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Abstract

A new structure, the nondeterministically ordered multiset,
and a new structure builder for it, frons, are defined as
convenient primitives for applicative languages like pure LISP.
Since the order of a multiset will be determined as the structure
is turned into a list (rather than as the multiset is constructed),
functionality or reproducibility of results must be sacrificed
in a limited way. This paper is oriented toward the motivation
for imbedding nondeterminism in data structures--as opposed to
control structure or parameter-passing mechanisms. The heart of

the airline reservation system is Included.

#Research reported herein was supported (in part) by the national
Science Foundation under grants numbered MCS75-06678 A0l and
MCS77-22325.



Introduction

Nondeterministic programming is not easily treated in any
higher level language. Yet it plays an important role in the
design of operating systems, real-time control, and asynchronously
parallel systems. It has attracted much attention from software
engineers, much programming talent from software shops, and
much aggravation from irreproducible events. With processors
and parallelism becoming cheaper and ubiguitous, the control of
this sort of programming process has become very important.
Various attempts to refine the control of interprocess
communication [ $,8,9, 20)2934] and to extend program proving
techniques [10,77,26,27%32]indicate the importance and the limits of
this activity under the von Neumann [2 ] style languages. It
has become more apparent that current solutions are not working
out and that the impasse is not the fault of the problem. An
applicative approach to all programming problems has recently been
advanced by Backus [2 ] in his Turing lecture. The interested
reader is referred to his thorough review. His arguments, running
orthogonal to current machine architecture, emphasize a purely
functional style of programming in which the only binding is of
positions within structures to values and the only control structure
is function application.

Using only lambda-bindings, function application, conditional
expressions, and trivial pimitives, we developed a new perspective
on the constructor function which had been used to build all data
structures [71 ]. This paper introduces a new constructor, frons,
which allows for the postponement of both the content (as in cons)

and the order of a structure. Here the same accessing functions



are used to probe into the unordered structure as into an ordered
sequence; in fact the user cannot distinguish between such types
once 1t is built. The probing of an unordered structure not only
causes the content to appear (as with cons), but it also begins
to produce some order within the structure; probing makes a
structure behave as 1if it were ordered.

This nondeterministic structure is called a "multiset" [24],

From the coarse characterization of the multiset above, it is clear
that the eventual order might not meet the requirements of stringent
functionality; that is, an identically constructed structure may
assume a different order. We ask the indulgence of our more
theoretically-minded readers during our separation of applicative
data structure construction from the rigors of functional programming.
(The distinction has more to do with the standard perspective of

data structures than with our view of functionality.) The apparent
absence of functionality is quite benign and a fair implementation

of the constructor exists [76].

The remainder of this paper is in five parts. The first emphasizes
syfNtax, but offers a rough axiomitization of known primitive operations
in our notation. The second introduces the multiset as a broad
concept and motivates its application with a simple example. It is
followed by a detailed definition of the constructor, frons, which
is used to construct multisets. The fourth section presents two
examples of its application; the more important one is a real-time
interrupt handler which is the heart of a solution for the ailrline
reservation system. The final section reviews the relation of this
work with that of others in applicative languages. An appendix is
attached which offers an implementation of frons in terms of our

syntax and in that of LISP.



syntax

Let L (read "bottom") denote an ill-defined or computationally
divergent value. The notation x¥ is used to indicate that eval-
uation of x converges in the recursive function theoretical sense;
others would write x # 1 for x¢. Later we shall require a strict
[N ,36] two argument "identity" function in order to recover some

control over the order of evaluation:
strictifyi<x y> = y if x¢

We present here some syntactic conventions. A sequence s of

elements e, €5, ..., € is denoted by <eq e, ... e)> {(k = 0);

A sequence evaluates to a list of the values of its respectilve
elements; infinite sequences[}%zﬁ]are also possible. An application
is denoted by an infix colon which is taken to be a right-associative
operator. A function (or functional expression) occurs to the left
and its argument appears at its right. We introduce this notation
and primitives familiar from pure LISP [29 ] in the prototype examples

below; take s as the sequence given above with k > 0.

first:s = ey: first:<> = L3

rest:s = <e, ... €3 rest:<> = L;
cons:<e s8> = <€ €9 €5 ... €173 cons:<e <>> = <g>;
null:s. = false; null:<> = ftrue;

I

atom:s false; atom:null:s = true;

eg:<atom:null:s null:s> = false; successor:<6> = T;

if:<null:s banana first:s> = if null:s then banana else first:s = eq.



The last line indicates that arguments are called-by-need [37] or
called-by-delayed-value [36 ] (or that we are using a lazy evaluator
Dsg&ﬂ so that unneeded/undefined ones like banana need not be a
bother (banana is an unbound variable); it also indicates a syntactic
convenience for conditionals which we adopt in the examples below.

