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Abstract

Applicative languages have attracted considerable attention
because of formal properties relating to important theoretical
problems of program support. For instance, program verification
and program transformation techniques are the most developed for
such languages. This research 1s intended to develop the power
of such expressive styles so that they can conveniently handle
"systems" problems (e.g. operating and data base systems) which
involve real time and concurrency, as well as asynchronous
parallel processing, through variations of "suspended" data
structures. A significant goal is a natural style in an appli-
cative language which is an attractive tool for difficult pro-

blems of this sort.
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Background

The development of programming models can be separated into
two'categories: iterative and applicative. Both models of
computation have roots in mathematical logic: Turing machines
for the former and recursive functions [ 39 ] for the latter,
but hardware design and then most language design followed the
iterative model. Languages like FORTRAN, ALGOL, and PL/1
exemplify the iterative philosophy. Language models like the
lambda-calculus [ 6 ], and combinators [ 8 ] as developed by
the RED languages [ 1 ], pure LISP [32 ], ISWIM [28,41, Plasma [20 ]
and Data Flow [ 9 ] exemplify the applicative philosophy.

A fruitful and promising area of formal research has evolved
around the applicative model, yet almost all programming is done -
using the iterative model. Recent results which rely on an
applicative model of programming are the fixed-point semantics of
Scott [40 ] and deBakker [ 2 ], subgoal induction by Morris and
Wegbreit [34 ], program transformation by Burstall and Daflington
[ 5 1, cost analysis by Wegbreit [48 ], program generation by
Summers [41 ], program proving by Boyer and Moore [ 3 ], and
work related to business data processing by
Leavenworth [29 ]. More relevant to our approach are recent
observations on argument evaluation strategies and their effect
on the course of computation. This issue is developed by Vuillemin
(44 ], Wadsworth [45 ] and refined by Henderson and Morris [19 ],

Friedman and Wise [13 ], Kahn [23 ] and Kahn and MacQueen [24 ].



Aspects of Applicative Programming

The key question addressed by this research is whether it is
feaéible (under practical standards) to perceive all programming
problems through applicative programming. By applicative
programming we mean a style in which the only control structure
is a function invocation, the only bindings are of arguments to
formal parameters, and the only effects are function results.
Others have characterized it with referential transparency [ 36 ]
or by its absence of side effects (like the assignment statement)
[ 9 1. We adopt a particular syntax for the discussions here. It
is at once similar to RED [ 1 ], and ISWIM [28 ]. Specifically, the
structure of functions and arguments is from RED, but the use of
formal parameters is from ISWIM.

Functionally expressed programs do not necessarily perform
using the stacking riechanism [10 ] which is the common implementa-
tion mechanism. Tail-recursion [42 ], continuation passing [ 37 1,
and the program transformations of Burstall and Darlington [ 5 ]
cach yield some efficiency over stack implementations. While we
are interested in furthering compilation techniques of this
nature, that issue is not fundamental. We perceive the critical
issue as one of style: what tools will the programmer be given
and what directions will he have for their use. Proper guidance
will encourage him to express himself easily while creating

programs which yield to program transformations, both known and

yet undiscovered.



The remainder of this report confronts these two issues,
tools and style. Compilers are an eventual goal, but it 1is
critical that all implementation possibilities be reflected in
language design insofar as the compller writer is concerned.

We choose to describe these possibilities from the perspective
of the user, who is given only tools and style, in order to
sharpen the contrast between what is written as programs and
what actually happens when that code is interpreted. (We are

not avoiding implementation; we avoid a specific implementation.)

The important question in evaluating this user perspective
is the power of his applicative expression. In a recent paper
[17 ] we demonstrated that an interactive editor could be pro-
grammed under our semantics of computation. Here we present
sample problems from operating and database systems: an interrupt
handler and an n-way merge of sorted files. While these programs
are only representative, they demonstrate the convenience of user
expression and the depth of program transformation admitted even
by direct interpretation of untransformed code. We believe that
hard problems are best solved using applicative style and more
importantly, that efficient implementations on hardware can follow
automatically [ 15] from such code. In most instances applica-
tive code should be sufficient to yield an efficient solution
without reprogramming in a sequential (iterative) language. Before
proceeding to problems raised by the application of our computa-
tional model to state-of-the-art programming problems we shall

briefly review our applicative language.

