SPECIFICATIONS, MODELS, AND IMPLEMENTATIONS
OF DATA ABSTRACTIONS

by
Mitchell Wand
Computer Science Department
Indiana University

Bloomington, Indiana 47405

TECHNICAL REPORT NO. 88 |
SPECIFICATIONS, MODELS, AND IMPLEMENTATIONS
OF DATA ABSTRACTIONS

MITCHELL WAND
MarcH 1980, (Revisep, FeBruary, 1981)

IN Memory oF CaALvIN ELGoT

To appear in: Theoretical Computer
Scilence :

This material is based upon work supported by the National
Science Foundation under Grants MCS75-06678A01 and
MCST79-04183.

SPECIFICATIONS, MODELS, AND IMPLEMENTATIONS
OF DATA ABSTRACTIONS
Mitchell Wand

Abstract:

We consider the specification and verification of modules
in hierarchically structured programs, as proposed by Parnas
and Hoare. We argue that a specification for such a module
is a set of sentences in some logical language in which the
names to be exported by the module appear as nonlogical symbols.
We further argue that an implementation of one module in terms
of another module is a translation of the nonlogical symbols
of the first specification into the language of the second.
Equality must also be interpreted. We propose necessary
conditions which any such notion of "correct implementation"
ought to satisfy. These criteria provide a basis for -
Judging the logical adequacy of any proposed specification
language and definition of implementation. We then study
DLP, a specification language obtained by adding uninterpreted
procedure symbols to Pratt's first order dynamic logic. We
present a definition of "implementation" for DLP, and we show
it satisfies these conditions. The main theorem, called the
Implementation Theorem, extends the Interpretation Theorem
from first-order logic to DLP. The proof of this theorem is
complicated by the necessity of dealing with modalities,
parameters to procedures, interpretations of equality, and

interpretations of sorts as tuples.

B Introduction

The purpose of this paper 1s to present some mathematical
results in support of a thesis concerning the nature of specifi-
cations, models, and implementations of so-called "abstract data
types" and other modules in hierarchically organized orograms.

In Section 1, we propose necessary conditions which any
such notion of "correct implementation" ought to satisfy. This
methodology 1s largely independent of one's choice of specifi-
cation language. In Section 2, we present the syntax and
semantics of a many-sorted first-order Dynamic Logic [1h, 29]
enriched by uninterpreted procedure symbols. We refer to this
logic as DLP. Section 3 is devoted to the issue of free and
bound variables. Our notion of implementation in DLP is divided
into two stages: (a) substitution of phrases for nonlogical
symbols, and (b) introduction of sorts for record typ=es.

Section 4 deals with the former stage, and Section 5 with the
latter. Section 6 summarizes these results by presenting our
main theorem, the Implementation Theorem for DLP. Th= theorem
extends the Interpretation Theorem for conventional first-order
Logic [33, p. 621 both in its treatment of the modal operators
in dynamic logic, and by allowing equality to be interpreted as

an arbitrary equivalence relation.

e Methodology

Our concern is the logical treatment of data abstraction.
Data abstraction is a phenomenon which may be observad when
a8 programmer explaining his program says either of the

following:

(1) "that's not just an array and a counter; it's really a
stack."
(2) "that's not really a stack; it's just an array 2nd a

counter.”

While most languages support the second view though
procedural abstractions, the first view is somewhat more
subtle. In the first view, the.purpose of a data abstraction
1s to build a machine with a certain behavior (in this case
a stack) and then to forget how it was built. Parnas called
this "information-hiding." To control the hiding of infor-

mation, Parnas proposed the use of specifications, which were

to be independent objects which would serve as inter aces
between modules [281. This idea, wedded to language mechanisms
based on SIMULA [31, remains the most important idea in modern
work on data abstractions:[21, 38].

Consider a specification of a module. A programmer

who writes a program which uses the module interacts with the

o e

implementation of the module only through the specification.
That 1s, the program which uses that module must work correctly
with any implementation of the module that satisfies the
specifications.

A specification i1s therefore a formal statement bf those
properties of a module on which a potential user may rely.
~From such a statement, the user must be able to prove the
correctness of his program. The statement may be trus of an
alleged implementation or false of it. These requirements
suggest that a specification should be a formulas or set of
formulas in some logic.

Our next observation is that a specification can describe
a module only in terms of the names of the procedures which
the implementation of the module will make available to the
user.* For this we advance two arguments. First, the
specification is supposed to exist before the module is
implemented; therefore, the specification can include the
names buf not the procedures which they denote, since the
procedures do not yet exist at the time the specification is
written. Second, the specification is supposed to isolate
the user from the actual procedures. The actual procedure
corresponding to the name P 1s presumed to vary among

different implementations of the module. The specification

#¥The module may, of course, export functions, predicates,
constants as well as procedures. To simplify the argument,
we use the term "procedure" in this argument to mean any
object exported by a module.

-4 .

tells the user that if he calls on the implemented module to
perform the proecedure named P, then certain observable effects
will follow, regardless of which implementation of the module
is actually employed. The specification acts as a constraint
on the behavior of the procedures whose names appear in the

specification.¥

In logic, one often deals with formulas containing
symbols whose meaning is unknown but constrained by'the

formulas. Such symbols are called undefined terms or non-

logical symbols [1, p. 573 33, p. 14; 36, p. 114f]1. 1In

geometry, for example, the terms "point" and "line" are among
the undefined terms. The Euclidean axioms give an initial
set of constraints on the possible meanings of the terms

"point" and "line." By formal proofs, one can derive from

¥*This discussion is not meant to eliminate specific¢ations
of the form "the procedure named P behaves like the following
mathematical function" Such specifications are produced by
modeling techniques which are "representational" rather than
"implicit" [22]. This specification is still a statement about
the behavior of the procedure whose name is P. Often, such
specifications are difficult to interpret because the neaning
of "behaves 1like" has not been sufficiently delineated.

. .

these axioms additional constraints (theorems) on the
meanings of these terms.

Similarly, a specification gives an initial set of
constraints on the possible meanings of the procedure names
which appear in the specification. Thus we can state the

first part of our thesis as follows:

Thesis A. A specification is a set of sent-

ences in some logical language. The names of the

functions, predicates, and procedures which the

specification i1s intended to specify appear as
nonlogical symbols in these sentences.

As an illustration, consider a specification for a
bounded stack of integers of size 100. For the specification
language, we choose DLP, which is Dynamic Logic extended by
procedure symbols. This i1s the logic to be developed in this
paper; the formulas should be clear to anyone familiar with
Dynamic Logic [1h, 29]. Our arguments are, however, largely
independent of one's choice of specification language; we

hope this independence will be apparent.

iy

We will have two sorts of variables, called int and stk.

Some reasonable portions of the specification might be:

(¥s:stk)([init(s)1(length(s) = 0)) (1)
(Vs:stk) (Vs :stk) (¥n:int) (length(s) < 100 >
[push(s;n,s);pop(s;s)l(s=s 1) (2)
(Vs:stk)(Vt:stk)(length(s)=0 o [pop(t;s)Ifalse) | (3)
(¥Ys:stk) (Vt:stk)(length(s) > 0 > <pop(%t;8)>true) ; (4)
We call the set of sentences comprising the specification Ts’
the theory of bounded stacks.

Here we are specifying:

length a function from stacks to integers

init(s) a procedure which sets s to be the empty
stack

push(s;n,s"') a procedure which sets s to be the stack
obtained by pushing the integer nionto
stack s? |

pop(s;s') a procedure which sets te be the stack

obtained by popping one element off s'
The first axiom states that the empty stack should have
length 0. The second says that pushing any 1nteger onpo a
stack s_ and then popping the stack should leave the stack
unchanged. (In these calls a semicolon separates outpbt (result)
"parameters from input (value) parameters. The third a%iom
states that an attempt to Dbn_the empty stack should a%ways

fall to terminate. The fourth axiom states that an attempt

to pop a non-empty stack should alwavs succeed.

" .

(For a finer analysis, see [151). The last
two axioms demonstrate the power of DL to discuss error
conditions. Our reasons for choosing DL as the basis of a
specification language will be discussed further in Section 7.
A structure A for Ts wlll consist of two non-empty sets
(one for integers and one for stacks), and functionsL
predicates, and procedures corresponding to the nonlogical
symbols appearing in TS. Such a structure is a model of TS

iff every formula of 'I‘s is true in the structure. For example,

we can let the sets be

Aint = @ (the nonnegative integers)
Astk = y¥ (all finite strings of nonnezative
integers)

and the single functicn be
Aiin o s
length " (x) = 1x].

We associate with each procedure an input-output relation on

states:

Einit(s)lA = {(p,p")Ip'(s) = A & (V)(v#s > p(vb = p'(v))}

toush(s;n,s") I = {(p,0")1(p(s")=n...ny > p'(s)=nn,...n,)
&(Yv)(v#s > p(v) = p'(¥))}

EPOP(S;S')BA = {(p,p")1(3K)(k 2 1 & p(s') = n

1o
& p'(s) = Nyelony
& (Vv)(v#s = b(v) = p'(v)))}

-8~

This structure A 1s a model of formulas (1) - (4) and
would probably be a model of all of 'I'S had we written it
out.

