Parsing Extended LR(k) Grammars

by

Paul Walton Purdom, Jr.
and

Cynthia A. Brown

Computer Science Department
Indiana University

Bloomington, Indiana 47405

TECHNICAL REPORT NO. 87
PARSING EXTENDED LR(k) GRAMMARS
PAUL WALTON PURDOM, JR.

AND
CYNTHIA A. BROWN
DECEMBER 1979

Research reported herein was supported in part by the National
Science Foundation under grant number MCS 79 06110.

Parsing Extended LR(k) Grammars *

Paul Walton Purdom, Jr.
and

Cynthia A. Brown

Abstract. An extended LR(k) (ELR(k)) grammar is a context|free

grammar in which the right sides of the productions are regular expres-

sions and which can be parsed from left to right with k symbol look-

ahead. We present a practical algorithm for producing small fast parsers
directly from certain ELR(k) grammars, and an algorithm for convérting
the remaining ELR(k) grammars into a form that can be processed iy the
first algorithm. This method, when combined with previously developed

methods for improving the efficiency of LR(k) parsers, usually produces
parsers that are significantly smaller and faster than those produted by

previous LR(k) and ELR(k) algorithms.

\ Research reported herein was supported in part by the Nationa
Science Foundation under grant number MCS 79 06110.

1. Introduction

An extended context free grammar is a context free grammar in which

the right sides of productions are regular expressions over the terminal
and nonterminal symbols of the grammar [1]. (We represent the regular
expressions by deterministic finite state machines.) Extended context
free grammars have many advantages over ordinary context free grammars
for representing the syntax of programming languages: the specifications
are shorter, easier to construct, and easier to understand. An early
example of the use of this technique is in the specification of thg pro-
aramming language Pascal [2, 3].

An extended context free grammar is an ELR(k) grammar if S P

is impossible and if S 2 et . s vBx =>aBy , and flirst k(z) =

first k(y) implies A=B , a =7y , and x =y , where all derivatlions are

rightmost [4]. Figures 1 and 2 show ELR(k) grammars; Figure 3 shows a

non-ELR(k) grammar. Two approaches have been suggested for parsing ELR(k)

grammars. Mads?bn and Kristensen [1] and Heilbrunner [4] have studied f{
transformations that convert ELR(k) grammars to LR(k) grammars; Hei1brunner
shows how to do this for any ELR(k) grammar. Although such transformations
are of theoretical importance, they are unsuitable for direct production of
efficient parsers. Parsing the input with the LR(k) grammar that fresults
from the transformation requires that the parser find the complete structure of
the input under the new grammar, even though much of this structure may be
unnecessary for reconstructing the parse for the original ELR(k) drammar.

The second approach, used by La Londe [5, 6] and also by Madsﬂ?n and

Kristensen [1], is to build the parser directly from the ELR(k) griammar.

Most aspects of Knuth's original LR(k) parsing algorithms [7] have obvious

extensions to FELR(k) grammars. (These extensions are particularly natural

when ' an extension of Earley's dot notation [8] is used to specify the items

for the parser states, as we shall see.) How to pop the stack, however,

is]lss evident. As part of each reduce action, Knuth's algorithm pops the

stac
bein
Prev]
ing

stacl

by an amount equal to the length of the right side of the production
reduced. A regular right side can generate strings of varying lengths.

ous investigators handled this problem with special rules for recogniz-

the strings generated by the right side after they have been put on the

. [5, 6], or by putting extra symbols on the stack to help find the

begifinings of such strings [1]. These methods do not handle all ELR(k)

gram

indid
state
duct

does

j1ars; they also add complexity and inefficiency to the parser.

Our approach is to stack a state only when the symbol being processed
ates the beginning of a new right side (as a special case, this includes
's where the empty string is being reduced). When the end of the pro-

on is found, exactly one entry is popped from the stack. This approach

not work for every ELR(k) (or even every LR(k)) grammar because

for ¢

ome (state, symbol) pairs it may not be possible to tell whether the

parsér is starting a new right side without seeing more of the input. In

this|situation our first algorithm produces a parser with a stacking conflict.

i We also present an algorithm for transforming any ELR(k) grammar whose

parsér has stacking conflicts into one whose parser has none. Each step of

the fransformation splits a production into two parts in such a way that it

is tiivial to reconstruct the parse with the original grammar from the parse

with‘tne transformed grammar. Usually only a few steps of the transformation

are needed, so the efficiency of the parser is maintained. The transformation

permits us to parse any ELR(k) grammar.