3.



Notations and Definitions

The computational model is composed of atoms, functions,
denoted f, and structures collectively referred to as elements denoted
e. The structures are further partitioned into sequences

denoted s, multisets denoted m, and hybrids denoted h.

Special Atoms

The special atoms are TRUE, FALSE and UNDEFINED.

Sequences

A sequence s of elements €15Co0 + o8 is denoted by
<ele2...ek>.
An infinite sequence <el e2...ek*> is the same as

<elez...ekekek...>.

Multisets
A multiset m of elements €pCo - o8 is denoted [25] by
{ele2...ek}.
An infinite multiset {ele2..,ek*} is the same as
{e ez...eke.ek...}.

1 4
A multiset Is unordered; a sequence 1is totally ordered.

fdybrids
A hybrid h of elements €1Cor e € 5€ 1 8 is denoted by

<e1e2...ei|ei+l...ek}. The first 1 elements are treated like

a sequence and the remaining elements are treated like a multiset,
with the order on the sequence extended so all sequence elements

precede multiset elements.



The following identities hold:

when 1 = k, <ele2...ek|} = <eje,...e>;

when 1 = 0, <|ele2...ek} = {eleg...ek}; and

when k = 0, <|} is the empty hybrid, which is the same as {} and
<>; we denote this empty structure by 0O.

Application

An application requires two elements, a function f and
a structure h and is denoted by f:h. For example quotient:<12 3>
is 4.

Elementary functions

let & 2 <ej€5... and m = {elez...} then
first:s = e, or UNDEFINED if s = os 7
rest:s = <e,...> or UNDEFINED if s = D;? and
cons:<e s> = <e eje€5...>,

On evaluation of either first:m or rest:m where m 1is a

multiset, m becomes a hybrid structure <ec|ele2...ec_lec+l...}.

The arguments specifying elements of m are evaluated asynchronously

'in parallel'. The 'first' element to converge, e becomes the

CB
permanent first element of m, now a hybrid. Then

first:m = ec or UNDEFINED if m = [;

rest:m = {e.e ...} or UNDEFINED if m = [.

185+ -+€,_12€

c+l

t The LISP function car and cdr can be defined in terms of first
and rest. Let & be a parameter list of one element (itself a
Lhet)

then car: i
cdr: £

first:first:2& and
rest:first: L.

5.
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cons:<e m> = <ele.e_...};
legepe-e1s
s & > = PR |, )
monsl e m {e e e, i3

empty?:h = is TRUE if h is [0 or FALSE otherwise;

is TRUE if e 1s an atom or FALSE otherwise; and

atom?:e

TRUE if h is composed only of atoms and the

il

same?:h

atoms are the same (under some equality relation);

FALSE if some differ; or UNDEFINED otherwise.

Functional Forms

Composition

Composition of functions associates to the right. We
define integers as functions which return the specified item from
a sequence (forming a multiset into a hybrid to determine the

prefix sequence). First:rest:rest:...:rest:h 1is synonomous with
i—l_%imes

i:h.
Having shown that sequences and multisets are special cases

of hybrids we redefi i . =
y edefine the primitives. Let h <ele2...ei|ei+l...ek}

first:h = 1if i>0 then el

else if i = 0 then e, with h redefined as
<ec|e1e2...ec_l,ec+l...ek}

else UNDEFINED;



rest:h = if 1>0 then <e,...e le

c c+l"'ek}

else if i = 0 then <]el...ec_l €op1- €t with
h redefined as
<eC|ele2...eC_l €41 €l
else UNDEFINED;

. > = .
cons:<e h <e ele2...ei|ei+l...ek}, and

It

mons:<e h>= 1f 1 = 0 then <|e e.e

1 2...ek}

else UNDEFINED.

Structured Application

Consdder “fohwhen ™ Fis'ef, “f, o0 £ [0 200050 %

0 0 0
and let h = <h; h, ... hilhi+l +++» h } with
h, = <e -
B R T T TR
for ' J>0, Fix k = min kj'
j=0
Then <f; ... £, |[f; 4 ... £ }:h is defined to be
0" —h 0
<f;:<l:h; ... l:hy| ... l:h }
f,:<2:hy .. 2:hi| ++. 2:h }
L, 8 SH: sl .
io 10 1 lo.hil ..io.hn}

fk:<k:hl o k:hil — k:hn} }

This protocol for structured functions is called structured application

(elsewhere functional combination [12,16 ,171.)