We include the starred form of functional combination [/2] which
will be extended for multisets later. This is a purely syntactic
convention which effects LISP's MAP functions or Backus's o (apply

to all) operator [2 ] when a structure appears in the functional

position.

<successor¥>:<<l 2 3>> = <2 3 U>;
<fP¥>:i<<g b e><x y z>>» = <fi<g x> f:<b y> fi<ec 2>>;

<f¥>:<3 rest:s> = <f:<el e2> f:<e2 e3> Vi f‘:<ek_l e >>.

A starred function is spread across 1ts arguments, and because we

allow intinite structures, an infinite spreading is possible:
naturals = cons:<1 <successor¥>r<naturals>> = <1 2 3 4

Rather than use explicit "lambda" conventions we shall define new
functions from old ones by a pattern equivalent to a prototype
invocation:
or:disjuncts =
if null:disjuncts then false

else if first:disjuncts then true
else or:rest:disjuncts

Thus, or:<atom:s null:s> = false;
or:<atom:s null:s atom:null:s> = true;

and or:<atom:s first:<> null:<>> = 1



Multisets

The braced sequence m = {el €5 ... eyl denotes a multiset
of elements ey for 1<i<k where it is not necessary that ei+ for
every 1. In light of this possibility we want to define first
and rest on multisets as a generalization of this behavior on

sequences.

first:m = ej where 1<j<k is chosen so that ej+; first:{} = 1;
rest:m = {el €0 «ev €35.1 €341 - ek} where J. 1s chosen as above.

pesti{} = Q.

Note that we do not consider whether or not e;+ for 1 # j:; J 1is

chosen without regard to that.
null:m = false; null:{} = true: atom:m = false.

These last rules demonstrate that "{}" = "<>" within the user's
semantics specified by these primitives.
(The reader is referred to a more complete presentation of these
semantics [/¢&] for a definition of the behavior of cons and frons
(i.e. multisets) in building a structure which is something between
a sequence and a multiset.) From these prototypes we can derive
that or:{atom:s null:s atom:null:s} = true ;

or:{atom:s first:<> null:<>} = true;
and or:{rest:{} first:<> rest:<>} = 1
These results arise without changing the definition of ggf. The old
definition [30] is sufficient to define "symmetric" or [3! ] which
converges whenever any disjunct is true or when all are false; we

just changed the argument.

+The behavior depends much on the binding of the variable disjuncts
to a single multiset, whence first and rest must choose the same j.
See below.



The angle-bracketed combinator is now simply extended to a
braced combinator; the brackets merely determine whether the

result is taken as a sequence or as a multiset.

{f¥}:<<a b ¢> £x y z>> = {f:<a x> f:i<b y> f:i<c z>};

{2 4§ 3},

{successor¥}:<<1 2 3>>

At this point functionality is set aside. We wish to relax
the demands of the semantic sense of functionality ever so care-
fully so that we can handle nondeterministic problems. This does
not mean to imply that we can afford to drop all the trappings of
such languages. On the contrary, we want to preserve as many of
these properties as possible because the practical benefits of
this style of programming . may be attributed to the lack of
side-effects and the preservation of environments. Therefore,
as we introduce nondeterminism we "encapsulate™ it so that the
desirable properties of determinism in other parts of the language

are preserved.



The constructor, frons

Like the sequence constructor cons, we have a multiset

constructor frons. In the same way that we understand that

8 = cons:<e COI’lS:<€2 COI’IS:<€1{ <> L. 22

X

we use the new constructor to build the multiset m from above

frons:<e1 frons:<e, ... frons:<ek {} ... >

but since order doesn't matter we also might build m as

frons:<e, ... frons:<e2 frons:<e, {}>> ... >

k L

or in many other ways. The rules for coarse interaction (that is,

in the absence of bindings) between frons and the other primitives

follow.
x If x4 (1)
first:frons:<x y> =
Pirstyy 1f firstoys (2)
y if x¥; (3)
frest:frons:<x y> =
frons:<x rest:y> if first:yd. 4)
null:frons:<x y> = false; atom:frons:<x y> = false.

Because frons behaves so much like cons, the user has no way of
distinguishing how a structure was built after it is built; for
access purposes a multiset behaves as if it were a sequence. Indeed,
the rules for frons are an extension of the rules for cons 29, 1]
since cons is defined by alternatives (1) and (3) only; cons has

no choice. 1In the definitions above there i1s a potentially

dangerous freedom of choice when both x¥ and first:yt, because the
choice of alternatives may be different in the application of first

and rest. That is, we might choose first:frons:<x y> = first:y (2)



and rest:frons:<x y> =y (3) so that x might not be in the
multiset frons:<first:frons:<x y> rest:frons:<x y>> ! The
picture is far different, however, if the multiset has already
been constructed and bound to a variable, because such choices
on a bound variable are immutable.