At first sight it might appear that our algorithm could handie
only LL(k) grammars, because the parsers it produces recognize when
they are starting each right side. Our parsers, however, do not need
to recognize which right side they are starting. The algorithm (using
the transformation) can build a parser for any ELR(k) grammar.

The inspiration for the basic algorithm came from a comparisbn of
Earley's [8] and Knuth's [7] parsing algorithms. In Earley's algorithm,
the number of the current state is recorded at the start of each pfoduc-
tion and is then copied along with the production as each symbol i5 re-
cognized. The stack is organized to permit parallel investigation|of
several possible parses . Since the LR(k) algorithm uses a sing?e
stack, we can dispense with the copying of the stack top. The result-
ing parser has many similarities to the parser that De Remer [9] produces
by stacking only those states that must be stacked.

If in some state the same symbol occurs at the beginning of one
production and midway in another, a stacking conflict results. Th% trans-
formation breaks the second production into two parts, so that the begin-
ning of the second part is in the state that had the conflict. Sinhce both
items now suggest stacking the state, the conflict is removed. This process
requires introducing a new nonterminal into the second production.
Heilbrunner [4] indicates how to do this without introducing stacking

conflicts. |

2. Notation and Basic Algorithm

An extended context free grammar has a starting symbol, a seé of

nont
symb
prod
symk
The
nont
movre
no 1
fron

the

An

1)

shar

ther
i nd

erminal symbols that contains the starting symbol, a set of terminal
ols that is disjoint from the nonterminal symbols, and a set of
uctions. Each production has a left side consisting of a nonterminal
ol and a right side consisting of a deterministfc finite state machine,.
finite state machine can have transitions under both terminal and
erminal symbols. Each nonterminal is used as the left side of one or

productions. It is convenient to have an initial production with

eft side and a two state right side. This right side has a transition

its initial state to an accepting state under the starting symbol of
grammar. ﬂ o in TV £ - e Y show

A terminal state is an accepting state with no outgoing transitions.

xtended right linear grammar is a grammar where every transition under

nterminal symbol is to a terminal state. Extended right linear grammars

2 many properties with right linear grammars.

A path through states iO ,...,inp spells o iff o = X1 cen Xn , where

® is a transition from i, to under Xj for 1<Jj<n-1 . State

] i+
irectly generates o iff some path from i to an accepting state

spel
the
stat

from

Is o . Production p directly generates o iff the initial state of

right side of p directly generates o . State i generates iff
e i directly generates some string g such that o can be obtained

B 1in zero or more steps, where at each step a nonterminal is replaced

by a

string that is directly generated by a production for that nonterminal.

Production p generates string o iff the initial state of the right side

of # generates o . A sentential form is a string generated by the initial

prodyction.

A position in a grammar is a pair [i,j] where i s a production and

J 1s a mawked state in the machine for production i . A position is ;F/

represented in dot notation by giving the left siFe
the right side of i with a dot in state j ./ A follow string for pro-

of prqductionyﬂi and

L

r

duction i is a string of k terminal symbols/that immediately fgllows
the left side of i in some sentential form. An item is a triple|
[i,3,¥] , where [i,j1 is a position in the grammar and vy is a follow

string for i . The initial item is [initial production, initial |state,
k
4

1. The—item-column-of-Figure-3-shows-some-items—in-dot-notatign.

A lookahead string for item [i,j,y] is the first k symbold of

a string of terminal symbols formed by concatenating a string of terminal
symbols generated by state j and the string y . Item [i,j,y] directly
derives item [a,b,8] iff b 1is the initial state of the right side of

a , state j has a transition under the left side of a to some %tate

. ¢, and & 1is a lookahead string for [i,c,y] . The derives relation is
the nonreflexive transitive closure of the directly derives relation.

The basic parser building algorithm constructs the states of a con-

troller for a pushdown automaton. These states are called parser s;ates

to distinguish them from states in the finite state machines used to specify
the grammar. Each parser state consists of an item set, an action set, and
a go to set. The item set has two parts: a set of main items and a set of /
derived items. The main items are those that are present in the state ini- b//
tia11ya(§ee;ée4ﬁ«§§ Eééhﬁﬁafsef staté has a unique set of main items. The

derived items are the items that can be derived from the main items; in some

states a particular item may be both a main item and a derived item. A
parser state for which only the main items have been constructed is called

an incomplete state. The item set is used to construct the parser, but it

can b

e discarded once the parser is built.

