An Average Time Analysis of Backtracking

by
Cynthia A. Brown
and
Paul Walton Purdom, Jr.
Computer Science Department

Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT NO. 386

AN AVERAGE TIME ANALYSIS OF BACKTRACKING

CYNTHIA A. BrROWN
PauL WaLton PurDoM, JR.

Novemser, 1979

Research reported herein was supported in part by the National
Science Foundation under grant number MCS 79 06110

An Average Time Analysis of Backtracking
Cynthia A. Brown
and

Paul Walton Purdam, Jr.

Abstract. Formulas are given for the expected number of nodes in

the backtrack tree that is generated while searching for all the
solutions of a random predicate. The most general formulas apply

to selection from any set of predicates that obeys the following
conditions. Each predicate is the conjunction of t terms selected
from a set of terms T . For any subset T'<T , the probability

that the predicate contains only terms from T' depends only on

the size of T' . The set T must remain unchanged if each variable

X is replaced by pi(xi) » Where Py is a permutation function.
The time needed to evaluate the general formulas is proportional to
v , the number of variables in the predicate. More detailed con-
sideration is given to predicates whose terms are random disjunctive
clauses with s literals, t = v" for some 1<o<s , and the ran-
dom selections are done with repetition. For this case the expected

number of nodes is

1 -s5+2

2(s-1) , O(v- 2(s-1) v2(5—1)

7

¢ (=)

5 ST o+-S (1-a) a+-25 (1-q)
exp Es-l) (g~£ﬂhg) v S + 0 (V 5=1 j]

S

s-1

-2— m) S=0 S—d s-a +S(.I—0(')
Vv

)

ii

Thus the average time for backtracking on this model is ex-
ponential with a sublinear exponent. More terms for the coefficient

and exponent are given in the text.

Research reported herein was supported in part by the National Science

Foundation grant # MCS79 06110.

1. Introduction

Many problems can be regarded as a search for all the solutions
to an equation of the form P(x1 ,...,xv) = true, where P s a
v-ary predicate and each X; has a finite set of possible values.
The most straightforward way to solve such a problem is by enumerat-
ing and testing each combination of possible values of the variables.
If each variable has i values, there are i possible solutions,
so the exponential time required for complete enumeration makes
this method impractical for all but the smallest problems.

Suppose that, in addition to P , there are intermediate pre-

dicates {Pk(x.l,...,xk)} , where P=PV , such that if F

T<k<v

k_1(x1,...

3X

is false, then Pk(x1,...,xk) is false for all values of xk_. Then the

k-1)

technique of backtracking can be used to try to reduce the size of the space

to be searched. The basic backtracking algorithm can be stated as follows:

1. [Initialize] Set k<« 0.

2. [Test] If Pk(xl""’xk) is false, go to 6 .

3. [New Level] Set k « k+1

4, [Solution?] If k>v , then SETEEEL is a solution. Go
to 7.

5. [First value] Set X € the first value of Xy and go
to 2 s

6. [Next value] If x, has more values, set X < the next

k
value for Xy and go to 2 .

7. [Backtrack] Set k<« k-1 . If k>0 , go to 6 ; other-
wise stop.

The values that are tested can be represented by a tree, as shown

in Figure 1. Knuth [1] gives a more complete introduction to back-
tracking.

If the intermediate predicates can be evaluated quickly and are
often false for small values of k , then backtracking takes consid-
erably less time than complete enumeration, but if the intermediate
predicates are ineffective, backtracking can take considerably longer.
Although there are effective intermediate predicates for many problems,
no general theory has been developed for finding them, and the depend-
ence of the running time on the intermediate predicates as well as on
the original predicate makes it difficult to do realistic analyses.

In particular, a naive worst case analysis, where each intermediate
predicate for k<v is true, is uninteresting.

The first problem in studying backtracking is to choose a model
domain of problems that are both representative and amenable to
analysis. Since there is no consensus on what constitutes a typical
backtracking problem, we avoid introducing arbitrary assumpticns into
the analysis as long as possible. Our first requirement is that the
sets of predicates we consider have natural intermediate predicates.
Each predicate P 1is the conjunction of t terms. The correspond-
ing k-th dintermediate predicate is the conjunction of those terms
from P that contain only variables Xy through Xy - Some of
these sets of predicates contain NP complete problems and héve
@(Zv) worst case solution time when using backtracking. We obtain
quite general formulas for the average solution time for these pre-
dicates. The formulas can be evaluated in time O(v) .

