Backtracking with Multi-Level Dynamic

Search Rearrangement

by

Paul Walton Purdom, Jr.
Cynthia A. Brown

Edward L. Robertson

Computer Science Department
Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT NO, 77
BACKTRACKING WITH MULTI-LEVEL
DYNAMIC SEARCH REARRANGEMENT
PAUL WALTON PURDOM, JR.
CYNTHIA A, BROWN
EDWARD L. ROBERTSON
REVISED FEBRUARY 1980

Research reported herein was supported in part by
the National Science Foundation under grant

number MCS 79 06110.

Backtracking With Multi-Level

Dynamic Search Rearrangement#

Paul Walton Purdom, Jr.
Cynthia A. Brown

Edward L. Robertson

Abstract. The order in which the variables are tested
in a backtrack program can have a major effect on its
running time. The best search order usually varies among
the branches of the backtrack tree, so the number of
possible search orders can be astronomical. We present an
algorithm that chooses a search order dynamically by
investigating all possibilities for k levels below the
current level, extending beyond k levels wherever possible
by setting the variables that have unique forced values.
The algorithm takes time O(nk+1) to process a node. For
k = 2 and binary variables the analysis for selecting the
next variable to introduce into the backtrack tree makes
complete use of the information contained in the two-level
investigations. For larger k or variables of higher degree
there is no polynomial-time algorithm that makes complete
use of the k-level investigations to limit searching
(unless P = NP). The search rearrangement algorithm is
closely related to constraint propagation. Experimental

studies on conjunctive normal form predicates confirm that

l1-level search rearrangement saves a great deal of time
compared to O-level (ordinary backtracking), and show that
2-level saves time over l-level on large problems. For
such problems with 256 variables 2-level is better than

l1-level by a factor of two.

#*Research reported herein was supported in part by the

National Science Foundation under grant number MCS 79 06110.

1. Introduction

Backtracking is a technique that is useful for solving
some problems for which no polynomial time algorithm is known.
(Knuth (1) gives an introduction to backtracking). Various
authors have discussed the advantages of using dynamic search
rearrangement to enhance the performance of backtracking.
Bitner and Reingold (2) observe that dynamic search
rearrangement led to a major improvement in the running time
of their programs. Transforming a problem into one with
binary variables gives maximum scope to search rearrangement.
Knuth (3) gives an example based on the work of Tompkins and
Paige (U4) and of Parker (5) in which a similar recoding
combined with search rearrangement resulted in an improve-
ment by a factor of lollin the time required by a program.
Constraint propagation, which has been extremely successful
in scene analysis, may be viewed as a method of reducing
problems to binary variables and then using dynamic search
rearrangement with backtracking (avoiding actually back-
tracking altogether in the best case). These studies show
that dynamic search rearrangement can lead toc major improve-
ments in the running time of backtrack prograns.

In this paper we present a generalization of search
rearrangement that investigates several levels into the
backtrack tree before selecting the next variable.

Empirical studies on a representative class of problems
show that this method can save a significant amount of

time over simple search rearrangement.

2. Notation and Basic Algorithm

Any problem that can be solved in NP-time (7)
corresponds to a family of predicates that can be evaluated
in polynomial time. Solving an instance of an NP-time
problem may be regarded as a search for an assignment of
values Xl,...,Xn to variables XyseeesXy such that the
value of the corresponding predicate P on Xl,...,Xn is
true. A simple exhaustive search tries every combination
of the values of the variables. It can be implemented by
assigning a tentative wvalue Xl to Xq and attempting
recursively to find values for XnseeesXys then trying
successive values for Xq and so on until the search

)

is easy to compute, perhaps without discovering exact values

terminates. If ?(xl) = (3x,) o0 (3x)P(Xq5%Xps0e05Xy,

for XoseeesX then a more economical technique would be

n’

to first test whether a particular X satisfies P.

1
In this way values of X, that lead to "blind alleys"
could be avoided. In most cases P itself is not easy to
compute, but backtracking algorithms are based on the hope
of constructing predicates that warn of blind alleys a
significant proportion of the time.

