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Boli Fang

Meta Proximal Policy Optimization for Cooperative Multi-Agent Continuous Control

In this thesis we propose Multi-Agent Proxy Proximal Policy Optimization (MA3PO), a

novel multi-agent deep reinforcement learning algorithm that tackles the challenge of coop-

erative continuous multi-agent control. Our method is driven by the observation that most

existing multi-agent reinforcement learning algorithms mainly focus on discrete state/action

spaces and are thus computationally infeasible when extended to environments with continu-

ous state/action spaces.

To address the issue of computational complexity and to better model intra-agent collab-

oration, we make use of the recently successful Proximal Policy Optimization algorithm that

effectively explores of continuous action spaces, and incorporate the notion of intrinsic mo-

tivation via meta-gradient methods so as to stimulate the behavior of individual agents in

cooperative multi-agent settings. Towards these ends, we design proxy rewards to quantify

the effect of individual agent-level intrinsic motivation onto the team-level reward, and apply

meta-gradient methods to leverage such an addition with a learning-to-learning optimization

paradigm so that our algorithm can learn the team-level cumulative reward effectively.

Furthermore, we have also conducted experiments on various open multi-agent reinforce-

ment learning benchmark environments with continuous action spaces. Our results demon-

strate that our meta proximal policy optimization algorithm is not only comparable with other

existing state-of-the-art algorithmic benchmarks in terms of performances, but also signifi-

cantly reduces training time complexity as compared to existing techniques.
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CHAPTER 1

INTRODUCTION

We investigate in this paper the problem of continuous control in cooperative multi-agent

games. Our motivation comes from the observations that many complex real-world scenar-

ios such as multi-player video games [1], vehicle/robotics control [2, 3] and network rout-

ing [4] can naturally be modeled as cooperative multi-agent games, under which the objec-

tive is to maximize team-level cumulative returns. Naive extensions of single-agent RL al-

gorithms that apply a single actor to operate on joint action spaces are inherently infeasible

due to poor scalability. Alternatively, when the agents are independently trained with lit-

tle or no communication, the non-stationary global environment incurred by simultaneous

exploration without coordination also lead to suboptimal learning. Thus, ways to reduce

action space complexity would entail individual agents deploying decentralized policies

that act only on their individual observations, while allowing for coordination within the

team via a centralized controller. Towards this goal, a standard paradigm called centralized

training with decentralized execution (CTDE) [5] is widely adopted. Under CTDE, indi-

vidual agents are mainly concerned with policy execution, with team-level policy inference

and coordination handled by a centralized decision maker. Numerous designs from recent

developments in Multi-Agent Reinforcement Learning [6, 7, 8, 9, 10] have demonstrated

the effectiveness of the CTDE structure.

Despite these successes, several challenges remain notable. First of all, most existing

CTDE algorithms are designed for discrete action spaces and involves extensive action enu-

meration, making these algorithms inapplicable to continuous action spaces. Additionally,

relatively few prior work achieves feasible cooperative control, since existing strategies in-

volve either explicit action enumeration [11] or pre-specified oracle [12] for value function

computation, both of which are often impossible to obtain in practice.
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To address these shortcomings, we propose in this work multi-agent proxy proximal

policy optimization (MA3PO), a multi-agent algorithm motivated by proximal policy op-

timization (PPO) [13], as well as intrinsic motivation in general MARL. We incorporate

proxy rewards to model how local observations and the current actions indirectly influence

agent impact on team performance, and apply meta-gradient methods to learn the optimal

team-level policy by first finding the optimal parameters for intrinsic reward and use these

parameters to optimize policy networks. Following the CTDE framework, our algorithm

collects episodes from individual decentralized agent actors and uses a centralized critic

that takes these episodes as input for policy optimization, using proximal policy search to

reduce runtime complexity. In sum, our contributions can be summarized as follows:

1. We propose MA3PO, a multi-agent reinforcement learning algorithm which effec-

tively utilizes episodes with a centralized critic and decentralized actors to achieve

collaboration amongst the agents in case of continuous control.