As a concrete illustration for our formulas, and as a model for

more detailed investigation, we use the problem of finding all solu-
tions of conjunctive normal form formulas. These sets of formulas
fit our general model, and their natural intermediate predicates have
a simple form that lends itself to analysis. They contain NP
complete problems. Moreover, the trees generated by these formulas
have a shape typical of those encountered by the authors in our own
experience with backtracking. Thus, these sets of formulas arg a
good model for analysis.

It is difficult to grasp the behavior of our general formulas
as t and v become large. Therefore, for one type of random con-
junctive normal form predicate, we derive asymptotic results,
using t = v* for some o . These results show that for such pbrob-
lems the average solution time using backtracking is exponential in
v to a power that is less than one. Comparing this with the time
exponential in v required for exhaustive search, it is evident that
backtracking saves considerable time for nearly all problems in the
class.

It is interesting to compare our results with those of Goldberg
[2]. He analyzes the average time of the Davis-Putnam procedure [3].
In his analysis the procedure is simplified so that it is quite
similar to backtracking. One important difference remains: if each
continuation of a node eventually leads to a solution, that node is
not explored further. This pruning of entire subtrees can Tead to
a huge savings if a large proportion of the predicates in the model
have many solutions. His model has this property and gives a
polynomial average time; the models we investigate asymptotically do

not have this property.

We foresee two main uses for our results. To obtain an accurate
estimate for the running time of a given backtrack program, the
method of Knuth [1] as modified by Purdom [4] should be used. But
to decide whether it will be useful to attack a problem by back-
tracking, before investing the effort in writing a program, the formulas
in this paper provide a rough guide. The second use for these results
will be in a theoretical comparison of ordinary backtracking to var-
ious modifications of backtracking [5, 6]. The analyses of the modi -

fied algorithms remain to be done.

2. Notation and Description of Model.

In our model each predicate P is the conjunction of t [terms
selected randomly from a set T of possible terms. Intermediate
predicate Pk is the conjunction of the terms of P that use only
variables X saees Xy o The random process for selecting terns must
be such that the probability that P contains only terms from the
set T1 , where T]E_r , is proportional to Q(]Tll,t) for scme

function Q . (The generalization to weighted sets is straight-

forward.) Two important cases are:

|T [t (selection with replacement) (1)

1

Q(IT,1+t) =

T, |
(1) (selection without replacement) (2) .
t

Here Q is the number of ways the terms of P can be chosen; in all
cases the probability is Q(|T1|,t) /Q(]T].t) -
Let di be the number of possible values for variable oo The

set of terms T must be invariant under any operation that replaces

each variable X with pi(xi) , where P is a permutation. (For

binary variables each P; is either the not or identity function.)

Let F(k) be the number of terms in T that use only variables
Xq seees Xy and that are false when those variables have each been
assigned some value. The invariant condition on T implies tpat
the same number of terms are false for any set of values of the var-
iables Xp seees Xy o

Let E be the total number of terms in T . If T consists of
disjunctive clauses, where each clause contains s Tliterals random-

1y selected from the v variables and their negation, then

k> , k>0 25 v® (selection with reblacement) (3)
Fs(k) = , Eg=
(k) » k>0 ZT\') (selection without replacement)(4)
s s

with FS(-1) = 0 1in both cases.

Figure 1 shows a set of predicates over two variables with two
terms, where the terms have been selected without replacement. The
terms are clauses with one literal per clause. The backtrack tree

for each predicate is also shown.

What is the expected number of nodes in a backtrack tree? ' Consider
the tree in which each node on level i has degree d1.+1 (the root
is level 0). The node corresponding to Xp = y] s Xp = y2 st 5
X =Yy (xk+1 se..s X, NOt set) is reached by exactly those pre-

dicates that have no terms that are false for those particular values

of the variables. There are Q(E-F(k-1),t) such predicates. Alto-

gether Tevel k contains I d. nodes. (If d, =d for all i,
K T<i<k 3

then level k has d nodes.) The uniformity conditions on the

set of predicates imply that the total number of nodes in all the back-

track trees is the product of the number of predicates and the num-

ber of nodes, summed over k . Dividing this by Q(E,t) , the num-

ber of backtrack trees, gives the expected number of nodes in a tree:

;) QE- F(k-1),) / Q(E) (5)

The expected number of solutions is

S(vit) = (LT d;)QUE-Fv),8)/ QESE) (6)
<izv
Formulas 5 and 6 apply to any method of selecting predicatss that
obeys the restrictions of section 2. Formulas for particular cases
are obtained by using appropriate versions of Q and F . Tha fol-
Towing examples are for terms consisting of disjunctive clauses with

s Tliterals per term.