Let S = {xl,...,xn} be the ordered set of variables
for predicate P. Let T = {xl,...,xk} be an initial
segment of S, and let PT be an arbitrary predicate over

the variables in T. If P implies PT in the sense

that Pp(Xy,...,X,) may be false only if

P(Xl""’xk’Xk+1"“’Xn) is false for all sets of values
Xk+1"“’xn af xk+l"'f’xn’ then a false value of PT
would indicate a blind alley when searching for a solution

to P. In this case we say PT is consistent with P.

More generally, if A and B are subsets of S, A < B,
and PA and PB are predicates over A and B, we say

that PA is consistent with P if P implies P A

B B A
set of predicates P = {PD}DeD’ where D 1is a set of
subsets of S, is consistent if for any pair of predicates

r and PB in P, A ¢ B implies P is consistent with

A A
PB.
For a given A c S, A = {al,...,ai}, the strongest
predicate consistent with P, is (Eal) % 3 (Sai)PA.

Usually this predicate is not easy to compute. The
identically true predicate is consistent with every predicate
and is easy to compute, but it provides nc useful information.

An intermediate predicate for a problem is a predicate over

a subset of the variables that 1s consistent with the
predicate for the problem. A problem is a candidate for
solution by backtracking if it has intermediate predicates
that are strong enough to give a significant savings over
exhaustive search and that are relatively easy to compute.
In some cases the structure of the intermediate

predicates might suggest a good search order. For the
sake of generality we will assume that the predicates are

so complicated that they must be treated as "black boxes".

The only way to get information about a predicate is to
evaluate it on some set of values. This precludes the use
of methods that directly analyze the definitions of the
intermediate predicates.

At 2 given point in the backtrack search., some variables
will have been assigned tentative values while others are
still unset. We let S' denote the (ordered) set of
variables which do not yet have an assigned value; S"
denotes S-S'. The value of each x in 8" 1is denoted
by X. We call the intermediate predicate that is used
at this stage PS"' One such predicate can be obtained
from P by substituting the values of the variables in S"
into the formula for P. The resulting formula is evaluated
over the variables in S. If there is enough information to
determine that the value will be false no matter what values
the remaining variables get, then it returns false; otherwise
the value is true. This predicate is always consistent with
P. We hope that there is an efficlent intermediate predicate
which substantially reduces the search space, but if none 1is
available we will use the identically true predicate. In
any case, an efficient intermediate predicate does exist
for every subset of 3.

The general form of the backtrack algorithm for finding
all solutions (not just a single solution) to a problem is
given below. The code in square brackets is omitted in the

more primitive versions of the algorithm.

Backtrack Algorithm

S" « ¢3 S' « S; BTFLAG <« true; [Initialize variable list;]
while true do
if BTFLAG then BTFLAG +« PS"(current node) ;
if (BTFLAG and S' = ¢) then
begin
print current node;
BTFLAG « false;
end;
if (not BTFLAG) then while (8" # ¢ and the first
variable in S" has no more values) do
begin
put the first variable of S" in S';
end;
[update variable list;]
if S" = ¢ then stop
else set the first variable of S" to its next
value;
BTFLAG <« true;
call SELECT ;
endwhile;

end backtrack algorithm.

Procedure SELECT:
choose a variable x in S' (see section 3);
transfer x from S' to 8";

assign x 1its first value;

return;

end SELECT.

Transfers of variables between S' and 8" 1insert
elements at the front of the ordered set. When the back-
track algorithm manipulates the first element of S", it
is the element most recently transferred to S8". In the
algorithms below, "for" loops over ordered sets start with
the first element and proceed in order.

The method of choice used in procedure SELECT is the
main subject of this paper. The algorithms we describe
below differ mainly in the way this procedure is implemented.
For each algorithm we give the portions that are not fully
specified in the basic algorithm: the code for SELECT and
in some cases the code for manipulating variable lists.

We begin with the simplest algorithm.

3. The O-Level and l-Level Search Algorithms

The simplest case of search rearrangement is to do no
rearrangement. Thus the code for SELECT 1s quite simple.
We distinguish algorithms by the depth of search during the
selection and tentative setting of a variable. This simple

algorithm with no search is thus called O-level select.

