AN APPROACH TO FAIR APP%ICATIVE
MULTIPROGRAMMING

by
Daniel P. Friedman

David S. Wise

Computer Science Department
Indiana University
Bloomington, Indiana 47401

TecHNIcAL ReporT No, 84

AN APPRﬁACH To FAIR APPLICATIVE
ULTIPROGRAMMING

DanieL P, FRIEDMAN

Davip S. Wise
AprIL, 1979

*To appear in: G. Kahn and R. Milner (eds.), Proc. pf
Intl. Symp. on Semantics of Concurrent Computation,
Berlin, Springer (1979).

Research reported herein was supported (in part) by the
National Science Foundation under grants numbered
MCST75-06678 A0l and MCS77-22325.

An Approach to Fair Applicative Multiprogramming |

Daniel P. Friedman
David S. Wise
Computer Science Department

Indiana University
Bloomington, IN 47405/USA

Abstract

This paper presents a brief formal semantics of constructors for
ordered sequences (cons) and for unordered multisets (grons) followed |
by a detailed operational semantiecs fcr both. A multiset is a generali-
zation of a list structure which lacks order a priochi; 1ts order is d%—
termined by the a posferiorndi{ migration of computationally convergent
elements to the front. The introductory material Includes an example
which demonstrates that a multiset of yet-unconverged valuesg and a timing
primitive may be used to implement the scheduler for an operating sysjem
in an applicative style. The operational semantics, given in PASCAL-Iike
code,. is described in two detalled steps: first a uniprocessor implenen-
tation of the cons/f§rons constructors and the first/nest probes, folldwed
by an extension to a multiprocessor implementation. The center of ei%her
implementation is the EUREKA structure transformation, which brings cdn-
vergent elements to the fore while preserving order of shared structures.
The multiprocessor version is designed to run on an arbitrary number qr
processors with only one semaphore but makes heavy use of the sting |
memory store primitive. Stinging is a conditlonal store operation whqch
is carried out independently of its dispatching processor so that shazed
nodes may be somewhat altered without interfering with other processors.
An appendix presents the extension of this code to a "fair" implementg-
tion of multisets.

Introduction

This paper is directly motivated by a practical implementation of
a constructor function for applicative multiprogramming [2]. The new
constructor, dubbed frons, offers a new perspective on the problem of;
synchronizing inherently asynchronous computation, by allowing asynchrio-
nous processes to be assembled into an unordered structure which behaves
like an ordered structure upon access. The order is determined by their

relative order of convergence.
The demands of a fair implementation (presented only as the appendix)
for an environment of asynchronous processors have been difficult to
master. The solution has prompted the invention of new synchronization
primitives for imperative (von Neumann-style) programming, so that this
implementation is not even practical on current hardware. In particuiar,

we present here the programs which prompted the invention of the stin@
conditicnal store instruction [3], whose implementation i1s tractable.
Whet follows, then, is an operaticnal introduction to the f§rons
(and cons) constructor using the sting primitive for PASCAL-like lan-—
guages. There are six sections: Formal Semantics; Examples (which
presents a scheduler for an operating system); a section on implementing
the constructors and the probing functions, §4441 and rest, which depend
on EUREKA. EUREKA is the centerpiece of the operational semantics, .
because it is responsible for uniformly evaluating several suspended
evaluations and transforming the unordered structures into "slightly
ordered" ones while preserving the formal semantics. The bulk of the
paper appears in the last three sections: a uniprocessor EUREKA; an |
extensicn of that to a multiprocessor EUREKA; and finally some conclu

sions.

Formal Semantics

The f§rons constructor is introduced elsewhere [2] where 1its semép-
tics and use are developed in greater detail. (The Latin word “fronﬁh
means "leafy branch" and is motivated by the definition of Fean there.)
We present its definition in a form similar to LISP's axioms [6] befare

proceeding to a formal structure semantics.
first:NIL = 1L = rest:NIL. (1)

Let z = cons:<x y> then

atom:z = fafse = null:z; (2)
flrstiz = %3 (3)
rest:z = y. (4)
Let z = frons:<x y> then we define the same primitives !
atom:z = false = null:z; (5) ‘
x; if 2 # 1 3 where the choice made
first:z = 4first:y, if first:y # L ; must be the same as (6)
xy; 1f y = NIL ; that made for xrest. '
vy I % # 4 Where the cholce made |
rest:z = Qfrons:<x rest:y>, if first:y#L;Jmust be the same as |
y, if y = NIL ; that made for ginst. [(T)
The binding of z to a particular structure requires that the choices

made in (6) and (7) must be the same when bcoth x and first:y convergd
This semantics is slightly different from [2] because we have includ
a third alternative; its effect is that cons:<x NIL> = frons:<x NIL3
singleton unordered structures evaluate to singleton lists.

Just as the purpose of cous is to construct ordered structures,
so also does 4rons construct unordered structurés. Since the conter]

of either form of data structure may be suspended, we may use behavic

of these postponed evaluations to advantage in vase one or more of @
might diverge. In the definitions above we allow that the converger
elements make thelr way to the front of the unordered structures, uﬁ
mulitisets, and once they arrive they stay! The structure thereforei

behaves like a sequence upon probing. E
|

Pefinditions STRICTIFY(X,Y) = ¥ 1f X # L3

X, 1 K # 1 \
AMB(X,Y) =
¥, if ¥ # L.