As an example of structured application we present the function

deal which partitions a finite sequence into two sequences, its

Fis



even-numbered elements and its odd-numbered elements; much like
a deal for a two handed game of 0ld Maid 0 B

‘deal:s = if empty?:s then <00> 5 two empty structures

if empty?:rest:s then <s [I> ; a singleton sequence
else <cons¥>:< 3 deal two cards
S
deal:rest:rest:s > .

Since the base results of deal is always a pair, the recursion in
the last line also produces a pair.

Suspending constructors play a critical role in twisting
the order of evaluation of a program written as a recursive
program to behave as iterative code [15 ]. The idea,related to
Wadsworth's call-by-need [45 ] and to Vuillemin's call-by-delayed-
value [U4%4 ] is that every field in a Hoare [22 ] record structure
is set only once as the node is created, but that initial contents
need not be “he ultimate value; a suspension [13 ] of that value
will do. # suspension consists of a form and an environment,
enough information for the evaluator to manifest that value on the
first use of the contents of that field. Because the value is
never computed unless it's needed, least fixed-point semantics re-
sult [40 ]. Because the value is never computed until it's needed
the evaluation order and resource requirement is drastically
altered [15 ]. Infinite sequences [14 ] (related to streams [27 J])
become available without the grief of coroutines [18,24], while
applicative code written years ago suddenly lends itself to multi-
processing [16 ]. The concept of suspension will also be used in

implementing multisets.



As an example of such infinite sequences expressed without
coroutines consider integers, the value of ints:1 where

ints:i = cons:<i ints:succ:ii> .
Since the construction of the sequence is suspended, only as
much of integers is calculated as is ever used directly or
indirectly in determining the output of a program which includes

this definition [ 15 1.

Not only are structures created only when necessary using
suspensions, but also they are destroyed rather sooner than
the programmer might have expected. The storage manager, in

our implementation a reference count system, recovers the

unneeded prefix of a structure whose suffix remains suspended
pending eventual use. A snapshot at any time would show that

the representation of what the user perceived as a structure

(whose size is data dependent) might be, rather, represented by a
suspended structure of constant size. Such is the case with
integers above and the intermediate files in the n-way merge
presented below. Inout is 2 sequence of an arbitrary number of
sorted files, which are merged pairwise into half the number of
sorted intermediate files; vairwise merging recurses until there

is only one final sorted file. Knuth [25 ] describes the space
behavior using coroutines and.programs the tree structure explicitly;
we present code as if it depended on extensive intermediate results

whlch never materialize.



merge:files’' = 1f empty?:Tiles then '@ sno more files
if empty?:rest:files then first:files j;only one file
else mergetwo:<merge#*>:

deal:files .

We now focus on the multiset, the new data structure
described above. For our purposes it is perceived to be an unordered
set which allows duplication (see also bags [46, 38 1), but some items

may be computationally undefined. Each item is initially a suspension

which is coerced as part of a uniform (parallel) evaluation

strategy when the first or rest of a multiset 1is needed. For

the user the structure behaves much like a sequence which is
unordered and, because of divergent elements, whose suffix may

be inaccessible. For a single processor, such a strategy might

be to take one step of the evaluation on each suspension of the
multiset in turn until one converges to a value. On a multiprocessor
system one could dispatch one processor on each suspension, let

them run asynchronously, and wait for any one to converge; all

other processors might then be released.