O-Level Search Algorithm

Procedure SELECT
X + first element of S';
tranéfer x Tfrom S' to 38Y:
set x to its first value X;
return;

end SELECT.

This 1s the traditional backtracking algorithm. Figure 1
shows the backtrack tree that is obtalned when this algorithm
is used to find the values of the variables that satisfy the

predicate Q = AABACADAEAFAGAHAIAJ, where A = avc, B = avd,

C = av—e, D =-avb, E =-bve, F = ¢cvd, G = —evf, H =-bv-evf,

I dv-evf, and J = mbvdvev™f. The intermediate predicate
for each subset of variables is the conjunction of all the
clauses that contain only variables for that subset. In
Figure 1, each leaf is labelled with the name of the (first)
clause that causes backtracking. The unlabelled leaves are
solutions. Each interior node is labelled with the variable
that is set at that node. Left branches correspond to the
value false and right branches to true. Figure 1 has 39
nodes, compared toc the 64 cases that would need to be
examined in an exhaustive search.

The following version of SELECT gives a l-level search

rearrangement algorithm.

1-Level Search Algorithm

Procedure SELECT:
SELECTFLAG « false;
for each x in S' while (not SELECTFLAG) and
BTFLAG do |
begin
count[x] « the number of values of x for which

PS"u{x} is true;

if countlx] 0 then BTFLAG <« false;

if countlix] 1 then SELECTFLAG <« true;
end;
if (not BTFLAG) then return;
if (not SELECTFLAG) then set x to a variable with a
minimum countlx1;
transfer x from S' to S";
set x ¢to its first value;

return;

end SELECT.

This is essentially the algorithm of Bitner and Reingold
(2). It is possible to modify the algorithm so that it saves
the results of testing PS"u{x}; this will be considered
further with the multilevel algorithm. (Also see (8) for
such an algorithm . Figure 2 shows the result of applying
the 1l-level algorithm to predicate Q above. Notice that
different search orders are selected for the two main
branches of the tree. The l-level algorithm reduces the

number of nodes from 39 to 25. Using the 1l-level algorithm

increases the time needed to process a node by about a factor
of n over the O-level algorithm. For large problems this
increase is usually offset by the exponential savings in the

number of nodes that can result from a good search order.

4, Multi-Level Search Rearrangement

The most obvious way of extending the l-level algorithm
is to consider all two-level extensions of the current node,
and to select as the next variable the root variable of a
subtree of minimum width at level two. This method requires
O(nz) time to process a node. It can be improved by investi-
gating the implications of the data contained in the 2-level
search trees.

We will say problem Pl is covered by problem P2 -
for each solution to problem Pl there is a corresponding
solution to problem P2. A good cover is one for which
problem P2 does not have many additional solutions.

Notice that an intermediate predicate is one that is
consistent with the original predicate but is weaker
because it does not depend on all the variables of the
original predicate. A covering predicate is consistent
with the original predicate but is weaker because it does
not exclude as many nodes as the original predicate. We
will construct a covering problem from the conjunction of
a number of intermediate predicates; this in turn leads to

a good method for doing search rearrangement.

10

First consider the l-level search rearrangement algorithm.
Assume that the variables in set A < S have been assigned
tentative values. The problem is now to find values for the
remaining variables. For each b ¢ A, there is a predicate
PAu{b}‘ The predicate for the covering problem is the
conjunction of all the PAu{b}; for each subset of variables
in S-<A the intermediate predicate is the conjunction of
all the PAu{b} defined on that subset. This covering problem
is very simple because the permitted values of each variable
are independent of the values chosen for the other variables.
The smallest backtrack tree for this problem is the one with
the node of lowest degree at the root. Thus considering
l-level lookahead as a covering problem leads to the correct
rule for selecting the next wvariable.