If T 1is any theory (set of sentences), we wri#e T|=G
if the formula G 1is true in any model of T. (The details
for DLP will be discussed in Section 2). If T' 4is also a
theory, we write T|=T' 1f T|=G for each G ¢ T'.

A reasonable implementation of TS might represent a

stack s as a record

s.arr: array [1..100} of integer; |
s.k : 0..100
Here s.k 1s to represent the length of the stack. |We might

implement some of the procedures as follows:

(init(s)l = [s.arr := (an array of 100 0's); s.k := 0]
[pop(s;st)] = [(s'.k > 0)?; s.arr := s'.arr; s.k:=(s'.k)-1]
[push(s;n,s')] = [(s*.k) < 100)7;
s.arr := update(s'.arr, s‘.k+ﬁs n);
's.ki= (s'.k) + 1]

length(s) = s.k

We claim that this is a reasonable implementati@n of Ts‘
(It looks even more reasonable for the usual case wheére the
calls on push and pop are always of the forms push(s;n,s) or
pop(s;s)). But it is not a model of T , because 1t nakes

formula (2) false. Let S, be the stack created by init and

-0~

let n = 2. After executing [push(s;E,so);pop(s,s)], the
value of s is

#(2 0 00 wo)y 05
whereas 5, is

60 0 0 0.:4)y 0>

So s # S5e

Lehmann and Smyth [20] claim this as a defect of
algebraic specification methods, but it evidently car] arise
with any specification languages, because there may te more
than one representation of a stack [16]1. We can remedy the
situation if we define an equivalence relation = on gtack
representations by:

<s.arr, s.k> = <g'.arr, s'.k> iff

s.k =s'".k & (V1)(1L <1 < s.k > s.arr[i] = s'.arrfi])

then formula (2) is true in the implementation with equality
replaced by this equivalence.

But in what sense 1s formula (2), or some variant of it,
"true in the implementation?" The implementation might have
been expressed in terms of some other "abstract data types”
or modules whose implementation is unknown. In our example,

the arrays in the implementation of stacks might be regarded

as an abstract data type. Thus an implementation involves two

theories (specifications): the implemented theory (in this

case Ts’ the theory of stacks) and the implementing theory

(in this case T,,., the theory of arrays).¥ (See Figure 1.1).

#There may, of course, be more than one implementing theory

[34].

-] (=

User Moduij | Implemented Theory |
/ i1
Specificationl (Implementation

» |
I |

i A
/fImplementation Implementing Theory
of '
\ Specification
(a) (b)

Figure 1.1 (a) A specification (theory as an
interface between modules
(b) An implementation as an interface
between two theories.

In this terminology, our implementation provided a trans-
lation from the language of the implemented theory to the
language of the implementing theory. Each procedure symbol
was translated into a program (a modality) in the implementing
theory. In addition, the equality symbol was translated into
the equivalence relation =. To prove the correctness of our
implementation, we must prove our translated formulas. Since
the translated formulas involve calls on an abstract data type,
(arrays, in this case) the best we can do is to derive them
from the specifications for arrays. If T I denotes the

s
translated formulas, we need to show:

32
B 1% By

We may now state the second portion of our thesis:

T

Thesis B. An implementation I of a theory Tl
is a translatlion of the nonlogical symbols of T,
and of equality into the language of the impleménting
theory T2.
When is an implementation correct? The preceding
development suggests the hypothesis that translated formulas
be consequences of T2: symbolically, T21= TlI. Thig is the

definition adopted by [32] and [12, inter alial. This

condition seems necessary, but is it sufficient? The two
quotations which began this section give us some clues.

The first quotation suggests a synthetic view: given
an array and a counter, we should be able to perceive a stack.
Mathematically, given a model M of T2, we should be able to
construct a model M' of Tl. We would like some connection
between the models, of course.® One such connection would
bé a surjective map J:M + M' (Hoare's abstraction function
[161). Another connection might insist that M' and M
"behave similarly." For example, if G is any formula with
no free variables, then

MYl=G 1ff M|=GT.

This criterion is useful if Tl is incomplete. For example,
it Tl did not specify what to do with an error condition,
we could determine what M' did by examining the behavior of
M. (This is a common real-world reason for opening up a

black box).

#This behavior is familiar in algebra: a morphism
between algebraic theories T, - T, (a syntactic map) induces
a forgetful functor (a semantic cbnstruction) from the category
of Tz-algebras to the category of Tl-algebras.

T

The second quotation is analytic: given a stack, one
should be able to think about the underlying array. If we
reason about the implemented theory Tl’ we Should be able to

draw conclusions about the implementation. For example, if

we deduce that at the end of some program o, the stack does
not underflow, then we should be able to predict that at the
end of the implemented program, the counter does not underflow.
Mathematically, if Tll=G, then T2I=GI. (The converse is not
& realistic expectation, since Tl is ﬁsually incomplete: an
implementation typically is required to make decisiors about
issues left unspecified in the original specificatior).

Joining these we get the following goal:

Theorem (The Implementation Theorem). Let I be a correct
implementation of Tl in T2. Then

(1) (synthetic version) if M 1s any model of Tss
then there is a model M' of T1 such that for any cldsed
formula G in the language of T,, M'l=G 1ff M|=cT.

(11) (analytic version) for any formula G in the
language of Tl’ ir T1f=G, then T2!=GI.

This is a theorem which should hold for any reasonable
notion of specification language and correct implementation.

| We believe that the use of specifications as a tool for

information hiding and of implementation as translation is a
naturally occuring phenomenon. Consider a specification for

a GCD module. We implement the specification by writing a GCD

.

program in PASCAL, which is translated by the PASCAL compiler
into P-code, which is translated into machine code, which is
translated by the digital architecture into actions of registers
and busses...

Each such translation is typically called an "implementa-
tion" of the preceding level. At every level the implementation
forgets what is involved both above and below the translation.

A subtle but important shift in paradigm has occurred:
Instead o4 negarding a specification as an interface between
two modules, we now regard a module as an internface between
two specifications.* (Figure 1.1)

In the remainder of this paper, we prove an implementation
theorem for a particular specification language which we call

DLP.

#For comparison, note two other shifts in paradigm which have
been exceedingly influential: In 1972, Dijkstra urged us to
stop writlng programs to run on our machines and start building
machines to execute our programs [4, pp. 48-49]1. Similarly,
we have stopped regarding a loop invariant as a description
of the loop's action; instead, we believe the purpose of the
loop body is to maintain an invariant. [e.g. 5]

—1k-

2. The Syntax and Semantics of DLP
2.1 Syntax

We are concerned with two sets of strings, called
formulas and programs, which are built from two clasges of

symbols, the logical symbols, which are fixed, and the non-

logical symbols, which may vary between different specifi-

cations. A particular choice of non-logical symbols is
called a language [33, p. 14]1. The non-logical symbols are
classified into five disjoint classes:

(a) sort symbols: o, Ogs Tseos (usually, but not

necessarily, a finite set)

(b) function symbols: f, g, h...; each function symbol

has a signature® <0ys00050,> + 0 where n = 0 and
Tyseees0, 50 are sort symbols. (A constant symbol of sort o
is a function symbol of signature <> =+ o).

(e¢) predicate symbols: p, q, r...; each predicate

symbol has a signature <al,...,cn> where n 2 0 and

Oysee+50, are sort symbols. For each sort symbol ¢ there
i1s a distinguished predicate symbol ﬁc of signature <o,0>.

(d) individual variable symbols: Xx,y,zZ,u,V,...3; each

individual variable symbol has a sort o, where ¢ 15 a sort
symbol. We assume there are 1nfiﬁite1y many individual

variable symbols of each sort.

¥We use the word "signature" to avoid the already
overloaded word "type." GQGenerally, sorts are atomic
(single symbols) and signatures are composite (strings).

w15

(e) procedure symbols: A, B, C...; each procedure

symbol has a signature "<cl,...,dn>:=<rl,...,§n>," whare
n, m2 0 and Ul,...,cn,Tl,...,Tm are sort symbols. For
each sort symbol o, there are distinguished procedure
symbols assignc, with signature <o>:=<0>, and forallo, with
signature <o>:=<>,

We write f:<ol,...,cn> + ¢ 1f f has signature
<ol,...,cn> + 03 intuitively, the function denoted by f is
to take n arguments of sorts OqsecesOps and is to return
an answer of sort o. We use similar notation for the other
nonlogical symbols.

The set of terms is bullt up from the individual variable
symbols by use of the function symbols in the usual way,
sﬁbject to the constraint that the sorts must agree-s

It tl,...,tn are terms of sorts OqseeesOps and p is
a predicate symbol of sort <01,...,0n>, then ptl...t is

n
an atomic formula.

