REFERENCING LISTS BY AN EDGE
David S. Wise
Computer Science Department

Indiana University

Bloomington, Indiana 47401

TecHnicAL ReporT No. 9

REFERENCING LISTS BY AN EDGE
Davip S. WisEe

Revisep: June, 1975

To appear in
Communications of the ACM

“]Gﬂe S Ja/)?' 1976

REFERENCING LISTS BY AN EDGE

David S. Wise
Computer Science Department
Indiana University

Bloomington, Indiana

Abstract
An edge reference into a list structure is a pair of pointers
to adjacent nodes. Such a reference often requires little addi-
tional space, but its use can yield efficient algorithms. For
instance, a circular link between the ends of a list is redundant
if the list is always referenced by that edge, and list traversal
is easier when that link i1s null. Edge references also allow thread-
ing of non-recursive lists, can replace some header cells, and
enhance the famous exclusive-or trick to double-link lists.
Key words and phrases: 1list processing, circular, doubly-linked,
overlapping sublist, header cell, pointer, cursocr.

CR categories: 4.22, 4.10, 3.73.

P

Introduction and Definition

The purpose of this communication is to indicate some natural
advantages of referring to and into lists by polnting to an edge
(i.e., to two adjacent nodes). These appear as space savings for
data structures, and often as time savings for algorithms which
depend upon edge references.

In the following sections the list structures under considera-
tion are defined, and the technique of referring to these structures
by the edge between first and final nodes is demonstrated. The
sample algorithms, not surprisingly, involve traversals. However,
edge references are shown to yield faster list traversal algorithms
when used in place of circular links and they allow a natural thread-
ing of non-recursive lists. Finally, an application of edge pointers
into a 1list (to any pair of adjacent nodes) is presented. Such a
reference (or cursor) enables the famous "exclusive-or" double link-
ing technique to be used in many situations where double linking
is needed, but space is tight.

Knuth's terminology [1] on list structures is used here with the
definition of a 1list slightly modified. A list is an ordered sequence
of zero or more elementary elements or extant lists. This definition
is weaker than Knuth's in that sublists are allowed but stronger than
his definition of a List because a 1list cannot contain itself. Recur-
sive lists are therefore prohibited. Sublists need not be disjoint so
we are considering lists which can overlap or which are shared with
other structures. The act of adding a sublist which is already part
of another self-sufficient structure, thereby establishing an overlap,
is sometimes called borrowing. The resulting structures describe those
used in LISP [2], SAC-1 [3], and SLIP [4]. (As in the former langauges,

we shall accept restrictions on the ways a shared sublist can be changed.

-

The INFORMATION field provided in a fixed size node often plays
a dual role in a list environment. It is large enough to carry the
elementary item which is required by the host hardware (e.g., a float-
ing point number) but is often only used to point to a sublist. With
an entire word (e.g., 36-48 bits) available for a pointer on many
machines we can maintain two (18-24 bit) pointers to each substruc-
ture with no increase in node size. These pointers will be used here
to point to the first (H or HEAD) and last (T or TAIL) node of every
sublist, and every list pointer will be so substructured.

Figure 1 i1llustrates a typical list. Each node carries a bit in-
dicating the TYPE of the INFORMATION field, elementary or sublist,
and a pointer to the NEXT node in the list. The double-pointer (T,H)
refers to the edge which would connect the first and last nodes of a
list and allows direct access to their contents. The use of the link
or NEXT field of node T is distinguished because it affects the design
of all algorithms which operate on the list and therefore it charac-
terizes the structure. Very often, as in Figure 2b, it is simply
null; it can also be a circular link back to H as in Figure 2b or a
thread which is an "up" link to a higher level in the 1list structure
and is often tagged by an extra bit to distinguish it from "across"
links (Figure 2c). Direct access to this distinguished field via the
edge reference allows its use to be changed each time the list is ac-
cessed afresh.

For a reference to an empty list we specify H = A =T . Other
representations of the empty list are possible but this convention
provides a symmetry desirable in some algorithms below. In singly
linked systems where elementary items are represented by references

to atomic structures and the empty list is itself a reference to the

-4

atom A [2], the H = A =T convention is a special case of double-
referencing every atomic item, A , by T = A and H =A . That
is, T = A indicates that the double pointer refers to the atom H ;
the TYPE field is therefore redundant. The convention of referring

to every 1list by its HEAD and TAIL effects the standard linking struc-
ture for a queue (actually an output-restricted deque). An extension
of that scheme [1l:p.257] suggests that an empty list might alterna-
tively be represented with HEAD null and with TAIL pointing to the
word (QQE the node) containing the list pointer, where the HEAD and

NEXT fields are the same relative positions within a word. Then a

pointer to an empty list would be :f . A and a node pointing
to an empty sublist might appear as == This
possibility influenced the ordering of double pointers as (T,H)

instead of (H,T) .

