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ABSTRACT
Detection of insider threats relies on monitoring individuals and
their interactions with organizational resources. Identification of
anomalous insiders typically relies on supervised learning models
that use labeled data. However, such labeled data is not easily ob-
tainable. The labeled data that does exist is also limited by current
insider threat detection methods and undetected insiders would
not be included. These models also inherently assume that the
insider threat is not rapidly evolving between model generation
and use of the model in detection. Yet there is a large body of re-
search that illustrates that the insider threat changes significantly
after some types of precipitating events, such as layoffs, significant
restructuring, and plant or facility closure. To capture this tempo-
ral evolution of user-system interactions, we use an unsupervised
learning framework to evaluate whether potential insider threat
events are triggered following precipitating events. The analysis
leverages a bipartite graph of user and system interactions. The
approach shows a clear correlation between precipitating events
and the number of apparent anomalies. The results of our empirical
analysis show a clear shift in behaviors after events which have
previously been shown to increase insider activity, specifically pre-
cipitating events. We argue that this metadata about the level of
insider threat behaviors validates the potential of the approach. We
apply our method to a dataset that comprises interactions between
engineers and software components in an enterprise version con-
trol system spanning more than 22 years. We use this unlabeled
dataset and automatically detect statistically significant events. We
show that there is statistically significant evidence that a subset of
users diversify their committing behavior after precipitating events
have been announced. Although these findings do not constitute
detection of insider threat events per se, they do identify patterns
of potentially malicious high-risk insider behavior. They reinforce
the idea that insider operations can be motivated by the insiders’
environment. Our proposed framework outperforms algorithms
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based on naive random approaches and algorithms using volume
dependent statistics. This graph mining technique has potential
for early detection of insider threat behavior in user-system inter-
actions independent of the volume of interactions. The proposed
method also enables organizations without a corpus of identified
insider threats to train its own anomaly detection system.
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1 INTRODUCTION
Information systems are critical components in today’s organiza-
tions. Among the main functions of information systems is the
ability to provide confidentiality, integrity, and availability of pro-
cesses involving user-system interactions. Insiders are employees
that must be trusted with access to sensitive information and can
be a major threat. Insiders have compromised organizations in
multiple domains including manufacturing [33], finance [15], gov-
ernment [14], and even scientific research [9]. Even worse, insiders
attacks are consistently catalogued as the most costly given the ele-
vated privilege that insiders have in terms of trust and access [30].
This makes the insider issue one of the most challenging problems
in computer security [6].

As with many other complex systems (e.g., the Internet, online
social networks, and the brain), information systems consist of a
large number of interacting elements (e.g., users, services, devices,
files, etc.) in which the aggregate activity of the system cannot be
derived by analyzing individual contributions, i.e., their aggregate
behavior is nonlinear. Graphs, where nodes represent the elements
and edges capture the interactions between the elements of the
system, have been used across multiple domains to capture the
interactions between the elements of complex systems [26, 37].
The use of graphs to study the structure of complex systems have
revealed some plausible explanations for the emergence of collective
behavior in these systems such as the understanding of regular and
anomalous behavior [3]. In this work, we treat the malicious insider
as an anomaly and use bipartite graphs to detect their anomalous
behaviors.
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The focus on malicious patterns, as opposed to malicious nodes,
implements an assumption that the malicious insider is not intrin-
sically hostile. Rather, malicious behaviors can emerge over time
or in respect to specific conditions. Static analysis is based on the
analysis of graph snapshots and cannot integrate temporal patterns.
In contrast, the study of temporal graphs, where information of
single graph snapshots is aggregated, tends to reflect more accu-
rately the evolution of the system as nodes and edges appear and
disappear over time [19, 31]. The focus of this work is to understand
the malicious behaviors over time rather than identifying the static
malicious nodes.

To understand such complex systems, empirical data with de-
tailed temporal information is a prerequisite. Correct temporal
information is much more readily available as a source of ground
truth than correctly labeled insider threat datasets. In the context
of information systems, temporally annotated datasets are widely
available thanks to the presence of user-system interaction logs.
This enables the use of graph mining analytics for the understand-
ing of anomalous behavior such as the one that insiders might
pose [12, 29].

For the purposes of this paper, we characterize and detect anoma-
lous events in an information system based on a centralized version
control system1. We identify time intervals during which significant
changes in the structure of the temporal graphs may correspond to
functional change points, e.g., a precipitating event2. This problem
has also been referred to as change point detection [4].

We model user-system interactions in a version control system
as a temporal bipartite graph where interactions occur exclusively
between two types of nodes, (i) users and (ii) software compo-
nents3. Note that the edges in this graph are only between these
two types of nodes [18]. A one-mode projection of this graph is the
user graph in which two nodes (users) are connected if they have
interacted at least once with the same software component [39].
Our methodology includes studying the evolution of the one-mode
user graph to identify topological properties that characterize the
system’s normal behavior. Among these observed properties, those
that do not follow the norm of the regular pattern are assumed to
indicate the presence of an anomalous event. Such an event may in-
dicate a potential insider incident or, at least, an event that requires
further investigation [32].

In particular, the user graph allows us to explore the impact of
precipitating events in user-system interactions [28]. Precipitating
events are key events that have the potential to trigger insiders to
become a threat to their employer. We hypothesized that precipitat-
ing events impact the behavior of interactions between users and
software components in the control version system by changing
patterns of committing behavior. To test this hypothesis, we model
and compare the volume of interactions between users over similar
or related software components as opposed to non-related software

1A centralized version control system keeps the history of changes on a central server
from which everyone requests the latest version of the work and pushes the latest
changes to, e.g., Concurrent Versions System and IBM Rational ClearCase.
2A precipitating event corresponds to a large-scale event that causes concerning
behaviors in employees and predisposed them to malicious actions. In this category,
we include layoffs, significant restructuring, and plant or facility closure.
3A software component is a softwaremodule that encapsulates a set of related functions
or data, and it is part of a larger software system. For example, the TCP/IP software
component of an operative system.

components over time. To capture sets of users with similar pat-
terns of interaction, we rely on the notion of community structure
to identify communities, or clusters, i.e., groups of nodes having
higher probability of being connected to each other than to mem-
bers of other groups [16]. We show that the volume of interactions
between users that contribute to unrelated software components
increases when precipitating events are announced. This indicates
the impact of precipitating events in increasing the likelihood of
a change in the interacting behavior between users and software
components, which might be a signal to monitor before an insider
attack is committed.