10



An interesting, yet simple, example which uses multisets
is the symmetric and which terminates with FALSE, TRUE, or
never terminates if all unresolved computations within the

multiset diverge [ 33 1. Consider

and:{zero?:arcsine:2 zero?:sub2:2 zero?:2} (1)
and: {zero?:arcsine:2 zero?:arcsine:3 zero?:0} (2)
and: {zero?:times:<2 0> zero?:sub2:2 zero?:0} (3)s

Since zero?:2 is always FALSE, (1) evaluates to FALSE; (3)
evaluates to TRUE because all items are TRUE; but (2)
never terminates after it determines zero?:0 is TRUE.
Although the program for and, below, was originally
written for the sequential and [31,13], if its argument is
& multiset, it behaves as if it were the symmetric and.
and:h = if empty?:h then TRUE
if first:h then and:rest:h

lse FALSE

[91]

11’
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|
|
|
|
Lutetl l ﬂd“!igé' then s pesult 1s a multiset

-

and that integers is discussed above. Second, the invocation
of atom? in the program below requires that its argument actually
be manifest [16 ]. Even if we understand that each element of a

file is an atom and that such an invocation necessarily returns TRUE,

12



An interesting, yet simple, example which uses multisets
is the symmetric and which terminates with FALSE, TRUE, or
never terminates if all unresolved computations within the

multiset diverge [ 33 ]. Consider

and: {zero?:arcsine:2 zero?:sub2:? zero?:2} L)
and: {zero?:arcsine:? zero?:arcsine:3 zero%?:0} (2)
and: {zero?:times:<2 0> =zero?:sub2:2 zero?:0} {3)

Since zero?:2 is always FALSE, (1) evaluates to FALSE; (3)
evaluates to TRUE because all items are TRUE; but (2)
never terminates after it determines 2er02:0 48 TRUE.
Although the program for and, below, was originally
written for the sequential and [31,13], if its argument is
a multiset, it behaves as if it were the symmetric and.
and:h = if empty?:h then TRUE
ot

else TALSE

By

first:h then and:rest:h

11,



We next present Dijkstra's [ 11 ] guarded-if statement, but
extended to allow that some of the predicates or values may be
computationally divergent.

guardedif:<plel...pnen> becomes

first:{guard:<pl el>...guard:<pn en>}

where

guard:<p e> = if p then e
else UNDEFINED

Evaluation of first over a multiset will continue until a

satisfactory pi and €; both converge.

The final multiset example 1s an interrupt handler for,
say,the teletype driver of an operating system. Others have
assumed this as a primitive [35,26 ]. The invocation serialize:files
takes as an argument a sequence of an arbitrary number of
sequential files, each of which is being created at a different
rate, and returns a sequence of ordered palrs. Each pair is
composed of a character and an integer identifying the file from
which it was extracted; the iEE file may be reconstructed'by
projecting ouvt, in order, the first elements of all pairs
resulting from serialize:files which have i as a second element.

Two observations are necessary to understand the following

code. First, recall that when a structured application has its

funotiong rappagantag as Mulkizak, then 1ts result 1s a multiset
and that integers is discussed above. Second, the invocation

of atom? in the program below requires that its argument actually
be manifest [16 ]. Even if we understand that each element of a

file is an atom and that such an invocation necessarily returns TRUE,

12.



nevertheless that predicate requires that its argument actually exist

(it is strict [44 ,13]). We use it as a "pause until it's there".

serialize:files = assemble:{process¥*}:<
flles
integers >
process:<file 1ndex> = if empty?:file then <EOF UNDEFINED index>
if atom?:first:file
then <first:file rest:file index>

else UNDEFINED.

assemble:triples = cons:<<1l:first:triples 3:first:triples>
assemble:mons:<process:rest:first:triples

rest:triples>>
The effect of process 1s to converge tc a partitioning triple Jjust
as soon as the next item in a file becomes available; it may be a
long wait.

Parallelism

In this section we summarize the provisions for parallel
implementation of the programming model described above. Now
that the cost of processors makes multi-processors financially
feasible, machine architects need to know how to interconnect
them (not a cheap trick in itself) so that the resulting machine
will be usable--programmable to solve important problems. We
relate our programming model to several classic parallel
architectures, demonstrating the ease with which simultaneous

evaluation may be impressed upon functions expressed without

13.



these machine designs in mind. Most notably, the model does not
have destructive assignment statements; it is free of side-
effects. All variable/value bindings are established as parameter/
argument bindings in function linkages, and they are therefore

not subject to change during their lifetime.