Each member of the action set of a parser state consists of a look-

ahead and an associated action. For each main item [i,j,y] such that

o
assoc
is al
is an
tains
item

termi

an accepting state, the parser state contains the action reduce i

iated with Tookahead ~ . (The reduce action for the initial item
so called accept.) For each derived item [i,j,y] such that j

accepting state Las well as an initial state, the parser state con-

the action stack-reduce i associated with lookahead ~ . For each

[i,3,y] such that state j has a transition to state b under

nal symbol a , the parser state contains the action shift associated

with leach lookahead that consists of a concatenated with the first k-1

symba
confl

strin

that

1s of some lookahead for item [i,b,y] . A parser has no action

ict iff it has no more than one action associated with each lookahead
9.

The Y-shifted item for item [i,j,y] is the item [i,j',y] such

state j has a transition under symbol Y to state j' , if such

a st&te j' exists; otherwise there is no Y-shifted item for [i,j,Y].
|

The ég;ﬂgf Y-shifted items for a set of items S 1is the set of items

obtai%ed by Y-shifting each item in S .

state

state

that |

with

’Each element of a go to set consists of a stacktop symbol, a next

, and a stacking mark. Symbol Y 1is a stacktop symbol for a parser

iff there is at least one item [i,j,y] 1in the parser state such
state j has a transition under Y . Each such element is associated

stacktop symbol Y . The next state entry for stacktop symbol Y

I
is tHe number of the parser state whose main items are the Y-shifted items
I

for ﬁhe items in the current state. The stacking mark for Y is stack

if all its associated items are derived items, don't stack if all its

associated items are main items, and stacking conflict if its associated

items include both main and derived items. A parser is deterministic

iff it has no action conflicts and no stacking conflicts.

Algorithm 1 (Basic ELR(k) Parser Building Algorithm). This algorithm
takes as input a reduced extended context free grammar and produces a (pos-
sibly nondeterminist{c) ELR(k) parser for it.

Step 1 [Initialize]. Form the incomplete initial parser state with
the initial item for its main item set.

Step 2 [Complete States]. If there are no incomplete states, stop:
the parser is finished. Otherwise choose an incomplete state X and
complete it as follows. Add the derived item set, the action set, and the
go to set as described above. The next state entry for stacktop symbol 'Y
js the parser state y whose main items are the Y-shifted items of X .7;*
the parser does not already have such a parser staté {either completed or
incomplete), then create incomplete state y . After state x| 1is completed,
repeat step 2.

Figure 4 shows the results of applying Algorithm 1 (with modifications
similar to those discussed by Pager [10] for using minimum lookahead at
each state) to the grammar in Figure 1. The operation of the parser is
‘the same as that of a traditional LR(k) parser, except for the procedures
it uses for manipulating the stack. The parser pushes the current state
onto the stack when the action is stack-reduce or when it follaws a go to
transition associated with a stack mark of stack. The parser pops an entry
from the stack (transferring to that parser state) when the action is reduce

or stack-reduce. (The stack-reduce action is the same as transferring back

to the clrrent state without changing the stack: it is used when reducing
the nullistring.) Algorithm 1 produces small fast parsers for many ELR(k)
grammars |

When Algorithm 1 is applied to an ELR(k) grammar, the resulting
parser has no action conflicts. It may, however, be nondeterministic as

a result of stacking conflicts.

3 Remgqigg_§§gcking Conflicts

Figure 5 shows a parser state from the parser A]gor1thm 1 produces
for the drammar in Figure 2.\ The parser state in F1gure 5 has a stack-

ing conflict. A conflict transition in production p of grammar G

is a transition from some state | of p under a symbol Y such that
there is a parser state in the parser for G having [p,i,y] as a main
.item for some Yy and such that the stacking mark associated with stacktop
symbol Y 1is conflict. For the grammar in Figure 2, the transition from
state 1 Qnder a 1is a conflict transition.