To summarize, we make the following key contributions:

• Temporal graph analysis framework: We propose a generic
temporal graph analysis framework to model the evolution of
bipartite graphs. The proposed framework is based on the idea
that the evolution of user-system interactions can be abstracted
as a dynamic system of consecutive graphs—also called graph
stream (Section 3.2). We use the proposed framework to formal-
ize a set of measurements of the observed graphs at each time
interval.
• Performance evaluation framework: We propose a generic
framework to compute the performance of an event detector
(Section 3.5). We compare the the performance of the proposed
approach with a naive random event detector and others that are
based on edge dependent properties (Section 4.3).
• Graph mining analytics: We use graph mining to reveal that
some properties of the one-mode projection of the bipartite graph
significantly change in the presence of precipitating events. Re-
call that the one-mode projection maps user-to-user interactions.
To do this, we leverage more than 22 years of data on user-system
interactions in a control version system. In particular, we show
that users tend to diversify their patterns of interactions with
software components after a precipitating event is announced
(Section 4.1). Our results suggest that this change in user behav-
ior can be used to infer when anomalous events are happening
before widespread disruption. Our work is differentiated from
the work in [18] in three ways. First, we rely on the notion of
community structure to inform the detection process. Second, we
integrate the volume of interactions between users in different
communities into the event detection. Finally, we quantify the
perturbations inserted in the system after precipitating events
that might lead to insider threats. Methodologically closest to
our work is an analysis of the Enron email corpus and Twitter
data in [24]. This work is differentiated not only by the domain
(i.e., version control system) but also in that we abstract interac-
tions as a bipartite graph and compare our detection results with
standard detection approaches.

The rest of the paper is structured as follows. Section 2 discusses
related work in the characterization of insider threats, anomaly
event detection in temporal graphs, and graph-based approaches
for insider threat detection. Section 3 provides a description of the
modeling framework for algorithm detection and performance, as
well as the dataset. Section 4 shows the results of the temporal
graph analysis. We place special emphasis on the characterization
of the time intervals before, during, and after the specific events.
We also compare the performance of the proposed algorithm with
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a random and edge-density based detection frameworks. Section 5
is our discussion of the implications of the results, including ad-
dressing the possible implications for implementation that take
into account ways to better tune the proposed algorithm. Finally,
Section 6 presents concluding remarks and areas for future research.

2 RELATEDWORK
It is an open debate as to whether insider threat events are primarily
triggered in the wake of precipitating events. To study whether
this is the case, we modeled user-system interactions in a control
version system as a temporal bipartite graph. This abstraction al-
lows us to test the hypothesis as to whether the diversification of
the committing behavior of users changes after the presence of
a precipitating events. Consequently, this analysis is informed by
past research in the characterization of insider threats, anomaly
detection in temporal graphs, and detection of insider threat using
graph-based approaches. Here, we provide an overview of related
works in these three areas.

2.1 Characterization of insider threats
Much of the research on insider threats have been on the charac-
terization of insiders. In general, two different categorizations have
been proposed to classify insiders. The first one focuses on the
intention of the attack [7]. Under this categorization, insiders are
classified as (i) malicious, where the insider intentionally causes
a negative impact on the confidentiality, integrity, and availabil-
ity of the information system; and (ii) non-malicious (accidental),
where an insider, through action or inaction but no malicious intent,
causes harm.

The second categorization is given with respect to the purpose
of the attack [6]. With that definition in mind, two types of attacks
are defined more precisely, including (i) a sabotage attack in which
the insider is able to change the value of an artifact used in the
computation of a process; and (ii) a data exfiltration attack in which
the insider provides access to artifacts for entities that are not
entitled to that access.

In addition to the previous two-tiered categorization, Nurse et
al. proposed a unifying framework to characterize insiders based
on the motivation behind malicious threats and the human factors
related to the unintentional cases [28]. This framework is of par-
ticular importance not only because it leverages previous insider
threat case studies, but also due to its analysis of behaviors that
may lead to attacks and the types of attacks that may be executed.
The factors that are proposed to this end encompass precipitating
events and motivation to attack.

2.2 Anomaly event detection in temporal
graphs

There are five general approaches for the design of event detection
algorithms in temporal graphs [31]. First, compression-based meth-
ods represent the graph in a different compact space using methods
such as minimum description length (MDL) [34]. Anomalous events
are detected when it is difficult to get a compressed representation
of the graph. For example, Sun et al. proposed reducing the binary
representation of the adjacency matrix of a graph so as to minimize
the cost of encoding [36].

Second, decomposition methods analyze the spectral properties
of a matrix representation of a graph stream by inspecting regular
patterns associated to the eigenvalues and eigenvectors. An event
is reported when there is low similarity between the principal
eigenvector of the current graph and the aggregated graph during
the previous time frame. The work by Akoglu and Faloutsos applied
this idea on a mobile graph of users when inspecting a correlation
matrix between pairs of nodes over a time interval [2].

Third, distance measure methods evaluate distance between
graphs as a metric to identify anomalous events. The distance be-
tween consecutive graphs is computed based on changes in a spe-
cific structural property. Consecutive graphs with a significant
distance between them should raise an alarm. The work by Koutra
et al. explored this idea by comparing graph adjacency matrices
of pairwise node affinities using a variation of the Euclidean dis-
tance [22].

