINL)
(break BREAK)
(unbreak UNBREAK)
(xevalu8 Xevalu8)
(car CAR)
(cdr CDR)
(cadr CADR)
(editf EDITF)
(defprop DEFPROP)
(setg SETQ)
(dskin DSKIN)
(dskout DSKOUT)
(rplaca RPLACA)
(rplacd RPLACD)
(list LIST)
(eval EVAL)
(null NULL)
(cond COND)
(prog PROG)
(or OR)
(and AND)
(RDC rdc)
(RAC rac)
(SNOC snoc)
(ONEP onep)

-60-

(ONE one)

(TWO two)

(THREE three)

(EVALU8 evalu8)

(XEVALU8 Xevalu8))
VALUE)

-61-

Appendix E -- System DATA Definitions

The following call to the function "DATA" (see Appendix
D) must be made to initialize the system. In the section 2
examples, these calls are made when the file "CODA" is

loaded by ILISP (see Appendix F). "DATA" is discussed by

Shapiro in Techniques of Artificial Intelligence [11].

(DATA suspended-process (&accumulator

&ind

&exp

&env

&evl

&unl

&pc

&clink

&pn))

(DATA clink ($ind $exp $env $evl $unl S$Spc S$clink S$pn))
(DATA value-record (%pn %value))
(DATA message-record (description message))

(DATA message-description (source transaction))

e

Appendix F -- System Startup

The following LISP expressions are used to 1loac all
needed files into ILISP. The first call to "DSKIN" loads
the help functions, the MACROs, the interpreter proper, and
the communication primitives. The second call to "DSKIN"
executes the DATA definition expressions (see Appendix E)
and loads three files of test process definitions. The
calls to "MACRO-DEFINE" define a large group of MACROs for
system and wuser use (see Appendix D). The last expression
is the first of three needed to load the ILISP arithmetical
function package. The other two expressions must be typed
by the user at the terminal and are explained in the ILISP
manual [1]. These expressions are contained in the file
"CODA" that is loaded by specifying an input file <curing

ILISP initialization.

(DSKIN (HELPF.LSP) (MACDEF.LSP) (INTERP.CDA) (COMMUN.CDA))
(DSKIN (SETUP.CDA) (TEST.DPF) (TEST.COM) (TEST.DIN))
(MACRO-DEFINE MACLIST)

(MACRO-DEFINE LCLIST)

(INC (INPUT SYS: (ARITH.LSP)))

—E