The same considerations lead directly to the appropriate
algorithm for two-level search rearrangement. For each pair
of variables b,c ¢ A, there is a predicate PAu{b,c}' The
predicate for the covering problem is the conjunction of the
PAu{b,c} for all pairs of variables b,c ¢ A; the intermediate
predicate for a subset of variables B, BnA = @, is the

conjunction of the for b,c ¢ B. If the variables

PAu{b,c}
are binary then the permitted values for each variable in the
covering problem can be found in time O(n3) by the following
procedure. Test each value of each variable. If some value
forces other variables to have a certain value, they are

temporarily set. If, during this process a contradiction

L

(a variable with no possible values) arises, the values being
tested do not occur in any solution; otherwise they may occur
in some solution. Thus, for binary variables, all the infor-
mation contained in 2-level lookahead trees can be obtained
in a time O(n3).

If the variables can take on more than two values, the
problem of finding all the implications of the information
in 2-level trees is NP-complete. To see this, we map the
NP-complete problem of formulas in conjunctive normal form
having three literals per term (7) into a conjunction of
binary relations on three-valued variables. In the
conjunctive normal form formulas each literal is a Boolean
variable X l <m<n, or its negation. Let the ith term
be a;Vvb,ve,, where a, e {xj,ﬁxj}, by € {xy,m xk},
C ¢ {xl,ﬂ x£}. Define the predicate Qr(a,b), for
a e {0,1}, b,r ¢ {0,1,2} as Qr(a,b) = if r =b then a

else 1. A new conjunctive normal form formula can be

constructed using the Qr'a, the original variables X and

their negations, and new variables Yy 1 £3i < n, taking

values from {0,1,2}. The 100

term of the original formula is
replaced by Qo(ai,yi) A Ql(bi,yi) A Qg(ci’yi)' In any
assignment satisfying the conjunction of the Q's, ¥y = 0

(or 1 or 2) 4implies that ay (or by or cy, respectively)

is true. Thus the original formula is satisfiable if and

only if the conjunction of the Q's is. The problem is thus

NP-hard. Since a solution satisfying the conjunction of any

12

collection of predicates can be guessed (if it exists) and
verified in polynomial time, the problem is NP-complete.

It is also well known that the problem of using all the
information in three level binary trees is NP-complete. (7)
Thus, while in the case of 2-level search rearrangement on
binary variables 1t is reasonable to expect the search
rearrangement algorithm to process each node in polynomial
time and obtain all the information from the lcokahead trees,
it is unreasonable to expect this in the more difficult
cases.

The covering problem for the two-level searches on
binary variables can also be solved in time O(ng) by using
the Putnam-Davis (9) procedure. This method does not permit
us to easily recover the information contained in the poles
built by our algorithm. (See below). Moreover, it 1is not
clear how to generalize the Putnam-Davis procedure to the case
of nonbinary variables or searches of more than two levels.
For two-level searches and binary variables an investigation
of the result of using the Putnam-Davis procedure might be
worthwhile.

The question of how much effort to expend processing
each node is an interesting one. Since the backtrack predicates
can be viewed as conjunctions of relations on the variables,
the work of Schaefer (10) on relations 1is relevant. Schaefer
establishes six classes of relations that can be solved in

polynomial time: O-valid, 1l-valid, weakly positive, weakly

13

negative, bijunctive, and affine. Regarding the k-level search
(omitting the implication poles -- see below) as defining a
set of relations on k variables (one relation for each set of
variables) we would like to establish that the set of relations
does not have a solution, so that we can back up. If the set
of relations falls under one of Schaefer's classes and doesn't
have a solution, then our method will discover in polynomial
time that no solution exists, thereby using the information

in the k-level trees to its fullest extent. Our method takes
n times longer than Schaefer's, since it cannot examine the
definitions of the relations, but by following implications

as described below it may discover extra information that
allows us to backtrack even when the set of relations has a
solution. When it 1s not the case that all the relations
being considered fall into one of the above classes, the
problems can become NP-complete. In this case our algorithm
still runs in polynomial time, but it does not always notice
when a set of relations has no solution. This suggests that
the algorithm does about the right amount of work in analyzing
the implications of the information in the k-level search
trees 1t builds.