2. Inspired by recent developments of intrinsic motivation in MARL, our MA3PO algo-

rithm constructs for each agent an intrinsic reward from original rewards and state-

action pairs. Such a design indirectly facilitates collaboration amongst agents, as

it better reflects the role of individual agents in group level rewards. Such design

facilitates implicit credit assignment, as demonstrated by ablation studies.

3. We conduct extensive experiments on novel benchmarks in continuous multi-agent

reinforcement learning settings. Our results suggest that MA3PO works favorably

compared to other benchmarks across different environments, while reducing run-

time substantially.
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CHAPTER 2

RELATED WORK

2.0.1 Continuous Control in Reinforcement Learning

Much work has been done in single-agent continuous control, with most involving policy

gradient methods. For deterministic methods, prior examples include Deterministic Pol-

icy Gradient(DPG) [14], Deep DPG(DDPG) [15], Twin-Delayed DDPG(TD3) [16]. These

methods seek to output actions with fixed policy gradients during objective optimization,

at the expense of slow/unstable training. For stochastic methods, existing methods such as

A3C [17], TRPO [18], PPO [13] use advantage functions to estimate the Q function with

only state as input. The PPO algorithm, in particular, has achieved notable successes re-

cently by limiting policy search into a clipped ‘trust-region’ to reduce runtime and increase

robustness. Other developments such as PPG [19] and SAC [20] require additional require-

ments such as auxiliary tasks (for PPG) and carefully designed reward function(for SAC)

to achieve satisfactory performances.

2.0.2 Cooperative Multi-Agent RL

Our work is also related to existing literature in cooperative multi-agent reinforcement

learning. Prior work on achieving cooperative in MARL can be divided into two cate-

gories: explicit credit assignment and implicit credit assignment. Explicit credit assignment

methods directly attribute to each agent its contribution to the overall team behavior, with

provable optimal guarantees but low feasiblity in practice. Examples include COMA [11],

which applies a centralized critic to estimate the counterfactual advantage of given actions,

and SQDDPG [12], which determines contribution of individual agents from an oracle.

Implicit credit assignment methods, on the contrary, assign credit indirectly by learning

objective decomposition from team-level reward signal. Examples include value-based
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methods such as VDN [6], QMIX [7], QTRAN [8] and W-QMIX [9], and policy-gradient

methods such as LICA [21], MADDPG [10], LIIR [22], MAAC [23]. These works all

suffer from varying degrees of constraints in value/policy representation as well as low

runtime efficiency. Recent works such as MAMBPO [24] and MAPPO [25] have inves-

tigated the possibility of multi-agent policy optimization for inter-agent collaboration on

multi-agent discrete settings, with MAPPO [25] being the closest to our paper. Despite

these efforts, designing efficient RL algorithms for multi-agent continuous control remains

an open question, as pointed out by [25].

2.0.3 Intrinsic Reward Design in RL

Our work is also related to intrinsic reward design [26] in reinforcement learning. Prior

works such as [27] have applied heuristics to compute the intrinsic reward. More recently,

[26] proposes to parametrize intrinsic reward and update the parameters of intrinsic re-

ward and policy alternately, and [22] suggests that individual intrinsic reward is a helpful

indicator to measure agent contribution to the overall team during learning.

4



CHAPTER 3

BACKGROUND

3.0.1 Problem Setting and Notations

Following the standard notations in prior work on multi-agent reinforcement learning, we

model the interactions and exploration amongst the agents as a Decentralized Partially Ob-

servable Markov Decision Process(DEC-POMDP) [28]. We describe a DEC-POMDP by a

tuple G =< S,U, P, r, Z,O, n, γ >, where S stands for the set of states of environment, U

the set of actions, P the transition probability, r the reward function, Z the set of observa-

tions that an agent can observe, O the observation function which describes what an agent

actually observes while operating in environment, n the number of agents, and γ ∈ [0, 1)

the discount factor.