Let the binding of the variable v be frons:<x y> (i.e we

fix an occurrence of frons:<x y>). Then we define

x if x¥ and the other alternative has not yet (5)
been chosen for v;

]

Pirstiv
first:y if first:y+ and the other alternative (6)
has not yet been chosen for v.

y 1f x+ and the other alternative has not yet (7)
been chosen for v;
rest:v =
fons:<x rest:y> if first:y¥ and the other alter- (8)
native has not yet been chosen for v.
In the case that both x+ and first:y+, the choice of alternatives
is not so free as above because any previous probing of v may have
already determined it. This predetermination of first:v ((5) or (6))
also arises if the other alternative ((7) or (8), respectively) had
been chosen as a result of a rest:v probe, and vice versa. The
net result is that every variable (or field of a structure) bound to
a single multiset must yield consistent results under first and
rest (i.e. first and rest behave functionally as long as they are invoked
over the same bindings). This must extend to all other variables
or flelds bound to the same multiset in this or other environments,
(Bindings arise from argument-parameter assignment upon function

application; they may not be based on lexical matching when frons

is involved.)



This convention on binding applies to braced structures as
well: the cholce of j for first:m must be made consistently
with the choice for rest:m (in the example which introduced
braces) because of the binding of m. Similarly, the lambda-binding
of disjuncts causes the symmetric or example to work properly.
Operationally, every incarnation of a multiset is obliged to keep
track of which alternative has been chosen after the choice is
made, because its behavior must be immutable. The difference
between these rules (5-8) and those above (1-4) is that in the
earlier case the explicit constructor created a new (and unshared)
multiset so that there were no previous choices possible. The
appendix presents an implementation of frons which guarantees
this behavior. Like our definition of cons which allows specification
of infinite sequences, that definition allows specification of

infinite multisets.
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Examples

In order to demonstrate the facility of nondeterministic
programming with the new constructor frons, we present a few
example programs which solve some problems of nondeterminism
in an applicative style. 1In reading these examples the reader
should notice how the nondeterminism is isolated into the
data structure, so that the program is rather simple. First
we consider the problem of flattening a multiset of sequences,
M= {Sl So 4. Sk} into a sequence. In this example the argument
is much like a matrix except that we allow for infinite bounds
(i.e. the number of rows and the number of elements in each row
may be infinite), in which case the first two lines of merge
are meaningless.

merge:M =

if null:M then M
else if null:first:M then merge:rest:M

else cons:<first:first:M
merge :frons:<rest:first:M rest:M>>

The use of the two constructor functions in merge 1s particularly
interesting. Assuming that the argument is defined appropriately,
we can interpret the four possible substitutions of the two
constructors in those positions. If both were cons, then merge
would append [30] all the rows of M in the order they are presented

in M; if the first row of M is infinite then that row is copied.
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With the constructors as in the definition of merge, the effect
is to interleave the wvarious rows of M; so the order of each one
is preserved, but elements from other rows may be interspersed
in the final result. If both constructors were frons, the effect
would be to allow any mixture of all the elements of the array
as an ordering in the result. In the unusual case that the first
constructor was frons and the second was cons, a similar mixture
would result but elements in the result would be restricted to
rows only up through the first infinite one in M.

The interleaving behavior is what we desire for the example
below. We would like to write a nondeterministic input driver
for a time-sharing system. Specifically, we want to solve the
input problem for the airline reservation system [ 7 ,40]. 1In that
problem we have an arbitrary number of remote agents' terminals
each producing an infinite stream of characters. Each stream forms
a row of an input matrix. Thus every row is infinite (as time
passes); and there are an indeterminate number of rows (new terminals
may be activated at any time). The problem is to write an
applicative program which will accept these characters as soon as
they are typed (regardless of the inactivity of another terminal)
and interleave them into a single input stream with each character

identified according to its source.
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We require an auxiliary function which will transform a
file--a sequence of characters—-- into a sequence of pairs
—-—a character and the signature of the file. Furthermore,
that sequence of pairs, and all its suffixes, should be strict

in the convergence of their first characters. That strictness

precludes convergence of such sequences until their first

character has been typed at the corresponding remote terminal.

identify:<file 1id> =
1f nulli:file then file
else strictify:<first:file cons:<<first:file 1d>
identify:<rest:file id>>>

(Even though i1dentify specifies a full computation over file, the
reader should satisfy himself that each step is suspended until

it is needed,)

It is the multiset of identified files which must be merged.
Let us assume that files 1s a sequence of the sequential files to
be interleaved. Then we may invoke the function fanin upon files
and naturals in order to generate the desired stream of agents'
communication:
fanin:<files signatures> = merge:{identify¥}:<
files
signatures > .
The braced combinator is used to convert the sequence of files
and signatures into a multiset of "strictified-identified" files.
Thus, the application of EiEEE in merge can only yleld a result

from an active teletype.
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Relation to other work