!
The function AMB is from MeCarthy [L] where 1t is Introduced as a ndr

deterministic choice operation. We shall only use it embedded witha
|
a structure to determine order, so that we only calculate AMB once--

in called-by-delayed value [8]--=lor any structure. \

We define the set D of all computational structures to include
set of atomic items A (and whatever semantics one likes for them) ar
the set of structures S which are guadruples (or trivially NIL).

P=AuS;
+

S = {NIL} u (0% x s* x (TRUE,FALSE}" % w) ;

where w is the set of natural numbers; the fourth element is only us
as an index on the quadruple whose effect on semantics 1s to guarant
uniqueness of structure. In any implementaticn no two guadruples wil
have the same index (analogous to memory address). Thus, the domaiﬂ
equations for our primitives follow: '
null: S8 + {thrue, falsel;
cons: ptst o B
frons: D+XS+ + 83 i
firet: 8§ = D+;
rest: S +.S+; |

strictify: DXD+ - D+.

In the following definition the occurrence of "1 € w" denotes &

T

as

the

jo%

ad
ee
1T

!
new integer which has not occurred in any other quadruple. As mertioned

above, for any structures indexed by such an i as a fourth element,

an

AMB expression as the third element is evaluated at mest once and |its
evaluation is delayed until accessed [1] (i.e. call-by-need, call-by-

delayed value or lazy evaluation is implied [9,8,4]).

Definition:
TRUE, if I[f] = NIL, the trivial element of S;
I[null:f] =
FALSE, if I[f] is a quadruple in §.

Ilcons:pair] = (I[1l:pairl, I[2:pair], TRUE, i) where i € w.

I[frons:pair] = (I[1l:pair],
I[2:pair],
AMB fSTRICTlFY(I[l:paiPﬂ, TRUE),
STRICTIFY(I[fiPSt:Z:pairﬂ, FALSE)),
1) where i € w.

I[first:f] = FIRST(I[f]) where
FIRST(NIL) = 1;
FIRST((u, v, TRUE, J)
FIHST((u, v, FALSE, J
FIRST((1, NIL, b, j)})

) = uj
)) = FIRST(v); and
= u.

I[rest:f] = REST(INf]}) where

REST(NIL) = i

REST((u, v, TRUE, j)) = vi

REST((u, v, FALSE, j)) =
fu,
REST(v),
AMB(STRICTIFY (u, TRUE),

STRICTIFY(FIRST(REST(v)), FALSE)),

i) where 1 ¢ w; and

REST((u, NIL, b, J)) = NIL.

[[strictify:pair] = I[2:pairl], if Ifl:pair] # ..

Notation:
Il1:£). = Zffirst:f];
I[2:f] = I[first:rest:f];

I[<>]1 = NIL = I[{}];

1ﬂ<x1 X, e xk>] IEcons:<xl <K, ees xkb>];

[}

I[frons:<x {Xz - xk}>];

1

Iﬂ{xl Xy v xk}] = I[[cons:<x1 {x2 S xk}>].

Iﬂ{xl S xk}]

Examples

Two examples will help explain the sgpplications of gaons and n
sets. In both cases correctness proofs will follow known recursion
induction techniques; a stronger correctness will follow when fairn
is established.

The first example demonstrates the power of encapsulating the
(or AMB operator) within the structure, hecause a familiar function

ulti-

i

=58

choice

definition does not change from its traditional form in order to intro-

duce nondeterminism. The conventicnal operator for taking the disjunc-

tion of arbitrarily many arguments is ox.

ori:disJuncts =
A4 null:disjuncts then false
efsedig first:disjuncts then true
else or:rest:disjuncts .

If orn 1is applied to the sequence of truth values <b1 b2 P bk> whelre

B = {taue, false} and Io:.L € BY then its value is the desired value in

B

unless L precedes fhaue in that 1list. If or iz applied to the multiket

of values {l:;:L by «n. bk}, however, its result will be in B wheneven

trhue

is in that 1list of values or whenever ! is not, regardless of the order.

Thus the multiset as an argument structure implements the symmetrdic
[7] without redefinition of the function.

on

As an intermediate example we consider the conversion of a seqhence

of (perhaps not yet converged) elements into a multiset. In the sc
uler example below the need arises for the function scnamble which
duces disorder into the structure of potential solutions of (what 1
stated as) a sequence of jobs.

scramble:seq =

4§ null:seq then {}
else frons:<first:seq scramble:rest.seq>,

The second example is the timing of independent simultaneous p
cesses as a distributed processor might do for scheduling purposes.
The problem is to take a sequence of (unevaluated) expressions as a
argument and te return those (still not completely evaluated) which

not converge after £ units of "time". We shall develop its solutilol
a series of functions, the proof of which would establish the validit
of the entire solution. With the intermediate example we may antici

that the input argument, exprfist, may as well be a multiset.