Operations

The main benefit of direct access to the last node of a list is

easy alteration of its link field. Some well-known operations thereby
become simple: adding to the tail of a queue, list concatenation (NCONC,
as opposed to APPEND, in LISP), and returning a list to available space
without traversing it. An edge reference to the list allows the pre-
vious available space list to be concatenated at its tail [1:2.2.3-29b]
or an edge reference to available space allows the list being returned
to be spliced on at the end of the available space list. Weizenbaum
used the latter operation to delay the erasing of sublists of an erased

list until all space previously available had been exhausted [4 and 1:

oL e o [

.

Inspection of Figure 1 convinces one that it would be trivial to
insert the circular link into any edge referenced list: NEXT(T) <« H
The redundant circular linking can often be abandoned with double
pointers. That is, the structure of Figure 2a is profitably converted
into that of Figure 2b when the structure is in fast memory and avail-
able to only one user. Whenever a list is being traversed it is more
efficient to detect the last 1link because it is null (Figure 2b) or
tagged as a thread (Figure 2c¢) than to test it equal to a starting
address stored as a variable. If circular linking is needed later,
say for the rapid rolling of a round-robin queue, it can still be res-
tored. On the assumption that such operations are restricted to more
statle structures, the schemes of Figures 2b and 2c¢ will be used here.

Algorithm 1 is offered as an example of the power of changing
from circular to linear linking. It takes as input a circular list
similar to that of Figure 2a and reverses all links at the top level.
The initial pointer is (T,H) . (Actually the initial value of T
is not used.) In studying the algorithm, note carefully the effect
of the first execution of the loop. For the empty list nothing is
done. PFor a list of n > 0 nodes the first iteration changes the
structure from that of Figure 2a to a slightly recordered list of the
type shown in Figure 2b, and n more iterations remain to reverse the
list.¥ Comparison of this algorithm to Knuth's solution for a re-
stricted problem [1:2.2.4-5 on p.547], demonstrates that this is faster

for all but very short lists.

*¥*This elegant loop is due to Benna Kay Young.

Algorithm l: Reverse a circular list. A 1s an auxiliary pointer.

A« A

while H # A do
T =& 3
A< H ;
H <« NEXT(H) ;
NEXT(A) <« T

H % &

T<«~>H . N

The last step, exchanging T and H , is not essential to Knuth's
problem but is included to restore the conventional pointer.
Algorithm 1 does not initially require a tail pointer to operate
properly, but its operation is more easily understood from the view-
point of paired pointers. Algorithm 2 is offered as an algorithm
for which this paired referencing is essential. It traverses a
list in depth-first order (if a tree then in preorder) as might be
done during the marking phase of garbage collection. Threads are
placed as in Pigure 2c only while traversing a particular sublist
(newly answering [1:2.3.5-2]). Since sublists need not be disjoint,

threads may change during the course of execution.

Algorithm 2: Traverse the non-empty structure of the isolated

node P in preorder assuming NEXT(P) 4is initially null.

while P # A do

(Visit node P;

while TYPE(P) is sublist & HEAD(P) # A do
NEXT (TAIL(P)) « NEXT(P);
P « HEAD(P);
Visit the son-node P;

[P « NEXT(P) . ®

T

Another dynamic threading scheme for lists would thread the end
of a sublist to the father: NEXT(TAIL(P)) «+ P . 1In Figure 2c the
thread would point to N . Using such a scheme one can write effi-
cient traversal algorithms for lists which are sensitive to level
changes because a thread from P 1s then distinguished from an ordi-
nary NEXT 1link by TAIL(NEXT(P)) = P . Such algorithms are neces-

sary to copy or compare lists.

Off with his Header

The reader familiar with some uses of header cells [1,4] might
suggest that the usual contents of such a cell has been simply moved
into the sublist reference (T,H) into NEXT(T) , and into node
H . To do so would indicate confusion between two concepts which
are often used together. Some header cells [l:p.409] do not refer
to edges, and some edge references may point into structures with no
sublists (i.e. 1linear lists) and therefore with no need of header
cells. Space may indeed be saved by using an edge reference rather
than a header cell when the only purpose of the header would be to
access the TAIL or to mark the limit of circular linking.