The algorithm includes as an option the opportunity to
use the results of the analysis of the relations that are
affine (equivalent to linear equations). This option 1s
indicated by a call to procedures LINEAREQUATIONS. The

option is included to ensure that all of Schaefer's classes

14

can be provided for. Linear equations appear in many
practical problems. On the other hand, we give no details
for this case, since linear equation analysis may be too
specialized for a general purpose backtracking method.

A relation that corresponds to a modulo two linear equation
must give false for half the values of its wvariables
(ignoring the useless equation 0=0). Therefore a random
relation is unlikely to be a linear equation or even to
have a covering problem that is a linear equation. This

is in contrast to the bijunctive, weakly positive, and weakly
negative cases, which appear to be very useful in covering
a general relation.

The multi-level search rearrangement algorithm is based
on two ideas. The first is to build all possible (k-1)-level
search trees and then to extend the bottom level as far as
possible with nodes of degree one, which correspond to
variables with forced values. Ordinarily this results in a
"pole" of length zero or more extending from level k-1 to the
next to bottom level, which will have a node of degree two
or greater (or a solution). Occasionally the process leads
instead to a contradiction, and that branch is pruned from
the tree. The considerations mentioned earlier suggest that
this k-level analysis will be effective in reducing the size
of many backtrack trees.

The second idea is to maintain, for each variable, a

list of its permitted values. For each value that is not

15

permitted, the level in the backtrack tree where it became
1llegal is noted, and the value becomes legal again on back-
tracking above that level. This idea is a feature of
constraint propagation methods and for non-binary variables
it helps reduce the time spent doing search rearrangement.
Binary variables are always introduced into the backtrack
tree as soon as one of their values is eliminated, so there
is no reason to keep a list of permitted values in that case.

It takes time 0(nk+l)

to analyze a node using k-level
search, but the upper limit occurs only when a substantial
number of long poles are encountered during the analysis.

It takes time O(nK 1)

to build the (k-1)-level search tree,

and time O(nz) to follow a long pole. Only small values

of k should be considered for practical algorithms. The

algorithm can lead to an exponential decrease in running time,

and will not cause it to increase by more than 0(nk+1).
The following code segments are added to the backtrack

algorithm in the indicated places to maintain the lists of

permitted values.

Initialize Variable List

for each x in 8' &snd for each value X of x do
permittedlx,X] « yes;

mainlevel <« 0O

16

Update Variable List

for each x in S' and for each value X of x do
if permitted[x,X] = mainlevel then permittedlx,X] « yes;

mainlevel + mainlevel -1;

The value "yes" is not greater than or equal to any positive
number. If permitted[x,X] is a non-negative number, the
value X is not permitted. The double for loops in update

variable list can be implemented by maintaining linked lists

of the values that need updating. We omit the details.

We are now ready to present the multi-level SELECT
algorithm. It involves a series of nested loops, each of
which is presented as a separate function. SELECT chooses
the next variable by determining a cost and a degree for
each unset variable. The degree is the number of values
that remain after the k-level search has pruned as many as
it can. If a variable of degree zero is found, backtracking
is done immediately. If a variable of degree one is found,
it is selected immediately. Otherwise, after the analysis
is completed for all variables, the variable with the lowest

cost is chosen. The function we use for cost is

minimum (Z d(node)xB“level(noae))

k-plus level trees nodes on
level k-1
where d(node) is the degree of the node at the bottom of
the pole of degree one nodes extending from the original

node, level(node) is the length of the pole, the sum 1is

17

over all poles that survive pruning, the k-plus level trees
are the k-level trees with their associated poles, and B
is an arbitrary parameter. Our method of assigning cost is
similar to a method developed by Johnson for satisfying most
clauses of a formula in conjunctive normal form (11). A
good value for B 1s the average branching factor of the

backtrack tree.

Multi-level SELECT Algorithm

Procedure SELECT:
(at this point BTFLAG is true)
mainlevel <« mainlevel + 1;
SELECTFLAG <« false;
for each x in S' while (not SELECTFLAG) and BTFLAG do
begin
cost [x] « 0; degree « 0; transfer x from S' to S";
for each value X of x for which PS" is true do
call TESTVALUE; (TESTVALUE sets degree,

costlx], and permittedlx,X1)

if degree 0 then BTFLAG <« false;

if degree 1l then SELECTFLAG + true;
reinsert x from S" to S'; (reinsert maintains
the original order of the list 3')

end;

if (not BTFLAG) then return;

if (not SELECTFLAG) then

18

begin
sort the variables in S' 1in order of increasing
cost;
set x to the first element in S';
end;
transfer x from S' to S" and set it to its first
permitted value;
return;

end SELECT.