The "function" clock is a constant-valued function whose imple
tation, like stadlctify (in our call-by-need environment) cannot be
mized; we require it to consume £ units of "time" before it converg

ed-
intro-

Ul

o

ner—
opti-

E3 0

clogk:t =
A4 zerop:t them ALARM
else clock:pred:t

(zerop:n = ftrue if n = 0; pred:n = n-1 if n > 0.)

We do not suggest that the clock function need be perfectly accurate
any more than the peripheral hardware clock on actual computers will
interrupt at future, predictable machine cycles. We do assume that f
relatively larger settings of its argument, it will converge in times
asymtotically proportional to those settings. Such a clock will be
added to the multiset of unconverged values.

We partition the resulting multiset by separating all elements d
to the occurrence of ALARM from the remainder. If the implementation
of multisets is fair then we may be assured that its prefix consists

pr

of the values of the expressions which converged within the time-limi?

set.
partition:M =

Lf same:<first:M ALARM> then < <> rest:M >
efse buildup:<first:M partition:rest:M>;

buildup:<value pair> = < cons:<value l:pair> 2:pair>,

Finally, if exprfist is the sequence of (suspended or perhaps al
ready evaluated) expressions, the invocation

partition:frons:<clock:t scramble:exprlist>

returns a sequence of two items which we shall call "done-pending".

The first item in the pair is the 1list of values which converged within

4 units of time; the second item is the multiset of those which might
not converge. The accuracy of the timing partition is somewhat depen
dent on the size of expirlisit compared to £, the clock setting. We mu
take care to use sufficiently large values of £ compared to its size
order to ensure eguiltable timing (jusft as one shouldn't clock process
with just a few nanoseconds).
The solution to the originally stated problem is then 2:done-pen
which may be viewed as a sequence. If viewed as a multiset,
frons:<clock:t' 2:done-pending>
provides resumption of the unconverged computations for £' more units
time, just as a scheduler might resume these processes.

Implementing construction

In this section we present the code for the constructors, cons al
§rnens. The implementation 1s temporarily incomplete, because we say
little about the implementation of the probing functions, §414f and
nest. We can implement nuff, however, as a predicate which tests a

5t
Kal
rs

ling

of

1d

Lype
pointer = 4tnode;
field = packed necond
exists : Boolean;
value : pointer
end;

more = packed recond
sinker : Boolean;
d & field
end;
node = packed necond

casde atom : Boolean o4
true : (pname : packed anray[l..6] 04 char);
false : (a : field;
[birthdate : smallint;]
next : more)
end

Figure 1. Type Declarations.

function cons(X,Y : pointer) : pointer;

var Q : pointer;

. NOQ : node;:

begin
NQ.a := SUSPEND(X):
NQ.d := SUSPEND(Y):
NQ.sinker := true;

[NQ.birthdate := TIME; 1]
NQ.atom := false;
NEW(Q);
sting Q with NO;
cons := Q

end

'/
__14

gunction frons(X,Y : pointer) : pointer;
var O : pointer;
NQ : node:
begin
NQ.a SUSPEND(X) ;
NQ.d SUSPEND(Y) ;
NQ.sinker := false;
[NQ.birthdate := TIME; 1]
NQ.atom := false;

1}

i

NEW(Q) ;
sting Q@ with NQ;
frons := @

end

Figure 2. The Constructors.

pointer to see that it does nof refer to a node allocated by these
constructors.

We use the notation of PASCAL for the declarations and most cbntrol
structures. A major exception 1s the sting operation [3] which welshall
explain in two steps. For the moment we define sting as the only hemory
store operation; later it will be extended to be a conditional store
operation. That is, if P is a pointer (or a memory reference) then the
operation "sting P with value" is synonomous with PASCAL's "PA := value"
assignment. Also the form "sting P in field with value" is synonorious
with PASCAL's field assignment "P4.field := value". All memory stdre
operations are implemented with sting so that the only variable which
appears to the left of the ":=" operator is a local register/varialle.
(As we move toward a multiprocessing environment this distinction te-
comes important.) The only use of the "+" operator is, therefore, as
a memory fetch. Thus, all memory operations are flagged either by
"sting" or by ",

The data fZype declaration in Figure 1 prescribes the sort of rode
which will represent sequences and multisets. A node is either an atom
or 1t is constructed: constructed nodes are either sinkeans (allocated
by cons) or gloaters (allocated by frons). Floaters may eventually be
promeied to be sinkers when necessary and when certain convergence pro-
perties are met, but sinkers never change. Sinkers are represented by
rectangles 1n the figures; floaters are drawn as ripples (i.e. wavy,
rectangles).

A node has a sinker bit which characterizes its "shape". It also
has two pointer fields, the a-f{efd and the d-{ield (corresponding to
car and cdn) which may refer to exdstent values or to suspensions [L].
An exdis%s bit on each field determines whether it refers to a value or
to a suspension. (In the original definition of a suspension we de-
scribed 1t as a computation which would be coerced through complete
evaluation only when necessary; here we envision that such an evaluﬁtion
be fragmented into steps--each a non-trivial but finite advance frojp
tre last toward the exdistent value.) A node also contains a biathdite
fleld which is necessary only to the fair implementation presented in
the appendix.