The feature of suspending cons provides opportunity fqr
massive parallelism. A system implemented with only the user's
invocations of cons suspended, or with those and all the system
structures suspended, may have hundreds of suspensions pending
on the system during the course of computation. In a single
processor system all (but one) of these would await probing by

the system functions, first and rest, before their coercion

would be initiated. If the run-time environment were enriched
with idle processors, then any of these suspensions could be
coerced simultaneously without delaying the progress of the
critical evaluation (the single one active on a single processor).
Let us designate that distinguished evaluation as the colonel

and any other processors available will be called sergeants.

The parallel evaluation strategy is to keep the colonel
working on the same critical process which would occupy a single
processor and to allocate the sergeants to suspensions which are
"near" the colonel process. Since evaluation of suspensions
usually converges to nodes containing new suspensions rather
quickly, sergeants tend to finish their tagks rapidly after which

they are reassigned to new ones "closer" to the moving colonel.

14,



(It is possible that a sergeant could fall into a divergent
evaluation and therefore be lost to the system until the sus-
pension it was evaluating becomes irrelevant.) The colonel
behaves exactly as a single processor would, except that from
time to time 1t accesses what would have been a suspension and
instead finds the result already provided by a sergeant who had
passed through earlier. The definition of the "near" metric
should be chosen to maximize the likelihood of this fortunate
event. The sergeants scurry about the system following the
colonel doing their best to satisfy his anticipated needs.
Some of their effort may be wasted since not all handiwork of
sergeants need be accessed by the colonel. Yet the time to
compute the final result is no more than the time using a single
evaluator since parallelism has been provided at essentially no
overhead. There is no cost due to interprocessor conflict and
communicatizsn. Some additional cost may arise from the enforce-
ment of the "near" metric; but this requires overhead only as a
sergeant process is initiated--not while it's running.
Structured application offers two sorts of parallelism. The
first is exemplified by the code for deal. In the definition
for this function the recursion is linear down the last parameter,
but at each recursion step each of the two developing results
must be handled. Clearly the pieces of the ultimately final
result can be handled by two concurrent processes. So a simple

but bounded parallelism is provided depending on the size (k in

15,



the definition of structured application) of the result when all
elements of the function structure are defined independently of
the recursive definition in which 1t appears.

Another kind of parallelism results if the function being
defined appears in the function structure. The coding of the
function merge is an example of this. If k processors are
allocated for computing the result of a structured application,
and it has occurrences of the function being defined as some
f., then a process tree can result with processors active only
at the leaves. The tree results because a single processor
evaluating a function encounters an instance of structured
application and becomes dormant while the k processes from that
instance compute. If some of those processes are recursive
invocations, then each of those processes may become dormant in
the same way. If all processes terminate then the invocation
tree 1s of finite depth with degree k at any node, with dormant
processes at all non-leaves, and with active processes only at
the leaves. If a hybrid of functions has more than one recursive call
in such a scheme then a very "bushy" process tree can result.

For example, Hoare's Quicksort Algorithm [21 ] can be im-

plemented so that every recursion can make use of a new processor.
At the nth level g™ processors may be used. The processors
are all evaluating the same function definition under disjoint
(and static) environments, however, so that lock-step evaluation

is entirely appropriate.

16.



These semantics require very little interprocessor protocol.
Upon interpretation of structured application the active process
goes'dormant and spawns k new processes. HEach of these
processes is independent and need not initiate communication
with any other user process except to report its result. As it
reports its result a process dies but its dormant parent is
Jarred; we call this process stinging. A stung parent becomes
active when it 1s stung with the (chronologically) last result.
Therefore, the only run-time processor synchronization involves
process creation and stinging. (Environments are static!) This
is no more complicated than what is required for collateral
argument evaluation [ 49 ].

The star notation used on an argument to a structured
application merely denotes that the argument is to be shared by
all k processors. When the function itself is a starred
structure than application is implicitly homogeneous and a
different sort of concurrency may be used for interpreting the
function over an arbitrarily sized argument. This use of
structured application is most similar to mapping functions
[31, 30] and their generalization [12 J]. An example is the

function dotproduct, sum:{product¥*}, in which all multipli-

cations may take place concurrently. Due to the expression of
the function structure with the star, the compiler can easily
detect that the same operation will be performed on all objects

in the linear structures which became arguments in the multiset.

Then the evaluation may proceed using pipelining across the k

arguments to the starred function structure.