The set S' 1is sorted in the hope that nodes of degree zero
or one will be found sooner on the next transfer to SELECT.
TESTVALUE counts the number of values X of x that
survive the k-level search. It also totals the costs for
the variocus X, using the value intermediatecost calculated

by SEARCH.

Procedure TESTVALUE:
call SEARCH; [call LINEAREQUATIONS:]
if SEARCH returns true [and LINEAREQUATIONS returns truel

then
begin

degree + degree + 1;

costl[xl « costlx] + intermediate cost;
end;

else permitted[x,X1 « mainlevel;

end TESTVALUE.

19

SEARCH selects each possible set of variables for
building levels 2 through k-1 of the search tree. It
returns false if it finds some set of variables for which
all value assignments lead to a contradiction. Otherwise
it computes the cost of the least expensive variable set.

The variable treecost is set by TRYVALUES.

Procedure SEARCH:
intermediate cost <« =j
for each (k-2) element subset A of S' (note that
this is empty if k=2 and by convention has
|S*| elements if |S'| < k-2) do
begin
call TRYVALUES;
if TRYVALUES returns false then return false;
intermediatecost +« min (intermediatecost,
treecost);
end;
return true;

end SEARCH.

TRYVALUES sums the cost of all nodes at level k-1 in
the search tree. If all nodes at level k-1 1lead to

contradictions, it returns false.

20

Procedure TRYVALUES:
branches + false; treecost <« 0;
for each assignment of values p to the variables in

A for which P is true do

S"uA
begin
transfer the variables in A from S' to S";
set the variables in A to the values in bpg
call IMPLICATIONS; (IMPLICATIONS assigns a
value to bottomcost in addition to returning
true or false)
if IMPLICATIONS returns true then do
begin
treecost « treecost + bottomcost;
branches « true
end;
end;
return branches;

end TRYVALUES.

Given a node on level k-1 of the search tree, IMPLICA-
TIONS considers all unset variables. If some variable has no
viable values, IMPLICATIONS returns false. If some variable
has only one viable value, IMPLICATIONS sets it to that value
and then reconsiders all the unset variables. When either
all remaining unset variables have more than one viable value
or there are no more unset variables, a cost is assigned to
the node on level k-1. The cost is the degree of the remaining

variable of lowest degree (or zero if there is no remaining

21

variable) times B—level’ where level is the number of

variables whose values were forced.

Procedure IMPLICATIONS:
bottomdegree +« «; bottomcost « «; level « -1; list « @;
descendingloop: while S' 1is not empty do
begin
level « level +1;
costloop: for each x in 8' do
begin
bottomdegree <« number of values X

of x for which PS“U{X} is true

if bottomdegree 0 then exit

descendingloop;

if bottomdegree 1 then
begin
transfer x from S' to

and set the value of x

.
3

to

Sﬂ

the one value X that makes

PS” true;
put x on list;
exit costloop;

end;

bottomcost « min (bottomcost, bottom-

degree x g~tevely,

end;

22

end costloop;
if bottomdegree > 1 then exit descendingloop;
end;
end descendingloop;
if S' 1s empty then bottomcost <« O
for each x on list do reinsert x from S" to 8";
if bottomdegree # O then return true else return false;

end IMPLICATIONS.

This completes the algorithm. If it is used to find
only one solution rather than all solutions, it should be
modified by replacing the array "permitted" by sorted lists
of values. TESTVALUE should be modified to keep these lists
sorted according to the cost of investigating each value of
a variable. A program for this algorithm with k > 3 should
combine the code for SEARCH and TRYVALUES so that the predicate
is tested level by level, using ordinary backtracking. In
some cases 1t might also be advantageous to combine IMPLICATIONS
and SEARCH. We do not do that here because it is not clear
how to do it best, it would make the explanation of the
algorithm more complex, and we believe k = 2 to be the most
interesting case for the algorithm.