Fourth, statistical methods are based on constructing statistical
(parametric or non-parametric) models (e.g., graph likelihood or the
distribution of the eigenvalues) to identify deviations from models.
Anomalous events are identified by calculating the likelihood of the
appearance of a particular graph object, e.g. node, edge, subgraph,
when a new graph is added to a graph sequence. For example,
Aggarwal et al. proposed a method that quantifies the probability
of rare edges appearing between subgraphs, allowing to pinpoint
time intervals where this happens [1].

Finally, community-based methods focused on analyzing the
formation of graph community structures. The idea behind this
approach is to report an anomalous event whenever there is a
significant change in any of the communities. The work by Duan
et al. computed the similarity between the partition of nodes of
incoming graphs and previous graph segments, i.e., a subset of a
series of graphs. A similarity below a certain threshold indicates
the occurrence of an anomalous event [11].

The method proposed in this work relies on the notion of graph
community structure. For a comprehensive discussion about event
detection methods in temporal graphs, we refer the reader to the
survey led by Ranshous et al [31].

2.3 Insider threat detection using graph-based
approaches

Graph mining techniques have also been used as a tool to under-
stand and identify malicious actions by insiders. Eberle et al. pro-
posed an approach to detect anomalous subgraphs with respect to
the number of transformations that a subgraph will need in order to
be a reference—the normative or best—subgraph [12]. The approach
relies on MDL to quantify the number of required transformations
as a criterion of decision [27]. The authors validated their approach
using empirical data on a passport processing scenario. In particu-
lar, they were able to identify some bypassable steps in the process
of getting a passport, which represents an anomalous structure of
unseen edges.

To address the dynamic nature of empirical data, in a recent
work, Eberle et al. introduced a method for pattern learning and
anomaly detection in streams using parallel processing [13]. This
work offers a considerable improvement on speedup compared to
the previous approach by allowing the processing of dynamic data.
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The authors validate their approach on empirical data on embassy
employee activity in which the threat was information leakage by
employees.

Closer to our work, Kent et al. used the notion of bipartite
graphs—by capturing interactions through authentication logs be-
tween users and computers—for assessing network authentication
trust risk and cyber attack mitigation [21]. In particular, they ex-
amined the number of connected components (i.e. a subgraph in
which any two nodes are connected to each other by a path) in the
bipartite graph to assess potential risk of credential stealing and
compromise within an enterprise network. They found that the
increase in the number of connected components in the bipartite is
associated with a reduction in the risk associated with credential
theft and subsequent credential hopping within the network.

Of similar nature, Chen et al. proposed an unsupervised learning
model based on social network analysis for detecting anomalous
access in collaborative information systems [8]. Their approach
relied on the quantification of pairwise similarities of nodes in a
graph based on their interactions with particular subjects when in-
teractions are made between users and subjects in a bipartite graph
setting. The authors validated their results with patient record
access data and Wikipedia edit logs.

Note that the previous methods of insider threat detection (using
graph mining techniques) were based on identifying anomalous
graph structures (i.e., nodes, edges, subgraphs) while the focus
of our paper is based on the detection of anomalous events (i.e.,
time intervals with an unusual pattern of interactions) on temporal
graphs.

3 METHODS
In this section, we detail the mathematical frameworks and data
sources that were used to perform the analysis. We start by describ-
ing the temporal framework used to build the graphs (Section 3.1);
the bipartite graph modeling (Section 3.2); the one-mode projection
abstraction (Section 3.3); the detection problem definition (Sec-
tion 3.4); the algorithm performance abstraction (Section 3.5); the
metric of algorithm performance (Section 3.6); the proposed algo-
rithm (Section 3.7); and the dataset used to arrive at the results
(Section 3.8).

Our method builds graphs of user-system interactions and use
these to identify anomalous patterns. Anomalies are identifiedwhen
engineers interact with multiple software components that they are
not used to. Performance is measured by the ability of the algorithm
to detect increases in anomalous behavior after precipitating events
without increases elsewhere.

3.1 Temporal abstraction
Consider the sequence of n intervals A = {A1,A2, . . . ,An } =
{Ak }nk=1, where

1. Ak = [ak ,a′k ) for all k < n and An = [an ,a′n ] for k = n;
2. ak < a′k = ak+1 for all k ; and
3. a′k − ak = a′

ℓ
− aℓ for all k, ℓ

An interval represents a fixed-length unit of time, e.g., a day of
data. Condition (1) implies that all intervals are left-closed and
right-open (except the last one which includes a′n ). It guarantees
that the sequence of intervals is disjoint. Condition (2) implies that

intervals are non-empty. Note that a′k and ak+1 represent the time
instants of a transition between intervals. For any interval Ak , the
right endpoint a′k corresponds to the left endpoint of the interval
Ak+1. Together with Condition (1), Condition (2) guarantees that
the union of all intervals

⋃n
k=1 Ak = [a1,a′n ] is a closed interval.

Finally, Condition (3) requires that any two intervals are of equal
length.

3.2 Bipartite graph abstraction
A bipartite graph is a graph with two types of nodes. One type
of node represents the original nodes (top nodes), while the other
represents the groups with which they interact (bottom nodes) [17].

LetH⊤ be the set of top nodes (e.g., the set of engineers). Simi-
larly, letH⊥ be the set of bottom nodes (e.g., the set of software com-
ponents). Note thatH⊤ andH⊥ are disjoint sets of nodes. Further-
more, letV(k) ⊆ H⊤∪H⊥ be the subset of nodes that interact (i.e.,
engineers and software components) during interval Ak = [ak ,a′k ).
LetW(k) = {Ωi j (k) : (i, j) ⊆ H⊤ × H⊥} be the incidence matrix
of weights Ωi j (k) that captures the number of interactions between
node i and node j during interval Ak . Let G(k) = (V(k),W(k))
represent a weighted bipartite graph that captures all interactions
that occur from endpoints ak to a′k , k ∈ {1, 2, . . . ,n}. Note that
we do not differentiate between dynamics within an interval. The
sequence {G(k)}nk=1 denotes the bipartite graph series G.