At each time step t, given the true state of the environment st ∈ S, each agent a ∈ A =

{1, 2, ..., n} chooses an action ua
t ∈ U , and the actions undertaken by all agents form a

joint action ut ∈ Un. This ut causes a transition on the environment according to the state

transition function P (s|st,ut) : S × Un × S → [0, 1]. All agents share the same reward

function r(st,ut) : S × Un → R at all times t. The state of the external environment st

is only partially observable to the agents: for each agent a operating under state st, agent a

obtains an individual observation zat ∈ Z by an observation function O(st, a) : S×A → Z.

Each agent a has an action-observation history(also called a trajectory):

τa = {(ua
1, z

a
1), (u

a
2, z

a
2), (u

a
3, z

a
3), ...(u

a
t , z

a
t )},

on which it conditions a stochastic policy πa(ua
t |zat ) that takes value in [0, 1]. All the πa’s

form a joint policy π. To facilitate our subsequent discussion, we also make use of the

following standard definitions of the state-action value function Qπa , the value function
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Vπa , and the advantage function Aπa , all defined below with respect to the current policy

πa undertaken by agent a:

Qπa(st, u
a
t ) = Est+1:∞,ua

t+1:∞
[Rt|st, ua

t ],

Vπa(st) = Est+1:∞,ua
t:∞

[Rt|st, ua
t ],

Aπa(st, u
a
t ) = Qπa(st, u

a
t )− Vπa(st),

where ua
t ∼ πa(ua

t |st), st+1 ∼ P (st+1|st, ua
t ), t ≥ 0.

Here Rt =
∑∞

i=0 γ
irt+i is the discounted return and the expectation of Rt is taken with

respect to all future states of environments and future joint actions starting from the time

step t + 1. Similarly, at every time step t, we also denote Qπ(st,ut), Vπ(st), Aπ(st,ut) as

the respective corresponding value functions for the joint policy π and joint action ut.

3.0.2 Proximal Policy Optimization (PPO)

Policy gradient methods [29] optimize policies directly through policy parametrization into

the optimization objective. They are highly useful in continuous space/action settings, since

they avoid expensive action enumeration involved in their value-based counterparts. Prior

policy gradient methods [29, 30] mostly center on directly optimizing expected cumulative

reward via gradient estimates, but as suggested by [18, 13], additional considerations such

as robustness and stability in training are also important. Towards these goals, a general

rule is to restrict policy parameter updates to a bounded region called trust region so as

to ameliorate the instability caused by the asynchronicity between the rollout process(the

process for episode collection) and the optimization process (the process for policy update).

In particular, Trust Region Policy Optimization(TRPO) [18], by restricting policy parameter

updates to a bounded trust region, has been demonstrated to achieve stable training, with

theoretical guarantees for improvement over policy iteration. Towards such goals, Proximal

6



Policy Optimization(PPO) [13] further improves TRPO by ’clipping’ the trust region in the

policy parameter search to avoid potentially large parameter changes. Given an agent a,

its partial observation zat , the old known behavior policy parameters θaold before update,

the current policy parameters θa being learnt and the corresponding old/new policy ratio

ct(θ
a) =

πθa (u
a
t |zat )

πθaold
(ua

t |zAt )
, the objective function of Proximal Policy Optimization (PPO) [13]

can be written as

JPPO(θa) = E[min(ct(θ
a)Âθaold

, clip(ct(θa), 1− ϵ, 1 + ϵ)Âθaold
)], (3.1)

in which ct(θ
a) is clipped into (1 − ϵ, 1 + ϵ), with ϵ a hyperparameter. The PPO objective

function also uses minimum between the original TRPO objective and the clipped objec-

tive, thus penalizing extreme values of ct(θa) at any time t.

Furthermore, the PPO algorithm is implemented in an actor-critic framework: a policy

network actor θ and a value network critic ϕ. The value network ϕ estimates the advantage

Âθaold
, and the policy network θ learns policies via policy gradient. The PPO objective

could be further regularized by value-estimator errors and policy-level entropy [13], so as

to properly represent the value functions and encourage exploration during the learning

process.

