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Abstract.

The statistical pairing of blocks of memory on the bottom
level of the buddy system is studied. It is shown that the
probability that k pairs of cells have one cell in use and
that £ pairs of cells have both cells in use is given by a
rational function of p , the ratio of the request rate for
cells to the decay rate for cells in use. The values_of the
denominator, the leading and trailing coefficients of the
numerator, and a common factor of the coefficients of the
numerator are given.

1. Introduction

The buddy system of storage allocation, devised by Knowl-
ton [1], divides memory into nested blocks of size Ak .

Under typical conditions the algorithm is fast and has low
external fragmentation. Unless the size distribution of

requests closely matches the size of blocks provided, the in-
ternal fragmentation is large (up to 1/3 of memory not available).
A good discussion of the algorithm is given by Knuth [2].

The performance of the buddy system with Poisson inter-
request times and exponentially distributed full block 1life times
was studled by Purdom and Stigler [3]. Using simulations, they
showed that the performance of the buddy system could, in most
cases, be closely approximated by considering the situation where
all requests were of one size. (Further simulations were done by

Purdom, Stigler, and Cheam [4] and by Standish [5]). The analysis

of Purdom and Stigler showed that both the speed and external
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fragmentation were determined by the probability that memory

was in a state where no pairs of cells were half full (one

cell available and the other in use). Finally a fit to numer-
ical calculations of this item showed that it was about 0-530_%
for large p , where p 1is the ratic of the request rate to
the decay rate. This provides most of the practical informa-
tion that one may need about the buddy system.

Since having a major result depend on a numerical fit is
unsatisfying, in this paper we study those aspects of the per-
formance of the buddy system for which exact answers can be
found. The results include showing that the probability , pk£
that the memory is in a state with k pairs of cells half full
and 4 pairs full is a rational function of p . The value
of the denominator, the leading and trailing coefficients of
the numerator, and a common factor of the coefficients of the
numerator are given, as well as some relations among the pro-
babilities. These partial results give a good indication of
the nature of the formulas for pk£ . Formulas for pkﬂ are,
however, primarily of theoretical interest, because the 199}
can be calculated more rapidly by an algorithm we present (it
was referred to in [3]).

We do not gilve any non-trivial asymptotic formulas that
are valid for the practical case 1<<p<<2n , where n 1is the
number of pairs of cells in the system. It would be particularly

_1
useful to find a proof that zp0£'” D.53p % , which was es-
£



Page 3

tablished empirically in [3]. (We omit the limits on sum-
mations when all non-zero values of the summand are included
in the sum).

As shown in [3], the probability Py p obeys the equation

+k+ = (k+ +2( L+
(ptit2l)pyp = (K¥L)ppyy #2084V 1IP 3 pe1*PPrin 01
(1)
+[pp0£] if k=1 and K:n+[pp0n] if £=n and k=0
for k,£20, with boundary conditions P, p=0 1f k<0, L<0y or ktlsn.
The bracketed terms arise from the convention that requests
which arrive when all 2n cells are full are ignored.

2. Preliminary Results

In this section we consider those properties of Pre that
are simple to derive and to calculate. Many of these results
are straightforward and so will be treated briefly. Consider

the probability that 1 cells are in use, p; = Zp i
j 1“23 3j

It obeys the eguation

(o+1)py = [Py 3]s pgupney *(AHIP 40P ] 4p 5oom

which has the solution

Py T %:pif2j,j = Lg%%ﬁgi for 0<i<2n, (2)
where
N = QEE%%Ei :
0=j<2n :
This gives
(2n)! _ (2n)1p _ Pnp=t-T gl

Pao ™ "W 2 Poa " K 2 Pim-1 T T w e ARd Dy — (3)
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since for 1 =0, 1, 2n-1, and 2n , the sum for Py has
only one term.