t
s
(1+) 2k Q = (k"l)) (terms and literals selected
<k=vy

1 =y with replacement),
S S s s s
1+ 3 2I< (2 v ; (k-1))/(2 t")(terms selected with- (8)
T<k<v out replacement,
literals with),
A (v,t) = ¢ t
. k -s (k=-1\ //v
T+) 2°{1-2 (2)/()) (terms selected with
1<ksv 2 replacement, Titer-
als without), and
-1
(20 - () 25
1+) 2 (terms and literals
1<ksv t t selected without

replacement).

4. Exactly v Variables.

As illustrated in Figure 1, processes consistent with the assump-
tions of the previous section may generate some predicates with less
than v variables. To study predicates with exactly v variables we
replace the requirement that the set T be invariant under permutations
of the values of the variables with a more restrictive assumption: the
number F(k) of terms that are false when any k variables are set is
independent of which variables are set and of the values assigned to
the variables. We also require that the number of terms that use no
more than k particular variables be E(k) , independent of whidh k
variables are considered. Under these assumptions the number of pre-
dicates that reach a particular node on level k and that do not use

variable xj is

Q(E(v-1) - F(k-2),t) for j<k-1, and (11)
Q(E(v-1) - F(k-1),t) for Jj> k.

The number of predicates that reach a particular node on Tevel k and

that do not use j of the variables, where i of the j variables have

indices less than k , is

SPSRRLNRIRRE e

where the binomials account for the number of ways the i variables less
than k and the j-i variables greater than or equal to k can be
selected. Using the principle of inclusion and exclusion, the nunber of

predicates that use all v variables and reach a particular node on

level k is (for k>1)

DY (T R aEtv-9) - Fk-1-1)08)

i,] J=1

= I (IR aE@) - R (13)
LEN)

Multiplying by i} di , summing over k , and dividing by the
1<i<k
number of predicates gives the average number of nodes for the backtrack

trees for predicates that use all v variables:

_1yJ(k=Tyyv-k+1 i el
APyl =% 13E£v (1£§skdi)i%j (]? (i)(3~)Q(E(J) Fli).t) (18)
’ () Qe '
j J
78 Asymptotic Results.

For the asymptotic analysis we consider formulas in conjunctive

normal form, where each clause has s literals and t , the number of

terms, is v . We require that both literals and terms be selected ran-

domly with replacement. The expected tree size is therefore given by
equation 7. We compute an asymptotic eXpression for the number of nodes
in the backtrack tree for fixed a and s as v becomes large. | Cook's
construction in his NP completeness paper [7] produces predicates in
conjunctive normal form, where the number of terms increases as v3/2 ’
The number of literals per term also increases with v , but Cook's pre-
dicates can easily be converted to a form with three literals per term.
The set of predicates we consider in this section is therefore NP/ complete.
This does not, of course, necessarily imply that the average time to solve
a problem in the set will be Targe: the average time for any NP complete
set of problems can be made arbitrarily low by adding enough easy problems
to the set. The set we analyze is interesting because it is natural and
because it contains hard problems.

As we will show, the summands in equation 7 are approximately Gaussian.
We asymptotically sum the series by finding the position of the peak, expand-
ing the deviation from a Gaussian in a power series, and summing the power
series times the Gaussian using the Euler summation formula [8]. The main
steps of this procedure are described in the remainder of this section.

Using t = v , formula 7 can be rewritten as

i S
A) =1+ T exp(i en 2+ v (1 - (5)). (15)
O<j<v
Let k be the value of j that maximizes the summand, and let x =

(k-1)/2v . The value of x can be found by setting the derivative of

the summand to zero (if the maximum is not at an endpoint), giving

10

1-a

ot 2 2—"5—-— (1-x%) tn2 . (16)

Using either successive approximations or power series methods [9] on (16)

gives

e : s~1
<) R 5 (-1 () (22) v s an

The coefficients are given by the relations

fo(s) = .l 3 go(s) =1 ’ g-[(S) = =] E
fi (s) = ISESk[ﬁgg%jg - {]gj(s) fk_j(S)(S-1)J , and (18)
gk(S) = lgjék-] [(Z—ﬂ%—;' - 1}fj(s)t_:Jk“j(S)(s—U'j ’

The gj(s) are coefficients 1in a power series expansion for |
Values through f]O(S) are given in Table 1. The power series converges
only for a>1. (For a<1 , we have k>v .) Only the first few values
of fj(s) are needed unless a« 1is near one.

