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Abstract:

The sting store instruction generalizes the imperative that
alters the contents of a memory location. It allows qualification
on that instruction to localize it to a single field within a
memory word and to make i1t conditional on the extent value of a
single bit in that word. The field selection and the conditional
test are intended to be made remotely from the processor, as
local to the memory word as possible.

This generalization is particularly attractive in multi-
processing applications where memory is shared and synchronyzation
of memory altering operations is necessary. The sting instruction,
dispatched over a virtual circuit, 1s shown to be sufficient by
itself to solve useful problems, without processor/processor
synchronization implicit in semaphore-like schemes. A simple
example -- a child's Easter egg hunt -- 1s presented in detail and
proven correct, a practical application is outlined, and a possible

memory circuit is included.

Key words and phrases: memory, parallel processing, multiprocessing,

synchronization, sting. CR categories: 4.32, 6.3k,






Introduction

This paper introduces the sting store instruction as a primi-
tive in a multiprocessing environment. It is intended as an
expansion on the conventional "store" or "assign" primitive invented
by von Neumann with a limited provision for signalling
among processors sharing a memory "word" that an assignment has
occurred.

There already exist several control primitives in the litera-
ture designed for the multiprocessing environment. These include
semaphores [5]1, monitors [21, test-and-set [191,
et al. All of these primitives offer the programmer some assurance
of mutual exclusion, often necessary for multiprocessing algorithms
(e.g. dual processor garbage collection [6, 121.)

The need for mutual exclusion often arises in a programming style
in which an individual processor makes repeated assignments to a
single variable ("word" in the store) because any two processors
may interleave their own assignments in a manner which interferes
with each other. Since we are concerned with writing programs for
unrestricted numbers of processors, every such exclusion adds an
unforseeable overhead to run-time behavior. We are interested in

a different programming style which has been less popular until
recently and in which, therefore, there are fewer available multi-
processor "chestnut" programs. For the purposes of this paper,

we characterize such a style as the single-assignment approach of
Tessler and Enea [211, although applicative or funectional
programming [1, 3, 13, 16, 171 is a more familiar (and motivating)
"sub-style" when such a style is extended from a single processor to

a multiprocessor environment, several processors might each be



attempting to store (perhaps different) values only once in common
variables. A control mechanism is necessary to ensure that, in
fact, only one assignment occurs in the shared memory, even though
several have been dispatched from the several processors. Although
easily implemented with mutual-exclusion, the control required is
considerably more simple as we shall see, than generalized mutual-
exclusion, with the result that the multiprocessing programs that
arise under such a style are easier to create and prove and ought
to be more easily implemented and maintained under a higher degree
of parallelism. We expect this result since there is less of a
requirement to establish freedom from interference [12]

because the semantics of sting itself, provides some execlusion

of assignment, rather than requiring an appeal to the stronger sense

of mutual exclusion of processes.

In order to characterize the memory architecture of multi-
processors, we shall appeal to a message-passing concept from
distributed processing [7]. Since we perceive the store
(or main memory) as being separate from the processors (and
perhaps "banked" in a manner to allow simultaneous accessing
analogous to the simultaneous processing of the processors), let
us percelve each processor and each memory word (or memory bank)
to be nodes in a distributed processing network. We are not
interested in the interconnection graph of this network, but we
do require that every processor have a path to access every word
of the main (global) memory (or store). The network acts as an
asynchronous switch between processors and memories, which may
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behave like a packet-switched or store-and-forwsrd communication
network. We do require, however, that communication between any

glven processor and any given word behave as a virtual circuit

rather than datagrams [22]; that is, messages from any

processor to any memory must be received within a fixed amount

of time (bounded by an implementation constant) in precisely the
order in which they were sent. One interconnection pattern
which offers such behavior is the Banyan net [11]1 in which
there is a unique path between any of the processors on one side
of the net and any of the memory banks on the other. Because
messages must be queued along this path, they necessarily arrive
in the order of transmission; bounded time is guaranteed by
alternating the binary choices at each active node of the network
and by treating lost messages as system-wide errors. Such severe
treatment of communication failures is to be expected in multi-
processing although it would be tolerated in distributed
processing.)

The remainder of this paper is divided into four parts. The
next section presents a syntax and semantics for the sting primitive
based on PASCAL and the Floyd-Hoare scheme. In the following
section we present and prove a simple example, the Easter egg hunt,
useful perhaps as a system benchmarking test. Then we expand to
a motivating example, the coaxing arbiter [10]1 in the next
section. In the final section we compare the sting primitive to
classic synchronizing primitives to justify its implementation
and utility -- if not its power -- in a multiprocessor.
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Syntax and Semantics

In this section we introduce the sting instruction into the
above described multiprocessing architecture. This will be done
by treating all of the common memory as records referenced only by
pointers (addresses in the common sense). When simple variables
are used in the following code, they will refer to registers local
to the executing processor. In terms of conventional low-level
programming then, shared memory is accessible only indirectly
via a pointer resolution; this level of indirectness appears in
place of the message passing of the distributed model above.