T Vyses.5V, 2are individual variable symbols of

sorts ci,...,c and tl,...,tm are terms of sorts

n’
TyseeesTy and A 1s a procedure symbol of signature

<Oy500050 >1=<T,.0.,T >, then A(vl""’vn;tl""’tm)

is an atomic program. Intultively, the first n parameters

are the parameters which are assigned by A (the "output"
parameters); hence the requirement that thelactual parameters
be variables rather than terms. The remaining m péerameters
are the input parameters; these may be any terms of the

correct sorts.

.

The atomic programs assigno(v;t) and forallc(v) are
usually written as v:=t and Vv:o respectively. (For the
sense in which a universal quantifier may be viewed as a
program, see [291]).

The sets of formulas and atomic programs may now be
defined by a simultaneous induction, which we express in a
BNF-like format. Here G and H range over formulas and

a and B range over programs.

Definition:
Formula ::= Atomic Formula | G&H | GvH | ~G | GoH | [alG
Program ::= Atomic Program | aj;B8 | ouB | a®* | G?

The grammar is ambiguous; conflicts may be resolved by

parenthéses or by the following precedence table:

> Vv & ~ [al

U;*

evaluate evaluate
last first

Repeated operators are assumed to associate to the left.
[(Vv:clG is typically written (Vv:o)G. <a>G abbreviates
~[al~G. (3x:0)G abbreviates ~(Vx:0)~G.

Formulas (1) - (4) of Section 1 are typical formulas
of DLP,

e
2.2 Semantiecs

The semantics of DLP is developed in two stages:

(1) a structure is defined as an assignment of meanings
to a set of non-logical symbols.

(1i1) these meanings are extended to give formulas and
programs meanings in the structure. In particular, we get
the notion of truth in a structure. This is the standard
way in which Tarskian semantics proceeds [9, pp. 81-821.
Without further commentary, we proceed with the construction.

Definition A structure A 1s given by the following data:

(a) for each sort symbol o, a nonempty set U,. We

denote by U the union of the sets UU as ¢ ranges over

the sort symbols. Uc is called the carrier of sort o.

(b) for each function symbol f: <01s..050,> + 0, a

A

funection: f': U X...XUG - UCr

% n
(¢} for each predicate symbol Pi<0y5...,0,>, &

predicate pA on Uc X...XUU s 8uch that the predicate =0A

4 n
(corresponding to the distinguished predicate symbol =U) is
the eQualiﬁy predicate on U xU_ (%)
(d) for each procedure symbol A:<ol,...,cn>:=

A ,
<rl,...,r >, a predicate Py ©n Uc X...XUG xUT Xee XU

B 1 n 1 Tm

such that the predicate corresponding to the assignment

#given by (x,y)|+ TRUE 1if x=y%
FALSE otherwise

-18=

symbol assigna is the equality predicate on U&tUo, and the
predicate corresponding to the symbol forallU is the predicate
on U, which is always true.

The way in which a predicate pAA, corresponding to a
procedure symbol, gives meaning to a procedure call (an
atomic program) will be explained below.

Before proceeding with the definition of truth in a
structure, we need the notion of a state:

Definition: A state p is a function from the set of

individual variable symbols to U which is sort-preserving

in the sense that if v is an individual variable symbol
of sort o, then p(v) € UU.

We now define the semantics of a term in a structure.
We usually write the evaluation map fk in infix notation.

Definition: F 1s the map States x Terms + U defined

as follows:
(1) 4if x 1is an individual variable symbol of sort (5753
then (p kx) = p(x).
(11) 1irf ty1s-..,t, are terms of sorts o,,...,0,, and
f 1is a function symbol of signature <Ul,...,cn> + d, then

p E ftl...tn = fA(p ktl,...,p Ftn) g

This is just the usual notion of the meaning of a term
. in a first-order structure [331].
We next define a predicate [on States x Formulas

(truth in a state of a structure) and a function [...1]:

-19~

Programs = ZStates x States (the input-output relatior of a
program).® Since formulas and programs are defined by
mutual recursion, these two constructs are likewise defined

by mutual recursion. We write F in infix.

Definition: k and ([...] are defined as follows:
(1y 4f pty...t, is an atomic formula, then
A
pF pty.. b, Iff D (0 F tyseeesp F t))

(2) 4¥ A(vl,...,vn;t ...,tm) is an atomic program then

1’
[A(vl,...,vn;tl,..,tm)l =

{(p,o')1pAA(p'(v1),...,p'(vn), Pl tyseeesp Ftp)
e (V) (w § vy, ..oy} 2 0(w) = 0t ()

(3) p [G&H iff p EG and p FH

(4) p [GvH iff p kG or o EH

.(5) p EF~G iff not o FG

(6) pkE G>H iff pl=~G or p FH

(7) e E[ade 1ff (Yp')((p,p') € [a) > p'|=G)

(8) fe3;8Y = {(p,p")1(3p")((p,p') € [a) and (p',p") € [BD)]
(9) HQaugl = [a} v (B8]
(10) [a*] = the reflexive, transitive closure of fal

©(11) 1821 = {(p,p)lp EG}

Of these clauses, only clause (2) merits comment. A

A

procedure A establishes the relation Py between its outputs

#This open-faced bracket comes from [29]; though similar
notation is often used for syntactic arguments 1n denotational
semantics [35]1, that should cause no confusion here.

=30

and its inputs.® In the atomic program A(vl,...,vn;tl,...,tm),
beginning execution in state p, the evaluated actual input
parameters are p|=t1,...,p1=tm, and, 1f the output state is
p', the outputs are p'(vl),...,p'(vn) (we could equally well
have written p']svl,etc.) Thus the relation to be =stablished
is

p, A (p*(w,) p'(v_)spl=t pl=t_)

A 1’...’ n’ 1,..0, m

We often use a semicolon to distinguish input and output
values, as we have done here. Furthermore, the atomic program
A(vl,...,vn;tl,...,tm) may alter no variables other than

ViseoosVpo This restriction is enforced by the second

n
conjunct in clause (2). We write Equiv(p,p',{vl,...,vn})

for this conjunct.

Proposition 2.2.1 Eassigno(v,t)] = {(p,p")Ilp'(¥) = (pl=t)
& (Ww)(w # v > plw) = p'(w))}. O

Proposition 2.2.2 [forall _(v)} = {(p,p") I (VW)(w # v >
p(w) = p'(w))}. O

Definition: G 1is true in structure A 1iff (V¥p)(pl=QG).

We write A |= G. G 1is valid iff it is true in every
structure for the language of G. If G is valid, we write
= G.

®We place the output parameters first out of deference
to the conventional notation for assignment [191.

&P

A theory is a set of formulas. We write p|=T iff
pl=G for every G € T. We say T logically implies H

(we write TI|=H) iff for every structure A, if A|=T
then Al=H.
Note that a structure for DLP is a model of First

Order Dynamic Logic; the validity problem for DLP is likewilse

H%-complete.

o

3. Free and Bound Variables

In this section, we shall consider the question of free
and bound variables in DLP. This question is normal.y
entwined with the problem of substitution and renaming of
varlables. Here, however, we are concerned with a more
restricted application: on what variables does a program
or formula depend, and which variables does a progran set?

(We have alsd developed an adequate treatment of substitution,
which 1s unfortunately beyond the scope of this paper).

Definition. For each term, program, or formula. we

define 1ts free variables and bound variables as follows:

phrase Iv bv

term t all variables int §
A(VyseeesVostyseeest) fv(tl)u...ufv(tm) {vyseeeqvy}
a;B fv(a)u(fv(B)-bv(a)) bv(a)ubv(p)
auB fv(a)ufv(B) bv(a)nbv(B)
a¥ fv(a) g

G? | fv(@) [/
Pty...ty fv(tl)u...ufv(tn)_ g

c(}g gny boolean operator{V(G)UfV(H) g

[alG fv(e)u(sv(G)-bv(a)) £

A variable, according to this definition, is bound iff
it is guaranteed to be set, regardless of which alternative
1s chosen. Note that in [(x:=y)*1(x° > 0), both x and y are

free, since (intuitively) 1f zero iterations of (x:=y) are

=P

executed, x is not set. This is assured in the definition by
the clause bv(a¥*) = #. A variable may be both free and bound

in a program e.g. y in (x:=y; y:=0).

Our definition of free and bound will be adequate for

our purposes if we can prove that whenever Py and P
agree on [fv(G), then pll=G ifr 92I=G. For the bshavior
of programs, however, we shall need some finer information.
if P, and p, agree on Jjv(a), and (pl,pl') € [al, then
we should be able to make "the same choices" starting at
P5, and we come out at a Po' such that (02,02') € [al
and p2' agrees with pl‘ on bv(a). We proceed by

induction on the depth.of modalitiés which appéar in tests.

