A FORMAL MODEL FOR MESSAGE PASSING SYSTEMS

James E. Burns

Computer Science Department
Indiana University

Bloomington, IN 47405

TecHNIcAL ReporT No. 91

A ForMaL MoDeL FOR MessAGE PAssING SYSTEMs

JAaMES E. Burns

Revisep: SepTemBer 1980

A FORMAL MODEL FOR MESSAGE PASSING SYSTEMS

James E. Burns
Indiana University

Abstract: A formal model for systems of asynchronous processes which
communicate only by passing messages is developed. Although each
process is deterministically specified, two forms of indeterminism are
used in their interactions: 1) the choice of which process takes the
next step, and 2) the amount of delay between the sending of a message
and its receipt. An example is given illustrating the use of the model.

Keywords: asynchronous processing, distributed systems, message
passing.

l. Introduction

In recent research [1l], a formal model for systems of asynchronous
processes which communicate only by passing messages is developed. This
model is designed specifically for presenting the results in that paper.
A more general version of the model is documented here. This model is
very similar in style to the models of Burns, Fischer, Jackson, Lynch

and Peterson [2] and Lynch and Fischer [3].

In distributed systems, processes are inherently asynchronous since
there is no universally available clock for synchronizing thezir actions.
The uncertainties of long distance communication imply indetsrminate
behavior in the sending and receiving of messages. Both forms of
indeterminism are allowed in the model given in this paper. (Note: the
term "indeterminism" is used rather than "nondeterminism" siace all
possible exectutions must be correct before an algorithm is considered

correct.)

A Formal Model for Message Passing Systems Page 2

Processes are allowed to communicate only by sending messages out
of a finite number of output ports. Output ports are connected (by a
fixed communications network defined separately from the processes) to
the input ports of other processes. Thus, a process need not know the
identity of the processes with which it is communicating. (0Of course,
the given facility may be used to construct a virtual communications
systems where processes communicate with one another by name, but all of

this logic must be part of the programs of the processes.)

Indeterminate delays between the sending and receiving of a message
are explictly allowed. Messages sent between a given pair of ports may
even arrive out of order. The only requirement is that if a process
continues to try to receive messages from a certain input port, then any
message sent to this port will be received within a finite number of
steps. Communication has no implied synchronization. A process always
continues to execute after sending a message. If a process attempts to
receive a message when none is ready, the process may continue with
other tasks or wait for a message by explicit looping. The 3jiven
mechanism can be used to implement a virtual system in which processes
exchange messages in pairs, but this must be done explicitly in the

programs of the individual processes.

In the following section a general model for describing message
passing systems will be given. The next section formally defines a
communications system in which processes are arranged in a ring. A
synchronization problem for this type of communications syst=m is also
defined, and a solution of the problem is given. The fourth section

presents a lower bound proof (which also appears in Burns [l]) which

illustrates the usefulness of the model. The final section oresents

A Formal Model for Message Passing Systems Page 3

conclusions.

2. The Formal Model

The following model is very similar to the models in Burns, et al.
[2], and Lynch and Fischer [3]. The main differences are emphasis on
message passing rather than communication through shared variables and

explicit handling of indeterminate delay in message passing.

A process is envisioned as a deterministically programmed
processor, residing at a node of a distributed network. A finite set of
ports connects each process to the network. Every step, or transition,

of a process can be identified as a send, receive or local transition.

One of the ports is associated with each send or receive.

Formally, a process is an 8-tuple p = (Statesp, Inputp, Outputp,
Mp' Xp, Tp’ Msgp, Portp), where Statesp is a non-empty set of
process states, Inputp is a finite set of input ports, Outputp is a
finite set of output ports, Mp is a set of messages, Xp is &
distinguished element of Statesp called the initial state of p, Tp is

the process state transition function of p, Msg_ is the message output

P

function of p, and Port_ is the port designation function of p.

P

Statesp is partitioned into three sets: Sendp, Receivep anc Localp.