There have been many other attempts to introduce nondeterminism
in a controlled way into programming languages and models of
computation. Of these, we mention only those that are defined
for use in languages with "applicative" flavor¥*. McCarthy [29]
suggested a nondeterministic "ambiguity" operator which is clearly
not a function.

x if x¥;

amb:<x y> =

y if y+.
The amb operator implements pure, mindless nondeterminism; results
are not necessarily reproducible. Its failing is that there is
no way of knowing which argument was chosen and/or recovering the
unchosen one in order to resume its computation later. Others
have developed variliations on amb (e.g. Ward [39] developed a function
either [3 ] which allowed for amb with a finite number of choices)
and Hennessey and Ashcroft [/9 ] introduced parameter passing
mechanisms for when the choice was to be made: call-time choice
and run-time choice. Kosinski [25] introduced an arbiter into
the data flow approach [ & ]. The arbiter merges streams [4¢ ,2%]
nondeterministically resulting in a single new stream. Using the
arbiter, Dennis [7 ] fabricates an airline reservation system.
The arbiter is behaviorally similar to the program fanin; but
since it is postulated as a hardware primitive, it may only have
a finite number of input streams. Arvind and Gostelow [/ ] have

adopted a similar primitive in their data flow model.

*

Waldinger and Levitt [38] have developed an unordered structure
called a bag (see also [33]), but a bag contains only convergent
elements.
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We have planted all nondeterminism inside data structures.
A formallist may not perceive the significance of this choice,
but any programmer will; we want to encapsulate nondeterminism
where the programmer may plant it and ignore it easily according

to his preconceived notions about programming style. A significant

contribution of the applicative style to this development is the

experience with an applicative regimen which allows the simple

introduction of nondeterminism as a trivial twist in programming

style. A good programmer follows a few simple rules when he works:
don't compute the same thing twice; never build the same structure
twice; etc. The use of the second rule is applied when a good
programmer borrows a reference to a shared structure rather than
copying it. The point here is that the manipulation of data
structures has engendered precisely the same programming practice
which is required of properly used nondeterminism in an applicative

programming language.

Acknowledgement: We are grateful for the contributions of

several people to this work, particularly Mitchell Wand
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implementation [22], and Steve Smoliar for carrying the

development of multisets into the practice of software

engineering [3s7].
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Appendix

This appendix presents an implementation of the frons
constructor assuming only the amb and strictify primitives
defined in this paper, and an understanding of call-by-need [37]
or call-by-delayed-value [3€] parameter linkages. In particular

the reader 1s cautioned that the list constructor cons from LISP

and its accessing functions first and rest (i.e. car and ledr)
build structures whose contents are only evaluated once, but
such an evaluation is postponed until the structure is probed
for the first time in a particular field [//], just as the first
use of a formal parameter causes evaluation of the corresponding
arguments. Johnson [22] has implemented such an interpreter for
the language defined here in PASCAL for the CDC CYBER computers.
Thus, the function insulate is a bit more than an identity

function on structures.
insulate:<z> = cons:<first:z rest:=z>

Because the argument for the parameter is called-by-need, and
because cons does not need it in order to converge, this function
always converges before evaluating its argument. Evaluation is
postponed until either field of the resulting structure is probed,

and then 1t is only evaluated once.
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Then

frons:<x y> =
insulate:<amb:<
stricfifyi<x cons ixx y>>
|

strictify:<first:y cons:<first:y frons:<x resbiysye 350

Because insulate is called immediately from frons, frons always
converges to yleld a cons data structure. The content of that
structure is not determined until it is probed because amb is not
invoked until then. Furbthermore, the amb expression is evalauted
at most once for each invocation of frons. At the time of that

probe (by either first or rest) one of the choices in amb is made

and that determines whether Lines (5) and (7) or Lines (6) and (8)
will be used to interpret the multiset bound once to z.

In addition we offer a similar definition for a LISP interpreter
which uses call-by-need. An example of such an interpret:r appears
in the appendix to our earlier paper [/ ]. The only operations which
need be added to McCarthy's pure LISP interpreter [30, Ch. 1] are
amb [29 ] and prog2 [20], which happens to coincide (for the wrong

reasons) with strictify. (prog2 is not to be implemented nsing

call-by-need although its first argument is never needed; we require

strictness.) Then frons is

(LABEL FRONS (LAMBDA (X Y)
((LAMBDA (Z) (CONS (CAR Z) (CDR Z)))
(AMB (PROG2 X (CONS X Y))

(PROG2 (CAR Y) (CONS (CAR Y) (FRONS X (CDR Y))))
)) )