The constructor functions in Figure 2 each allocates a fresh node,
using PASCAL's NEW primitive, and fills all its fields appropriately.
Since both the a-field and the d-field are initially filled with suspen-
sions of the two parameters, X and Y, both these functions necessarily
converge upon the successful allocation by NEW. (The fact that there
1s but one memory sting in order to fill this node is of interest in

(L

pEnEnenE e e
VLV

2) (bt) dd) e) e)&) (o)

Figure 3.

A fern structure referenced by R, with
shared references by S, T, U, and V.

function first(F : pointer) : pointer;

var NF node;
begin
NF := EUREKA(F);
4§ NF.a.exists
then first := NF.a.value
efse NF.a := COERCE(NF.a);
sting F [unless a.exists] in a with NF.a;
Tirst := Ft.a.value
44
end
function rest(F : pointer) : pointer;
van NF node ;
begin
NF := EUREKA(F);
Lf NF.d.exists
then rest := NF.d.value
efse NF.d := CORRCE(NF.d);
sting F [unless d.exists] in 4 with NF.4;
rest := F+.d.value
44
end
Figure 4. Probing Funetions for a Uniprocessor

[or Multiprocessor].

10

multiprocessor environments later where we want to reduce inter-processor
contention by minimizing memory manipulation. We do not, however, antici-
pate the requirements for the storage manager—-the demands of NEW--in
that environment.) The only difference between the functions in Figure 2
is the setting of the slinkexr bit.

Figure 3 illustrates the structure which might result from the
following construction. Ovals denote suspensions of the appropriace

values.
V = frons:<ee frons:<ff cons:<gg frons:<%% frons:<ii
frons:<hh frons:<kk cons:<jj frons:<mm NIL>>>> >>>>>;
U = frons:<cec V>;
T = frons:<dd U>;
S = frons:<bb T>;
R = fronsi:<aa S>.

This figure coincides with that in another paper [2], although morée
shared references (denoted by single-character upper case letters)|have
been included in order to demonstrate that the semantics of such réfer-
ences will be preserved as the definitions above require. ,

Observation 1: The functions cons and grons always return a value,
a pointer to an unshared node.

Observation Z: The function cons allocates a sinker, and the func-
tion frons allocates a floater.

The definitions of the (uniprocessor) user functions §irst ani
nest in Figure 4 [without bracketed code] are straightforward excernt
for the function EUREKA. EUREKA is a system function upon which aff
the semantic problems fall and--in the case of concurrent processors—--
which will bear the responsibility for synchronization; the remainder
of this paper is devoted to it. Briefly, EUREKA will search all floaters
up to and including the first sinker (if there is one) accessible ﬁhrough
successive d-fields. If there is more than one such node, it finds one
which has a convergent a-field and then alters the data structure (con=
sistently with Equations 3, 4, 6 and 7) so that the node at the front
of the structure 44 a sinker; its value is the content of that node.
EUREKA amounts to a simple memory fetch if that node is already a sinker.
After EUREKA has returned the contents of the first node, it only ﬁemains
to coerce any suspension which might remaln in the a-field (d—fiel@)
which §418% (1est) must return. That coerced value must be stung into
the ncde in memory so that further probes of that field will find the
exact same value.

Obsenvation 3: Finst and rest return values stored in memory.
Observation 4: (Uniprocessor) In any sirnker (node) at most ohe

D

-

Figure 5. TFloaters never have null d-fields.

function COERCE(AFIELD : field) : rield;
begin

repeat

AFTELD := COAX(AFIELD);
untif AFIELD.exists

taepen;

COERCE := AFTELD
end

function COAXA(AFIELD : field, ¢ : pointer) : Boolean;
begin
Lf not AFIELD.exists
then AFIELD := COAX(AFTELD);
b sting Q [unless a.exists] in a with AFIELD
45
COAXA := AFIELD.exists
end

procedurne COAXD(NEXTFIELD : more, & : pointer);
begin
NEXTFIELD.d := COAX(NEXTWiELD.d);
4§ NEXTFTELD.value = nil
then NEXTFTELD.sinker := true;
sting Q in next with NEXTFIELD
efse sting Q [unless d.exists] in d with NEXTFIELD.d
§4

end

Figure 6. Evaluaticn by COAXing on a Uniprocessor.

[or Multiprocessor].

il

12

exdstent value ever occuples the d-field (respectively, a-field).

Discussion: After an existent value is stung into a sinker all
other probes will find 1t and won't try to change it. The only poﬁential
changes to any exdsient field occurs in the d-fields during promotion
(see EUREKA below).

Observation 5: A floater never has a null d-field.

Discussion: Whenever a nif value is stung, the node type is stung
with it (Figure 5).