The transition function, Tp, is total on two distinct domairs, Tp:

Send Ly > : i NONE -3
p U Loca p Statesp and Tp (Recelvep U NONE) X Mp

Statesp. (NONE is a unique value, distinct from any message.) The

message output function, Msg_: Send,. -> M_ is also total. Finally,

P P P
the total function Portp: Sendp] Receivep -> Inputp U Outputp is
such that if x € Sendp, then Portp(x) e Outputp, and if x €

A Formal Model for Message Passing Systems Page 4

Receivep, then Portp(x) e Inputp.

The basic unit of communication in the model is a "message". To
explicitly allow indeterminate delays between the sending a receiving of
a message, a "delay factor" is associated with each message sent. The

following definitions allow manipulation of messages which are being

transmitted.

For any process p, a message pair of p is an element of M_ x N, where

P
N is the set of non-negative integers. The first element of a message

pair is the message, and the second is the delay factor. An input queue

of p is a finite list of message pairs of p. Let mg = (ml,nl),(mz,nz),

---r(mk,nk) be an input queue of p. Message m; of mg is said to be ready

i1E n, = 0. For any message pair (m,n), define add(mq,(m,n)) =

(ml,nl),(mz,nz),...,(mk,nk},(m,n). Define first(mg) to be my if
there exists a least i, 1<i<k, such that ni=0 and to be "NONZ"
otherwise. Define remove(mg) to be mq if first(mg) = NONE and otherwise
to be (ml,nl),...,(mi_l,ni_l),(mi+l,ni+l),...,(mk,nk) where i is
the least positive integer such that ni=0. Finally, define decr(mg) =
(ml,ni),(mz,né),...,(mk,nﬁ) where ni =0 if ni=0 and niﬂl
otherwise, for i=1,2,...,k.
. _ U
Let P be a set of processes. Define Inputp = pep Input? ' OutputP

0]
= pEP Output . and Mp = U

pep Mp-
every p,r € P such that p#r, M

P P is said to be compatible if for

P M. and the intersections of Inputp with

IanItr and Output_ with Outputr are empty. An instantaneous

P
description (id), q, of a compatible set of processes, P, specifies the

state, p(q), of p for each p € P, and the input queue, i(q), at input
port i for each i € Input,., 1If q and q' are both id's of P and

p(q)=p(g') for each p € P and i(q)=i(q"') for each i € InputP. then

A Formal Model for Message Passing Systems Page 5

9 = q'. Let Q, be the set of all id's of P. Define the id initid(P)
€ Qp to be the unique id such that p(initid(P)) = Xp for all p € P
and such that i(initid(P)) is empty for each i € InputP; initid(P)

is called the initial id of P.

A message system is a pair, S = (P,C), where P is a compatible set

of processes, and C is a subset of Output, x Inputp. C is called the

communication relation of S. The transition function of S, Tg: Qp x

P XN =-> QP' is defined as follows. Assume that g,g' are in QP, p € P,
j € N and Ts(q,p,j) = q'. Then, for every r € P, r # p implies

r(q") = r(q). (That is, no process can affect the state of another
process.) In addition, the appropriate one of the following three cases

must hold.

Case 1l: p(gq) € Send Then g->q' is called a send transiticn of p.

pe
Let I = {i € Input; : (Portp(p(q)),i) € Bk
1) For every i € Input,-I, i(q') = i(q9).
2) p(q") = Ty(p(a).
3) For every q" € QP such that p(g") = p(g9) and
every k € N, p(Ts(q“,p,k)) = p(q') .

4) For every i € I, i(q"') = add(i(q),(Msgp(p(q)),jl)-

Case 2: pl(q) € Receivep. Then g->q' is called a receive
transition of p.
1) For every i € InputP—Portp(p(q)), i(g') = i(q).
2) plg') = Tp(p(q),first(i(q))), where i=Portp(p(qj).
3) For every q" in Qp such that p(gq") = p(q) and
first(i(g")) = first(i(q)) for i=PortP(p(q)), and for
every k € N, p(TS(q“,p,k)) = p(q").

4) i(g') = decr(remove(i(q))), where i=Portp(p(q)).

A Formal Model for Message Passing Systems Page 6

Case 3: p(q) € Localp. Then g->q' is called a local transition
of p.
1) For every i € InputP, i(gq') = i(q).
2) p(q') = Tp(p(Q))-

3) For every q" € Q, such that p(q") = p(q) and

every k € N, p(Tg(q",p,k)) p(gq') .