3.3 One-mode projection abstraction
Bipartite graphs can be projected to one-mode projection graphs
(with nodes of just one type). Let G⊤(k) = (H⊤(k),W⊤(k)) be
the top projection of G(k). Two nodes of H⊤(k) are connected if
they have at least one neighbor in common in G(k), i.e.,W⊤(k) =
{ωuv (k) : u,v ⊆ H⊤}, where

ωuv (k) =
∑ |H⊥ |
r=1 Ωur (k) + Ωvr (k)

The sequence {G⊤(k)}nk=1 denotes the top one-mode projection
graph series G⊤. Correspondingly, the bottom projection G⊥(k) =
(H⊥(k),W⊥(k)) is defined dually as it is illustrated in Figure 1. The
sequence {G⊥(k)}nk=1 denotes the bottom one-mode projection
graph series G⊥. In the rest of this paper, we devote our study in
terms ofG⊤ which is the one-mode projection graph of user-system
interactions, i.e., the projection in which nodes are exclusively
engineers.
3.4 Detection problem
We use G⊤, which captures the dynamics across intervals Ak ,
k ∈ {1, 2, . . . ,n}, as the basis for defining the anomaly event detec-
tion problem. In doing so, we evaluate the outcomes of anomaly
detection by measuring structural properties with respect to the
cumulative one-mode graph segment of lengthm ∈ Z+ defined as

Gm⊤ (k) = (Vm
⊤ (k),Wm

⊤ (k))

=

k⊕
k ′=k−m+1

G⊤(k ′) = G⊤(k −m + 1) ⊕ · · · ⊕ G⊤(k)

where

Vm
⊤ (k) =

k⋃
k ′=k−m+1

V⊤(k ′) andWm
⊤ (k) =

k∑
k ′=k−m+1

W⊤(k ′)
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Figure 1: Bipartite graph abstraction. The top panel repre-
sents the engineer projection. The middle panel represents
the original bipartite graph. The bottom panel represents
the software component projection.

For example, ifm = 7, we aggregate data to form weekly graph
segments.

Let lm, where l ∈ Z+ represents the smallest interval at which we
evaluate the outcomes of anomalous detection (called the detection
resolution). Note that if l > 1, then the intervals at which the graph
segments are evaluated are not the same as the ones at which they
are formed. The finest detection granularity satisfies l = 1, i.e., when
the detection resolution is the same as the graph segment formation
intervals. A larger value of l reflects that anomalous events are
captured by the aggregation of consecutive graph segments. For
instance, if l = 2, then an algorithm for detection aims to determine
whether such an event occurs within intervals (ak−lm+1,a

′
k ] =

(ak−2m+1,a
′
k ], k ∈ {2m, . . . ,n}. Let n̄ =

⌊ n
lm

⌋
be the total number

of times the algorithm with resolution lm has to decide whether an
event occurs. Let the set E ⊆ {1, 2, . . . , n̄} represent the intervals at
which at least one event occurs. The detection problem is specified
as follows.

Given:
(i) A one-mode projection graph series G⊤ = {G⊤(k)}nk=1;

and
(ii) A detection resolution 1 ≤ lm < n.
We want to:
(ii) Design a detection algorithm that identifies the subset of

intervals Ê ⊆ E in which at least one anomalous event
occurs.

Condition (i) requires that the dataset can be modeled as a series of
one-mode projection graphs that aggregate the interactions occur-
ring during each interval. Condition (ii) assumes that the resolution
for detection is known.

3.5 Algorithm performance abstraction
Consider a sequence of detection intervals B = {B1,B2, . . . ,Bn̄ } =
{(a(t−1)lm+1,a

′
t lm ]}

n̄
t=1 = {Bt }

n̄
t=1. To measure performance, the

output of the detection algorithm Ê is mapped into the sequence
of intervals B. Let ê ∈ Ê be the index of a detection interval that is
denoted as anomalous by the detection algorithm (i.e., the algorithm
indicates the occurrence of at least one anomalous event within the
interval). The set Ê can be represented by the indicator vector

Ô =
∨{

1Bt (lmê), ∀t ∈ {1, 2, . . . , n̄}} , ∀ê ∈ Ê
where

∨
represents the OR operator and 1Bt (lmê) denotes the

indicator function

1Bt (lmê) =
{

1 if lmê ∈ Bt
0 if lmê < Bt

In other words, if 1Bt (lmê) = 1, the algorithm identifies an anoma-
lous event in the detection interval (a(t−1)lm+1,a

′
t lm ] and labels

it as an anomalous interval. The indicator vector Ô describes the
interval indices, i.e., t ∈ {1, 2, . . . , n̄} that contain an anomalous
event.

Moreover, to characterize the occurrence of actual events during
an interval, we define e ∈ E as the index of a detection interval
that is anomalous based on the ground truth. Let the indicator
vector O =

∨ {
1Bt (lme), ∀t ∈ {1, 2, . . . , n̄}} , ∀e ∈ E represents

the intervals that are anomalous based on the ground truth, i.e., the
distribution of the anomalous events over the set of the n̄ detection
intervals. Figure 2 illustrates the proposed modeling framework.
For example, suppose that E = {s, n̄} (represented by the horizontal
arrows) and Ê = {s} (represented by the horizontal crossed arrow).
To pinpoint the detection interval s , there might exist a time index
r = ms such that 1Bs (r ) = 1. This is represented by the vertical
arrows in Figure 2.

3.6 Algorithm performance measure
The performance of a detection algorithm is measured based on
identifying the anomalous detection intervals. Specifically, the per-
formance of an algorithm is specified based on the set of time
intervals Ê reported as anomalous by the detection algorithm and
the set of time intervals E in which anomalies occur (ground truth).