The value of the maximum term, which we will need later, is given by

exp (2vx tn2 + v* 2n (1-x7))
(19)

s
; s-1 2 (1-a)+a
= exp(jg1 (s-1)%3 ej(s)(z’zsn—z) g) ;

where

11

(S-]) e (S) - -1(5) = ‘!qu_a'_k_ hJ-k,k(S) s

hOk(S) =1, and (20)
k+1)j

ho(s) = = 3 (W2 -)g (s)h s (s)

The hik are coefficients in the power series expansion of st | Values
of ej(s) through j = 10 are given in Table 2. Tables T and 2 were
calculated using REDUCE programs. The initial entries were checked against
previous hand calculations.

Replacing the j in equation (15) by Jj+k and expanding the

natural log in a power series gives

As(v,va)
; o jtk-1%°
2 1% z exp (J+k)£n2+\!£n]—(—”‘2—v"’"—)
_kﬁjﬁ\f'k { (21)
1 iy is-ny 3y
= 1+ 2 expl(G+ovx) en2 - v*1() + X v J .
e (1, 1))
The factor independent of Jj s
2 exp(2vxen2 - v* z %
= (22)

= 2 exp(2 vxn2 + v*&n(1 -x%)) .

This is the value of the maximum term; it can be moved outside the sum

over j . The terms in the exponent that are proportional to j |are

12

is-1
2 - ¢ SX
1';1 2v
oo 5=
= sV X
e Kﬂ.z T 2V S
1-x

This is zero by equation 16. Using 22 and 23 and separating the

term from the rest gives
As(v,vu) =1+ 2 exp(2vxen2 + v (1-%x°))

) exp(-aj%) exp(1 tnjn) ,

~k<j<v-k n=3
where
a=v*) s EEJE%L x152 ond
is] 8v
- O 1isy ,is-n _j_n
€ = o P 1.(n)x (2V) for asd .
i1
Now
[.n i
exp(itn3)=l+2ba .
n=3 i=3
where
t Un
b.=) I M R={u,20,u,20,...]) nu =i}
i R n23 un! 3 4 ne3 N
2
Es
For example, by =t, , b, =t,, by =1t;,and by =to+—-.

This reduces the problem to evaluating sums of the form

) bnjn exp(—ajz).
-k=<j=v-k

(23)

(24)

(25)

(26)

13

Using fn(y) = bn‘ynexp(—ayz) in the Euler summation formula

[8] gives

.) . bnjn exp(-2j%)
~k<j<v-

-k+1 B
= JV f (y)dy +) ~$—(f(p‘1)(v- k+1) - £ P Dk emn))
k1 " 1<p<m P* B '

(27)
m+l pv=k+]
» J B ({y}) f,(f")(y) dy

m!

where parenthesized superscripts indicate derivatives, the 81 are
Bernoulli numbers and polynomials, and { } is the sawtooth function.
The error term is O(v fém)(z)), where z is the value of y that

fém%y) . Now fgm%y) has the form a(m'n)/2F2 (a%y) ,

maximizes
m+n

2
where Rn(y) is e'y times an n-th degree polynomial. The coef-
ficients of the polynomial are numbers and do not change with a , so

the maximum of Rm+n(£§y) is independent of a . Therefore the error
m-n a-S

term is O(a & v) . Since a = O(vm-2 xs'z) = O(vs'l) , the error
-|+ m=n OI.-S
term is O(v 2(s-T)) For a<s and m sufficiently large,

the error term becomes small faster than any term we retain, so we will
be able to neglect it if we can show that there is no problem ir making
m large.

To do this we show that the terms from equation 27 1in the sum over

p can be neglected. Consider fﬁ(p'T)(-k+ 1) . Its asymptotic behavior

14

2
as v becomes large depends on its exponent, which is a(-k+1) =

0-S 942 1-a S-a
0 (VTS -1, s)== O(V(S =) . Therefore P71 (Lk+1) becomes

exponentially small for a<s . If g>1, then f(p"1)(v- k+1) also

becomes exponentially small as v increases. Since the final answer
is polynomial with fractional powers, the exponentially small terms in
the sum over p can be neglected, so m can be made as large as desired.
v=k+1

This Teaves J

f (y)dy to be evaluated. For 1<g<s ,
k1

this integral differs only by exponentially small terms from

, ol
et ML, a 2 b for n even,
(512" s

r fal¥)dy = (28)
0 for n odd.