By 1), a send does not affect the input queues that are not connected to
its output port, a receive does not affect any input queue but the one
it is receiving from, and a local transition does not affect any input

queue. 2) requires that T, conform to the transition functions of the

S
individual processes. 3) states that the action taken depends only on
the current state of the process and (for receive only) on the first
ready message, if any. Finally, 4) says that a send causes its message
to be appended (with delay factor j) to the input ports connected to its
output ports, and a receive removes a message (if one is ready) from its

input queue and decrements the waiting time of all of the remaining,

unready messages.

A message system thus allows messages to be sent with arbitrary,

but finite, delay factors. (If a message is sent with delay factor j,
then at least j receive transitions must be made on the input port
before the message can be read. Note that the FIFO handling of ready
messages guarantees that no message will be delayed forever, assuming
that the receiving process continues to execute receive transitions on
the appropriate input port.) Messages from the same process may arrive
in a different order than they were sent. (The messages can be forced
to be delivered in order by an appropriate restriction on the choice of

delay factors. For example, all the delay factors could be forced to be

A Formal Model for Message Passing Systems Page 7

zero.) Also note that a communication relation can be chosea to allow

broadcasts or one-to-one process communication.

Let S=(P,C) be a message system. A schedule, h, of S is a sequence

whose elements are chosen from the set P x N. Schedule h is admissible

if each p € P occurs infinitely often as a first component ia h.
Admissible schedules are those in which no process in the system ever
stops. (For some problems it might be desirable to allow processes to
halt under certain conditions as in Burns, et al. [2] and Fischer, et

al. [4].)

Schedules allow us to select a single path out of the computation
tree. The two components of an element of a schedule select among the
possibilities for each type of indeterministic choice available. To
prove a lower bound conjecture, typically the conjecture is assumed to

be false, and a schedule is derived which shows a contradiction.

If g is an id of S and h=(p1,nl),(p2,n2),... is a schedule of

S, then the computation from g by h is the sequence of id's dyedorese

such that 9=d, and for j>1, TS(qj,pj,nj) = qj+1' Id q' is reachable
from q by h if q' occurs in the computation from q by h. If h is
finite, then final(S,q,h) is the last id in the computation from g by h.
Let h=(pl,nl},(p2,n2),... be a schedule of S and q;,d5,... Dbe

the computation from q; by h. Then the number of message transmissions

from q; by h is msgs(S,q;,h) = I{ j>1 : pj(qj) € send(pj} bl
An id q is called quiescent if for all schedules h, msgs(S,q,h) = 0.

The worst case number of messages for a system S is given by MSGS(S) =

max {msgs(S,initid(S),h) : h is a schedule of S}.

A Formal Model for Message Passing Systems Page 8

3. The Election Problem

In order to illustrate the model, a formal definiton of a
distributed communication problem is presented. A set of processes, P,

is two-way if for every p in P, Inputp = {clip, cclip} and OJtputp =

{clo cclop}. (Cl is for clockwise, and ccl is for counterclock-

pl‘
wise.) A message system, R=(P,C), is a ring if P is a compatible,
two-way set of processes and if there exists a function, left: P -> P,

such that for any p in P, P = {p, left(p), left(left(p)), ... 1} and

such that C = { (cloleft(p),clip) : p€P}lU{ (cclo,,

P
CCIileft(p)) : p €P}. (See Figure 1l.) The size of ring R is

equal to |P]|.

Representation of a ring R=(P,C) of size N with p € 2.

Figure 1.

A Formal Model for Message Passing Systems Page 9

Let R=(P,C) be a ring such that for each p € P, elected3 is a

subset of Statesp. Then R is said to solve the election problem if for

every admissible schedule, h, of R, there is a q € QP reachable from

q0=initid(P) by h such that p(gq) € elected and for all r € P,

p r
r#p implies that for all q' reachable from dy by h, r(q') €

elected .,
r

Let P be an infinite, two-way set of compatible processes, such

that for each p € P, electedp is a subset of Statesp. Then P2 is

said to solve the general election problem if for every fini:e non-empty

subset, P', of P and every ring, R=(P',C), R solves the elec:ion

problem.