The algorithm as written may evaluate P a number of
times on the same set of variables and values. A hash table
for storing the results of evaluations (with provisions for
forgetting them when they become 0ld), such as suggested by

Zobrist (12), would help reduce repeated function evaluations.

23

When k dis small (in practice, when k=2), an alternative
is to store the results in an indexed table. It is often
helpful to precede the k-level search by a k-1 Ilevel
search (and so on, down to a one level search), and allow
the preliminary searches to continue to the next level only
if they do not find a node of degree zero or one.

Figure 3 shows the result of using two-level search
rearrangement on the problem of Figure 2. The tweo-level
analysis selects variables ¢ and a. The L2 on the
figure indicates a node that failed as a result of the two-
level analysis, rather than as a result of not satisfying
some one clause. For all nodes other than the ones where
¢ and a were chosen, a one-level analysis found a variable
with a forced value to introduce. Although the tree in
Figure 3 is only slightly smaller than the one in Figure 2
(21 vs. 25 nodes), it is an optimum backtrack tree for this
problem. As with the previous algorithm, the increased
time per node means that the two level algorithm lmproves

the overall performance only on large trees.

Se Experimental Results

Previous investigators [2] have shown that l-level
search rearrangement leads to substantial savings over
ordinary backtracking. For k 2 2 the amount of extra
work done per node is large enough that it is not clear

a priori when multi-level search should be used. We

24

compared l-level and 2-level search rearrangement experi-
mentally on random conjunctive normal form predicates.
Problem sizes ranged from two to sixteen: for problem size
p the number of varisbles was p2 and the number of terms
p3; there were three literals per term. Problems of this
type lead to backtrack trees that have many properties
similar to those of the backtrack trees the authors have
encountered in realistic problems. The performance of
0O-level backtracking on these problems was analyzed in
[13]. In the 2-level tests we first tried l-level search
on each node; the 2-level search was done only 1f the
l-level search did not find any variables of degree zero
or one. As a measure of work we used the number of calls
to the functlon evaluator. The results of the tests on
problem size two, twelve, and sixteen are shown in Table 1.
Already on problem size two both 1 and 2-level search
rearrangement outperformed O-level backtracking. The
l-level algorithm did better than the 2-level up to problem
size 12, where their performance was about equal; by problem
size 16 the 2-level algorithm was better than the l-level by
about a factor of two. We expect that the 2-level algorithm
would have an increasingly greater relative advantage on
harder problems.

Many optimizations can be found when implementing the
algorithms presented in this paper. For example, when k=2

function calls can be reduced by about a half by remembering

25

the result when one variable i1s being tested and a second is
being set at level k-1, and not doing the function calls in
the converse case. Similar savings can be realized for larger
k at the cost of increasingly complex bookkeeping. When
k=2 or the variables are binary many parts of the algorithms
can be omitted or simplified.

Our preliminary experimental results are encouraging;
they indicate that 2-level search rearrangement can be a
valuable tool for solving large problems. In future work
we plan a more detailed empirical study and comparison of

0, 1, and 2-level search rearrangement.

5 Conclusion

We have presented a multi-level search rearrangement
algorithm which appears to be nearly optimal for two-level
searches with binary variables. Using time O(ng), it makes
use of all the information available from two-level search
trees (plus some additional information) to select the most
promising variable to introduce next. Any algorithm that
uses all the information from two-level trees to decide
which variables correspond to nodes of degree zero and one
must use at least time O(nz) per node if it processes
each node independently. Therefore there are probably no
significantly better two-level rearrangement algorithms.
For k=2 and binary variables our experimental studies show

that 2-level search rearrangement is a valuable practical

26

tool for solving some large problems.

For k 2 2 and variables of degree greater than two
the algorithm 1s a natural extension of the basic idea.
Since these cases correspond to NP-complete problems, it

is harder to tell how close we have come to a good algorithm.

