%
CLASSES AS SYNTACTIC SUGAR

by
Mitchell Wand
Computer Science Department
Indiana University

Bloomington, Indiana 47401

TECHNICAL REPORT Ho. 81
CLasses As SyNTAcTIC SuGaAR

MITCHELL WAND
DECEMBER, 1978

*
This material is based upon work supported by the Natilonal

Science Foundation under Grant MCS75-06678 AOQ1l. |

Abstract: The notion of a class, introcduced in SIMULA,
has become a key concept in data structuring. This note
describes a simple interpretation of classes as syntactic

sugar in SCHEME, an extended lambda calculus due to Steele and

Sussman.

Key Words and Phrases: Classes, clusters, data absgtractions,

lambda-calculus, LISP, SCHEME, SIMULA

CR Categories: 4.20, 4.22, 4.12, 5.20

This material is based upon work supported by the National
Science Foundation under Grant MCS75-06678 AOl.

Author's address: Computer Science Department, Indiana
University, Bloomington, IN 47401

1. Introduction

The notion of a class, introduced in SIMULA 67 [11, has
become a key concept in data structuring [2, 5, 11]1. Inhter-
pretation of classes in the lambda calculus have been given

by Sandewall [8], Steele and Sussman [10, inter alial, and

Reynolds [7]. In this note we will give a particularly simple
interpretation of classes® as syntactic sugar in SCHEME, an
extended lambda calculus due to Steele and Sussman [9].
SCHEME is a LISP-1ike language with static scoping and
full FUNARGS. The following samples give a flavor of the syntax:
(LET ((vl el)...(vn en)) exp)

is equivalent to

((LAMBDA (vl...vn) exp) el...en)
and

(LABELS ((v1 el)...(vn en)) exp)
is equivalent to ISWIM's [4]

letrec vl=el,..., vn=en in exp

where the e; are lambda expressions. Here, as below, k:y words
appear 1in upper case and metavariables appear in italics. Con-
ditionals may be written as (IF pred then-part else-par:). An
association-list, as in LISP [6] may be searched by RASSOC,
defined as follows:
(DEFINE RASSOC (LAMBDA (KEY LIST)
(IF (NULL LIST) NIL
(IF (EQ KEY (CAAR LIST)) (CAR LIST)
(RASSOC KEY (CDR LIST))))))
The semantics of the language allow the recursive c¢all to

be implemented 1teratively.

¥
except for resume and detach, which have not been adopted in the
literature on data types.

2. Code and Commentary
A possible concrete syntax for classes is as follows:

(CLASS

((loc, val;)...(loc wval))

1
((pf*ocname1 l~exp1)

(procnamem l—expm)))
An instance of the class defined in this manner should have n

local variables, named locl,..., locn and initialized to

val ‘3 valn respectively. Associated wlith the class should

1,-.

be m class procedures, named procname , procnamep> #ith

100>
procedure bodiles A—expl,..., h—expm. These procedures nay refer
to the locals and to each other (possibly recursively), but, in
keeping with current thinking, the locals should be

accesgsible to the user of a class instance only through the
class procedures. To achieve this, the definition is eipanded

as follows:

(LET ((100l Vall)...(locn valﬂ))

(LABELS ((procname. A-exp)...(procnamem A—expm)!

1 %
(GET

((D (LIST (CONS (QUOTE procnamel) procnamel)

(CONS (QUOTE procname) procname))))
(LAMBDA (Z) (RASSOC Z D)))))
If X is an instance of a class with a procedure naned P, a
call written conventionally as X.P(tl,...,tn) is expanded as

((X (QUQTE P)) tl...tn)

Execution of the code for (CLASS locals procs) proceeds

as follows:

(1) an environment is created in which the locals are
bound to the appropriate values.

(ii) an environment is created in which the procedure
names are recursively bound to the bodies, referencing
the variables of (i) as non-locals.

(1ii) an explicit association list (called D) is e¢reated
in which each procedure name is associated with its
corresponding closure (created in (ii)).

(iv) a function is created which takes as its argument
a procedure name and returns the corresponding
procedure.
This function 1s returned and is the class instance. Thus the
procedure call above retrieves procedure P of class inscance
l""’tn' Since

fresh closures are created for each class instance, this pro-

X, and invokes that procedure with arguments t

cedure works on X's local variables.