This gives, using equations 24 and 25, |

1]
A vy =1+272 a2+ —~— a ? b,
3 i>3 (%)12 !
i even
(29)

exp(2vx £n2 + v en(1- X))

Expanding the factor of equation 29 that is in square brackets in

a power series gives, using equations 17, 24 (for a and tn)! and 25,

(2q-2p-1)s+2 g)
;o(2mzy 2D (1o2P (52, 22
pZO S pq ?
=0

(30)

15

where the first few values for wpq are given in Table 3. 1In t%e power
-4 oo
and Wnq for p>l s

obtained from all factors containing

_ (r§0 rurﬂ_)
2 u

n
a I tn . (31)
n

series expansion qu is obtained from a

where u,=0 , u, =0 4, J (r—2)ur‘=2p , and " UTE;O for all r | For example,

_ r=0
. 2 i ;
3 |
w1q is obtained from t4 and t3 , and w2q is obtained from t6 .
2 4
t5 t3 % t4 » and t3 .

Thus we obtain the following formula:

As(v,va)

(2g-2p-1)s+2 2 o .
) I V(‘f")(ﬁﬁqsgﬂ)

= 'I+211}5 3 (—-ZEHZ

p20 S pq
q=0
(32)
A6
s-1 =% (1-0)+a
exp | } (s- 1) Jeo. (5)(23232) S
j=1 J
The leading term of this formula is
% . '§+$) -0, s—a ﬂ(1—a)
2T 24n 2 is] (Ks]i s])
4 +0
s(s-1) s
| (33)

5
1

S-
exp|(s-1) (gjglg) v

at =2 (1- oe-—'l-
ST °‘)+o(bl a))

16

[ESTE)

When s =3 and o = (a case for which the problem set is NP com-

plete), this gives

3/8 :

3/4
Agtv,vm) = 1 + o0-0282482661 V™" "1y 755676093 y3/8 _

3/8 9/8

0.9010567850 v~ + 0.3756198156 v~ + | (34)

ov1%/8y7 . |

In work of this type checking is important to avoid errors.
Formulas 7-10 were checked for small values of v , t , and si by
comparison with programs that generated all predicates in a clags and
counted the number of nodes in the backtrack trees. Special ca#es for
formula 6 were checked in the same way. Formulas 32 and 34 wer% checked
using numerical comparison with formula 7. In Formula 30, s =!3 s
4 , 5, and 6 were checked with o varying from 1 to s én 20
steps. For s =3 and 4 , the formula checked. For s =5 Qnd 6
overflow errors prevented setting v large enough (a few thousénd) for
a definitive test. The successful tests check for all errorﬁ

in the values given in Table 3, except in the terms in Woq that are

multiplied by (g) or (2) ;

vy

6. Conclusions.

Formulas 5, 6, and 14 are general formulas that can be useq to pre-

dict the average time required for backtracking over many c]assés of

17
|
randomly selected predicates. Formulas 5 and 6 can be evaluated exactly
in time proportional to v , the number of variables. The 1argést term
in Formula 5 determines the value to within a factor of \.}§ : ﬁor such
exponential problems this accuracy is often adequate.

The asymptotic result for random conjunctive normal form p@edicates,
given in equation 32, shows that backtracking can save substant{a1 time
over exhaustive search on the average. Although the average ti*e for
backtracking is exponential in v , the dependence of the exponént on v

is sublinear. For random problems backtracking does best on préb]ems

with Tow direct interdependence (small s) and on problems wit% a lot

of restrictions (large a).
It is important to consider whether studies of random conjunctive
normal form predicates lead to valid conclusions about typical back-
tracking problems. Certainly in our experience the typical bac%tracking
problem is not in conjunctive normal form. Nevertheless, the random
conjunctive normal form predicates do have many properties that we regard
as typical. The constraints are initially not very effective, but they

become more so as one goes down the search tree, so that the number of

nodes per level shows a rapid increase up to a rounded peak followed by

a rapid decrease. There is some correlation between adjacent branches

of the search tree, but it is not very significant. On the othér hand,
real problems often have solutions, while random conjunctive normal

form predicates with enough terms to mimic what we consider to be a
typical problem almost never have solutions. The existence of Solutions,

|
however, does not have much effect on the size of the search tree. Our

18

model, which is qualitatively correct on the important aspects ¢f the
problem, can be expécted to give qualitatively correct results.