3.0.3 Proxy Reward: Quantifying Intrinsic Motivation

To better take the contributions of individual agents into account of team-level coordination,

parametrized intrinsic reward, first proposed by [22], quantifies individual agent’s intrinsic

motivation as a function of global state and current agent action. For each agent a at time t,

given the local observation-action pair (zat , u
a
t ), agent a is assigned a proxy reward (rproxy)at

consisting of the original external team-level rt and a parameterized intrinsic reward rin
t =

ηa(zat , u
a
t ) with parameters ηa:

(rproxy)at = rt + λrin
t = rt + ληa(zat , u

a
t ), (3.2)

7



where λ is a hyperparameter to balances intrinsic motivation and external awards during

learning. The motivation is that the parameterized intrinsic reward ηa corresponding to

each agent a will be updated in a way that the corresponding expected PPO objective will

be maximized. Similar to the cases in [26, 22], one can accordingly define for each agent

a the discounted cumulative proxy reward, the proxy objective functions, the proxy value

function, with respect to proper time horizons and based on local observations, as follows:

Rproxy
t =

∞∑
i=0

γi(rt+i + λrin
t+i),

V proxy
a (zat ) = Ezat+1:∞,ua

t:∞
[Rproxy

t |zat , ua
t ],

Jproxy
a = Eza0:∞,ua

0:∞
[Rproxy

t ].

(3.3)
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CHAPTER 4

MA3PO: MULTI-AGENT ADAPTATION OF PPO WITH PROXY REWARD

In this section we will introduce the details of our MA3PO algorithm. To incorporate the

proxy reward into learning, We start off by defining our optimization objectives accord-

ingly. The parameters of our PPO objective JPPO(θa) should be updated to include intrinsic

reward parameters ηa and policy parameters θa. We hence consider a bi-level optimization

program as in [22], where for agent a, ηa is updated to maximize the PPO objective J , and

θa is chosen such that the proxy objective functions are maximized:

max
θa,ηa

JPPO(ηa) s.t. θa = argmax
θ

Jproxy
a (θ, ηa). (4.1)

Both functions are optimized by policy gradient methods, with different learning rates

for the original PPO objective and the proxy objectives. Details of training are described in

the following section.

We now describe the algorithm for the bi-level optimization. As in the case with general

actor-critic algorithms, our training process consists of two components: centralized value

network with parameters ϕ and decentralized agent-level policy networks with parameters

θa for each agent a. During each training iteration, all θa’s are first updated by their own

policy gradient algorithms with their own proxy critics. For each agent a, given a trajectory

from policy πθa , we fix ηa, and update the policy gradient for θa as follows by the policy

gradient theorem [29]:

∇θaJ
proxy
a = ∇θa log πθa(u

a
t |zat )Aproxy

a (zat , u
a
t ), (4.2)

where

Aproxy
a (zat , u

a
t ) = (rproxy)at + V proxy

a (z′at )− V proxy
a (zat ) (4.3)

9



is the proxy advantage function computed from the proxy value function (V proxy)a, with

z′at denoting the updated observation in the one-step rollout trajectory. Once θa is updated

with learning rate α:

θaupd = θa + α∇θaJ
proxy
a (θa), (4.4)

we apply chain rule and build the connection between η and the original PPO objective J

as follows:

∇ηaJ
PPO = ∇θaupd

JPPO∇ηaθ
a
upd. (4.5)

Notice that (4.5) can be seen as an instance of meta-gradient methods [31, 32] in which

the ηa-gradient on JPPO is modeled by the ηa-gradient on the updated parameters θaupd. The

gradient ∇θaupd
JPPO can be estimated as follows [33]:

∇θaupd
JPPO =(1|ct(θaupd)−1|<ϵ ∨ 1sgn(ct(θaupd)−1)̸=sgn(Âθaold

))

ct(θ
a
upd)∇θa log πθaupd

(ua
t |zat )Âθa ,

(4.6)

where Âθa is the General Advantage Estimates(GAE) [34] of each agent a corresponding

to rollout trajectory of πθa . The other term ∇ηaθ
a
upd can be estimated as [22]:

∇ηaθ
a
upd = ∇ηa(θ

a + α∇θaJ
proxy
a (θa))

= αλ∇θa log πθa(u
a
t |zat )∇ηar

proxy
a (zat , u

a
t ),

(4.7)

either with samples generated by θaupd, or with importance sampling(IS) as in [22] so that

computation of ∇ηaJ
PPO does not require new samples generated from θaupd. ηa is then

updated with learning rate β similar to the case in (4.5). We also adopt standard training

techniques in previous PPO literature [13, 25, 33]. In each iteration, each of the n actors

collects the same number T of episodes. We construct JPPO from these nT episodes, and al-

ternatively update the policy and intrinsic reward parameters with corresponding gradients.

Algorithm 1 illustrates the whole optimization process.

10



Algorithm 1 MA3PO
Input: Policy learning rate α, intrinsic reward learning rate β.

Output: Policy parameters θa’s and intrinsic reward parameters ηa’s.

Initialize θa’s and ηa’s for each agent a.

while termination not reached do

for each actor a: 1,2,...n do
Run πθa for T episodes to obtain rollout trajectories;

Compute Aproxy
a from (4.3);

Obtain General Advantage Estimates(GAE) Âθa;

Obtain θaupd from θa with (4.4);

Compute ∇θaupd
JPPO from (4.6) on πθaupd

trajectories;

Compute ∇ηaθ
a
upd from (4.7) via πθaupd

trajectories or πθaold
trajectories with IS;

Obtain ηaupd from ηa with (4.5);

end

end

4.0.1 Centralized Critic and Decentralized Actors

Our MA3PO algorithm is implemented with a multi-agent actor-critic framework in which

agent-level policies are learned via decentralized actors and team-level value functions are

learned via a centralized critic. More specifically, for each agent a, there is a decentralized

actor that learns policy πθa(u
a
t |zat ), intrinsic rewards ηa(zat , u

a
t ) via a local proxy critic

φa. On the team level, there is a centralized critic ϕ that learns shared values such as

the General Advantage Estimate(GAE) Âθa , used by all agents during their own policy.

Updates on intrinsic reward is done via back propagation from ϕ to ηa. Figure 4.1 illustrates

the different components within the overall MA3PO architecture.
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CHAPTER 5

EXPERIMENTS

In this section we present the results of our MA3PO algorithm on two recently proposed

multi-agent continuous reinforcement learning environment benchmarks with continuous

action spaces: Continuous Predator-Prey and Multi-Agent Mujoco(MaMujoco) [35]. Over-

all, the experiment results demonstrate the effectiveness of our MA3PO algorithm, with

parameterized intrinsic motivation effectively stimulating team-level cooperative behavior.

5.0.1 Environment descriptions

Continuous Partially-Observable Predator-Prey

The first environment we consider is the simple tag environment introduced by [36], a

partially-observable variant of the classical predator-prey game described in [10]. Three

slower cooperating agents, each with continuous movement, aim to catch a faster circular

prey on a 2D plane with two large landmarks blocking the way. To make the environment

purely cooperative, the prey’s policy is represented by a hard-coded heuristic that moves the

prey to the sampled position with the largest distance to the closest predator, and reward

is given every time a predator agent collides with the prey. In addition, a view radius is

introduced to restrict the agents from receiving any kind of information(landmarks, other

agents, prey) outside the range defined by the radius. More detailed descriptions of the

environment can be found in [35].