The system evaluation functions COERCE, COAXA, and COAXD for :
single processor are all displayed in Figure 6 [without bracketed dode].
They are all built upon the assumed elementary evaluation step, COLX,
which 1s defined according to whatever language semantics is desirdd,
ireluding, of course, those presented here [2]. COAX is a functior
which takes a suspension as an argument and returns a field as a vdlue;
that field may have its ex{4%s bit Zrue and its pointer referring tlo an
exisient value, or it may have its ex{4t4 bit false and its pointer
referring to another suspension. Such a new suspension must represent
a proper advance in the computation (or process) represented by the
initlial suspension; the exact amount may be presumed to be random ﬁet
finite. It 1s sufficient that COAX iterate a few times through the
lrnermost loop of the evaluator and then put the (suspended) process
beck to sleep. COERCE is nothing more than a repeated CQAXing untﬂl
the ex{sdtent value appears. The code uses a generalized form of the
hepeai loop which allows for two distinguishable kinds of exits. (D.S. Wise,
D.P. Friedman, S.C. Shapiro, and M. Wand. Boovlean valued loops. BIT 15,
4 (December, 1975), 431-451.)

Postulate: COAX makes non-trivial progress in advancing a suspended

ccmputation.

Observation 6: COAXA and COAXD properly advance the suspended
computation known to some processor.

Discussion: (Uniprocessor) Each fetches a suspension, coaxes| it,
and restores the result if an exisfent value is-not present. Progress

depends on the postulate.

COAXA is declared as a function whose Boolean value tells whether
its one application of COAX was the one which ylelded an exdistent value.
In any event, the coaxed field must be delivered to memory at Q. OF
course, if the value already ex{isited there, COAXA trivially returns
Lrue. COAXD, similar in effect but different in form is defined as a
procedure since we never need to know if it uncovers a value, and it is
only invoked when a suspension is known to be in the d-field so it heed

14

not test the exdisits bit. In the event, however, that the result of
coaxing in the d-fleld is the exdistent value pnif, then COAXD must sting
this value in such a way that the stung node becomes a sinker. Observa-
tion 5 is sustained in COAXD (as in all code which changes the d-ficld
of a floater) because there is agaln a special test (after the valu: to
be stung is avallable) which determines the way it is to be stung. If
that value happens to be ndi{lf, then the field stung will include the
sinken bit so that the node must become a sinker as the nilf is stung.
Observation 5 motivated the declaration of the d-field in Figure 1 %o

be associated with the s4inker bit in the moire-field. This declaration
provides the more-field which is the target of the sting when the d-field
is recesiving the value ndif.

Uniprocessor EUREKA

All implementation problems are now placed upon EUREKA. We present
the code for the uniprocessor EUREKA in Figure 7 and then argue for lts
correctness. The reader is referred to the examples in Figure 3 and
Figure 8 as this code is introduced; Figure 8 illustrates EUREKA's ¢ffect
upon Figure 3 when the suspension cc is found to converge to CC. The
sppendix completes a full 83 line version of EUREKA which we claim is a
"fair" implementation for arbitrarily many processors. We cannot justify
that claim in this paper, which is only an approach to that argument,
but we do use the line numbering convention from the full blown version
here and in the following sections. Here we present a multiprocessor
and a uniprocessor version of that EUREKA operator which are each more
severe abbreviations of the code in the appendix. We develop the final
version by introducing a simple version and then by adding more lines
in the later one; with a few exceptions (denoted by daggers), once &
line occurs in EUREKA, 1t is identical in all following versions. Once
the uniprocessor version is verified we need only show that the addi-
tional lines do not destroy its valldity under the new operating require-
ments.

All the local variables denote register-variables in a sophisticated
system. Assoclated with the pointers Q and W are the node registers,

NQ and NW which reflect.their recent content. Memory operations, as
mentioned earlier, are explicitly denoted by sting. EUREKA is divided
into two phases: Lines 6 through 32 are the coaxing strategy and Lines
33 through 82 are the promofion. The coaxing strategy must traverse all
floaters up-to-and-including the first sinker accessible through suc¢ces-
sive d-fields, and COAX all a-fields so encountered. The loop 1n Lines
16 through 26 performs this function on a single processor. Whenever

R~ Sy Ty U~y V~‘
RN GR
L T "‘l“q:\n\hl shiltyy \ IRRLLY “""*’/i
‘;;-.'J\Jr'llI.'..'.-.a-,‘r_.‘__\'l” h “r\”ltl\l:

(o Y d) L) o ol) s)

Figure 8. {4nst:R = CC; shared references, as wall,
see CC as thelr §inst. TIf there were no
shared references then no new nodes need
be allocated.

L\
Com)

e

f

= B\
\

i

E\E—{\Q:\D
g R WS

R-\ S-\ T\ U*w‘

o]Jcc T_I[ﬁcc._
;f%-t\ﬁ[\ﬁl
D CoD T ol sl e

Fiqure 10. Reflexive pointers during promotion
on a multiprocessor.

g r

L)

e

15

any a-field 1s exdsifent then the coaxing strategy may cease. There are
several ways that one coaxing pass may terminate; some terminate tﬂe
entire coaxing strategy and some merely cause another pass over the data
stsructure from the top, referred to by the pointer F. If F, itself,
refers to a sinker, then promotion may be skipped and its contents may

be returned as the value of EUREKA. If the accessible d-fields all

refer to floaters, but the last which refers to a suspension, then?that
d--field suspension must be coaxed along with all the floaters' a-fﬂelds
because a convergent a-field may occur in a floater not yet accessible.
(Thus unbounded multisets are allowed although only an ever growiné
finite prefix will be coaxed. Because of the convention on null d-fields,
we need only detect a suspended d-field in a floater or a sinker iﬁ order
to terminate a coax pass). :

The fetch at Line 35 is somewhat redundant here since COAXA hgs the
contents of @ at Line 25. As in §4irs4 and #nest which refetch an exisient
value just stung, we tolerate this inefficiency in order to allow éasy
generalization to the multiprocessor version.