We compare the performance of the detection algorithms using
the true positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN) of the detection results. In particular, TP = O ·Ô ,
FP = O ′ · Ô , FN = O · Ô ′, and TN = O ′ · Ô ′ where the symbol “·”
represents the dot product between two vectors, and O ′ and Ô ′

represents the complement of O and Ô respectively.
In other words, a detection algorithm specifies the intervals

based on a detection criterion. Similarly, to measure performance,
it is necessary to know the ground truth anomalous events. The
detailed pseudo-code for the algorithm’s performance measure is
presented in Algorithm 1. Next, we introduce a detection criterion
based on the dynamics of the formation of communities and the
interaction of engineers across and within them.

3.7 Proposed algorithm
The proposed algorithm aims to define detection signatures based
on deviations from the regular process of community interaction.
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Figure 2: Abstraction of the detection problem. The top
panel refers to the sequence of intervals that are used to
build the graphs (here the graph formation intervalm = 1).
The bottom panel illustrates the aggregation of intervals to
evaluate the performance of the detection algorithm (here
detection resolution lm = 2). The vertical arrows represent
the location of an anomalous event in both temporal repre-
sentations. The horizontal arrows illustrate the sets E and
Ê.

To do so, we explore whether variations in the number of edges
across communities (with respect to the total number) are indica-
tors of anomalous events. This is done by comparing edges in the
user graph with respect to a community partition reference over
aggregate data.

Let the initial cumulative one-mode graph segment of lengthm0,
1 ≪m0 ≪ n be defined as

Gm0
⊤ = (Vm0

⊤ ,W
m0
⊤ )

=

m0⊕
k ′=1
G⊤(k ′) = G⊤(1) ⊕ · · · ⊕ G⊤(m0)

whereVm0
⊤ =

⋃m0
k ′=1V⊤(k

′) andWm0
⊤ =

∑m0
k ′=1W⊤(k

′).
The proposed detection algorithm requires the following assump-

tion:
(A1) The initial cumulative graph segment Gm0

⊤ can be natu-
rally divided in non-overlapping communities, i.e., groups
of nodes that can be grouped into subsets such that each set

Algorithm 1 Algorithm-Performance (Ê, E, n̄)
1: Ô ← zeros(n̄)
2: for ê ∈ Ê do
3: Ôê ← {}
4: for t ∈ {1, 2, . . . , n̄ } do
5: Ôê ← Ôê ∪ 1Bt (ê)
6: end for
7: Ô ← Ô OR Ôê (element wise)
8: end for
9: O ← zeros(n̄)
10: for e ∈ E do
11: Oe ← {}
12: for t ∈ {1, 2, . . . , n̄ } do
13: Oe ← Oe ∪ 1Bt (e)
14: end for
15: O ← O OROe (element wise)
16: end for
17: O ′ ← NOT (O )
18: Ô ′ ← NOT (Ô )
19: TP← O · Ô
20: FP← O′ · Ô
21: FN← O · Ô′
22: TN← O ′ · Ô′
23: return (TP, FP, FN, TN)

of nodes is densely connected internally and in which nodes
belong to a single group [25].

Let the set T = {m0 +m,m0 + 2m, . . . , n̄m} captures the time
intervals at which the algorithm will be applied. Note that for k ∈
T , the series {Gm⊤ (k)} forms a set of non-overlapping cumulative
graph segments. The proposed algorithm pinpoints anomalous
events by measuring the proportions of inter- and intra-community
edges of the graph Gm⊤ (k) with respect to the community partition
ofGm0

⊤ , i.e., wewant to identify the set Ê based on the diversification
of community edges. Figure 3 shows a characterization of that
situation.

Alice Bob Carol Dave Eve Frank

A B C D

Alice

Bob

Carol Dave

Frank

Eve

E

Figure 3: Malicious activity in the bipartite graph. The top
panel represents an unusual interaction between Bob and
Eve with software component “E.” The bottom panel repre-
sents the corresponding onemode projection graphwith the
anomalous edge crossing communities.

To do so, letC(Gm0
⊤ ) = {0, 1, . . . , c} be a set of unique community

identifiers where c + 1 is the total number of detected communities
in the initial cumulative graph segment Gm0

⊤ . The community to
which engineer i ∈ Vm

⊤ (k) ∩ V
m0
⊤ is assigned (with respect to

Gm0
⊤ ) is given by ci (k) : i → C(Gm0

⊤ ). We computed the community
partition of the initial cumulative graph segment using the Infomap
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algorithm [35]. Following similar ideas as in [38], let the set of
inter-community edges be I↷(Gm⊤ (k)) = {(u,v) : ωuv (k) > 0 ∧
(cu (k) ∩ cv (k)) = �} and intra-community edges be I⟳(Gm⊤ (k)) =
{(u,v) : ωuv (k) > 0 ∧ (cu (k) ∩ cv (k)) , �}. We also define the
inter- and intra-community ratio as

cm↷(k) =
|I↷(Gm⊤ (k)|

|I↷(Gm⊤ (k))| + |I⟳(Gm⊤ (k))|
(1)

cm⟳(k) =
|I⟳(Gm⊤ (k)|

|I↷(Gm⊤ (k))| + |I⟳(Gm⊤ (k))|
(2)

respectively.
In particular, we are interested in identifying time intervals k ,

where cm
⟳
(k)−cm↷(k) is below median-3σ or above median+3σ . The

median is used instead of the mean because this measure (over the
entire period of study) cannot be assumed follow a normal distri-
bution since appropriate hypothesis testing demonstrates that the
normal distribution is not a good candidate to model the generation
of the empirical observations. We used the interquartile range to
estimate σ as it has been studied by others, e.g., [23]. The detailed
pseudo-code for this algorithm is shown in Algorithm 2.