We fix the number of training episodes at 106 for all the algorithms, and plot cumulative

rewards of each algorithm against the number of episodes and wall time.
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Figure 5.1: Cumulative Rewards vs Sampled Steps for all environments. The mean across
5 seeds is plotted, with the shaded areas denoting the 95% confidence interval for each
curve.
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Figure 5.2: Cumulative Rewards vs Wall time(s) for all environments. The mean across 5
seeds is plotted, with the shaded areas denoting the 95% confidence interval for each curve.
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MaMujoco: Multi-agent Mujoco

Multi-Agent Mujoco(MaMujoco) [35] is a new benchmark for decentralised cooperative

continuous multi-agent robotic control. Based on the fully observable single-agent robotic

control benchmark Mujoco [37], MaMujoco includes novel scenarios in which multiple

agents within a single robot solve cooperative tasks. This setting is implemented via a body

graph, under which vertices(joints) are connected by adjacent edges(body segments). The

motivation of multi-agent setup in a single robot arises from partial observability incurred

due to latency, bandwidth and noisy sensors within a single robot. The resulting lack of

access to global state from each joint makes it particularly important to introduce separate

agents for local decision making, as such a design makes the overall system more robust

and flexible. Such a setup also facilitates comparisons with existing MARL algorithms,

both in fully observable settings and in partially observable/low-bandwidth settings [35].

More detailed descriptions of the environment can be found in [35]. For better illustration

and easier visualization, we mainly focus on the following multi-agent MaMujoco envi-

ronments in our subsequent experiments: 2-Agent Humanoid, 2-Agent HumanoidStandup,

2-Agent Walker, 3-Agent Hopper and 4-Agent Ant.

Similar to the case of the Continuous Predator-Prey environment, we fix the number of

episodes at 4× 106 to compare the performances of different algorithms. The benchmarks

we compared MA3PO with are identical to those in predator-prey environment.

5.0.2 Experiment Setup

We compare MA3PO against the following state-of-the-art algorithms for cooperative multi-

agent continuous control problems:

1. COVDN [35]: COVDN is a novel variant of the established VDN method. The joint

action-value Q function is factored as an additive sum of agent-level action-value Q

function. Actions are greedily selected with the cross-entropy method(CEM) [38] to
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approximate optimality in continuous settings.

2. COMIX [35]: COMIX is a novel variant of the established QMIX method onto con-

tinuous settings. As in the case of COVDN, CEM is used to approximate greedy

action selection, but the action-value function is factored as a deep neural network

mixture that increases monotonically with respect to each agent-level action-value Q

function.

3. MADDPG [10]: Multi-agent deep deterministic policy gradient(MADDPG) is an

extension of the DDPG algorithm onto multiple agents. It learns a centralized critic

and a separate actor for each agent, and is applicable to arbitrary reward functions.

4. FacMADDPG [35]: FacMADDPG is a variant of MADDPG with all agents sharing

a single centralized critic that is factored as a monotonic network taking agent-level

action-value Q functions and global state s as input.

We implement all the algorithms from the RLLib [39] library, a distributed reinforce-

ment learning framework that allows for easy scaling through parallelization and distributed

computing. For each set of experiments we have thus described, we host 5 concurrent trials

with an NVIDIA GeForce RTX 2080Ti GPU. Each trial consumes 1 CPU with 2 parallel

rollout workers, and these trials are then averaged across all trials to produce the cumulative

reward (with respect to running mean of the latest 100 episodes) curves for comparison. To

reduce influence of possible randomization, we plotted the running mean across 5 random

seeds, with the shaded areas denoting the 95% confidence interval for each curve.

To facilitate visual comparison between different algorithms, we fix the number of sam-

pled steps(interactions with the environment) at 2 × 106 for the Continuous Predator-Prey

environment, at 4 × 106 for the 2-Agent Humanoid, 2-Agent Humanoidstandup, 4-Agent

Ant environments, and at 106 for 2-Agent Walker and 3-Agent Hopper in consideration. To

produce the most robust curves for detailed analysis, we also set the regularizer of intrinsic

reward λ as 10−2. The intrinsic reward learning rate β is set as 10−3, and the policy learning
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Figure 5.3: Example Ablation studies on Parameter Sharing

rate α is set as 10−2 for Predator Prey and 10−3 for MaMujoco tasks. For all experiments,

we leverage neural networks with ReLU activation and one hidden layer with 64 neurons

for policy networks and value networks. The hyperparameters of all other benchmark al-

gorithms follow those described in [35].