7.



The opportunity for parallelism in accessing a multiset

(or a hybrid which has been reduced by repeated applications of

rest to a multiset) should be apparent. On a single processor

the evaluation effort

of the function first must be distributed

carefully over all suspensions of the multiset which is its

argument. In a multiprocessing environment a processor may be

responsible for evaluating suspensions of only a "sub-multiset"

when the same effort is divided among several processofs. Ideally

these sub-multisets are each singletons so that the distributed

evaluation becomes truly simultaneous asynchronous evaluation.

The protocol for such
the programmer and 1s

model in a particular

onglusions

Now we turn away
has been presented 1in
course of the project

we shall consider are

a computation is completely removed from
up to the implementation of the computation

(processor-rich or processor-poor) environment.

from the specific language structure which
the previous sections and return to the
itself. To a certain extent the prbblems

concerned with the use of these and other

tools, but the issue of programming style plays a role as well.

Tools must be well suited for use by programmers and programmers

must be well disciplined in their use before the powers of both will

work well together.

18.



The fundamental question, again, which underlies this effort
is whether it is practical to solve all problems through applica-
tive programming. From the programmer's perspective the problem
is one of eXxpressiveness and style. ' Can he tolerate this
restricted set of programming tools to form his ideas within
thelr range of expression? What sort of guidance should he be
given in his use of multisets, whose realization may require
much of the computing resource? Should he be allowed to specify
when simultaneous evaluation (e.g. "dragging" defined in [17])
should occur or can this decision be delayed until compile or
run-time? Similar to this question are many others based on
the knowledge of the execution environment required by the
programmér; we intend that it be minimal. Ought the programmer
to be able to anticipate effort or order of evaluation within
a multiset? Should he be allowed to allocate resources among
its components, whose evatuations converge to members of the
multiset? Should he be allowed infinite multisets; 1s the re-
source allocation problem for infinite multisets anything less
than that for self-reproducing automata [43 ]2

An issue intermediate between style and implementation is
that of program verification. The already impressive results
on proving applicative programs [ 3 ,4] will extend to
our control structures. Although accessing a multiset is time
dependent we shall be able to verify that the (nondeterministic)

results are valid. A separate axiomitization will be necessary

1.9



to describe the explicit time dependence of results (i.e. real-
time behavior). Proving the time dependencies of output on
input is a third issue for program verification newly raised
by suspended evaluation; it is a problem which may be solved
after the value of a computation is proved valid but

before termination [33 ] is proved. since partial or infinite
computations may still yield output under such a protocol.

The value UNDEFINED, resulting from noticeably divefgent
computations (as opposed to resource exhaustion resulting from
undetectably divergent ones) plays a special role in a multiset:
it disappears. Should this value be propagated throughout the
computational model as well? Is one undefined token sufficient,
given the rigors of program development? What other tools are
needed to debug new programs? How can one analyze an algorithm
whose nondeterminate behavior is sensitive to run-time environment?
What properties about the multiprocessing environment must be
known to predict behavior?

Finally we turn to questions of implementation based on
these tools. We have considered some possibllities for multi-
processing [ 16 ]; are there others? Should such a language
be compiled (in the sense of PASCAL) [ 47 1 or should it be inter-
preted? Can feasible firmware or hardware be designed to
facilitate a fast interpreter? [ 15 1 If so, can it be extended

naturally to a system of many processors?

20,



What new data structures are introduced in implementing
specific algorithms? Storage is now being managed by a reference
count scheme [ 7 ]; can it be used to effect in-place data
manipulations where the programmer specifies "create and destroy"?
Can the determination of "in place" behavior be moved back from
run-time to compile-time? How does an external file system
influence the course of evaluation within a program? We have
specified macroscopic behavior [ 17 ] but specific interfacing
depends very much on the operating system; can device/program
connection be specified without rewriting the entire operating
system? Another open data structure problem is definition of the
"near metric" giving a "locus" of a processor within a data
structure in a multiprocessing environment [ 16 ] without
interfering (say, through communication) with the progress of

that processor.

2l



References

.