Algorithm 2 Event-Detection (G⊤,m0,m)
1: Compute community partition of Gm0

⊤
2: Y ← {} ▷ Array of intra−inter ratio samples
3: for k in {m0 +m,m0 + 2m, . . . , n̄m } do
4: Build Gm⊤ (k ) =

⊕k
k′=k−m+1 G⊤(k

′)
5: Compute I↷(Gm⊤ (k ))
6: Compute I⟳(Gm⊤ (k ))
7: Calculate cm↷(k ) and cm⟳ (k ) using eqs. 1 and 2
8: Y ← Y ∪ {cm

⟳
(k ) − cm↷(k )}

9: end for
10: median← F̂−1

Y (0.50) ▷ F̂ means the empirical CDF
11: δ ← F̂−1

Y (0.75) − F̂−1
Y (0.25) ▷ The interquartile range

12: Ê ← {}
13: for k in {m0 +m,m0 + 2m, . . . , n̄m } do
14: if Y (k ) <= (median − 3σ ) or Y (k ) >= (median + 3σ ) then
15: Ê ← Ê ∪ {k }
16: end if
17: end for
18: return Ê

For algorithm performance comparison purposes, we replace the
computation of cm

⟳
(k) − cm↷(k) by the respective graph topological

property, e.g., nodes, edges, connected components, average degree,
maximum degree, or maximum weight with respect to Gm⊤ (k).

3.8 Dataset
IBM Rational ClearCase (hereafter ClearCase) is an enterprise-
grade software configuration management system. Among its main
features, it provides version control functionalities to large- and
medium-size organizations allowing them to track software projects
with thousands of developers. As of the date of this writing, ClearCase
has a market share of about 2.5% among software configuration
management competitorswith 55% of their customers in the U.S. [20].

The ClearCase dataset analyzed in this paper comprises the
complete activity between engineers and software components in
a major computer software enterprise. Software components are
software packages that encapsulate a set of related functions and
store metadata allowing version control. In particular, we used
data that spans 22 years from May 4, 1992 to March 23, 2014. We

extracted the data from the source code base management database.
Instances with no reference to the engineer or software component
name were not taken into account in this analysis. These comprised
a negligible percentage of instances, i.e., on the order of 8×10−6%.

Using this dataset, we built bipartite graphs to capture the in-
teractions between engineers and software components. In this
bipartite graph, nodes are represented exclusively by engineers
and software components. Edges in the bipartite graph represent
interactions, i.e., any type of activity that engineers have with soft-
ware components, including: commit a file, create a file, delete a file,
create a branch, tag a branch, sync a branch, and collapse a branch.
We did not differentiate between these different interactions and
treat them as the same type of edges.

The dataset comprises 10, 253 distinct engineers, 1, 729 distinct
software components, and 12, 577, 667 interactions during the ob-
servation period. Remember that our hypothesis is grounded on
the idea that precipitating events might lead to structural changes
in the committing behavior of engineers. With that in mind, Ta-
ble 1 summarizes the details of the incidents used in this study, i.e.,
precipitating events that were announced and validated internally
by the enterprise.

Table 1: Summary of precipitating events during the obser-
vation period.

Event ID Date Jobs % affected
impacted employees

1 2001-04-16 8500 22.4
2 2011-07-18 6500 9.1
3 2012-07-23 1300 1.9
4 2013-03-26 500 0.7
5 2013-08-09 4000 5.3

4 RESULTS
In this section, we present the results of the analyses on the one-
mode projection (or user graph) of user-system interactions. In the
following analysis, our unit of time reference is the day, i.e., the
scale of the variable k . To estimate the length of the window m
(the window length that we use to accumulate interactions among
engineers), we relied on the methodology proposed by [5], which
estimated that the size of an observable window for a rigorous char-
acterization of graph properties is at least one week, i.e.,m = 7 days.
This means that we build the bipartite and one-mode projection
graphs by aggregating data over non-overlapping windows of 7
days (every week starting on Monday).

We compare the results of the proposed event detector frame-
work to random chance. The purpose of this comparison is to ensure
that the phenomena we identify are not a result of noise or simply
the result of having stochastic data. We then compare our approach
with metrics that are based on the volume of interactions. That is,
we test if the proposed approach identifies insider risk more accu-
rately than those that identify employees by frequency or intensity
of access. Sheer counts of access are a core component of risk-based
or accounting-based insider threat approaches. The model proposed
here is more accurate and more precise. The model also offers fewer
false negatives (i.e., higher recall).
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We used the same visualization conventions for every plot. The
blue solid lines show the raw data. Recall that the raw data corre-
sponds to the empirical measures for each graph topological prop-
erty. Dashed black lines represent the dates of the precipitating
events listed in Table 1 with their corresponding label in a circle.

The results of these show that the precipitating events cannot be
distinguished from other events using simple graph-based statistics.
Our assumption is that although individual events, such as eco-
nomic stress, may result in an individual becoming an insider threat,
only systematic organizational changes should be correlated with
large-scale increases in insider threat behaviors. Section 4.1 shows
the graph-based statistics for the one-mode projection graphs. Sec-
tion 4.2 illustrates the algorithm evaluation using graph-based mea-
surements and the proposed metric in this paper. In contrast with
the results of graph-based measurements, we provide statistically
significant evidence of detection of suspicious interactions after pre-
cipitating events have been announced using the proposed metric.
Section 4.3 describes the way in which we obtained the results of the
randomly generated algorithm and the performance comparison of
each metric based on different detection resolutions.

4.1 One-mode projection graph properties
series

We report results related to the number of nodes, edges, connected
components, average degree, maximum degree, and maximum
weight for the temporal one-mode projection graphs. Formalisms
about the framework to build the graphs are defined in Section 3.3.
The specific properties that we measured from these graphs are
listed here for the reader. The edges occur when two engineers have
interact with the same software component (i.e., same code reposi-
tory). The degree of node i isdi (k), i.e., its number of neighbors. The
set of edges of of the graph G⊤(k) is E⊤(k). A connected component
is a subgraph in which any two nodes are connected to each other
by paths. The average degree of graph G⊤(k) is 2× |E⊤(k)|/|V⊤(k)|.
The maximum degree of graph G⊤(k) is the maximum number of
neighbors in the graph, i.e., max{di (k),∀i ∈ V⊤(k)}. The maximum
weight of a graph G⊤(k) is the maximum weight of edges in the
graph, i.e., max{ωi j (k),∀i, j ∈ V⊤(k)}.