5.0.3 Results

We plot cumulative rewards against the sampled steps(interactions with the environment)

and wall time(the raw runtime for which the algorithms are run). Figures 5.1 and 5.2

summarize the results for continuous Predator-Prey and Mamujoco environments.

As measured by cumulative reward against sampled steps in Figure 5.1, our MA3PO

algorithm consistently performs the best in the 2-Agent Humanoid, 2-Agent Humanoid-

Standup, 3-Agent Hopper and 4-Agent Ant environments, with less volatile learning curves

going monotonically upwards as compared to other existing benchmarks. For 2-Agent

Walker and Predator-Prey, MA3PO yields comparatively less optimal outcome due to lack

of episode usage in on-policy training, but the levels of volatility are lower than other

benchmark algorithms. Moreover, as demonstrated by the cumulative reward vs runtime

plot in Figure 5.2, MA3PO, with its efficient use of episodes, reaches substantially higher

levels of cumulative rewards given fixed runtime. In sum, our results suggest that MA3PO

notably improves team-level performances both in terms of episode usage and runtime. For
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3-Agent Hopper, MA3PO fluctuates more due to the inherent noise in the environment, yet

still outperforms existing benchmarks with considerable success. In sum, our results show

that learning intrinsic motivation will also aid in obtaining improved team-level policies.

5.1 Ablation Studies

To better analyze the effectiveness of our MARL structure design, we conduct ablation

studies over the different components in our MA3PO algorithm, including the use of pa-

rameter sharing and the introduction of parameterized intrinsic motivation in the learning

process. As in previous sections, we fix the sampled steps, but plot the graph between sam-

pled steps and the cumulative reward so as to better visualize how different components of

MA3PO contribute to episodes utilization.

5.1.1 Parameter Sharing

In this section we analyze parameter sharing, a mechanism in which centralized critic ϕ

shares identical network parameters with each actor policy network θa. We setup control

experiments using parameter sharing as the control variable, and compare performances

accordingly. Some example results are listed in Figure 5.3. These results clearly indicate a

substantial increase of cumulative reward value when parameter sharing is introduced. This

observation is also consistent with prior work on single-agent [13] and multi-agent PPO

[25], in which parameter-sharing yields better performances than non-parameter-sharing.

5.1.2 Proxy Reward

We likewise set up control experiments on parametrized intrinsic motivation to see how

individual agents influence team performance. Notice that MA3PO without intrinsic mo-

tivation is similar to MAPPO [25], in which a centralized critic learns a value function

used by decentralized actors without proxy intrinsic reward. Sample results suggest that

the extent to which parametrized intrinsic motivation help team-level performances de-
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pends on the complexity of the multi-agent environments. We list the result comparisons

between MA3PO and the established MAPPO [25] in Figures 5.4 and 5.5, with Figure

5.4 showcasing the environments where MA3PO outperforms MAPPO and Figure 5.5 vice

versa. These two plots suggest that MA3PO tends to work better in environments with

more agents, possibly because fewer agents imply that fewer parameters suffice to model

intra-agent interactions, and that intrinsic rewards are unnecessary to model interactions.

Furthermore, to visualize the relationship between proxy reward and overall perfor-

mances, we plot the average intrinsic reward across agents against Sampled Steps for the

environments where MA3PO outcompetes MAPPO in Fiture 5.6. We notice that MA3PO

learns intrinsic reward more actively where the performance improvement becomes more

noticeable, as demonstrated by the relative fluctuations in the learning curves. Since in-

trinsic rewards are independent from other components of the original actor network, our

results indicate that parameterized intrinsic rewards correlates with overall team perfor-

mance improvement.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this paper we present MA3PO, a novel MARL algorithm that tackles continuous control.