10.

ks

12,

13

J. Backus. Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs. Comn.
ACM 21, 8 (August, 1978) 613-641.

J. deBakker. Least fixed-point revisited. Theoretical
Computer Science 2, 2 (1976) 155-181.

R. Boyer and J.S. Moore. Proving theorems about LISP
functions. J. Assoc. Comput. Mach. 22, 1 (January, 1975),
129-144,

W. H. Burge. Recursive Programming Techniques, Addison-Wesley,
Redding, MA (1975).

R. M. Burstall and J. Darlington. A transformation system for
developing recursive programs. J. Assoc. Comput. Mach. 24,
1 (January, 1977), U44-67.

A. Church. The Calculi of Lambda Conversion (Ann. of Math.

Studies 6), Princeton Univ. Press, Princeton (I941).

G. E. Collins. A method for overlapping and erasure of lists.
Comm. ACM 3, 12 (December, 1960), 655-657.

H. B. Curry and R. Feys. Combinatory Logic I, North-Holland,
Amsterdam (1958).

J. B. Dennis. First version of a data flow language. In
B. Robinet (ed.), Programming Symposium, Springer-Verlag,
Berlin (1974), 362-376.

E. W. Dijkstra. Recursive programming Numer. Math. 2,
5 (October, 1960), 312-318.

E. W. Dijkstra. A Discipline of Programming, Prentice-Hall,
Englewood Cliffs, NJ (1976).

D. P. Friedman and D. S. Wise. An environment for multiple-
valued recursive procedures. In B. Robinet (ed.), Programmation,
Dunod Informatique, Paris (1977), 182-200. :

D. P. Friedman and D. S. Wise. CONS should not evaluate its
arguments. In S. Michaelson and R. Milner (eds.), Automata,

Languages and Programming, Edinburgh Univ. Press, Edinburgh
(19767), 257-28%L.

22



References (Cont.)

14,

16

.

18,

19.

20.

21.
Poidl,

23

24,

25 .

26.

27.

D. P. Friedman, D. S. Wise, and M. Wand. Recursive programming
through table look-up. Proc. ACM Symp. on Symbolic and
Algebraic Computation (1976), 85-83.

D. P. Friedman and D. S. Wise. Output driven interpretation
of recursive programs, or writing creates and destroys data
structures. Information Processing Lett. 5, 6 (December, 1976),
155-160.

D. P. Friedman and D. S. Wise. The impact of applicative
programming on multiprocessing. IEEE Trans. on Comput.
C-27, 4 (April, 1978), 289-296.

D. P. Friedman and D. S. Wise. Aspects of applicative )
programming for file systems. Proc. ACM Conf. on Language
Design for Reliable Software, SIGPLAN Notices 12, 3 (March,

1977), BI-55.

D. P. Friedman and D. S. Wise. Unbounded computational
structures. SOFTWARE-Practice and Experience 8, 2 (August,
1978), Yo7-416

P, Henderson and J. Morris, Jr. A lazy evaluator. Proc.
Jrd ACM Symp. on Principles of Programming Languages, 95-103.

C. E. Hewitt and B. Smith. Towards a programming apprentice.
IEEE Trans. on Software Engineering SE-1, 1 (March, 1975),
26-145,

C. A. R. Hoare. Quicksort. Computer J. 5, 1 (April, 1962),
10-15.

C. A. R. Hoare. Recursive data structures. Internat. J.
Comput. Information Sci. 4, 2 (June, 1975), 105-132. .

G. Kahn. The semantics of a simple language for parallel
programming. Proc. IFIP Congress 74, North-Holland, Amsterdam

(1974), 471-47%,

G. Kahn and D. MacQueen. Coroutines and networks of parallel
processes. Proc. IFIP Congress 77 . North-Holland, Amsterdam
(1977), 993-998.

D. E. Knuth. Sorting and Searching, Addison-Wesley, Reading,
MA (1973).

Paul Kosinski. Arbiters. Talk at Workshop on Data Flow and
Reduction Languages, Univ. of California, Irvine (1977).

P. J. Landin. A correspondence between AIGOL 60 and Church's
lambda notation. Comm. ACM 8, 2 (February, 1965), 89-101.

23.



References (Cont.)

28.

29.

30.

31.

32,

33.

3l

35.

35

37.

38.

39.

ho.

41.