At Line 39 the pointer W refers to a node which has an exdistent
a-field and NW is a copy of its content. That value will be moved to
the head of all structures accessilible by references to nodes betwe%n
F and W (along the chain of d-fields). The necessary transformaticn
requires the introduction of new nodes to hold intervening a-field sus-
pensions and the planting of NQ.a.value in all the intervening nodﬁs
as shown in Figure 8. In Lines 49 through 55 NW is set up as a prdtotype
node to be stung at R, S, and T in Figure 8 except for different d-fields.
(We krnow that all d-fields between ¥ and W do exist.) Promotion :
is performed in the loop from Line 64 to 73, part of which is duplicated
as Lines 56 to 60 treating the node at F as a special first case. After
that first node, the new contents of F--the value of the EUREKA fumction—-
is determined and F is used as a traversal pointer thereafter.

Lines T4 through 79 fill in the d-field of the last node introduced by
promotion, and therefore require the special test for null d-fields.
SUFFIX is essentially the original d-field of the promoted node NWj; if
that is suspended then at Line 79 we are very careful not to copy that
suspension-- rather we create an indirect pointer to the extant one so
that it will eventually only be evaluated once!

Obsenvation 7: There are no (non-trivial) circular paths in the

system.

Observation §: The coaxing strategy will find a convergent candi-
date for promotion if one exists.

Discussion: It coaxes on all suspensions up through the first

L7

sinker uniformly.
Observation 9: Promotion makes tne {44181 node in a structure into
a sinker containing an exdisdent value.
Obseavation 10:; Promotion preserves the structure semantics.
Discussion: The proof is by induction on the distance from the

()]

node pointed to by F and the node pointed to by W. Each sharing cause:
a new node to be created as the d-value of a sinker.
Theornem 1: The uniprocessor implementation is correct.

Multiprocessor EUREKA

The modification of EUREKA to run on arbitrarily many processors [is
the centerplece of this paper (Figure 9). The coaxing strategy proceeds on
many processors withouf synchronization of the processorns. Promotion
may proceed simultaneously with coaxing, but only one promoticn may be
active at a time. Thus, we introduce a binary semaphore, MUTEX, at

¥}

Lines 33, 52, and 81 to protect that part of the program which distorg
the data structure in order to effect promotion.

The fact that coaxing, which is the more expensive computation,
may proceed without processor synchronization is due to the sting primi-
tive which we now extend to its conditional form. We introduce this
primitive separately in another paper [3], but this example 1s a bettgr
demonstration of its power. The operation "sting P unless bit in field
with value" dispatches a description of a bit lccation and a field loga-
tion within a memory word, and a value to the location at P. There
(not 4in the dispatching processor) an uninterruptible test-and-store
operation proceeds; if the bit in that word is already taue then nothing
happens; if the bit 1s false then the value is stored in the field.
The dispatching processor receives no feedback on what actually happers!!
Because there is no feedback the dispatching processor 1s free tc prodeed
immediately. Because there is no walting for feedback (as there is with
a test-and-set) no processor may monopolize a path to memory during ar
uninterruptible memory operation, and there will be fewer instances of
one processor blocking another's access to memory durlng the storing df
sensitive data. Viewed another way, the sting-unless primitive avoidd
implementing every exists bit as a semaphore.

The major problem with multiprocessor coaxing under EUREKA 1is that
we do not allow a second exd{sZent value to be stored over an earlier ¢ne
in any field. This might occur, for instance, if two processors pickédd
up the same suspension at about the same time, coaxed it to an exdislent
value, and then stored two different inecarnations of that value back &t
two separate times. (If that exisitent value were a floater then Eguas

18

tions (6) and (7) might be violated through duplication of what ou%ht
to be a single floater.) Thus in Figures 4 and 6 whenever a sting|is
directed An an a-field (d-fileld), the sting must be conditional--unless
a.exists (d.exists) as indicated by the bracketed code.

Coaxing may run on many processors at once, but not without aébenign
sort of interference called heghessdcon. If several processors are |coax-
ing the same suspension, then all might make the same progress. If one
of those processors were inordinately slow, then the remainder might
have made considerable coaxing progress on that same field--far bejond
Just one coax, but not yet ex{stent-- before the sloth processor dglivers
its duplicate (now stale) effort. Since none of these processors have
stung an existent value, anyone may yet sting this field. When thé sloth
processor delivers its suspension, all future coaxes will begin frém
there~--even those coaxes by the speedy processors which had already
coaxed the value much further along. These processors may appear to be
dragged backwards, but this backward progress or regression is limﬂted
by the number of active processors in the system. In the worst case,
all processors are coaxing at one field, and the time to coerce will be
no worse than the slowest processor. Thus the coaxing strategy iniFigure
9 is sufficient for one, two, or two hundred simultanecus incarnations

of EUREKA.