Figure 4 (top) shows the observed number of nodes (i.e., en-
gineers in the user graph). Figure 4 (middle) shows the number
of unique edges representing the number of interactions between
engineers. Figure 4 (bottom) shows the number of connected compo-
nents in the one-mode projection graphs. In general, for the number
of nodes and edges, there is an increase in these measurements after
roughly 2002. The tendency starts to decrease after approximately
2010 when other version control systems began to be adopted. Thus,
after 2010, the data are a large sample rather than a comprehensive
dataset. The movement of some core technologies to a different
versioning system is reinforced by the continuous increase in the
number of connected components in the bipartite graph, which
indicates a less integrated core of software components.

Similarly, Figure 5 shows the time series of average degree, max-
imum degree, and maximum weight respectively. Although there
are several spikes for these measurements, we present an evaluation
of the proposed algorithm, when these measurements inform the
detection signature in Section 4.2.
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Figure 4: Time series of the number of nodes (top panel),
edges (middle panel), and connected components (bottom
panel) for the one-mode projection graphs.
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Figure 5: Time series of the avg. degree (top panel), max. de-
gree (middle panel), and max. weight (bottom panel) for the
one-mode projection graphs.

4.2 Algorithm evaluation
We applied the proposed algorithm for anomaly event detection by
leveraging on the structural properties of the one-mode projection
graphs. Our criteria for selection of anomalous time intervals is
based on the idea of detecting observations that are far away from
the median (for a specific time interval in which a one-mode pro-
jection graph is generated) as we specify in Algorithm 2. Following
similar visualization conventions that we used in Section 4.1, in
the following plots, the black horizontal line represents the me-
dian from the empirical observations. Each horizontal red band
represents one standard deviation (the intensity of the bands is
proportional to the distance with respect to the median). Remem-
ber that the standard deviation is estimated using the interquartile
range of the distribution of these measurements. We estimatedm0,
i.e., the length of the initial cumulative one-mode graph segment,
by computing arg maxm0

|C(Gm0
⊤ )|. That is achieved by the end of

2002, and it is the reason we report the following properties since
January 1st, 2003.
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Figure 6 shows the time series of nodes, edges, and connected
components after the period of characterization of communities,
i.e., the period of time comprehended between May 4, 1992 and
December 31, 2002. As can be seen, even when there are some fluc-
tuations in these measurements, the majority of the observations
lay up to three standard deviations away from the median. This
means that few time intervals were reported as anomalous during
the observation period by relying in these properties.

We also performed similar experiments for the remaining graph-
based properties, i.e., average degree, maximum degree, and maxi-
mum weight. In particular, Figure 7 summarizes these findings. For
both average degree and maximum degree, the algorithm did not re-
port suspicious time intervals given that the signal does not exceed
±3 standard deviations from the median. For the signal correspond-
ing to the maximum weight, various spikes surprise the limits for
detection. We report on the performance of these measurements
later in Section 4.3.

Figure 8 shows the behavior for the proposed metric. Details
on how this metric is derived are found in Equations 1 and 2. In
particular, there are some spikes that exceed the threshold used by
the algorithm and are close enough to the release of the precipitating
events. These spikes suggest a drop in the number of edges between
members of the same communities (conversely an increase in the
number of edges betweenmembers of different communities) which,
based on our proposal, means a diversified behavior, i.e., more
interaction with different software components.
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Figure 6: Time series of the number of nodes (top panel),
edges (middle panel), and software components for the one-
mode projection graphs (bottom panel).

4.3 Algorithm performance
We compare the performance of the proposed algorithm with the
performance of a random algorithm. In particular, let the output
of the random algorithm be R̂ = (R̂1, . . . , R̂n̄ ) i .i .d .∼ Bernoulli(0.5).
This means that each time interval is equally likely to be selected
as anomalous based on random chance.

Performance for all the proposed algorithms is compared based
on accuracy, precision, recall, and F1 score. These measurements
were estimated using the TP, FP, FN, and TN derived from Algo-
rithm 1.
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Figure 7: Time series of the avg. degree (top panel), max. de-
gree (middle panel), and max. weight (bottom panel) for the
one-mode projection graphs.
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Figure 8: Time series of the intra- minus inter-community
edge ratio for the one-mode projection graphs.

Accuracy is the most basic measure of performance for classifi-
cation. It quantifies the proportion of correctly predicted positive
and negative instances (i.e., time intervals classified as anomalous
or not that were correctly classified). It is quantified as accuracy =

T P+T N
T P+T N+F P+FN .

Precision quantifies the proportion of positive predictions that
have been correctly classified. This means that if a considerable
number of time intervals are erroneously classified as anomalous,
then the algorithm has low precision. In other words, it is a measure
of classification exactness. It is quantified as precision = T P

T P+F P .
Recall quantifies the proportion of actual anomalous intervals

that have been predicted as positive. This means that if an insignif-
icant number of time intervals are classified as anomalous but
they are not, then the algorithm has low recall. In other words,
it is a measure of classification completeness. It is quantified as
recall = T P

T P+FN .
The F1 score conveys the balance between precision on and

recall calculated through the harmonic mean. It is quantified as
F1 score = 2 precision×recall

precision+recall .
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Figures 9, 10, 11, 12 show the performance for different detection
criteria, i.e., random, nodes, edges, connected components, average
degree, maximum degree, maximum weight and the proposed ap-
proach under different detection resolutions. Performance in the
random algorithm is calculated after 1, 000 realizations its evalua-
tion. That means that for the random algorithm, we report on the
mean and standard deviation on such measurements. As we might
expect, the performance of the proposed approach starts increasing
when the detection resolution is increased. For the maximum detec-
tion resolution that we used, i.e., 26m, the results of the proposed
approach outperforms the other measurements with a F1-score of
approximately 85.7%. Noticeably, the performance of the random
algorithm is even higher than those based on graph measurements
even when taking into account the effect of the standard deviations
represented by the error lines.