Another interesting relation is given by

PPoe~ % kPy fop+1 . (4)

The left side 1s the rate at which the system shifts from states
with the number of pairs of cells not empty equal to £ +to
states with the number of such cells equal to £+1 , while the
right side 1is the rate for the reverse transition.

Now define Dy to be the solution of the equation
= i
(p4n+l)p,=2(i+1)p, ,*ep; (5)

For 1izn-1, Py is proportional to Po_i 1 since for isn-2, Py
3

and pn_i,i obey the same difference equation. Define the

generating function g(z)=2pizl . Then g(z) obeys the equation
1,
dg _ ,dg . . 0z Z\p-n _
+ — = = s =
(p n)g+zdz 2EE*ng. The solution is g(z) Pye {1 2)
=1 L % 2n-1
p-n (—1)32 4.5, 1 . _ 2np
Bk, B Iy e e - Blmes py, = S
n12tt 201
p = Gl (6)
n-i,1 i!Dn for isn-1
where
i, 435 )i m<0
= p-n+m, 1! 3 T dad
fms i%‘j ) o TR e
2%:(52 % [i*i] ( j ) (i: ) (-1)3 23 (n-m)I K€ for o<men
J k k =J

.



(Stirling numbers of the first kind are represented by {3] ,
using the sign conventions of Knuth [6].)

Equations (2) and (6) give

2n-2
_ 2np
pO,n—l = _+§;“——-«2n—1)Fn - 2(n—l)pRO’n_a) and
_ Un(n-1)p°0-3 2
Py p2 = 5 @2n—l)Fn -~ 212 p RO,n—B) s £7)

n

3. An Algorithm for the Probabilities 1)

The following algorithm provides an efficient way to

calculate the Prp-

L. Dek my o, "%

ry * Lo i

-1

1
2. For O0<isn-2 set Pi+1 * §T§¢T7[(p+n+i)ri—pri_ll. Then set

p
r
n-1
3. For 0<iz<n-2 set Prog, et fr, .
Now do steps four through six for l<msn-1.

7
I, Set By o E[(p+2n—2m+l)p1’n_m—2p2,n_m—2(n—m+l)p0,n_m_{_l—ppg’n_m“ﬂ
1
and Pin-m-1 & E[(p+2n'2m)p0,n-m"pl,n—m] ’
5. For 0<isn-m-2 set
1
Pi+1 ¥ FrEFDy-(ptn-mil)r,—pry 1 and

1 : .
141 ¢ ZrEnL(etn-mil)s -psy 5 - (n-m=1+Ip, o 44 47 -
P1,n-m-1"5n-m-1

n-m-1

Then set f <«

6. For Osisn-m-2 set Ppom-i,1 ¢ TFy+sy -
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Step 1 of the algorithm comes directly from equation (3).
Step 4 comes from equation (1). Steps 2 and 3 and also steps
5 and 6 depend on the fact that the solution of a linear dif-
ference equation is equal to a particular solution plus some
multiple of the solution of the corresponding homogeneous
equation.

Assuming unit time for arithmetic operations, the algo-
rithm can compute the numerical value for all pk£ in time
@(n2) , where @(f(n)) indicates bounded above and below
by constants times f(n) (see [ 7]). Any particular )

can be computed in time ©(n(n-k-£)) . It will be shown be-

low that the formula for Py p also has ©6(n(n-k-£)) terms
{assuming there are no common factors between the

numerator and denominator), except for Doy and Poy -

Therefore the algorithm provides the fastest way known to
compute the value of Pre - If the algorithm uses rational
functions for variables, it can compute formulas for Py p in
time G(nu) ,

L. General form of the probabilities.

We will now show that

P
2L “ 0L
0L /4 D£+1
P
2P+1. T 1f
p = a, p e and
1.2 % D£+2 2
2k-1
a (k+£-1)! P
_ “k+L-1 2L+2%k-1 " kb :
Py = 73 0 == feE kKe@ (8)

k+l
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where a£ is an integer and pk£ is a polynomial in p with
integer coefficients. Notice that N, Rmi’ and D£ are also
polynomials in p with integer coefficients. More will be
said about ay later.