We modify the discussion of a previous observation: |
Observations 6's discussion (Multiprocessor): In this case the
COAXing advances the suspension known to the coaxing processor. If

stinging the result is umsuccessful, then there is a value in thatifield,
s0 no further advancement is necessary.

Promotion is a different story because it alters the existent d-
filelds. Only one promotion may proceed at a time; promotion 1s a criti-
cal region protected by the binary semaphore MUTEX, but it is a very
fast transformation because 1t involves no coaxing and only two traver-
sals of the structure from F to W. (Sting-unless is also sufficient to
implement a binary semaphore if we do not require fairness from it |[[3].)
Because of the probable wait at Line 33 when the structure might change,
the value to be promoted must be relocated by a pre-pass through the
structure at Lines 34-38. If a change did occur as a result of ancther
promotiocn during the wait, it can only simplify the waiting promotion.

Observation 4: (Multiprocessor) 1In any sinker at most one existent
value ever occupies either field.

Discussion: The only change from the uniprocessor version of fthis
invariant is that the a-fields of floaters may change. That might occur

MULTIPROCESSOR

i gunction EUREKA(F : pointer) : node;
2 vat Q, W, FNEXT : pointer;
3 SUFFIX : more;
b NQ, NW : node;
5 begin
6 NQ := F4:
8 Q := F;
16 nepeat
17 4§ NQ.sinker
18. then 4§ Q = ¥ then return(EUREKA := NQ) else Q := F §4
19. efse 4§ NQ.d.exists
20 then Q := NQ.d.value
21 else COAXD(NQ.next,Q); @ := F
08, §4
23. 43
ol NQ := Q4
25 until COAXA(NQ.a,Q)
26. taepen;
¥29, Q = P
¥33, P (MUTEX) ;
#30 repeat
35. NQ := Qt;
%36, until NO.a.exists;
*¥37: Q := NQ.d.value
#38, taepen;
39. W := Q; NW := NQ;
g, NW.sinker := true; sting W in sinker with true;
51. i W =F Zthen
¥52, V(MUTEX) 3
53. return(EUREKA := NW)
54. §4;
85. SUFFIX := NW.next; NW.d.exists := true;
56, NQ := F+; FNEXT := NQ.d.value;
51 NEW(Q) ;
%58, NQ.d.value := Q;
59. sting Q with NQ;
60. NW.d.value := Q; sting P with NW;
£2. EUREKA := NW;
64, repeat
65. until FNEXT = W;
66. F := FNEXT;
6T * NQ := Ft; FNEXT := NQ.d.value;
68. NEW(Q) ;
#69, NQ.d.value := Q;
T sting Q with NQ;
T1.F sting NW.d.value in d with NQ.d;
T2, NW.d.value := Q; sting F with NW
T3 taepen;
Th. {f SUFFIX.exists
75 then 4if SUFFIX.value = nil
TE then sting Q in next with SUFFTX
T efse sting Q in d with SUFFT¥.d
78. §4 '
79. efse sting Q in d with SUSPEND("rest(W)")
80. §4 3
¥81, V(MUTEX)
83. end

Figure 9. Multiprocessor EUREKA.

21

must sting unsuccessfully.

Obsenvaition 13: Only one promotion proceeds at a time.

Obsenvation 14: Promotion does not interfere with coaxing.

Discussion: If coaxing occurred at the promotion site, elther it
would find a promoted value and quit, or proceed (perhaps circularly)
oblivious to the promotion thereabouts.

Obsenvation 15: Lockup is impossible.

Discussion: EUREKA cannot be invoked directly or indirectly during
promotion. Once promotion begins, 1t will find an existent value and
eventually execute the V operation {(Lines 52 or 81) terminating pro-
motion.

Theorem 2: The multiprocessor version 1s correct.
Conclusion

We have briefly introduced a nuw constructor for multiprogramming,
which allows a facile expression of complicated order interdependencies
with a familiar programming style. The proof techniques for such pro-
grams, although not treated directly here, promise toc be as straight-
forward as one can hope for since the language has an applicative style
which yields nicely to inductive proofs.

The emphasis in this paper has been on the uniprocessor and multi-
processor implementations of the semantics for this language. The prop-
lems of efficient implementation have motivated new control structures,
notably the sting-unless (Others are suggested in the appendix) which
has simplified the interprocessor protocol. We have argued informally
that the implementations of the constructors, cons and frons, are correct
for this semantics, but these implementations are not the ultimate goal
of this work.

In order to establish gaons as a constructor truly suitable for
applicative multiprogramming we must address the problem of fairness
proofs. For nondeterminism, such fairness might imply that any conver-
gent value 1In a multiset could not be ignored forever, (One might make
a more precise statement, but this wiil do.) A scheduler may be corrgct
without being fair if it loses a Jjob it's supposed to be timing, because
the output from the other processes might be correct. That doesn't mean
that such an operating system is useful, however; good systems don't
lose processes.