Definition: A program is non-branching iff it is of the

form @y3--.50 5 where the a3 are atomlc programs or tests.

n
Definition: A program is of class 0 if its tests

contain no modalities (programs); it is of class k + 1 iff
its tests contain only programs of class k or less. A
formula is °fE§EEE. k 1iff it contains only programs of class
k.

Note that every program is of some finite class.

Lemma 3.1. If o« 1s non-branching, v £ bv(a), and
(p,p') € lal, then p(v) = p'(v). 0O

Lemma 3.2. If & 1s non-branching and of class 0, and

(pl,pl') € fa), and P, and p, agree on fv(a), then there

. T

is a state p2' such that (p2,p2‘) € [al, p>' agrees with
pl' on bv(ae), and p2' agrees with P, on all other
variables.

Proof: We need to consider atomic procedures, ftests,
and sequences. For atomic programs, note that the conditions
determine pg' uniquely; a straight forward calculation,
using the definition of the semantics of an atomic rrogram a,
shows that if (pl,pl') € [al, then (p2,p2') € la] also.
Tests are also simple, since they contain no modalities.

It remains to consider sequences o3B. Let
(pl,pl') € fa;Bl. Then there is a state pl" such that
(pl,pi“) € [al] and (pl",pl') € [B}]. By the induction
hypothesis for a, there is a state bz" such that
(pg,pg") € fa] and p2" agrees with pl" on bv(a) and
with P, everywhere else. We claim that pg" agrees with
Py" on fv(B). If v € fv(B) n bv(a), then py" (V) = p"(v).
If v € fv(B) - bv(a), then v € fv(a;B), so p," (V)| =
p2(v) = pl(v) = pl“(v) as before. So p2" agrees with pl"
on fv(B). By the induction hypothesis for R, thers is a
P»' such that (pz",pz') € [B] and p,' agrees with Py’
on bv(B) and with pz" elsewhere. In particular, if

-

v € bv(a) - bv(B), then 92‘(v) = pl"(v) = pl'(v). 30 py

agrees with p,' on bv(e) v bv(B). This completes the

procf. [

-25-

Theorem 3.1 (1) 4if P; and p, agree on fv(G),
then pllﬂG 1ff p,l=G.

(13) ar P, and p, agree on fv(a), and (pl,pl') € fal,
tpen there is a state p2‘ such that (p2,p2') € [a] and
P,' agrees with py' on bv(a).

Proof: By induction on the class k of o and G.
First, note that any program o of elass k can be decomposed
into a countably infinite set of non-branching programs ay s
all of class k, such that

fa} =Ula,}
fv(a) = Ufv(ay)
and bv(a) =Nbv(a,),
by converting o* to Uo™ and distributing. The o, are
all of class k since Eests are not affected.

Now, assume the theorem holds for all m < k. We first
consider (ii). Decompose a into Uai. The proof cf (ii)
is then the same as in Lemma 3.2, except that the case for
tests 1s replaced by an appeal to induction hypothesis (i),
and we must note that fv(a;) c fv(a) and bv(a) c bv(a,).

Having established (11) at k, we consider formulas of
class k, and proceed by structural induction. As usual, the

interesting case is [0lG. Assume and Py agree on

p
i
Jv([alG). Decompose a into (Jui. Now pll=[a}G iff for
all 1, pll=[a1]G. So pll=~ta]G iff there exists an 1

T 1 I =~
and a p;' such that (pl,pl) € ﬂai] and p,'l=~G. Since

T

a; 1s of class k, result (i11) applies, so there is a Py

&

such that (p2,p2') € Eai] and p2' agrees with p;' on
bv(ai). We claim that p2' and pl' agree on all of
fv(G). If v € fv(G) - bv(a), then v € fv(G) - bv(ai)
(since bv(a;) < bv(a)), so

pz'(v) pz(v) (since o 1is non-branching)

p1(v) (since fv(G) - bv(a) g Fv([alG))
= pl'(v) (since a 1is non-branching)
So, by the structural induction hypothesis, p2'l=~G, and

Pol=~[alG. This completes the proof. 0

R

4, The Interpretation Theorem

As discussed in Section 1, an implementation of a
theory Tl provides a translation of the non-logical symbols
(undefined terms) of T, 1into the language of the implement-
ing theory Tz. This process is complicated by the need to
interpret sorts in Tl as tuples of sorts in T2. Therefore,
we first expand T2 to T2' by adding a new sort for each
tuple of sorts which is required. We then provide a trans-
lation of the symbols in Tl into the language of TQ'. The

total translation is a composite: (a) from T. to T

1
1 2 °
and then (b) from T2' to T,. (See Figure 4.1) 1In this

section we shall deal with part (a) of the translation. To

simplify the notation, we shall talk about an "interpretation
from 'I‘1 to T2" rather than "from T, to Tg'" That is,
thé T2 of this section will be the T2' of the final section.

nonlogical symbols ?1
ka)
phrases Tz' sorts
tb)
T2 tuples of_sorts

Figure 4.1 The Translation Process

-28-

We assume that theory Tl is expressed using a language

L1 (that 1s, a particular set of non-logical symbols, as in

Section 2.1), and that theory T2 is expressed in a language
Lz. We begin by defining an interpretation from Ll to L2
as a map associating certain strings in L2 with each symbol
in Ll’ This map is then extended to programs and formulas.

We then define the notion of an interpretation from T1 to

T2.
We show that, given an interpretation I from Tl to

T2 and a structure A2 for L2, how to construct a structure

-Al for L1
A2[=GI. We use this result to show that if T,|=G, then

such that for any closed formula G, A1|=G iff

TzlsGI. These are the two theorems we need for this part of

the translation.

We begin with the definition of a pre-interpretaetion

1

from Ll to L,. Each sort ¢ of L, 1s interpreted as a
i :
sort o of L2 (which may eventually, in turn, be interpreted

as a tuple of sorts). But in an Lzestructure, not evary value
of sort oI may be a representation of a value of sort o.

We therefore introduce a formula is-o (of one free rariable)
to declide whether a value is a representation or not. This
formula is sometimes called the concrete invariant [33].

At various times, we shall need to apply 1is-o <o

different values. If the lone free variable of is-o is

—-29-

z,, we write is-o(t) for [zl:=tlis-a. This has the

same effect as substituting t for =z in is-0, but

1
(as mentioned in Section 3) we have not defined a substitution

operator for the language. We shall refer to the combination

of the formula is-0 and the variable =z as "a formula

1s-a[zl] of signature <cI>."

Similarly, to each procedure symbol A of Ll’ of

signature <cl,...,cn> 1= <11,...,1 >, an interpretation

m

agssigns a program AI of L and variables

2
YyseeeVpsZysesesZy of L2. The intention is that tke

atomic program A(vl,...,vn;tl,...,tm) will be translated

as _
* - I.l 5 - 0:1 I. -I- Ic= [- I.-
.Zl. tl e ‘.,Zm- tm 3A ,Vl Y yl, e 8 e ,Vn -"yn
Intuitively, the y's and 2z's may be thought of as output

1 refers; the input rarameters

and input registers to which A
are passed by value and the output parameters are passed by
result. Again, we package this information by saying

"a program AI[yl,...,yn;zl,...,ﬁm].“

Definition: An interpretation I of L1 in L2

is an assignment of phrases of L2 to each symbol of Ll
as follows:

(a) to each sort symbol o of Ll’ a sort symbol

61 of L. and a formula is-olz] (with signature <0I>)

2

of L (the invariant of o in 1I).

2
(b) to each function symbol f (with signature

ﬁcl,...,cn> + 1) of Ll’ a function symbol fI (with

-30-

1
signature <oq ,...,cnI> + rI) of Ly.

(¢) to each predicate symbol p (with signature

signature <clI,...,cnI>) of L2.

(d) to each individual variable symbol v (with

signature o) of Ll’ an individual variable symbol vt
(with signature GI) of Ly.

(e) for each procedure symbol A of Ll’ of signature

5 &
401,...,an>: = <Tyse.s5T >, a program A [yl,...,yn;zl,...,zm3
I I
of L2, of signature <O 75000 7> = <111,...,1mI>, such
that

I & 2
(1) (assigno) 1s yq: = 29

(11) (forallc)I is forallt(yl); is—c(yl) (where 1t = UI).

: § I

(1i1) no variable of the form v~ may appear in A~,

fv(AI) = {zl,...,zm}, and bv(AI) = {yl,...,yn}.

The parameters Zy and Yy must not be of the form VI;
they may be different for different symbols of Ll or they may
be the same.

Note that the interpretation of a distinguished predicate
symbol = need not be equality in UI.

Example H‘l Consider the implementation of bounded stacks

by arrays in Section 1. Ll, the language of stacks, consists

of:

sort symbols:

function symbols:

procedure symbols:
plus variables, forall,

arithmetic operating on

L1 is interpreted in a language L2

=5

int, stk

length: <stk> -+ int

init: <stk>:= <>

pop: <stk>:= <stk>

push: <stk>:= <int,stk>
assign, and the usual symbols of
sort int.

of arrays, integers,

and array-integer records:

sort symbols:

function symbols:

procedure symbols:

plus variables, forall,

as before.