Goldberg [2] analyzed the average time for a variant of thé Putnam-
Davis procedure on a class of conjunctive normal form predicateg. The
time he obtained was polynomial, in contrast to the exponential time
with sublinear exponent for backtracking. As was discussed in ﬁhe intro-
duction, Goldberg's variant of the Putnam-Davis procedure is similar to
backtracking, but saves a great deal of time on predicates thatéhave many
solutions by stopping search at nodes where all descendants 1eaé to solu-
tions. While this shortcut can save a huge amount of time on predicates
with many solutions, its effect on predicates with few solutiong (such
as the ones we considered in the most detail) is insignificant.

We have analyzed only the most straightforward backtracking algorithm.
There are variations on backtracking [5, 6] that are careful about which
variable to introduce at each step in the search. The investigations of
Bitner and Reingold [5] as well as our own numerical studies with random
conjunctive normal form predicates show that these variations can be much
more efficient than traditional backtracking. A1l these backtracking
methods maintain the advantage of treating the predicate as a black box:
the algorithms are controlled only by the results of evaluating|the pre-
dicate for selected values of the variables. We hope to analyze these

methods in the future.

Figure 1
The backtrack trees for six simple predicates. The false

branch is to the left. Each node where a term is false

|
|
|
|
|
|

is marked with an asterisk.

2

fo

=1 fo= -1 f, =5 (s+2)

-%(52+4s+3) £ 515(653+3752+585+24)

-%6(254+17s3+4252+3?s+10)

o 3

® 1 1318s" +4553s

ks

2
720 +6388s - +3708s +720)

(120s

1

- - (455 + 61252 + 276157 + 545655 + 507157 + 21245 +315)

4 3 2

7 + 914858 + 51540s° + 133769s” +175804s° + 1182365 |+

) -
qago (560s

37904s + 4480)

o o (B S A UEEES 4

2
7536 *

+6588156-+2]455455-F3715505 +354106s " +182529s

46674s + 4536)

8 + 25564466850 +

1 7

" 3628800

9

+ 8026416s~ + 64621692s

557061600s> + 700870638s* + 512539012s° + 2108529365 +

(362880s

44339040s + 3628800)

Table 1

Coefficients for Formula 17

1 1
e](s) =] ez(s) Himiy e3(s) =g (s:42)

1,2 1 2 |
eg(s) =-=5 (s +4s+3) ex(s) = Tz (65 +37s° + 585 +24)

1 o4 3.2
eﬁ(s) =-EE—](25 +17s” +42s” +37s +10)

N 5 4 3 2
e?(s) = 5040 (120s” +1318s ' +4553s + 6388s" +3708s + 720)
eq(s) = -5 (4555 +6125% + 27615 + 54565> + 507157 + 21245 +315) |
|

eg(s) = go35 (560s’ +9148s5 + 515405 +133769s” +175804s° +1182365% +

37904s + 4480)

o 8 7 6 5 4 3

em(s)—-—*—%%o (504s" +9666s" +65881s +214554s™ +371550s " + 3541065~ +
18252952 + 46674s + 4536)

Table 2

Coefficients for Formula 19

5/2 2
2 6! 2
) 2 5 (s

Table 3

Coefficients for Formula 32

_3s7+8s +3.(2)”2
02 4(5_])2 2(s-1)
)7/2
+

References

D.E. Knuth, Estimating the efficiency of backtracking programs,
Math. Comput., 29 (1975), pp. 121-136.

Allen Goldberg, Average case complexity of the satisfiability
problem, Proceedings Fourth Workshop on Automated Deduction| (1979),
ppo]-60

Martin Davis and Hilary Putnam, A computing procedure for guantifica-
tion theory, J. ACM, 7 (1960), pp. 201-215.

Paul W. Purdom, Tree size by partial backtracking, SIAM J. Comput.,
7 (1978), pp. 481-491.

J.R. Bitner and E.M. Reingold, Backtrack programming techniques,
Comm. ACM, 18 (1975), pp. 651-655.

Paul Purdom, Edward Robertson, and Cynthia Brown, Multi-level dynamic
search arrangement, Indiana University Computer Science Dept.,
Technical Report No. 77 (1979).

Stephen A. Cook, The complexity of theorem-proving procedures,
Proc. Third ACM Symp. on Theory of Computing (1971), pp. 151-158.

Donald E. Knuth, The art of computer programming, vol. 1 , Addison-
Wesley, Reading, Massachusetts (1975), p. 110.

Donald E. Knuth, The art of computer programming, vol. 2 , Addison-
Wesley, Reading, Massachusetts (1969), pp. 444-450.