Consisting of a centralized critic and decentralized agent-level actors, our algorithm makes

use of proxy rewards to integrate individual-agent intrinsic motivation to overall team learn-

ing. Experiments on diverse continuous multi-agent benchmarks against existing MARL

algorithms demonstrate the power of MA3PO.

There are several directions for possible future research. To begin with, meta-learning

principles can be extended to other policy-gradient algorithms such as the SAC [20] and

PPG [19]. These algorithms perform favorably, and preliminary investigations on their

multi-agent extensions [35] are promising. Alternatively, other possible intrinsic reward

designs [27] may also be helpful. New findings over relationship between agents and the

team capture alternative aspects of improvement in strengthening corporation, and proper

methods to integrate these definitions into multi-agent framework will be interesting addi-

tions to Cooperative Reinforcement Learning.
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[3] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. “Deep Reinforce-

ment Learning for Swarm Systems”. In: Journal of Machine Learning Research

(2019).

[4] Dayong Ye, M. Zhang, and Yun Yang. “A Multi-Agent Framework for Packet Rout-

ing in Wireless Sensor Networks”. In: Sensors (Basel, Switzerland) (2015).

[5] Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. “Optimal and Approxi-

mate Q-Value Functions for Decentralized POMDPs”. In: 2008.

[6] Peter Sunehag et al. “Value-Decomposition Networks For Cooperative Multi-Agent

Learning”. In: AAMAS. 2018.

[7] Tabish Rashid et al. “QMIX: Monotonic Value Function Factorisation for Deep

Multi-Agent Reinforcement Learning”. In: Proceedings of the 35th International

Conference on Machine Learning. 2018.

[8] Kyunghwan Son et al. “QTRAN: Learning to Factorize with Transformation for

Cooperative Multi-Agent Reinforcement Learning”. In: Proceedings of the 36th In-

ternational Conference on Machine Learning. 2019.

[9] Tabish Rashid et al. “Weighted QMIX: Expanding Monotonic Value Function Fac-

torisation”. In: Advances in Neural Information Processing Systems. 2020.

22



[10] Ryan Lowe et al. “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive

Environments”. In: Proceedings of the 31st International Conference on Neural

Information Processing Systems. NIPS’17. Long Beach, California, USA, 2017,

6382–6393.

[11] Jakob N. Foerster et al. “Counterfactual Multi-Agent Policy Gradients”. In: Proceed-

ings of the Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[12] Jianhong Wang et al. “Shapley Q-Value: A Local Reward Approach to Solve Global

Reward Games”. In: AAAI. 2020.

[13] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: (). arXiv:

1707.06347.

[14] David Silver et al. “Deterministic Policy Gradient Algorithms”. In: Proceedings of

the 31st International Conference on Machine Learning. 2014.

[15] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”.

In: International Conference on Learning Representations. 2016.

[16] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing Function Approx-

imation Error in Actor-Critic Methods”. In: Proceedings of the 35th International

Conference on Machine Learning. 2018.

[17] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”.

In: Proceedings of The 33rd International Conference on Machine Learning. 2016.

[18] John Schulman et al. “Trust Region Policy Optimization”. In: Proceedings of the

32nd International Conference on Machine Learning. 2015.

[19] Karl Cobbe et al. “Phasic Policy Gradient”. In: abs/2009.04416 (2020).

[20] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-

inforcement Learning with a Stochastic Actor”. In: Proceedings of the 35th Interna-

tional Conference on Machine Learning. 2018.

23

https://arxiv.org/abs/1707.06347


[21] Meng Zhou et al. “Learning Implicit Credit Assignment for Cooperative Multi-

Agent Reinforcement Learning”. In: Advances in Neural Information Processing

Systems. 2020.

[22] Yali Du et al. “LIIR: Learning Individual Intrinsic Reward in Multi-Agent Rein-

forcement Learning”. In: NeurIPS. 2019.

[23] Shariq Iqbal and Fei Sha. “Actor-Attention-Critic for Multi-Agent Reinforcement

Learning”. In: Proceedings of the 36th International Conference on Machine Learn-

ing. 2019.
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