The interpretation
follows:
Sorts:

function symbols:

individual variable symbols:

predicate symbols:

int kint, stkterec; is-int=true; is-stk =

int, arr, rec

palr: <arr, int> > rec

prl: <rec? = arr

pra: <rec> -+ int
initarray: <arr>:= <int>
fetch : <int>:= <arr,int>
update : <arr>:= <arr,int int>

assign, and the symbols of arithmetic

T “of T in L

1 5 is specified as

(pr2(s) = 0)

length t=pr2
ses', ne=n', ete.
r»prZ(sl) = pr2(52) &

fforallint(i); (1=1)?; (iSpr2(sl))?;

=stk

fetch (nl;sl,i); fetch (n2,52,i)3(nl=n2]

(input variables 51,52)

i

procedure symbols: init #» [initarray(x;100); assign(s,pair(x,0))]
(output variable s)
pop > [pr2(so) %= 02 assign{sl;pair(prl(so),

pr2(s,)-1))1
(output variable s1, input variable so)
push > [pr2(so) < 10072
assign(x;prl(so));
update(x;pr2(so)+l,no);
assign(sl;pair(a,pr2(so)+1))]
(output variable s|, input variables no,so)

The symbols of arithmetic are mapped to themselves.(*} This
implementation differs from the one in Section 1 primarily in
that in L2 initarray, fetch, and update have been changed
from function symbols tolbrocedure symbols; we have done so
merely to illustrate that possibility.

(End of example)

We extend an interpretation to terms in the obvibus way;
we write tI for the interpretation of t. We interpret an

atomic formula ptl...tn as

I}pI

[21:=t1I5“‘;zn:=tn

and an atomic program A(vl,...,vn;tl,...,tm) as

h U - I
zlzﬂtll;...;zm:=tm sA 3V :=y1;...;vnI:=yn.

I
We sometimes denote this program by A (vl,...,vn;tl,...,tm).

¥Strictly speaking, the arithmetic predicate symbols should be
mapped to formulas, but we shall ignore this.

-33~

We cannot merely extend I +to formulas and programs as
the obvious homomorphism of strings, because a formula has
an implicit universal quantification over its free variables.
In the interpreted formula, this quantification must »oe
restricted to those values of the free variables in L2 which
are legal, i.e., which satisfy the invgriant of their sort.
For exaﬁple, if one interprets the theory of real numbers in
the theory of complex numbers, the interpretation of the true
formula x2 =2 0 1s not just x2 2 0 (which is false for the
complex numbers), but
is-real(x) » (x2 = @),
Given an interpretation I, let the maps G|+ Gt and
al+ at be obtained by extending I ¢to a homomorphism on
strings.
I XqseeesXy are the free variables of G and
XyseoesXy have sorts Oyseees0,s then we define GI to be
1s-0,(x; 1) & ... & 1s-o (xT) > Gt
we often abbreviate the hypothesis of this implicaticn by
UG’ and call it the preamble of G. Similarly, if HpseeesXy
are the free variables of program o, we call
is-cl(xlI) & .. & is-cn(xnI)
the preamble of a, and abbreviate it by Uu. We do likewise

for terms ¢t.

. .

Example 4.2. The formula

length(s) < 100 » [push(s;n,s);pop(s;s)I(s=s_)
is interpreted as

[s:=s5!1(pr2(s) = 0) > -— 8! is the image of the free
variable Sq
(pr2(sé) < 100 >

En0:=n';soz=s'; ~-- assign actuals to value formals
for push
pr2(so) < 100%; -- code for push

assign(x;prl(s,)):

update(x;pr2(s) + 1,n.);

assign(sq;pair(a,pr2(s) + 1));

s':=sl; —-= assign result formal tec actual
sO:=s'; -~ now do the same for call on pop

pr2(so) < 10073

assign(sl;pair(prl(so),prz(so)—l));

s':=sl]

[sl:=s‘;sz:=56] -- now load formals for equality
formula

(prz(sl) = prz(sz) -- equality formula

& [forallint(i); (L = 4 30lE ¥ prz(sl))?; --— choose an

index 1
fetch (nlgprl(sl),i); fetch(ngg(pr2(sg),i)3

-— access both arrays
(nl=n2))) -- should get same answer

Here the first line is the preamble; although n was free in the
original formula, we have not included it in the preamble since
fhe associated invariant is always true. This formula expresses
the fact the "bodies" of push and pop given by the interpretation

behave in the proper way.

-35-

Definition. If T1 is a theory in language Ll’ and

T2_ is a theory in language L2, then an interpretation of

Ty in T, 1s an interpretation I of Ly in L, such

that the following formulas are logical consequences o»f T2:

10. ' 3Ax(is-o(x)) for each sort o of Ll
3., is-cl(xl) &..& is—cn(xn) =) is—o(fle...xn)

for each function symbol f:<al,...,an> +o0 Hn Ll

) -
I2. 1s-1y(zy) &...& is-1 (2,) » [A"] is-0,(y;)
for each procedure symbol A of L, with signature

<cl,...,cn>:=<11,...,rm>, and interpretatior.

I
A [yqseesVp32g5--.2], and 1 <1 < n.

I3a. (x=x)I

I3b. (x1=yl&...& X, =y, > (fxl...xn = fyl...yn))

I3e. (xlﬂyl&...& X_=

n—yn e (pxla o s X

n

Ik, GI for each axiom G of Tl'

Before proceeding, we should explain the significance of
this definition. As we shall see in Section 6, an implementa-
tion of T in T' consists of an interpretation of T in
an extension T" of T. Therefore, to verify the correctness

of an alleged implementation of T in T', one must deduce

I0-I4 from T". Put another way, I0-I4 are the conditions for

correctness of an implementation.

36

I0-I3 are "frame" conditions. IO states that the domain
of interpretation of each sort is non-empty. Il states that
functions preserve their sort invariants, that 1s, if the input
data satisfies the invariants of the input sort, then the
output of the interpreted function satisfies the invariant of
its output sort. Similarly, I2 says that interpreted atomic
programs preserve their sort invariants. The formulas I3a,b,c
say that the interpretation of equality is a reflexive relation
which 1s respected by all the function and predicate symbols of

Lll

This leaves I4 as the sole "interesting" property required
cf an interpretation. It says, as suggested in the Introduction,
that the translations of the axioms of Tl are logical
consequences of T2.

Lemma 4.1 (Thinning Lemma) If X1s...5%X, include
(perhaps properly) the free variables of G, and

¥

= I T &L
Tzl- is—cl(xl)&...& 1s—ak(xk) > G, then T2I- 6.

Proof. As in the predicate calculus case using [0 [331. O
This lemma allows us to remove superfluous varisbles

from preambles.

Lemma 4.2. If I 1is an interpretation of Ty in T,,

d:
and t 1is a term of sort o in L, then T2[= Ut 3 1s-0(t™).

_37....
Proof. By induction on t, using condition Il. 0O
Lemma 4.3 If I 1is an interpretation of T, in T,,
and o = A(vl,...,vn;tl,...,tm) is an atomic progran in Lqs
with vy of sort Oy then

T,l= U > [AT(v,t)I1s-0, (v,)
Proof. By Lemma 4.2 and I2. 0O

Lemma 4.4 If I 4s an interpretation of T, in T,,
¥ I
then for any o and G, T2|'UEa]G > [a™104.
Proof. By induction on a.
Let o be atomic. We will show that for a afomic,

I I
if x € fv(G), then T2|=U[a3G > [a~1 is-0(x~). Now

fv(falG) = fv(a) v (fv(G) - bv(a)), so [fv(G) ¢
(f¥W(@16) - bv(e)) v bv(a). If x € fv([alG) - bv(a), then

xI is not assigned in aI, SO

l= Uy 4q S 1s-0(xT) (x € fv([ald))
and 'I.‘2 |= 1s-o(xI) > [uI3 1s—c(xI) (xI not assigned in aI).
If x € bv(a), then

1= Urgig 2 Vs (fv(a) < fv(lalG))

and _T |= Ua > [all is-o(xI) (Lemma L4.3)

2
Conjoining these results for each free variable in C,

= . ik
Tzl-U[a]G 2 .[0'. }UG.

o " T3 T
If o = B;Y, we must show T2I U[S][y}G > [1Ly]Ug.

~38-

We proceed as follows:

= = I : s,
: T2I U [8]UEY]G (Induc. Hyp. B)

(B1LyIG
I
2. T,l= Uryig 2 [y~ 10, (Indue. Hyp. - v)

e 13 I I
i, . .

If o« =B u Y, then U & U

e v yle = Urgie & Uryic.
The rest of the calculation is trivial.

If o = [H?] then the result is immediate.