Without header cells some restrictions on the way in which list
structures can be changed arise because lists can overlap. Under
the philosophy of Lists in [1:2.3.5] where any change in a sublist
affects all references to that list, the first and last nodes of any
sublist may not be changed. In that case, the extremal nodes (perhaps
coinciding) play the role of a list header but changes are allowed

between them.

Another philosophy [3] allows lists to be borrowed, and altera-
tion of a borrowed list has only local impact. This means that
alterations of shared singly linked lists, like Figure 1, must
not occur anywhere but at the left end, as in Figure 3. When a
change is made elsewhere the shared list must be copied up through
the change, borrowing the suffix from the original list. (This

technique is essential to LISP [2].)

B-Lists
Doubly linked sublists might be implemented by using the shaded
fields of Figure 1 as reverse pointers, but the technique described
below might also be used to implement doubly linked lists with no addi-
tional space. Let B's NEXT field take the value of the "exclusive or",
denoted ® , of references to the left and right neighbors, A
and C , of node B . Knuth points out [1: 2.2.4-18] that any
invertable operation might do for ® , but we make this choice
because ® 1is 1ts own inverse and is commutative, assoclative,
and (usually) cheap to implement. This structure is called an #$-1list
and 1is dillustrated in Figure 4. Such a structure may be
circular if needed. Sikléssy uses a similar scheme for binary trees [5].
Just as we represented an edge reference to a list, we shall
now assume that a reference into a list is represented by an edge
(two adjacent nodes). This convention distinguishes between a
reference to a node, from which only its information can be retrieved,
and a reference to a position in a list from which the rest of that

list may be traversed. Calling the latter a cursor, we see that

a cursor can refer to a node in the list, but a pointer to a
node 1s not sufficient to determine a cursor at its position.

The list references discussed earlier in this paper can be
taken as cursors to the edge linking the ends of a ®-1list. Simi-
larly, if (T,H) is taken to be an arbitrary cursor, then
T refers to a node on the left of the cursor, and H points to
the node to the right. Operations to the right of a cursor corre-
spond to operations at the head of a list when the cursor is taken
as a 1ist reference.

Several operations on a cursor into a @&-1ist are indicated
below. It is important here that A be 0 , the identity, and that
the empty list (or null cursor) is indicated by H =T = A .
Although the #-1ist belongs to folklore, these operations are worth
repeating here to demonstrate that they are only a little more
expensive than comparable modifications on paired-pointers as list
references. Edge references into dynamic structures require more

bothersome maintenance.

The extra time needed for this scheme is offset by space savings.
For a doubly-linked, multi-levelled structure we can use a short
NEXT field for double-linking and a long sublist reference (or cur-
sor) rather than vice-versa. This means that the NEXT field, in
every node, is short, and the long field is available for INFORMA-

TION when the node represents an elementary item.

Algorithm 3: Move cursor (9 1) to the right in a @&-1list.

A dis an auxiliary variable.

=1f=

if H # O then
A = g
H+« T & NEXT(H) ;
T« A . 1

Algorithm 4: Insert node P into a circular 6-1list to the

right of a cursor (T,H)
NEXT(P) « H® T
if H=0 then T = P else
NEXT(T) <« NEXT(T) @ H ® P
{ NEXT(H) <« NEXT(H) 6 T & P

H=P2 . B

Algorithm 5: Delete the node to the right of a cursor in a

circular #-1list. TEM and C are auxiliary varilables.

TEM = H @8 s
if TEN =@ Eheh

|

else

e

f H =0 then Underflow

lge: € =T % 0

@

C « T ® NEXT(H)

NEXT(C) « NEXT(C) & TEM;

NEXT(T) <« NEXT(T) ¢ H & C .
Return H to Available space.

H+C » B

Application

Although the space required for the NEXT-field of an &-1list is

half that required for standard double linking (using two pointer

W i

fields), the requirement for a cursor reference to such a list is
doubled. Moreover, shared references are volatile; a change on the
structure at one cursor may render another meaningless. Such a prob-
lem occurs when Algorithm 4 or 5 is performed on one of two initially
identical cursors. These problems, aggravated by the increased time
needed to alter a reference, have stigmatized the 6-list as a curio-
sity of computer lore, useless for practical applications.

That brand is not entirely appropriate. The ®-1list is used as
the basic data structure in the VW text editor [6] which 1s remark-
ably versatile for its size. Text and user commands are represented
in VW as lists of ANSI-coded characters, one character per node. The
text list is only a "window" on the file being edited, with the re-
mainder on input and output files linked through extremal nodes dis-
tinguished by ANSI (communication control) characters barred in user
text. Because there are no sublists, the single NEXT field is the
only overhead in each node besides the seven-bit character.