The general election problem was first posed by LeLann 5], who
provided a solution which required N2 messages for a ring of size N.
Chang and Roberts [6] gave a solution which uses only N log N messages
on the average, but still has a worst case performance of N2 messages.
Hirschberg and Sinclair [7] found a solution which uses O(N _og N)
messages in the worst case. The algorithm given below is a slight
improvement of Hirschberg and Sinclair's. Each process is identically
programmed except for a constant, which is initialized to a distinct
integer value for each process, and for its input and output ports,

which are uniquely named. The process named process; has input ports

CliI and ccliI and output ports cloI and ccloI.

The algorithm for each process is expressed in a Pascal-like
notation. The instructions send and receive have been added. The
instruction send(dir,msg) in process; causes a message with value msg
to be sent out of port clo, for dir=clockwise and out of port cclo, if

dir=counterclockwise. The function ready(dir) tests for the presence of

A Formal Model for Message Passing Systems Page 10

a message which is ready to be input from port cliI or ccliI i-£
dir=clockwise or counterclockwise, respectively. Finally,
receive(dir,msg) causes a ready message to be received and placed in
variable msg from input port cliI if dir=clockwise and ccliI if

dir=counterclockwise.

The reader should be able to see how to transform the following
algorithm into the state transition system of the formal model. Note
that the "receive" states of the formal model actually correspond to
statements of the form "if ready(dir) then receive(dir,msg)"™ in the
algorithm. This causes a message to be received if one is ready and
continues otherwise. Finally, the "elected" states of each process are

exactly those in which Boolean variable "elected" is true.

When connected to form a ring, any subset of the processes defined
below will execute as follows (from the initial id). Each process tries
to become elected by sending probes around the ring. (A prcbe contains
the priority of the originating process and the remaining distance that
it is to be sent.) A probe goes a fixed distance around the ring and is
acknowledged if it does not encounter a priority with a highker value.
(An acknowledgment has a distance field of zero.) Each proke is sent
twice as far as the last in the opposite direction. The prcbes of the
process with the highest priority value will always be ackncwledged.

One of its probes will therefore eventually go far enough sc that it
will return to the originating process, which causes the hichest
priority process to become elected. (Election occurs when & probe is
received by its originating process.) Also, no other process can become
elected since the highest priority process will not pass on their

messages. The solution is thus easily seen to be correct in that it

A Formal Model for Message Passing Systems Page 11

chooses exactly one process in finite time.

program processg; (¥ I is an integer which is ¥)
const pri :="1; (* unique for each process ¥*)
type direction = (clockwise, counterclockwise);
message = record

mpri : integer;
mdist : 1nteger
end;

var maxpri, dist : integer;
elected, ack : Boolean;
msg, mmsg : message;
dir, mdir : direction;
function rev(dir : direction): direction;
begin
if dir = clockwise then rev := counterclockwise
else rev := clockwise
end;
begin
elected := false,
maxpri := pri
msg.mpri := prl,
msg.mdist := 1;
dir := clockwise;
while true do begin
send (dir, msqg); (* send probe ¥)

ack := false;
while not ack do
for mdir := clockwise to counterclockwise do
1f ready(mdir) then begin
recelve(mdlr mmsg) ;
if mmsg.mpri >= maxpri then with mmsg do

if mdist=0 then (* received ack ¥*)
if mpri=pri then ack := true
else send(mdir ,mmsg) (* pass on ack *)
else begin (* received probe ¥*)

maxpri:= mpri;

mdist := mdist -1;

if mpri = pri then elected := true
else if mdist > 0 then Bp—

T send(mdir,mmsg) (* pass on probe *)
else send(rev(mdir) ,mmsqg) (* acknowledge ¥*)
end
msg.mdist := 2*msg.mdist; (* send probe twice as far *)
dir := rev(dir); (* in the opposite direction ¥)

end;
end.

A Formal Model for Message Passing Systems Page 12

Note that this solution is designed specifically to solve the
general election problem as formally specified. Details neczssary in a
more realistic solution are omitted. For example, additional types of
messages are needed to terminate the election so that the processes may
be freed to do other processing. The reader should have no trouble with

the appropriate modifications.