We will also show that

B = L - R, and
Tyt WL
112

.= (n—m)!2n_m_i 2n-2m-1 Smi
i n-m 3! P

Dn-—m+1
where Smi is a polynomial in p with integer coefficients.

The wvariable ri has the above value because it satisfies
equation (5) with boundary conditions r_ = 0 and ry = i
To apply the formula for ry to step 2 of the algorithm

use m =0 .

The claims about Pre and Si are proved by induction as
follows. The algorithm calculates all the values of pkE
and S; - At each step it uses only previously computed
values. If the claims are true for the initial values, and
are preserved by the steps used to calculate subsequent

values, then they are true for all Py p and s The

-
algorithm obviously halts.



Page

We will now show that the claims are true at each step
provided the a, are chosen correctly. One choice for a,

is 1. We are interested, however, in how large ap, can be.

Step 1 implies =0 , anP = 1 = 2n ,

On > 8y 1F7 n-a

1o _2n=1 1o _2n=1
. Step 2 implies £ = nlz p = nl2p 3

N Rg o1 D,

S i1t a1

o
ok

and aOPOO =

=

-

Step 3 implies that anaan—i,i = 2nROi . Therefore for

m= 0, k+t£ = n, the claims are true with a, = 1 and a 1~ 2n

Larger values cannot be used for an or an 1 if the claims are

to hold. (Notice that the coefficlent of the leading term of

Rmi is one).

Step 4 implies a = an_m(p+2n-2m+l)Frl P

n—mPO,n—m -m+1” 1,n-m

2 Ik
By el P (n"m+l)*n—m+lP2,n—m g an—m+l2(n_m+l)pFn—m+lPO,n—m+l

_an—m2p(n“m)P2,n—m—l and an—m—lPl,n-—m--l - an-m(p+2n“2m)PO,n—m

'an—mpFn-m+1Pl,n—m Step 5 implies an—mSm,i+l N

an_m(p+n—m+i)8mi = %n-m 2iSm,i—l N an—mpg(n_m_j‘+l)Pn—m—i+l,i

ang I'= (n—m-l)!2g_m—lpgn_2mdl(an—m—lPl,n—m—l—an—m 2(n-m)8
n-m

Sep © Jmpilles. ek *n-m-1 Pnam—i,i B an—m-lRmiPl,n-m-l

* ahm 2(n-m) (Fn—msmi - Rmism,n—m—l

This shows that aiPk£ s where 1 = k+£—1+6ko 4

is a polynominal in p with integer coefficients and that

m,n—m-l)
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Py p has the indicated form. If one wants Pki to have integer

coefficients then ai must be a divisor of the ged of the
efficients of the polynominals aiPkﬂ » Where k and &£

selected so that i=k+£—l+6ko

is ai=l . The above shows that for each a there is an

i

CO-

are

One choice that always works

integer aizl such that ai can be selected to be aj=oga. .,

It 1s interesting to consider whether the a, can be

greater than one. We have already shown that o1 can be

a multiple of 2n . The formula for Py o5 indicates th
2

the g.c.d. of the coefficients of an—ZPl,n~2

of lUn(n-1)3%2,n mod3 = pqq steps in the algorithm except

at

is a multiple

the last part of step 4 are consistent with oy being a mul-

tiple of 2(i+l) . Therefore « can be a multiple of

n-2
2(n-1) . It appears that one can always have ai=2(i+l)ui
but we have no proof.

To summarize, we have proven that the pk£ have the
indicated form with ai=un(n—l) for dznm=2 a 1=
and an=l . The details of the proof indicate how to comp

2r.,

sz using polynomial arithmetic.