The following grammar transformation removes stacking conflicts.
Repeated application of the transformation results in a grammar
with no conflict transitions. If the original grammar is ELR(k) , so
is the transformed grammar; Algorithm 1 produces a deterministic parser
when applied to the transformed grammar. The transformed grammar is
related to the original grammar in such a way that it is trivial to re-
construct a parse for the original grammar from a parse for the trans-
formed grammar.

To prepare for the transformation, give each state in the grammar a

unique number. Associate with each state i a new nonterminal Ni ,

|
called a secondary nonterminal. (The Ni for initial states that have
|

no incoming transitions are not used and may be discarded.) Eth Ni

has one production. Initially the production consists of a nonhccept-

ing initial state (with a unique number) that has no outgoing t}ansitions,
a copy of state 1 , and a copy of all states that can be reachéd from
state i . If there is a transition from state a to state b| under
symbol Y , and there is a copy a' of state a in the maching for Ni >

then there is a transition under Y from a' to b' (the copy of state

b in the machine for N.). State a' in the machine for N, |is an ac- '
|

cepting state iff state a was. -The-copted-state-has-the samefnumber

as—the-originalstate. At this stage Ni generates no strings} Each ap-
plication of the transformation removes one transition from the grammar and
adds a transition from the initial state of some Ni to the copy of state
i :
; A |
= |

N . O AT S~ P N
T Ao p i T T

Egnf]icf Removing Transformation

Obtain grammar G' from grammar G by copying G and making the
following modifications. If G has no conflict transitions, d? nothing.
Otherwise, let k be a production that has a conflict transiti%n from
state 1 to state j wunder symbol Y .

1. If i 1is an initial state, modify production k by m%king i
a noninitial state (i must have incoming transitions because 1t is as-
sociated with a conflict and is therefore the marked state in a main item)
and by adding a new initial state with a unique number. For eath transi-

tion from state i to some state a under some symbol X , add a transi-

tion from the new initial state to a under X . The new initlal state has

no incoming transitions.

J

10

2. In production k vreplace the transition from i to Jj under
Y by a trans1t1on under N from i to the terminal 3ccept1ng state
of k. (qf necessary, add such a state to k ,[w1th ‘a unique number}.

In the pr@duct1on for Nj add a transition under Y from the initial
state to the copy of state j . In s%a%e k delete any states that are
no longer accessible.

This transformation replaces a production by a right linear subgram-
mar for which the terminals and nonterminals of the original grammar are
terminals and the secondary nonterminals are nonterminals. The subgram-
mar generates the same strings as the original production. Figure 6
shows the results of applying the transformation to the grammar of
Figure 2 , removing the conflict transition from state 1 . Inac-
cessible <tates and productions have been omitted from Figure 6. The
grammar of Figure 6 has no conflic™ transitions, and Algorithm 1 produces
an eight state parser for it.

The procedure for applying the transformation is summarized in the

following lalgorithm.

Algorithm 2

1. Add the initial versions of the productions for the secondary
nonterminals, as described above.

2. Hepeatedly apply the Conflict Removing Transformation until a
grammar with no conflict transitions is c-tained.

3. FReduce the grammar.

In the next section we show that Algorithm 2 always terminates

(thereby producing a grammar with no conflict transitions), and that

11

when it is applied to an ELR(k) grammar it produces an ELR(é) gram-
mar. Therefore if we apply Algorithms 1 and 2 to an ELR(k) érammar,
we obtain a deterministic parser. |

Algorithm 1 does not produce a parser with action conflicés for
every non ELR(k) grammar. Figure 3 shows a grammar for whicﬂ Algorithm
1 produces a parser with a stacking conflict (under stacktop B) but
with no action conflicts. After Algorithm 2 is applied to thig grammar,
Algorithm 1 produces a parser with an action conflict but no sﬁacking
conflicts. Only for ELR(k) grammars does Algorithm 2 fo11owéd by

Algorithm 1 produce a deterministic parser. ;
Coxn i A l' . |

4. Proofs |

Let GD be the original grammar and Gi be the grammar dbtained

after i applications of the conflict removing transformation.

L

D

l!

i)
mma 1. Transitions in G, from initial states that have no in-
coming transitions are not conflict transitions.

A conflict is always associated with a main item where thé dot has

moved through one or more states. |

Lemma 2. Each transition in G, from an initial state i¢ under a

terminal or original nonterminal symbol (but not under a secondary non-

|
terminal).