The uniprocessor system 1s implemented, and a multiprocessor version
can be simulated on a single processor. A good implementation of the
fair version 1s an exciting prospect for machineg with a high degree
of parallelism (e.g. a hundred processors).

22

Acknowledgement

We thank several colleagues who helped in the development of EUREKA,

especially by sltting still while the problem and this solution were
described. Particular thanks are due to Mitchell Wand who ralsed

important questions that redirected early attempts to "find it." THe

research reported herein was supported (in part) by the National Science
Foundation under grants numbered MCS75-06678 A0l and MCS77-22325.

References

D.P. Friedman and D.S. Wise. CONS should not evaluate 1ts argu-
ments. In Automata, Languages and Programming, S. Michaelson &nd
R. Mi%ﬁer (eds.), Edinburgh, Edinburgh University Press (1976),
257-284.

D.P. Friedman and D.S. Wise. Applicative multiprogramming. Tech-
nical Rept. No. 72, Computer Sclence Dept., Indlana University
(December, 1978).

D.P. Friedman and D.S. Wise. A conditional, interlock-free stare
instruction. Preliminary version in WM.P. Pursley and J.B. Cruz,
Jr. (eds.), Proc. 1é6th AlLenton Cong. on Communication, Controk,
and Computing, Univ. of Ill., Urbana (1978), 578-584.

P. Henderson and J.H. Morris, Jr. A lazy evaluator. Proec. 3ad
ACM Symp. on Principles of Programming Languages (1976), 95-103.
L. Lamport. Time, clocks, and the ordering of events in a disfri-
buted system. Comm. ACM 21, 7 (July, 1978), 558-565.

J. McCarthy. A basis for a mathematical theory of computation.

Tn Computen Programming and Formaf Systems, P. Braffort and D.
Hirschberg (eds.), Amsterdam, North-Holland (1963), 33-70.

7. Manna. Mathematical Theory of Computation, New York, McGraw-Hill
(1974), 418.

J. Vuillemin. Correct and optimal implementation of recursion in
a simple programming language. J. Comp. Sys. Sci. 9, 3 (June,
1974), 332-354.

C. Wadsworth. Semantics and Pragmatics of Lambda-cafcufus, Ph.D.
dissertation, Oxford (1971).

Appendix

We present a complete version of EUREKA which represents the un-

attained goal of this paper. We intend that it run in the same proc¢es-
sor-rich environment as the multiprocessor version, but that it be g ralclh.

Fsirness includes the guarantee that no accesslble suspension ever go
uncoaxed; the procedure COAXSUFFIX serves this purpose:

procedure COAXSUFFIX(NQ : node, Q : pointer);
begin
Lf not nepeat
untif NQ.sinker;
while NQ.d.exists;
Q := NQ.d.value; NQ := Q4;
COAXA(NQ.a,Q)
taepen
then COAXD(NQ.next,Q)
44

end

.23

Moreover, we must guarantee that no converged value ever Zo un-
promoted. The solution is a system clocking mechanism like Lamport's
[5] used to referee the choice of which value gets promoted. The time
when a node 1s created is installed in that node by cons or frons and
it remains with that node and its copies forever; given a choice, we
always promote the "oldest" value. (Rather than providing one field
in every node for an unbounded birthdate, Guy Steele, Jr., has suggested
that a pointer field would suffice for linking the finite number of
accessible nodes together in order of their creation. The storage re-
quirements would then be quite tractable, but the determination of the
relative age of two arbitrary nodes at Line 44 becomes a computation
whose time is linear in the number of nodes; here that determination
takes only ccnstant time.)

The code below only includes lines which are new to or changed in
the fair version of EUREKA. As before a dagper {t) denctes a line
slightly changed by additions. The new lines which assure fairness are
noted by asterisks (¥). Several new lines are included to assure effi-
ciency, particularly to avoid the critical region (promotion) as much
as possible; these are noted by dollar signs ($). The process creation
suggested by spawn at Lines 15 and 61 may be lgnored; these lines may
be read here simply as procedure invocations and Line 82 (related to

Line 61) may also be ilgnored. FAIR
T, if NQ.sinker then return(EUREKA := NQ) f(;
¥ 9, i4 repeat
*10, until COAXA(NQ.a,Q);
¥11. while not NQ.sinker;
#12, while NQ.d.exlsts;
#13. Q := NQ.d.value; NQ := @t
¥4, taepen
*#15, then spawncall(COAXSUFFTX(NQ,Q))
16.+ else nepeat
%27, g4
$28, if @ = F then sting F unless d.exists in sinker with true
29.+ efse Q :=F
$30. 645
$31. NQ := Qt;
$32. if NQ.sinker then return(EUREKA := NQ) 443
¥10, nepeat
#47 . until NQ.sinker;
®UYD whife NQ.d.exists;
®U43, Q@ := NQ.d.value; NQ := Qt;
#UL if NQ.a.exists andif NQ.birthdate < NW.blrthdate
L then W := Q; NW := N@Q
U6, §4
®LT, taepeh;
$48. if not NW.sinker
$ﬂ9.+ : then NW.sinker := true; sting W in sinker with true
50. i
$61. spawnreturn(
$63. Y3

$82. quit