5. The Two Dimensional Generating Function

Consider the two dimensional generating function
k L
g(x,y) =E£ Peg XY
>
equation (1) by xky£ and summing over k and £ (while

paying careful attention to terms near the k=0 boundary)

gives the following equation which g(x,y) must satisfy:

+1 2

ute

sWhich is a polynomial. Multiplying
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3% . 33 = p(L VAL L
(x-1)z2 + 2(y-x)3 P(& -1)g + p(x X‘E? Pom

+D(l—x)ynp0n . (9)

Using standard techniques for solving first order partial dif-

ferentlal equations, we can eliminate the dependence on ¥y

by solving the equation dy + i{x = ifx and replacing y in

no

equation (9) by the solution y = Cx~ - 2(C-1)x + C-1 , where

C 1is the constant of integration. We now have the following

equation which g(x) must satisfy:

£ = (po-p € yg + (c-1)(1-D) B (ox®-2(c-1)xro-1)"p,

dx
m
2 n
-p(Cx“-2(C-1)x+C-1) P - (10)
Defining g(x) = I d_ x° and expanding the above equation
e=0

in a power series gilves the recurrence equations
= m
=2 (C-1)
m

[e+1+p(C-1)1d_,, =

m+1 &-b+1 e=2b/ 2m-e+1 b m=-b+1
pCd_ —pE (-b+l)< \( 2) <m+l )C fesTit Pom

23> G2y (550 (-°7%PcP(c-1)"Pp for ex0 . (11)

This 1s a linear first order difference equation with solution
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-1

_ (00)® m (oC)
e i [o(c-1)+e,fI§E(C‘l) Pom pl<%ie 11-pr(c-1)+e-g]
O<f<e

m+1 e-b-f+1 e-f'-2p 2m- e+f+l b m-b+1
[ ( -b- f‘+l>< >( ~2) T (C-1) Pom

* 5 (o) Co )20 o (C—l)n_bpgn] (12)

Since g(x) 1is a polynomial- of degree 2n |, d2n+l is

equal to zero for all C. This gives nontrivial equations for

the Although they could be solved to find the values

pOm .
of the Dom  » this would require more work than to find the

P om with the algorithm given earlier.
Replacing the C in equation (12) by its value in terms
of x and y, C = X:EEi% » glves a formula for g(x,y) . The
(1-x)

expression for g(x,y) can be expanded in a power series in

X and y by using

- = (“l)i_ i =7 (13)
TT (7% =X (I e T(IFRy for n2 3

Tad i l<izn

and the binomial theorem. The coefficient of xkyE is Prp -

This long calculation gives

eth —/e-1 y? /h+%)<: e :)
Pre T %%>Op E:@_D(e-l)lghﬂ‘ mzi ‘\i grithebmlof

3

=2(e+h+m)\ /e+h+m-1-£ etgth+i+k+l k-e-j-21i
; {=1) 2 p

k-e-j-21i Om
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f+h (f Q T m+l D(—-b f+1>
+ E o]
Eo i, (2-1)1 h+lLT p \e-b-I*

om+f— e+12 f+h — b+1>< b+f-1 5 (-'2(f+h+£D
m+1 f+h+m-1 3 J

f+h+m-1- %)( _p)etethtitk k-f-j-2b-21
k-e-j-21

S @D bl Gre (f+§15—i‘-z y

2(1-f-h-n)\ /T+h+n-i-£-1
jE J )(k—e—j—2i

k+L+m
“"E(z) kedbuom) 1) Pom

(_1)eteth+l+k Jk-f-j-2b-21 On]

(14)
For small k +this gives
Poe = Por |
_ £-m i—m m-n+l m-n+l
Py = ggi (2mtp) (-1) Doy * [(-1) P onlgsy o 2nd
= £-m L-m L.z m
Doy = é%i (-1) P pOm[HZm—2m—m(2m-3)(2)