The algorithm given here is very similar to Hirschberg and
Sinclair's. The main difference is that in Hirschberg and Sinclair [7],
messages are sent in both directions at the same time for a jiven
distance, while the new algorithm saves messages by alternating the
direction in which messages are sent. This modification provides an
algorithm which has better worst case performance than Hirschberg and

Sinclair for any given arrangement of priorities about the ring.

Theorem 1: There exists a solution, P, to the general election problem

such that for any subset, P', of P and any ring, R=(P',C), formed from

P', MSGS(R) < 4N + 6N log N, where N = ip"].

The proof of this theorem and that of the following corollary

appear in [1].

Corollary 2: There exists a solution, P, to the general election

problem such that for any subset, P', of P with B N, a power of

two, and any ring, R=(P',C), formed from P', MSGS(R) < N + 3N log N.

A Formal Model for Message Passing Systems Page 13

4. A Lower Bound

This section shows how the model can be used in the proof of a
lower bound corresponding to the algorithm given in the previous
section. The proof requires induction on the length of "lines" (rings

which have been "cut"), which are defined below.

Representation of Line L=(P,C)

Figure 2.

Let P be a compatible set of two-way processes, with distinguished

elements lrnP and rm., (lm and rm are used for "leftmost" and

P
"rightmost", respectively). Let left be a function, left: P—{lmP} ->

P-{rmp} such that P = {rmP, left(rmP)r leftz(rmp), sae

| B2

left (rmP)}, where leftl(rmp) = left(leftl'l(rmp)) for i>1, and

where leftl = Jeft., Then the message system L=(P,C) is a line if C = {

(cloy g (pyrlip) = p € P={lmp} } U { (cclopy,celiy gy (p)) +
p € P-{lmp} }. (See Figure 2.) The length of line L=(P,C) is |P].

A set of lines, L, is compatible if for every pair of lines, L1=(P1,Cl)

and L2=(P2,C2), in L, P1 U P2 is a compatible set of processes. If
L1=(P1,Cl) and L2=(P2,C2) are lines, then join(L1l,L2) is the line (P,C)

where P = P1 U P2, lmP = lmPl' rm, = IMp, and where C = Cl1 U C2

A Formal Model for Message Passing Systems Page 14

U {(clo cli)} U {(cclo ccli) ¥
rmpy "7 T lmp, lmpy! My

(See Figure 3.) If L=(P,C) is a line, then ring(L) is the message

m

system system (P,C'), where C' = C U {(clo v ol E)} u
rrnP 1mP
{(cclo, , ccli_)}. A line, L=(P',C), is a line of P if P' is
P P
a subset of P.

Representation of join(L1,L2)

ﬁei_\ T impz)
j L 1

L1 L2

| L]

join(L1l,L2)

Figure 3.

Lemma 3: Let P be a solution to the general election problem. For
every i>0 there is an infinite compatible set, Liv of lines of P such
that for every L € L., the length of L is n=21 and msGs (L) > 14+

(L/4)N log N.
Proof: By induction on i.

BASIS. Suppose there are three processes p,p',p" in P which will
not send a message before receiving one. Consider three rings,
Rx=({p,p'},Cx), Ry=({p',p"},Cy) and Rz=({p",p},Cz). By assumgtion, no
messages are sent in any of these rings, so each process proceeds
independently. Since P solves the general election problem, cne of the
processes in Rx must reach an elected state after a finite number of

steps. Without loss of generality, assume that p becomes elected in RX,

A Formal Model for Message Passing Systems Page 15

which implies that p' cannot be elected. But then p must also be
elected in Rz, so p" cannot. Now p' and p" cannot become elected on
their own, so Ry will never elect a process, a contradiction.
Therefore, by removin, at most two processes from P, an infinite set of
processes, P', is obtained, each of which will send a message after a

finite number of its own steps. Then the lemma holds for i=0 with Ly =

{ {p},8) : pepP'}.