Accuracy of detection methods based on the graph-based proper-
ties is high given that the majority of time intervals are not marked
as anomalous based on the small number of precipitating events
(which makes this an unbalanced dataset).
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Figure 9: Algorithm performance for detection resolution
4m.
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Figure 10: Algorithm performance for detection resolution
8m.
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Figure 11: Algorithm performance for detection resolution
16m.
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Figure 12: Algorithm performance for detection resolution
26m.

5 DISCUSSION
The main assumption behind the proposed approach is that in-
sider threat events increase following certain types of events. Thus,
counts of potentially malicious actions correlate with the announce-
ment of precipitating events. We have proposed a bipartite graph
framework that learns regular community behavior based on the
interactions of engineers and software components, and analyzes
the patterns of connections in and between communities. We then
use this to examine a time period that includes major precipitating
events. As a result, the ground truth available for the analysis im-
plemented here is the rate of insider risk in the organization after
precipitating events. The validation of the model would be clear
increases in the number of interactions across communities after
precipitating events, and few increases without these.

Precision and recall together measure how often a threat is cor-
rectly identified and how often the non-malicious is correctly iden-
tified, i.e., no false positive or false negatives. This correctness is a
significant challenge in detecting insider threats. Individual orga-
nizational tolerance for false positives versus false negatives may
differ. Figures 9–12 show that this trade-off can be changed by
altering the detection resolution for the analysis.

10



Our approach makes a well-grounded assumption about the
overall rate of insider threats and examines aggregate detection
after precipitating events. Alternative approaches use artificial data
with anomalies generated based on scenarios and confidential data.
Another alternative is using qualitative research and directly lever-
aging known cases. By definition, the artificial data and case studies
can only address the insider threats that have been detected us-
ing other methods. A third approach examines private datasets
which includes potential malicious insider behavior. Our results
use a private dataset subject and temporal analysis to illustrate that
insider behavior increases are correlated with what are known to
be precipitating events.

Of the three methods to address suspicious insider behavior,
reproducibility is a particular strength of artificial data and is a
particular challenge to the third approach (i.e., the one used here).
The challenge to the second (case studies) and third (confidential
data) approaches are of reproduction and validation. To address
these challenges, we will release the scripts used to implement this
model on or before publication of the paper. With the publication of
our model as implemented, in addition to the description here, our
analysis can be reproduced using any organization’s private data.
One goal in publishing this work is to encourage other researchers
to use the model on the data available to them.

One requirement for this approach is adequate data to create
the one-mode projection of the interactions between engineers
from the bipartite graph of engineers and software components.
The current dataset covers more than two decades of interactions
with engineers and version control systems. The requirements for
the minimal training dataset is an open question. With logging
provided by version control systems, software organizations have
adequate data. However, other organizations with different types of
data may struggle to find the optimal input. Another question is the
optimal size of a community or subgraph [10]. This is a parameter
that will vary between organizations.

One possible weakness to this approach is that an organization
with a systematic insider threat problem may be unable to use
this as detection. Training for community detection requires the
insider’s behavior to be anomalous. For example, organizations
with high levels of turnover may consistently see behavior that
would be anomalous in another organization, one with has higher
retention or a more careful workforce.

Our approach identifies behaviors as opposed to focusing on the
motivation of an individual. As a result, the particular strength of
this method is identification of a significant number of suspicious
behaviors across the entire employee population. A weakness is
that an employee who becomes slowly malicious and increases
suspicious behaviors over time may be able to train the model
of that organization not to recognize his behavior as anomalous.
This attack would be mitigated by the characterization of others
in organization (who cannot be controlled by the insider). As with
all insider threat detection systems, any employee who has access
sufficient to manipulate the input and output of the model itself
can defeat the analysis.

It might also be the case that our assumptions are incorrect. It
may be the case also that precipitating events are not the only
triggers to this type of activity. If insider threats are a result or

response to specific events, other specific events including em-
ployee dismissal, dispute with employers, perceived injustices, fam-
ily problems, coercion, or new opportunities—as has been high-
lighted in [28]—should be considered when evaluating the proposed
approach.

6 CONCLUSIONS
In this paper, we have revisited the problem of insider threat event
detection using graph mining analytics. Our main contribution is
the proposal and evaluation of a generic analytical framework that
builds on previous results in analysis of social networks to identify
anomalous behavior by distinguishing access requests within and
beyond a given community. We analyzed access to resources (i.e.,
code repositories) by employees (i.e., coders and engineers) using a
time series of graph properties to pinpoint time intervals that iden-
tify suspicious insider behavior. The temporal analysis framework
can be used with other datasets, including by organizations with
no interest in sharing internal logs.

One major challenge in identification of potentially malicious
behavior is determining ground truth. Although catastrophic insider
events are well documented, the regular exfiltration of data by
insiders is less well documented. There is a dearth of data. To
address this, we examined the incidences of suspicious activity and
correlated these with events known to be correlated with increases
in insider threat behaviors, specifically precipitating events. The
decision criteria for identifying these time intervals is based on
quantifying changes in the way in which employees interact with
resources after precipitating events have been announced. This
performance analysis framework can be used by any organization
that has experienced precipitating events in order to test it for
applicability to its own risks. Further, by altering the time period
for the analysis, organizations can make their own trade-offs as to
the level of activity that will result in investigation.

From our results, it is possible to see that the proposed frame-
work is able to identify time intervals in which anomalous activity
happens with a reasonable F1 score. We compare the performance
of the proposed approach with anomaly detection approaches based
on a naive random and edge density selection of intervals. Our ap-
proach outperforms these intuitive approaches giving us insights
on the importance of the diversification of committing behavior on
user-system interactions as a possible indicator of insider threat.

In summary, we abstract user-system interactions as a modeling
framework and apply temporal graph analysis for identification of
insider threat risks. We believe this approach could be widely ap-
plicable. Future work ideally would include partnership with other
organizations to check with the correlation with other precipitating
events, and then, in the long run, seeing the adoption of this as a
mechanism to detect high-risk behaviors by insiders.
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