(2£42m-1-(3m-2) (HF™D) o 4 (1o(LHEmHLy 29 (+1)py 44q

A e e pOn(—2£+n2n_£ Toc1eo0t-1 4 TR
i )
+ [t Pon (1-2" i pons (152

3

but the formulas become rapidly more complex as k increases.
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and
~ 2k—l(£+l{—l)l(k+2£-—l) L. _ 2 (k+2'€"1)!(j+k+2£—l)r
rkﬁm - £1(2k+2/€—2)1 L:I_,.E_+]_¢C—]_’m 5 (j+k+2£+l)! k—j ’£+j ,m—l
0<j<k-2
(k+2£-1) ! (k+1) 1
+05§£i_2 (J+k+2£) ! “k=J+1,2+j ,m-2 ¥ K+2L k+1,8-1,m-1
(k+2£-1)! :
T (2k+22-1) 1 2,k+2-2,m-1 . (19

For small m these reduce to

- = o = 0 for kz2
deeo = )T ° %wo T azED T * %%keo

- l = = l =O f kZ 5
Qoe1r - "(2Z+L) ! > G101 =0 5 %y T mEEEnT 0 kel ok 3
i _ _22
Qpg2 = 0 » 9p = sEraEEDeED)T for &2l . Qipp T AL (2EE3)T
(k1)1 (k+28-1)12K"L
Qe £,k-1 =~ TI(2k+28-2) 1 (2k+24-1)!
(k+£-1) ! (k+2£-1) 125 [_ (k+2) (k=1) 2

for k21, and

Qepx = ZT(2k+2L-2) 1 (kd2l-1)1 | (k+20) (2k+2L-1) T (k+3Z) (k+2Z-1)

(k+l-1) 4 2
(2k+2E-1) (2k¥2Z=2) * 2(§2k+2£—2 Hk+z£_£)] for k=2 -, (20)

where H, = > = Again the higher terms become rapidly
I 143« d
more complex.

These methods were also used to compute the leading terms

of the power series

In
Nbgp = Lte®-dottie’=pliottiltot... =

7. Decreasing Power Series

One can develop a decreasing power series for
k+2£-m

NPy p

by defining Syem PV Npkﬂ = ;gz Sy om®



Page 15

Equation (2), together with the fact that P,p20 , implies
that negative values of m do not need to be considered.
is

The equati
quation for Skﬁm

+ (k+ = (k+
P kel ¥ EREDIE s (RELSLL g omen * 2(&+1)sy 1 p41,mtl

+ + ]
Sk+1,2-1,m sy 1,2,ml1r k=1 " [8) o,m+17°1f £=n and k=0
(22)

where terms with k+£>n have been omitted. This equation can

pe solved for successive small values of m by using a two

dimensional generating function.

For m=0 and 1 the solutions are

<P 40
Sie0 = 2 (?)(%)%%&2%22351(-1)3+ and
J

_1)+k+22-231(-1)9 ¢

L’ (k+2E-23)1

_ nyJy(2n-23)1 il <
e 2%%(3)( RE = JOn=-2k+1) (Hy 5541-Hypop 23

E n i+, 3 (2n=2j-2i)!(2i+1)! i +L
?3 > 2. . (450 Gop) () (k+2£-2j)!l (-1)°
‘§J+£-jsisn-3+l (23)
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8. Rational Expressions

Equations (8), (20), and (22) can be used to find the
leading and trailing terms of aﬁPoﬂ’ aﬁPlE s and B4 p_1 sz 5

using formulas for division of power series [8]. The results,

(i-1)1 o j=1 .
weing: £, TR '(2_'1—?)_2‘ | EE P a2t
~ i<j<n (J-1)!
are
a2.P g g F
L oL L+1 £+1 |
= 22+1) (n-£-
(2n)! (2£)! * (2£+l)1L( )(% £+l<1¢n ]
2 52
5 e 1 [ ] [ 0=
— == f, |+ (2£2+1) |n(n-£) -
+ o | sy - [, B 2