INDUCTIVE STEP. Assume that the lemma is true for i-1. Let N =

2%, Tek L, L' and L" be any three lines in Li_y-

Claim: At least one of the six lines: La = Jedn(L;L"); Lb =
Jeln (L L") 4 LC = Join{(L"™,L), Ly = JeIniE,E") 4 ke # jein(L" L'} and
Lf = join(L',L), can be made to send 1 + (1/4)N log N messages, from
their respective initial id's. (See Figure 4.) Since sets of three

lines can repeatedly be chosen from L, , without repetition, it is

clear that the claim implies the inductive step.

By the inductive assumption, there must .e a finite schedule, hl'
of L for which msgs(L,initid(L),hl) > 1+ (1/4)N/2 log (N/2). Also,
it may be assumed that final(L,initid(L),hl) is quiescent, since, if
this cannot be done, the claim holds triviallly for L,. Let h; and

h; be similar schedules for L' and L", respectively. The delay factor

for messages sent out of clo

i and cclolm can have no affect

L L
on the state changes of processes in L. Let h be identical to hl

except that the delay factor for each send transition using port

ClormL or cclo1mL is set to |h;| + |hjl + |hj{l. Define h'

and h" similarly for L' and L", respectively.

A Formal Model for Message Passing Systems Page 16

Representation of lines La,Lb,...,Lf and rings R1,R2

Figure 4.

Suppose the claim is false. Let 9, = final(La,initid(La),hh').
A set P_ and a schedule h, of L, which contains only elements of P
in the first component and such that final(La,qa,ha) is quiescent may
be generated by the procedure defined below. By assumption,
final (L,initid(L),h) and final(L',initid(L'),h"') are quiescent, so the
only processes which may send messages from q, are those which have

received messages resulting from the join. (The choice of delay factors

prevents any interaction during hh'.)

Pa and h, are generated by the following iteration. Initially,

let P, = {rmL,lmL.} and let h, = the null sequence. Repeat the

following four steps while final(La'qa'ha) is not quiescent.

A Formal Model for Message Passing Systems Page 17

1) Let h, = (py,0),(Pys0)yeces(Py,0), where P ={PyrecerPyl.

2) Let h3 be the shortest non-null prefix of h2h2h2... for which
the last transition in computation from q, by hah3 is a send.

3) Add the process which will receive the message generated in step
2) to Pa.

4) Append h3 £a ha‘

(Note that the above procedure is not constructive since there is no
procedure for deciding if a given id is quiescent.) If the claim is
false, the above procedure always terminates with less than N/4 sends
because msgs(La,initid(La),hh') = msgs(L,initid(L) ,h) +
msgs(L',initid(L') ,h") > 2*(1 + (1/4)N/2 log (N/2)) =1 + (1/4)N log N

+ (1 - N/4). Generate hb'hc'hd'he'hf and Pb,Pc,Pd,Pe,Pf in a

similar way for Lb,Lc,Ld,Le and Lg, respectively. Note that since
messages may not travel further than half a line length from the point

of the join, the sets P_, P, P, and Py, P P are mutually

e'
disjoint.

Now consider R1l = ring(join(La,L“)) and R2 = ring(join(Lc,L')).
(See Figure 4.) It should be clear that q; = final(R1l,initid(R1),

22|h"hahbhc) and g, = final(RZ,initid(RZ],hh'h“hdhehf) are quiesce

Thus, for each ring, there are processes, p,; and Pys which will be
elected on their own (with no further messages sent) from q; end dyr
respectively. (That is, there is a finite (possibly empty) schedule h4
containing only P in its first components such that
pl(final(Rl,ql,h4)) e elected(pl). A similar schedule exists for

P,.) Assume, without loss of generality, that p; € L, and p;

€ Py U P,. There are three possibilities for p,.

Case 1l: Py, € Ly and £ B, U Pg. Then no process can become

A Formal Model for Message Passing Systems Page 18

elected in Rb = ring(Lb) from q‘=fina1(Rb,initid(Rb),h'h‘hbhe).
This contradicts the fact that P solves the election problem.
This case will be explained more carefully; the others are
similar. Since Py and P, are disjoint, q' is quiescent.
Suppose some process, Pi, is elected from gq' in Rb' and

assume without loss of generality that P3 is within N/2
positions of the middle of L. But then p; must be distiact
from p,, and so both p; and pj can be elected in Rl at

the same time, a contradiction.