This code is similar in its effect to the implemen:ation
of classes in SMALLTALK [3] and in its use of closures o
Sandewall's code [81. Our code extends Sandewall's by allowing
multiple class procedures; this is the primary source ol the
complexity in the code. We differ from SIMULA and most imple-
mentations of classes by making a class definition an expression,
which can appear anywhere in a program. For example:

(DEFINE CELL (LAMBDA (X)

(CLASS ((CONTENTS X))
((CONT (LAMBDA () CONTENTS))

(UPD (LAMBDA (VAL) (ASETQ CONTENTS VAL)))))))

A cell may then be created as:
(LET ((Z (CELL 3)))
(BLOCK

(PRINT ((Z (QUOTE CONT))))

((Z (QUOTE UPD)) 4)

(PRINT ((Z (QUOTE CONT))))))
which creates a cell initialized to 3, calls it Z, and changes
its contents to 4, printing out 3 and 4.

Note that class parameters are introduced by creating a
function

(LAMBDA (class-parameters) (CLASS locals procs))
which may be bound to a variable name of any lexical scope, and that
procedure names (since they are quoted) need not be declared
at all. Instances of the class, however, may be passed outside
This scope; this makes the code more general than any special
naming scheme. Steele and Sussman's transcription [10] requires
the procedure names to be declared wherever a class instance is
used; this prevents classes from sharing procedure names, a
necessity for concatenated classes [1]. Unlike Reynolds [71,
we also avoid major transformations in the program structure;
imperative features are entirely optional.

At the expense of additional syntax, a variety of additional
features could be added to the framework. Some functions could
be hidden by suitable editing of the association 1ist D Direct
access to some of the locals could be added similarly. Concate-

nated classes could be done by specifying one of the locals as

an instance of the base class and changing the function
returned so that if the desired procedure is not found locally,
it 1is passed along to the base instance, i.e.,
(LET ((the-basis (base-class base-class-params)) ...)
(LABELS (...)
(LET €{ D.ws))
(LAMBDA (Z)
(IF (IS-PRESENT Z D) (RASSOC Z D)
(the-basis Z))))))
Since the locals are initialized, no class body is usually needed;
one could easily be added if desired.
3. Conclusion
Operationally, classes are just syntactic sugar--taeir
operational semantics requires no new concepts. We believe the
significance of the notion of classes is as a syntactic
structuring device. Structuring devices such as strong typing
or good loop structures play an important role in ease of pro-
gram writing and debugging, as shown by PASCAL, by turning run-
time errors into compile-time errors. The significance of
classes, we believe, is as a structuring device which allows

better checking at compile time and verification time.

o

a8

ll.

REFERENCES

Dahl, O. J., and Hoare, C.A.R. "Hierarchical Progrem
Structures" in Dahl, 0.J., Dijkstra, E.W., and Hoare, C.A.R.
Structured Programming. Academic Press, London, 1972,

Pp. 175-220.

Hoare, C.A.R. Proving correctness of data representations.
Acta Informatica 1 (1972), 271-281.

Ingalls, D. The smalltalk-76 programming system. (onf.
Rec. 5th Ann. ACM Symp. on Principles of Programming
Languages (1978), 9-16.

Landin, P.J. The next 700 programming languages. (omm.
ACM 9 (1966), 157-166.

Liskov, B., and Zilles, S. Specification techniques for
data abstractions. IEEE Trans. on Software Eng., SE-1

(1975), 7-19.

McCarthy, John, et. al. LISE 1.5 Programmer's Manugl.
MIT Press, Cambridge, Massachusetts, 1965.

Reynolds, J.C. Syntactic control of interference. Conf.
Rec. 5th ACM Symp. on Principles of Programming Languages
(1978), 39-46.

Sandewall, E. A proposed solutlon to the FUNARG prc¢blem.
Report No. 29, Department of Computer Sciences, Uppsala
University, November, 1970.

Steele, G.L., and Sussman, G.J. The revised report on
SCHEME. Mass. Inst. of Tech. Artif. Intell. Memo N¢. 452,
Cambridge, MA, January, 1978.

Steele, G.L., and Sussman, G.J. The art of the interpreter
or, the modularity complex, (parts zero, one, and two).
Mass. Inst. of Techn. Artif. Intell . Memo No. 453,
Cambridge, MA, May, 1978.

Wulf, W., London, R., and Shaw, M. Abstraction and veri-
fication in Alphard: defining and specifying iterative
and generators. Comm. ACM 20 (1977), 553-564.