P. J. Landin. The next 700 programming languages. Comm. ACM.
9, 3 (March, 1966), 157-162.

B. M. Leavenworth. On the construction of nonprocedural
programs. IBM Research Report RC 6155, Yorktown Hts. (1976).

L. A. Lombardi. On table operating algorithms. Proc.
IFIP Congress 62, North-Holland, Amsterdam (1963), 511.

J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart,
and M. I. Levin. LISP 1.5 Programmer's Manual, M.I.T.

Press, Cambridge, MA (1962).

J. McCarthy. A basis for a mathematlcal theory of computation.
In P. Braffort and D. Hirschberg (eds.), Computer Programming
and Formal Systems, North-Holland, Amsterdam (1963), 33-70.

7. Manna. Mathematical Theory of Computation, McGraw-Hill,
New York (1974), Chapter 3.

J. H. Morris, Jr. and B. Wegbreit. Subgoal induction. Comm.
ACM. 20, 4 (April, 1977), 209-222.

S. Owicki and D. Gries. Verifying properties of parallel
progrgms: an axiomatic approach. Comm. ACM. 19, 5 (May, 1976),
279=-2065.

W. V. Quine. Word and object, M.I.T. Press, Cambridge, MA
(1960), 144,

J. C. Reynolds. Definitional interpreters for higher-order
programming languages. Proc. ACM National Conference (1972),

717-T40.

L. Robinson and K. N. Levitt. Proof techniques for hierarchically
structured programs. Comm. ACM. 20, 4 (April, T97T), 271-282.

H. Rogers, Jr. Theory of recursive functions and effective
computability, McGraw-Hill, New York (1967).

D. Scett. Logic and programming languagé; 'Cbmm.'ACM 20,
9 (September, 1977), 634-641.

P. D. Summers. A methodology for LISP program construction
from examples. J. Assoc. Comput. Mach. 24, 1 (January, 1977),

161-175.




42.

43.

Ly,

45.
46.

47.

48.

49.

G. J. Sussman and G. L. Steele. SCHEME: an interpreter for
extended lambda calculus. Artificial Intelligence Memo 349,

Mags. Irist. of Tech. (1975).

J. Von Neumann. Theory of Self-Reproducing Automata,
Univ. of Illinois Press, Urbana (1960).

J. Vuillemin. Correct and optimal implementation of recursion
in a simple programming language. J. Comp. Sys. Sci. 9,
3 (December, 1974), 332-354.

C. Wadsworth. Semantics and Pragmatics of Lambda-calculus,
Ph.D. dissertation, Oxford (1971).

R. J. Waldinger and K. N. Levitt. Reasoning about programs.
Artificial Intelligence 5, 3 (Fall, 1974), 235-316.

Mitchell Wand and Daniel P. Friedman. Compiling lambda
expressions using continuations and factorizations (revised
July, 1977). To appear Journal of Comp. Lang.

B. Wegbreit. Mechanical program analysis. Comm. ACM 18,
9 (September, 1975), 528-539.

A. van Wijngaarden, B. J. Mailloux, J.E.L. Peck, C.H.A. Koster,
M. Sintzoff, C. H. Lindsey, L.G.L.T. Meertens, and R. G. Fisker.
Revised report on the algorithmic language ALGOL 68. SIGPLAN
Notices 12, 5 (May, 1977), 14-15.

2s.



Qomputing Mmgtar because of the excellent PASCAL compller

ol | aveilable, Langyige implementations will be ultimately programmec

. In PASCAL. ¥Most promyam deslgn =nd malntenance wlll be done

on tihe unlverstizv's. Lleit Equlpmens DEC-10 in Indianape.ils,

-:Zith has puperior sditing uthemﬁ for ¢ode malntenance and
Ante rag

tive LISP (or designing theNgomuutar lonal model,

The I.U. Computer Science Departmehy has an active hardware

hcalgu group with a laboratory equippes to ?2Qi}-ate'plated-
n 4 .
 theough boaprds. The Laculty members and tachnt '7_“-.1_.5‘3 from this

. .

oM wili provide Inslght and snglineepring advioc >n\}{jblems

| .

of paral lslism pelating 20 hardwars capabllilities and -.'Dr;}l‘%ntﬂ.
N

™

-