Case 2: P, € Lg and & Pq U Pg. Then no process can become
elected in Rc = ring(L,) from final(Rc,initid(Rc) ,hh"h hj),
another contradiction.

Case 3: Py, € Lg¢ and g Py U Pg. Then two process may become
elected simultaneously in Ra = ring(La) from final(Ra,initid(Ra),

hh'h_h.), again, a contradiction.

Since the hypothesis leads to contradiction, it must be false, hence the

claim is proved and the lemma holds. [J

Theorem 4: If P is a solution to the general election proklem, then for

all N>1, there exists a subset P' of P with |P'| = N, and & ring

R=(P',C) with a schedule h such that at least (1/8)N log (N/2) messages

are sent in R from initid(R) by h.

Proof: Let i = floor(log N). By the lemma, a line of P can be found
with length 21 which can be made to send more than (1/4)*2j*(1og zi)

= (1/8)*23*] x(10g 21*1/2) > (1/8)*N*(log (N/2)). Such a line

can easily be incorporated in a ring of P of length N, so the theorem is

true. T

A Formal Model for Message Passing Systems Page 19

Corollary 5: If N is a power of two and P is a solution to the general

election problem, then there is a ring R=(P',C) with P' a suoset of P
and |P'] = N and a schedule h of R such that at least (1/4)N log N

messages are sent in R by h from initid(R).

Proof: This follows directly from the lemma. [

5. Conclusion

A formal model has been presented for precisely specifying problems
for distributed systems which communicate only by message passing.
Tight bounds were shown.for the number of messages used to solve a
particular problem, the general election problem, in a ring network.
The techniques used proving the lower bound may find a wider application

in other problems of this kind.

The model is essentially a shared variable model of asynchronous
computation in which access to the shared variables (input cueues) is
restricted. Any process which is connected to an input queie by the
communication network may append a message to the queue, but only the
receiving process may retrieve information from the queue. This
retrieval is highly constrained in that only one message may be read at
a time, and the message must be ready. This paper has showr how a
shared variable model may be used to model a reasonable system of

processes communicating by message passing.

Further work remains to be done for other types of communications
problems and for other forms of networks. A point of particular

interest is dynamic systems. Dynamic systems allow processes to freely

A Formal Model for Message Passing Systems Page 20

enter and leave the system, either with or without explicit notifica-
tion. The model in this paper can be extended to handle dynamic systems
by introducing new types of transitions which allow processes :o be

added or deleted and allow the communication relation to be changed.

Acknowledgments: The investigation of the lower bound problem was begun

as a result of a discussion with Dan Hirschberg. Robert Filman, Edward
Robertson and Dan Friedman were kind enough to read and criticize the
work. Thanks also goes to Nancy Lynch for pointing out an error in the

proof of the lower bound.

REFERENCES

[1] Burns, J. Bounds on message passing in asynchronous networks.
In preparation.

(2] Burns, J., Fischer, M., Jackson, P., Lynch, N., and Peterson, G.
Shared data requirements for implementation of mutual exclusion
using a test-and-set primitive. Proceedings of the 1978 I[nt'l.
Conf. on Parallel Processing, Aug. 1978, pp. 79-87.

[3]1 Lynch, N., and Fischer, M. On describing the behavior and imple-
mentation of distributed systems. Lecture Notes in Computer
Science 70, Semantics of Concurrent Computation, Goos, G., and
Hartmanis, J., (Eds.), Springer-Verlag (1979) 147-171.

[4] Fischer, M., Lynch, N., Burns, J., and Borodin, A. Resource al-
location with immunity to limited process failure. Proc. 20th
Annual Symp. on Foundations of Computer Science, Oct. 1973,
pp. 234-254.

[5] LeLann, G. Distributed systems - towards a-formal approach,
Information Processing 77 (IFIP), North-Holland Pub. Co., Amster-—
dam (1977), 155-160.

[6] Chang, E., and Roberts, R. An improved algorithm for decentralized

extrema-finding in circular configurations of processes. CACM 22,
5 (May 1977), 281-283.

[7] Hirschberg, D.S., and Sinclair, J.B. An efficient algorithm for
decentralized extrema-finding in circular configurations o>f
processors. Manuscript, Rice University, 1979, 5 pp.