: |
This is ensured by step 1 of the transformation. |

|

Lemma 3. The transitions in G, under secondary nontermina1s are
not conflict transitions.

This follows from Lemma 2.

12

Theorem 1. Algorithm 2 terminates.

Prpof. Let Ti be the number of transitions in grammar Gi » not
counting transitions under secondary nonterminals and not counting tran-
sitions from initial states that have no incoming transitions. By Lemma
1 and 3, Ti -is an upper limit on the number of conflict transitions in
Gi . Each application of the Conflict Removing Transformation reduces
Ti by 5t least one. Therefore, the number of transformations required
is no mbre than T0 .

Th§ proof of Theorem 1 shows that the number of applications of the
Conflict Removing Transformation is never more than st , where s is the
number pf states in G and t is the number of transitions. It is an

open question whether there is a better upper limit. In practice only a

small number of transformations are usually needed.

Lemma 4. For Gi every transition under a secondary nonterminal is
to a telminal accepting state.
After Algorithm 2 each original production has been replaced by a

(possibly trivial) extended right linear subgrammar.

lgggggg 2. ¥ GO is ELR(k) , then each Gi 50 FERCKY .
Proof. Use the proof of Theorem 2 of Heilbrunner [4], replacing
right 1inear with extended right linear and GH with Gi . After such
notatiohal changes it becomes a proof of our Theorem 2.
Theorems 1 and 2 show that applying Algorithm 2 followed by Algorithm

1 produtes an ELR(k) parser for any ELR(k) grammar.

13

5. Practical Considerations

Up to this point we have presented the algorithms in a forﬁ that is
easy to understand. In this section we discuss some aspects of!an ef-
ficient implementation of them.

There are many transformations other than the one presente% in
this paper that can be used to remove conflict transitions. The& differ
in the time required to complete the transformation, the size o# the
resulting parser, and the amount of stack space the parser uses.i An in-
teresting open question is which transformation is (in some sens%) the
best one. Until this question is settled a practical system shoL1d
probably use one transformation consistently, but it should make‘the
results of the transformation known to the user so that he can p}ovide
an alternative subgrammar if he wishes. i

Another practical consideration is the notation that shou1d‘be used
for describing the finite state machines to the parser building brogram.
One good method is to use right Tinear subgrammars and have the %rogram
reconstruct the machines. The program can automatically determi%e which
nonterminals are used to represent machines, provided the origin?] grammar
has no nonterminals used only in a right linear way.and without $ny asso-

ciated semantic actions. (If the original grammar had such nont&rmina]s,
!
For efficient operation the -initial machines-should be constructed

\ET
only for the-secondary-nenterminals-whose-associated- states, are {nvo1ved

it is useful to optimize them out.)

in conflict transitions, as—these éonflict transitions are disco¢ered.
If the accepting states in the grammar are labelled, then all thé pro-

ductions for a single nonterminal can be combined into one produc¢tion,

14

with the labels indicating which original production has been recognized.

Algorithm 2 implicitly uses Algorithm 1 for finding conflict transi-
tions. Anh efficient implementation would build the parser for a trans-
formed grammar by modifying the parser for the original grammar. This
process i5 straightforward, though tedious to describe.

Several techniques for producing efficient LR(k) parsers, such as
variable lookahead methods [10] and unit production elimination [11, 12],
have been developed. These methods can and should be applied to our
algorithm, as suggested by Figure 3.?

In al parser it is necessary to stack semantic information as well as
the numbelrs of parsing states. One way to do this is to associate a
semantic item with each parser state the parser goes through. This tech-
nique can easily be adapted for use with our algorithm. A single stack
that conthins both the state number (if it is stacked) and then the semantic
item is used. Separate alphabets or marking bits can be used to distinguish
the two types of entries. For a reduce action the stack is popped back to

the previpus state entry.

6. Conclusions
Algorithm 1 has been used by one of the authors' students to pro-
duce a parser for a subset of Pascal, using hand generated transformations

to remove conflicts. Very few transformations were needed and a small
fast parser was produced.

We bélieve this method produces the best available parsers for most
ELR(k) Tlanguages. It does not require an analysis of stacked entries,

nor does it require transforming the grammar to an LR(k) form.