This leaves the case o = B¥., Since bV(g¥) = ¢,

fv(LB¥*1G)

Jv(B) v fv(G) = fv(G) v fv([B1G). Hence

U[ﬁ*]G = Uy & UEB]G’ We will show that T,|=U; & U[B]G >

[3I](UG & U[B]G)’ from which the needed result follows easily.

If x € bv(B), then T > [BI] is—c(xI), by the same

2= Urgie
argument as in the base case, except that we aﬁpeal to the

induction hypothesis instead of Lemma 4.3. If x € bv(B),

then xI is not assigned in BI, so |= is-c(xI) 5 [BI} 1s—o(xI).
Conjoining these results, we deduce T2|= Uy & UEB]G >

T
[8~1(U, & U[B]G). O

Lemma 4.5 Let I be an interpretation of T, in T,,
let Az be any L,-structure, and ¢ be any sort of L.
Then the interpretation of = induces an equivalence relation
on that subset of UU where 1is-0 1s true.

Proof. Trivial from I3. 0O

We shall need one more bit of notation.

-39-

Definition. If p 1is a state, v a variable of sort o

and t a term of sort o, then pl[t/v]l 1is the state

Aw. if w = v then (pl=t) else p(w).

We may now state the first main result of this section,

which gives the "model construction" result for interpretations.

Theorem 4.1 Let I be an interpretation of T. in T

i 2°

and let A be an L,-structure. Then there is an

2

Ll—structure Al and a map J from states of Ag to states

of Al such that

(1) for any formula G of L, and state p of Az

such that pl= UG’

and

Ay

of

UI

by
by

Jo)= G 1ff pl= GT
(11) for any program o of Ll and states p,p' of
such that pJ= Ug,,
(Jp,Tp"') € La} 1ff (Fp")(Jp" = Jp' & (plp") € [qIB)-

Proof: We willl use superscripts (1) and (2) in place

Al and A2. Thus, Uéz) denotes the carrier of sort

in A2. Let X denote the equivalence relation induced

na on the 1s-¢ subset of Uéz). Denote that subset

Véz). . Following the definition of an Ll-structure in

Section 2.2, we build Al as follows:

(a) for each sort o of Ly, let Ugl) = Véz)/=.

This i1s nonempty by IO.

(b) for each function symbol f:i<0;,...,0,> + o of L,,

let f(11: Ugl) X oaoX Uél) + Uél):(tal],...,[an}) > Ef(2)a1...an].

1 n

e

This 1s independent of cholce of representatives by I3b.
(Here the square brackets denote equivalence classes).
(c) for each predicate symbol P:<0y500.50,>, let the

predicate p(l) on U(l) XoooX U(l) given by
9 °n

p(l)([all,...,[an})
ife
(Vp)(pzlﬂal & ... & pz_=a_ > pIEzl,...,zn})
This is independent of choice of representatives by I3ec.
(d) for each procedure symbol A of L;, of signature

<ql,...,an>:=<rl,...,tm>, let the predicate A(l) on

Ucl) L U(l) X U(l) X, eX Uil) be given by
% °n i | m

(1)
A (R Byeno b, 1, E05 Ty e voy [D) AfE

I
> (3p,) (pyy =b&. .. &P,y =b &(p;,0,)€IAT])).
z

(Vpl)(plz1=a1&...&pzn=an
Recall A(l) is a predicate, but A is a program in L2.

(End of construction)

To show that A(l) is an Ll—structure, we must show that
1
assign(l) is the equality predicate and that forall(‘) is the
true predicate. Both of these conditions may be verified

straightforwardly.

We next define the required map J from states cf A2
to states of A;. For each sort ¢ of Ly, let e, be an
arbitrarily chosen element of Uél). Define JG:ng) > Uél)
by Joa = [al] if 1is-olal and Jga = e, Otherwise. Then
we may define Jp = lv(Jc(va)), where o 1is the sort of v.

Note that J 1s surjective and that if t is any term,

E
and p |= U, then (Jp I=t) = (p I=t7).

o

We next verify the required conditions (1) and (41) by
structural induction on formulas and programs. Atomic formulas

and boolean combinations are easy.

We next consider the case of [alG. Assume pl=U ...

Since Jfv(a) ¢ fv([alG), we have p]= Ua as well. Then

Jpl= [a0lG by straightforward manipulation of the definitions,
using the surjectivity of J and the induction hypotheses for
o and G. Lemma 4.4 is needed to apply the induction hypothesis

for G

We next turn to programs. Again, without loss of
generality, let A(v,t) be an atomic program in L.

Assume pJ= U or equivalently, pl= Ut‘ We must show

o
(Jp,Tp") € [A(v,£)} 1ff (Fp")(Jp"=Jp"& (p,o") € [AL(v,t)])
In the left-to-right direction, we calculate:

1. (Jp,Jp') € Eﬁ(v,t)ﬂ (Assumption)

2. A(l)(Jp?v,JpJ=t) & Equiv (Jp,Jp',v) (Defn of [1)

3. (Yp))(Tpyzy = (Jp)=t) > (3,)(Jo,yy = Jp'V & (py,p,) € (ATD))

(Defn of A(l), surjectivity of J)

Let p, = p[tI/zll. Then pq2q = (p]=tI) = (Jpj=t). So

from (3) we deduce

h. €30,)(Jo,z, = Jp'v & (py,p,) € [ATD)

5 Jp2 = Jpl (no variable of the form x: is
assigned in A-)

Let p" = pztyl/in. We claim o" 1s the required s:ate.
By the construction of Pq and p",

{p,p") € (z,:= tI;AI;vI =y,1

=hpe

We claim Jp" = Jp'. If w 1is a variable other than v,

then
Jo"w = Jp, W (Defn of p")
= Jpqw (5)
= Jpw (Defn of pl)
= Jp'w (2)

At the variable v,
Jp"v = Jp222 (Defn of p")
= Jp'v (h)
So Jp" = Jp', as required.
In the right-to-left direction, we assume
(3p")(Jo" = Jo' & (p,0") € 2y i=tT3aTsvl smy 1)
and we need to conclude Equiv(Jp,Jp',v) and

(Vo) (Jpyzy = (Tpl=t) = (3p,)(Joyyy = Jo'V & (p-5p5) € 1atn).
Since no variable of the form xI gets assigned in AI, the
Equiv term is easy to prove. Continuing, let Py be an
arbitrary &2—state such that Jp,z, = (Jpj=t). Then by
Theorem 3.1, there is a p, such that (pl,pz) € [A:] and
P, agrees with p' on the bound variables of AI. This
completes the base step.

The cases a3B, & U B, and G? follow by manipulation of
the definitions; Lemma 4.4 is used in the a;8 case to apply the
induction hypothesis for B. For a¥, we rely on the fact that
(p,0') € [a*] 1iff (In)((p,p') € [a™]) and proceed by induction

on. n. DO

=lige

Corollary 4.1. If G is a closed formula, then

s s sl
Prcof: Immediate from part (i) of the theorem. [

'Corollafy,H.Z. Let I be an interpretation of T; 1in

T,, and let AQ be a model of T,. Then the structure A,
of the theorem 1s a model of T

1‘
Proof: Let G be a formula of Tl‘ Now, any state of
Al 1s of the form Jp, where p 1is an A,-state such that

every variasble vI passes ifs 1s-0 test. Then Theorem 4.1

says that
(p)=Ug & p1=6T) > (3p]=0)

Since T, logically implies GI and pl=UG, we have
p!=G+, so Jpl=G. O

This theorem allows us to take an Lz—structure
and view it as an L,-structure, giving the "upward-going"

result discussed in the introduction. We shall sketch an
example in Section 6. We now proceed to the "downward-going"
result:

Theorem 4.2 Let I be an interpretation of T1 in

T If T1 logically implies G, then T2 logically

2-
I
implies G .
Proof. Let A2 be any model of T,. We will show that
for any state p of Az, p|=GI. Assume pi=GI is false.

Then p1=UG and p]=~G*.

Ll

Build Al as in Theorem 4.1.

theorem, Jpl=~G. But since Al

By the relation of the

is a model of Tl and T

logically implies G, Jp]J=G. Therefore pI=GI must have

been true. 0O

1

A5

Ba Adding New Sorts

The translations considered in Section ! allowed
considerable freedom in interpreting predicate symbols as
formulas and procedure symbols as programs. Sort symbols,
however, must be interpreted as sorts. This is not adequate
for applications, since the implementing theory T2 would
not be expected to have a sort for "pair of array and integer."
We therefore interpret T, not in T,, but in Te', an
extension of T2 obtained by adding product sorts as
needed.

For typographical convenience, we consider a theory T
in language L and extend it to a theory T' 1in laiguage
L'. Again, given an L'-structure, we show that we can build
a related L-structure, as we did in Theorem 4.1, and we give
a translation from formula G of L' to formulas G' of L
such that T!'|=G iff TI|=G'.