II—'

2
ST oy s 1_(£ f.) B
Pilstsn + ° +£§&sﬁ isi<n

- i-1)! La-1
HE T kT T z[ij%i%af

f+lei<n °+~3 pg+l<i<n a -

]
=13 =2 2
IR A 161 =t | R

£+41<isn a

- (E) {(2n-2£)::(ﬂ§%)+(2>_(£§%_(g) + 2£(2n—2£+1)(H2n_2£+l-1{}

_ n-£+1 )
n-£+1 O<i.z: ( i+l (2n—2£-2i)!(2i+1)!L 0
= |

n(n-l)—ﬁ(ﬁ—l) =i
<n=-£-1 2

alin-1)-#1£-1)
+ (ﬁ) (2n-22)1 p 5 for £21
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a,p
£ 12 _ B4p Bpep
e + n-£-1- Z: f.lp
C2n)t  (2XF1)1 (2£+17]( £+2£i£é)
Ep42 2 n2 P 2
3 = 3
BRI 0y {(£+1)(2z+1)(2£+3) + mln-t=1) - (£43)

= la=fe2ie. X £ % dpp 3 pa2 3 ¥ g 1
! i 2 - > B L -
L+2<izn (£+2£isn %) 2 p#o<icn * & £+é§ign21"3
Ffel(i-l): -
L+2<i<n & La | (@I-3)1

() [ [3o-5)
,

+24(2n-2£+1) (1, ~2)+2£] ;

n-2£+1

- Osisn_z_l(ngfil)(2n—2i-2£)!(2i+1):} p¥£5:ll§£££iil -1
* (E}(2n-2ﬂ)! Dn(n-l)5£(£+l) , and
g ppoy (KHE-1) 1267 R N et 2RI T 0]
Z1(2n) ! ke "KM TT(2k+22-2) 1 (2k+22-1)1
t B iTE:ﬁfEﬁiéﬁiEgiifzfiiz {n‘k“ﬁ;l'k+£§;5nfi ¥ (k+2£)%§+22—T7

2(k+2L) (k-1) 2(k+L-1)

- (kD) (2k+2T-1) ~ (2kval-1) (2ewat=2) * Hopaopp - Hk+2£—1} e
(

n = £ (2 T - ! - : :
() ig&“j ) RS (-1 {(ﬁ;¥) v (3) - (<8 _ (ert-y

2L ik -22-23 .
(j+£)[(2n-22 23+ (Hy o3 ppe1 “Hy o -l)+k-2j]}

_sn-y__ (j+£) (1) e
Eg( 4 )(k"23)!(n—3—£+17|§]*J«f%i e ih t') (neziaj-on
2

] A el
(2i+1) 1) p aln=1) (k+§ 1) (Jer£-2)

=+

-+

=k

e n(n-1) (k+£-1) (kt£-2
+ {E)§:(njzj(z?kfgj§f)l(‘l)J 4 2 e

for kz2 . (24)
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One can also solve for pkﬂ when n is small. The
results are given in Table 1.

9. Conclusion

A large amount of partial information about the proba-
bility that the bottom level of the buddy system has £ pairs
of cells which are both in use and k pairs in which Jjust
one is in use has been collected. The value can be expressed
as a rational function with a known denominator. The leading
and trailing terms of the numerator are given. The formulas
can be used to calculate Pre when p 1s very large (p >>2n)
or very small (p <<1l) , but do not help for the important case
l<<p<<2n . They are useful for compzting %:p0£ only when

or is a good approximation to the entire sum.

Poo Pon
The results of Purdom and Stigler [3] indicate that there are
interesting asymptotic results for the case l<<p<<2n , but
this study suggests they will not be easy to find.

Certai§ cases do have simple formulas. These include

small n, small powers of p, k+f near n, and certain sums

of the probabilities.

18
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