Every cursor poilnts to an edge between two nodes, and all editing
operations can be run forwards or backwards from the initial cursor.
The bi-directionality of all commands yields much of the power of VW
and, therefore, the ease with which that feature i1s implemented through
B#-lists was most surprising. When an operation is to be run in a re-

versed direction, the initial cursor need only be momentarily reversed!

Algorithm 6: Reverse the ®-1list with reference (T,H) .

B2 B « B

If double pointers were used for the double linking then a direc-
tion toggle would be fested each time a move was made selecting which

pointer to use. With ®#-1lists, however, the commutativity of the

el B

exclusive-or operation allows the order of the initial cursor to
control the direction of each move and implies a similar order for

the derived cursor. Therefore, the time and code overhead required
for computing succeeding cursors for ®-lists is offset by the required
test of the direction toggle under standard double linking.

The multiple reference problem is resolved by checking all en-
dangered cursors whenever the data structure is altered. There are
only seven cursors in the system, of which at most two may be side-
effected by an edge change,so these are always checked after critical
operations.

The €-1ist is a successful data structure for VW because of the

2llnodes but only about 23 cursors

space savings achieved. There are
for a single user. The space allotment could increase more than
sixty per cent (depending on hardware) in providing standard double
linking.

Therefore, ®-1lists can be practical when there are many nodes but
only a few cursors in a dynamic data structure. Checking all side-
effectable cursors after any change in the structure guarantees its
integrity, and the limiting of double-pointers assures the reduction
of space.

One other data structure for which the ® trick can be useful is
the ordered tree. Each ®-1list might be restricted to have only one
cursor, namely the list reference, so that changes to that list would
side-effect no other cursors. With overlaps thereby prohibited the

resulting structure is an ordered tree, with a father node pointing

to an edge between two of its sons which can be changed safely.

R

Conclusion

Edge references are more powerful than node references into a
data structure, and they cost surprisingly little. As references
to lists they can often replace header cells or circular links,
yielding better traversal algorithms because of simpler termination
tests or new possibilities for threading. As references into lists
they form the foundation for #-lists, which can be an efficient scheme
of double-linking if space is critical for a structure which has few

references, is static, or is an ordered tree.

Acknowledgement

A referee is responsible for some of the code-efficiency of

Algorithm 2.

=T

References

1. Knuth, D.E. The Art of Computer Programming, Vol. 1 (2nd edi-
tion), Addison Wesley, Reading, Mass., 1973.

2. McCarthy, J., et al. LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, Mass., 1962.

3. Collins, G.E. PM, a system for polynomial manipulation. Comm.
ACM 9, 8 (August, 1966), 578-589.

4. Weizenbaum, J. Symmetric list processor. Comm. ACM 6, 9 (Sep~-
tember, 1963), 524-544.

5. Sikléssy, L. Fast read-only algorithms for traversing trees
without an auxiliary stack. Information Processing Letters 1,
4 (June, 1972), 149-152.

6. Vitulli, N. VW: a small but potent machine-independent text

editor. M.S. dissertation, Indiana University, in preparation.

Typed by Christopher Charles

-1 5

*18TT B8 03 J9qutod ¥ T @an3t4g

0
-
e
——
—a
Crr——

1snans isrians
M3
= - 4 1
]
¢ P
o o pesy | Ie3
. T
— NN N\

wayl Aueusiisis

NOLLVIANRO-NI

L0

N

-1-

<—re IX3N Y %

o

N

2a. Y | 4
-. (—>+N N P

=

k\‘-—-j

N ——

AY)
oF

T e
!

/

+

NY e — N o——>

NI —

z
TV
|
i

2C. } 1
+\\\ @ _-[N s . _;__@ . —

Figure 2. The circular sublist from node N

a.) Standard.
b.) Circular 1link broken but restorable.

¢c.) Temporary threading as part of a traversal algorithm.

e] e

*XTJINS B 8B

¥ £q peousgsgea 4STT dUj

sJBUS O pur g £AQq poouagsgsd SASTT dUL £ 9an3Td
0
é 1 :

M
- mﬂwn

%
N\
R

L v

.

Y.
?.

& & B |-wp= 'ﬁ,&ac .qu Q\\\:aea S e x@z-qr- § Y
A l

eAfAD ¢0j0¢

L ' R -

& 5 A

“I:f s e -:]_. _[:*

Figure 4. References to two-way ®-lists of 26 (with cursors),
2, 1, and 0 elements. End links are null, as in Figure 2b.
Algorithms 4 and 5, stated for circular lists, can be modi-

fied to handle these structures, or these can easily be

"made circular.