Let 9 and o, be sort symbols of L. Add to L a
new sort symbol o, a countably infinite set of variables of
sort o, and function symbols prl:c =+ Oy pr2:c = Oss and
palr: <01,02> + 0. For each variable x of sort o,
designate two variables xL and xR of sorts o4 and Ose
Let L' be the language obtained by adding these new_symbols

L R

and defeting all variables of the form x~ and x .

(We assume that the variables xL and xR are chosen so as

to leave infinitely many variables of sorts oy and 0y

U6 =

Let T' be the theory obtained by adding to T the

axioms:

Fl. pair(prl(x,pr2(x)) = x

P2a. pril(pair(x,y)) = x

P2b. pr2(pair(x,y)) y

Again, we proceed by defining a translation from
formulas of L' to formulas of L. This translation will
be the identity except on phrases in which variables of sort
o occur,

Definition: If ¢t 1is a term of L' of sort other than

0, then we define the term ¢' of L as follows:

1. if t is pri(x), then t' = x“

s A is prl(pair(tl,tz)), then t' =t

R

v
i 3

. 1F is pr2(x), then t' = x

2

« HL

2 t

3 t

b, 4if t is pr2(pair(t,,t,)), then t' = t.

5 t 1s a variable, then ¢t' = ¢
t

6. 1f t = ft ...t (f £ {prl,pr2,pair}), then
t' = ft'l...té.
Note that, since pair is the only function of sort o, these
cases are exhaustive.

We now extend this translation to programs and formulas.
Given o or G in L', we obtain a' or G' in L by
replacing every occurrence of:

fl = t, (tl,t2 of sort o) by

(prl(t)" = (pri(t,))" & (pr2(t;))' = (pr2(t,))’

-47-~

(Vx) (x of sort o) by vxl; vx&
x:=t (x of sort ¢) by

z,:=(prl(t))"'; z5:=(pr2(t))'; xL:=zl;xR:=z2

where Z4 and z, are variables which appear nowher: else

in &.

Example 5.1. The formula generated in Example 4.2 would

be translated as:

L R R
Lzq:= 8575 2, =siR; sh:= Zy3 S 3% z2](s = Q) >
(Sf' < 100 >
EnO:— 5 zgt= S'R, z):= s‘R; s 1= 53;soﬁz=zu,
' F < 1007;
ete.

(end of examplz)

Theorem 5.1 Any L-structure A can be extended to an

Listructure A' with a bijective map J from states of A
to states of A' such that

(1) the carrier of o in A' 1is Ucl % U02

(11) for any formula G of L' and state o cf A,

pl=G' 1iff Jpl=G

Proof Let A' pe A augmented by adding Uol x U02 as
the carrier for sort o, with prl, pr2, and pair being the
evident Cartesian functions. Let Jp be the same as p On
all variables of sort other than o, and for each variable

x of sort o, let (JoXx) = <p(xL), p(xR)>. J 1is clearly
L R

bijective, since the variables Xx and X have been deleted in L'.

.

If t 4is any term of L' of sort other then (pl=t') =
(Jel=t), by the inductive definition of (-)'. We may now
prove (ii) by a routine structural induction; for o¥*, we

recall that [o¥] = Llﬂanﬂ and proceed by induction on n.
O

Corollary 5.1. A is a model of T iff A' 1is a
model of T'. 0O L
Corollary 5.2. T |=G' iff T' |=G. 0

Definition. We say a theory T' i1s an extensicn by

definitions of T iff T' 1is obtained from T by

repeatedly adding new sorts. If T' 1s an extensior by
definitions of T, and G 1is a formula in the languige of
T*, we use G' to denote the formula obtained from G

by performing in turn the translations corresponding to
each addition of a predicate or a sort.

Corollary 5.3. If T' 1is an extension by definitions

of T, and G is a formula in the language of T', then
T |=G iff T |=G'.
Proof. By induction on the number of new sorts, using

Theorem 5.1. 0O

-9

6. Implementations

We may now synthesize the results of the last two
sections to restate Part B of our thesis:

Definition: An implementation of a theory T1 in a

theory T2 is an interpretation I of Tl in an extension

by definitions Té of T2.

We call T, the implemented theory, T, the implement-

ation theory, and T, the interface theory. T; 1s implement-
able in T, 1f there is an implementation of T, in T,.
Therefore, to prove the correctness of an alleged
implementation of '1‘1 11 T2, one need only prove the
formulas IO-I4, given in Section U4, in T!.
We may now state the main theorem, which says that our
definition of implementation meets the requirements set forth
in Section 1.

Theorem 6.1 (The Implementation Theorem). Let

(I, (<)) be an implementation of T, in T,.

(1) (synthetic version) If A 1is any L,-structure,

then there is an Ll-structure A' such that for any closed

formula G of L., A' |=G 1ff Al=(gY)'.

1’
(11) (analytic version) For any formula G of Ly, if
&
T, =G, then T, I=(G™)".
Proof (1) By Corollaries 4.1 and 5.1, and (ii) by

Theorem 4.2 and Corollary 5.2. [

=50=

Example 6.1. Let us start with the "standard mcdel" of

arrays and construct a model of stacks. By Theorem 5.1, we
first augment the model by adding a sort <rec> with carries
'Uarr X Uint’ and with the standard pairing and projection
functions. By Theorem 4.1, we now construct a structure whose
carrier for the sort stk is the quotient of

{{x,n)lx € Uarr & n =2 0} by the equivalence relatior induced
by = i this quotient set is isomorphic to w¥. Cornstruction
(d) of the proof of Theorem 4.1 now tells how push, pop, etec.

work in this model. (End of example).

<5

i Conclusions and Open Problems

This work had its roots in the paper by Elgot and
Snyder [8] on the notion of equality of lists, which led
us to Tarski [36]. Our reading of Tarski's book crystallized
our thinking about the problem of implementation, which we
had addressed in a less than satisfying way in.[373.

Given this background, a few words are in order about
our choice of Dynamic Logic as a specification language.

We chose DL for a number of reasons. It subsumes thz most
commonly used specification language, that of partial
correctness assertions P{S}Q. It also has a well-under-
stood theoretical development, and relies on the staadard
"assignment" model of programs.

Our decision to abandon, at least temporarily, the use
of algebra as a specification language was a conscious one.
Workers in algebraic semantics have been keenly awars of
the pitfalls of implementations [6, 7, 11, 12, 241.
Nevertheless, as we demonstrated in Section 1, the distin-
ction between a model and an implementation arises in any
specification language, not just in algebra. We wer:
therefore led to abjure any approach which leamed tco
heavily on algebraic machinery.

Communication is also a factor. The crucial disti-
nction between specification and modelling is particularly
difficult to communicate in an algebraic framework.

Indeed, the confusion between these two notions seems to

-52-

be the cause of considerable debate inside the algebraic
community.
In any case, it is not our intention to promote DL
or DLP as the One True Specification Language. We intend
instead that this work be taken as a parédigm: one test
of a reasonable specification language is thaf a reasonable
version of the Implementation Theorem should hold for it.
Our notibn of implementation subsumes that of Hoare
[16] and Robinson & Levitt [31]. Both of these works
restrict the specification language (that of Tl) to
formulas of the form P o> [A]Q, where A 1is a single
procedure call. For essentially the same amount of work
in establishing the conditions for the Interpretation
Theorem, we get a far richer specification language.
Furthermore, we allow equality to be interpreted as an
arbitrary equivalence relation, whereas preceding work
used fixed interpretations. Hoare [16] interprets
x=y as A(x) = A(y) where A 1is the so-called
"abstraction function." Often, however, A lacks a suitable

range; this problem is alleviated in Robinson & Levitt

[31], where x
f(x)

In order to get a sufficiently fine interpretation of

y 1is interpreted as

f(y) for all V-functions £,

equality, it was then necessary to introduce "hidden
V-functions." Our notion of interpretation includes both

of these as special cases. (See, however, [181).

-53-

Formula (3) in Section 1 is a typical example of a specifi-
cation which is difficult to treat adequately in either

Hoare's or Parnas, Robinson, and Levitt's framework.

Ehrig, Kreowski, and Padawitz [7] have studied a paradigm
similar to ours in the context of algebraic specifications.
Let T

and T be algebraic specifications, i.e. the axioms

4 2
are equalities. They implement T1 in T2 in two stages,

Just as we do. PFirst, T2 is extended to Té by adding
additional sorts and function symbols corresponding to those

in Tl’ and additional equations constraining them. The

symbols of Tl may then be interpreted as the corresponding
symbols of Té. This gives a functor from T2—a1gebras to
algebras in the language of Tl (in their terminology,
“synthesis" followed by "forgetting"). Our "concrete invariant"
(1s-0) is replaced by restriction to the prime subalgebra
(their "reachability"). Equality is interpreted as the

smallest equivalence relation which contains the axicms of

T and which is preserved by the operations of Tl

i 4
(comparable to our I3). Thus all the equalities deducible

from 'I'1 are automatically true in the interpretaticn. The
implementation is correct iff an equality in the language of

T, 1is true in the Interpretation only if it 1s deducible

i
from T, (Theorem 5.5(4) of [T1).