16 variables, 64 terms, 3 literals per term

Algorithm Nodes Function calls

9 Tevel (1.955 T 2.103) x 10> | (1.955 T 2.103) x 10°

i Jewed (1.793 T 1.097) x 102 | (7.799 ¥ 3.953) x 10°
+

2 level 6.748 ¥ 0.724) x 102 | (3.435 T 3.435) x 10°

144 variables, 1728 terms, 3 literals per term

Algorithm Nodes Function calls

0 level 6665 % 102 6665 ‘& 107

1 Tevel 9.025 ¥ 6.833) x 103 | .771 ¥ 0.864) x 10*
3 fevel 1.824 * 0.706) x 102 | (1.661 T 0.842) x 10*

256 variables, 4096 terms, 3 literals per term

Algorithm Nodes Function calls

0 level 1.092 x 1019 1.092 x 1019

1 Tewel t.453 ¥ 3.236) x 104 | (1.232 F 0.821) x 10°

3 feyel (3.432 ¥ 1.110) x 102 | (7.725 ¥ 2.660) x 10°
gable 1

The average number of nodes and function calls for problem with 16,144,
and 256 variables. The expected standard deviation for a single run is
given after the plus-minus sign. For zero level the average is calculated
using [13 T and the deviation is obtained from 10 runs. For one level and
two level the average and the deviation are obtained from 100 runs. Thus
the average for zero level is exact, while the error on the averages for
the other two cases is about 10% of the listed standard deviation.

Figure I. A fixed order backtrack tree with 39 nodes
and 6 variables.

Figure 2. A 1-level backtrack tree with 25 nodes and

6 variables. The tree is for the same problem as the
tree in figurel.

Figure 3. A 2-level backirack tree with 21 nodes and
and 6 variables. The tree is for the same problem as
the tree in figure 2.

27

References

1. Donald E. Knuth, "Estimating the Efficiency of

Backtrack Programs," Math. Comp., v. 29 (1975)

pp. 121-136.

2. James R. Bitner and Edward M. Reingold, "Backtrack
Programming Techniques," CACM, v. 18 (1975) pp. 651-
655.

3. Donald E. Knuth, "Mathematics and Computer Science:
Coping with Finiteness," Science, v. 194 (1976)
pp. 1235-1242,

b, C. Tompkins, "Machine Attacks on Problems Whose

Variables are Permutations,” Proc. Symp. Appl. Math.,

v. 6, Amer. Math. Monthly, (1956), p. 195; L. J.
Paige and C. Tompkins, "The Size of the 10x10 Latin
Square Problem," 1bld., v. 10 (1960) p. T1i.

5. E. T. Parker, "Computer Investigations of Orthogonal

Latin Squares of Order Ten," Proc. Symp. Appl. Math.,

v. 15, Amer. Math. Soc., Providence, R.I. (1963),
p. 73.
6. David Waltz, "Understanding Line Drawings of Scenes with

Shadows," in The Psychology of Computer Vision, edited

by Patrick Henry Winston, McGraw-Hill, New York (1975).
7. Stephen A. Cock, "The Complexity of Theorem-Proving

Procedures," Third Annual ACM Symposium on Theory of

Computing, (1971), pp. 151-158.
8. Paul Purdom, "Tree Size by Partial Backtracking," SIAM

J. Comp., v. 7 (1978).

10

1.

12.

L3

28

Martin Davis and Hilary Putnam, "A Computational
Procedure for Quantification Theory," JACM, v. 7 (1960),
pp. 201-215.

Thomas J. Schaefer, "The Complexity of the Satisfi-

ability Problem," Tenth Annual ACM Symposium on Theory

of Computing, (1978), pp. 216-226.

David S. Johnson, "Approximation Algorithms for

Combinatorial Problems," Journal of Computer and

Systems Sciences, v. 9 (1974) pp. 256-278.

Albert L. Zobrist, "A Hashing Method with Application
to Game Playing," Tech. Report 88, Computer Sci. Dept.,
U. of Wisconsin, Madison, Wis. (1970).

Cynthia A. Brown and Paul W. Purdom, Jr., "An Average
Time Analysis of Backtracking," Indiana University
Computer Science Department Tech. Report No. 86,
November (1979).