15

The method should also produce better parsers than LR(k) 'methods,
once it has had the various techniques for optimizing LR(k) parsers ad-
ded to it, because ELR(k) grammars give a more compact represgntation
of languages than LR(k) grammars do. As shown in [13], the s?ze of
a parser is usually closely related to the size of the grammar [even
though the best worst case result gives an exponential bound). !And, of
course, language specifications are easier to produce and underétand

using extended grammars.

Acknowledgements

We would 1ike to thank Ching-min Jimmy Lo for producing th? parser
for the student compiler mentioned in the text, and Mitchell Ward for
continually stressing the importance of invariants, which led us to the

proof of Theorem 1.

10.

1.

12.

13.

16

References

0.L. Madsen and B.B. Kristensen, "LR-Parsing of Extended Context
Free Grammars", Acta Informatica, 7 (1976), pp. 61-73.

N. Wirth, "The programming language Pascal", Acta Informatica, 1
(1971), pp. 35-63.

N. Wirth, Systematic programming: an introduction. Prentice-
Hall,, Englewood C1iffs, New Jersey (1973).

Stephan Heilbrunner, "On the definition of ELR(k) and ELL(k)
gramnars", Acta Informatica, 11 (1979), pp. 169-176.

Wilf R. La Londe, "Constructing LR parsers for regular right part
grammars", Acta Informatica, 11 (1979), pp. 177-193.

Wilf/R. La Londe, "Regular right part grammars and their parsers",
Comm; ACM, 20 (1977), pp. 731-741.

Donald E. Knuth, "On the translation of languages from left to
right", Information and Control, 8 (1965), pp. 607-639.

Jay Earley, "An efficient context-free parsing algorithm", Comm.
ACM, 13 (1970), pp. 94-102.

Franklin L. De Remer, Practical translators for LR(k) Tlanguages,
Massachusetts Institute of Technology, Ph.D. thesis (1969).

David Pager, "The lane-tracing algorithm for constructing LR(k)
parsérs and ways of enhancing its efficiency", Information Sciences
12 (1977), pp. 19-42.

A.V. Ao and J.D. Ullman, "A technique for speeding up LR(k)
parsérs”, SIAM J. Comput. 2 (1973), pp. 106-127.

David Pager, "Eliminating unit productions from LR parsers",
Acta |Informatica, 9 (1977), pp. 31-59.

Paul Purdom, "The size of LALR(1) parsers™, BIT 14 (1974), pp. 326-337.

e

™

(%]

Figure 1

An extended context free grammar for arithmetic expressic

a
s—»8b~@
s —-2-0-2-0--0

—8

Figure 2
A grammar of La Londe [6].

The transition from state 1 under a 1is a conflict transi

ins

tion.

+5

' This grammar is not ELR(k) . There are two ways

Figure 3

to parse the string ab .

state main items lookahead | action stack | next |stacking
number | ~eeemmmmmeeo top | state mark
derived items
1 —O0—=—-0 4 e | b
E—-@{)q} T 3 stack
*
T—‘O%“’)"U F 8 stack
F i 0 i 5 stack
{) shift
E (5 stack
2 -—OLQ accept
+).+ reduce 1
T + {
3 E_‘O/———*b{)s'i} + shift
*
reduce 2
4 T—@{'Fs)s‘l} +’),-1 * 8
* shift
5 F 1 reduce 3
()
Ot
6 F : E g
()
o—+0O

state “main items lookahead | action stack | next |stacking
rbeT 2900 S Sl AN top | state | mark
(6] T 3 stack
F 4 stack
Fd i i 5 stack
() shift
C)_j;, (6 stack
+
7 Ef O 0 T 3
S — T
T-@ P Pl & | stack
8 i ' i 5 stack
() shift
L (6 stack
*
s | 18D Pl e
Fl.-1 i 5 stack
if
() shift
E (6 stack
9
shift) L3
Figure 4

.ﬁ\ An ELR(1) parser for the grammar in Figure 1.

state main items lTookahead | action stack | next |stacking
AEbEr) Srsmsommmmeene top | state | mark
derived items
a
b
3 iy b 4
R o A c
a a,b shift a 5 conflict
A—(.) {c} At stack rg A 6 |
duce 3
Figure 5
Parser state 3 of an ELR(1) parser for the grammar in Figure 2.
Notice the stacking conflict that occurs when reading an a .

N
A
@)

Figure 6
The results of applying Algorithm 2 to the grammar in Figure 2.
Algorithm 1 produces an 8 state deterministic parser

for this grammar.