5l

In other related work, Nakajima et. al. [26] have consi-
déred the lmportance of the interpretation theorem, with a
quite different specification language. Correll [2] zonsidered
how function symbols could be interpreted as looping b»rograms.
Guttag, Horowitz, and Musser [13] and Gaudel [10] havs
discussed the notion of an interpretation of equality in the
context of algebraic semantics. The "mapping function
expressions" of Robinson & Levitt [311 are a kind of inter-
pretation. |

We conclude with some open questions and problems.

l. Provide a reasonable axiomatics for DLP, and give
a proof-theoretic version of the Analytic Implementation
Theorem. (We have developed such an axiomatics). While
no axiomatic system for DLP can be complete, the capazity
of proving such a theorem is an interesting test of the
adequacy of a deductive system for a specification language.

2. We say that Tl is implementable in T2 i€

there is an implementation of ’1‘1 in T2. Show that
implementability 1s transitive.

3. Give a version of the Synthetic Implementation
Theorem phrased in terms of implementations instead of

models. This i1s closely related to the previous problem.

-55-

4, Extend our notion of interpretation to allow
.functibns to be interpreted as procedures. One technical
problem is that the usual way of introducing functions
by definitions [33, pp. 59-601 involves equality, which
is not preserved under interpretation. The techniques of
Musser [25] should be relevant here. (Extending the notion
of interpretation to allow functions to be interpreted as
terms is trivial).

5. Extend our notion of interpretation to allow (a)
array assignments and (b) value-result parameters.

6. Apply these techniques to some interesting implementa-
tions. Salwicki [32] has done some similar examples.

7. Extend this family of results to some other
specification languages.

8. Extend this family of results to include other
kinds of modalities [27, 301.

9. Many of our theorems take the form of adjunctions
or Galois connections [231. Are these theorems adjurctions
in any useful sense? If so, how.can this fact be exrloited

in algebraic logic?

Acknowledgements

We wish to thank C. C. Elgot for his encouragement
over the'yearé and for [8], and G. J. Sussman, whose comment
that some versioﬁs of semantics suffered from "premature
binding" taught me the elusive nature of The One True

Specification Language. Neither of them, however, bears any

BB

responsibility for the direction I travelled with thelr remarks.
Thanks also to A. R. Meyer for his remarks on an early version

of this paper.

10.

g O

12.

13.

-57-

A. Church, Introduction to Mathematical Logic, Volume I
Princeton University Press, Princeton, N. J., 1996

C. H. Correll, Proving Programs Correct Through Refine-
ment, Acta Informatica 9 (1978), 121-132.

O. J. Dahl and C. A. R. Hoare, "Hierarchical Program
Structures” in Dahl, O. J., Dijkstra, E. W., and Hoare,
G Hie: R, Structured Programming, Academic Press,
London, 1972, pp. 175-220.

E. W. Dijkstra, "Notices on Structured Programming" in
Dahl, O. J., Dijkstra, E. W., and Hoare, C. A. R.

Structured Programming, Academic Press, London, 1972

E. W. Dijkstra, A Discipline of Programming, Prentice-
Hall, Englewood Cliffs, N. J., 1976.

H. D. Ehrich, Extensions and Implementations of Abstract
Data Type Specifications, Universitat Dortmund,
Report 55/78.

H. Ehrig, H. J. Kreowski, and P. Padawitz, Algebraic
Implementation of Abstract Data Types: Concept, Syntax,
Semantics and Correctness, in Proc. 7th Collogqg. on

~ Automata, Languages, and Programming (1980).

Cii Ba Elgot and L. Snyder, "On the Many Facets of Lists“
Theoret. Comp. Sci. 5 (1977), 275-306.

H: B, Endertcn, A Mathematical Introduction to Logilc,
Academic Press, New York and London, 1072.

M. C. Gaudel, Specifications Incomplétes Mais Suffisantes
de la Representation des Types Abstraits, IRIA Research
Report No. 320 (August, 1978).

J. Goguen, and F. Nourani, Some Algebraic Techniques for
Proving Correctness of Data Type Implementations,
extended abstract (1978).

J. A. Goguen, J. W. Thatcher, and E. G. Wagner, An Initial
Algebra Approach to the Specification, Correctness, and
Implementation of Abstract Data Types, Current Trends in
Programming Methodology, IV: Data Structuring (R Yeh, ed.)
Prentice Hall, New Jersey, (1978), pp. 80-140.

J. V. Guttag, E. Horowitz, and D. R. Musser, Abstract
Dat% Types and Software Validation, Comm. ACM 21 (1978),
048-1064.

14,

15.

16.

B fir

18.

19.

20.

21.

22«

23.

24,

25,

26«

58

D. Harel, A. R. Meyer, and V. R. Pratt, Computability
and Completeness in Logics of Programs, Conf. Rec. 9th
Ann. ACM Symp. on Theory of Computing (1977), 261-228

D. Harel and V. R. Pratt, Nondeterminism in Logics of
Programs, Proc. 5th ACM Conf. on Principles of Programming
Languages (1978), 203-213.

C. A. R. Hoare, Proving Correctness of Data Representations,
Acta Informatica 1 (1972), 271-281.

D. R. Hofstadter, Godel, Escher, Bach: An Eternal Golden
Braid, Basic Books, New York, 1979.

S. Kamin, Final Data Type Specifications: A New Data Type
Specification Method, Conf. Rec. 7th ACM Symp. on

' Principles of Programming, Languages (1980), 13I-138.

D. E. Knuth and L. T. Pardo, The Early Development of
Programming Languages, Stanford University Computer
Science Department Technical Report STAN-CS-76-562
(August, 1976).

D. J. Lehmann and M. B. Smyth, Data Types, University of
Warw%ck, Theory of Computation Report No. 19, (May,
1977).

B. Liskov, A Snyder, R. Atkinson, and C. Schaffert,
"%Estrgction Mechanisms in CLU" Comm. ACM 20 (1977),
564-5T76. -

B. Liskov and S. Zilles, Specification Techniques for
Data Abstractions, IEEE Trans. on Software Eng., SE-1
(1975), 7-19.

Saunders MacLane, Categories for the Working Mattematiclan,
Springer-Verlag, New York, 1971.

M. E. Majster, Limits of the Algebraic Specification of
Data Types, SIGPLAN Notices 12, 10 (October, 1977), 37-42.

D. R. Musser, A Proof Rule for Functions, University of
Southern California Information Sciences Institute,
Marina del Rey, CA., Technical Report ISI/RR-T77-62
(October, 1977).

R. Nakajima, M. Honda and H. Nakahara, Hierarchical
Program Specification and Verification - a Many-Sorted
Logical Approach, Acta Informatica 14 (1980). 135-155.

27 .

28.

29.
30.
3l
32.
33.
34,
35.

36.

37.

38.

-59-

R. Parikh, A Decidability Result for a Second Order
Process Logle, Proc. 19th Ann. Symp. on Foundaticns of
Computer Science (1978) IEEE, pp. 177-18

D. L. Parnas, "A Technique for Module Specification with
Examples" Comm. ACM 15 (1972), 330-336.

V. R. Pratt, Semantical Considerations on Floyd-FHoare
Logic, Proc. 17th IEEE Symp. on Foundations of Ccmp.
8ed. (1976), I09-121.

V. R. Pratt, Six Lectures on Dynamic Logic, Massechusetts
Institute of Technology, Laboratory for Computer Science
MIT/LCS/TM-117 (December, 1978).

L. Robinson, and K. N. Levitt, Proof Techniques for
Hieragchically Structured Programs, Comm. ACM 20 (1977),
271-283

A. Salwicki, "On Algorithmic Theory of Stacks" Methematical

Foundations of Computer Science 1978 (J. Winkowski, ed.)
Lecture Notes in Computer Science, vol. 6L, Sprirger,
Berlin, 1978, pp. 452-461.

J. R. Shoenfield, Mathematical Logic, Addison-Wesley,
Reading, Massachusetts, 1967.

J. M. Spitzen, K. N. Levitt, and R. Robinson, An Example
of Hierarchical Design and Proof Comm. ACM 21 (1978),
1064-1075.

J. E. Stoy, Denotational Semantics The Scott Strachey

Cambridge, Massachusetts, 1977.

A. Tarski, Introduction to Logic and to the Methcdology
of Deductive Sciences, Oxford University Press, New York,
2nd edition, 19046,

M. Wand, Final Algebra Semantics and Data Type Extensions,
J. Comp. & Sys. Sci. 19 (1979), 27-44.

W. A. Wulf, R. L. London, and M. Shaw, "An Introcuction to
the Construction and Verification of Alphard Programs,"
IEEE Trans. on Software Eng. SE-2 (1976), 253-26%5.