Fetching a value from common memory into a local register is
denoted using PASCAL's up-arrow convention.

type tipe = something; pointer = 4tipe;

var LOCALQ: tipe; Q: pointer;

{The values in both these variables may be in use
by other processors. Q references common memory .}

" LOCALQ := Q4
Using the distributed processing model, this statement would
dispatch a request from this processor to Q's region of global
memory, requesting that its contents be returned, to be stored
in the local register LOCALQ. Processing might continue even
before reception of Q's contents as long as LOCALQ were not
involved; like the axiom following, this overlap of processing
is thus possible only when LOCALQ has no other name involved 1n
the overlap. The conventional Floyd-Hoare axiom for assignment
[12] applies to this fetch when X has no other name involved

(either Y or in P).
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(P; represents the result of substituting y for every free
occurrence of x in the predicate P.)
Where PASCAL would allow the store instruction

Q4 := LOCALQ
we would use a special case of sting

sting Q with LOCALQ
to effect the storing of a new value in the common memory.
Precluding common memory as the target of ordinary assignment
statements (denoted by ALGOL's := ) has immediate advantages
arising from the alias restriction in Floyd-Hoare semantics;
it is quite difficult to meet that restriction when the left-
hand-side is a variable-valued reference, because 1t is so

easily aliased by another pointer or subscripted variable

A sting statement has the syntax

<sting statement> ::= <address><flag><field><value>
<address> ::= sting <expression>

<flag> = unless <identifier>|<enpty>

<field> = in <identifier>|<empty>

<value> ::= with <expression>

The <expression> in the <address> portion must evaluate to a
legal reference to global memory. A record must be at that
address with subrecords (or fields) named by the <identifiers>

in the optional <field> and <flag> portion if these are



nonempty; that is the <flag> portion must be of Boolean (logical)
type. The <expression> in the <value> portion must evaluate to
a value of the same type as a whole record when <field> 1s empty,
or as the <field> subrecord otherwise. Only the <address> and
<value> portions must be nonempty:; absence of the <field> portion
indicates that the store instruction affects the entire record and
absence of the <flag> portion indicates that the store will occur
unconditionally. The conditional store when <flag> 1s nonempty

is the motivation for the generalized <sting> instruction, and we
describe it below.

The motivation for the sting instruction is its conditional
behavior when the <flag> phrase 1s nonempty; other instances are
Just conveniences of the general syntax. When a conditional
behavior is invoked, say with the instruction sting ADDRESS untess

FLAG in FIELD with VALUE the following steps cccur without inter-

ruption:

if ADDRESS+.FLAG then skip else ADDRESS +.FIELD := VALUE
alternatively,

with ADDRESS* do if FLAG then skip else FIELD := VALUE.

This latter code is suggestive of our intention that thé stinging

processor not, itself, be involved in the conditional behavior.
Using the distributed processing model of the previous section as
a model, we imagine that the conditional behavior (nested within
the with construct) occurs at the memory independently of the
processor. After dispatching the FLAG, FIELD, and VALUE to the

ADDRESS's memory, the processor is free to continue; if it should
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subsequently refer to that word of common memory, the virtual
circuit behavior of the memory switch guarantees that the sting
store will have been reflected in that access. (See also add-to-
memory [20] for similar behavior, only there the set

possible conditionals has been omitted.)

This behavior motivates the choice of the term, "sting,"
itself. The analogy with an insect's defense arises from the
separation of the store instruction (via the virtual circuit)
from its originator and from its dramatic and instantaneous
reception at its target.

Operationally, the conditional behavior amounts to a read -
conditional-write at the word in store, where thes existing
contents of the FLAG bit is gated onto the write-enable line.

A general implementation of sting requires a wider path from
processor to memory, since this store instruction not only
specifies an ADDRESS and a VALUE, but also describes a FIELD
(position and width at the ADDRESS) and the location of FLAG.
In general this could considerably increase the size of a "store"
message as it is sent to memory, but we expect that FIELD and
FLAG will be restricted to a few allowable positions within a
word in actual hardware (e.g. byte boundaries and sign bit,
respectively) so that their descriptors would be substantially
compressed. Indeed. the motivating applications [101, admit
such a restriction.

The following four Floyd-Hoare style axioms summarize the

semantics of the alternative forms of the sting instructions:
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{pADDRESS“‘} sting ADDRESS with VALUE {-P} ;

VALUE

{ (P & ADDRESS+.FLAG) v (P%i%%iss* & —-;ADDRESSMFLAG)}

sting ADDRESS unless ©FLAG with VALUE {I?,

DDRESS+% .FIELD _ . : )
{;%ALUE j? sting ADDRESS in ©FIELD with VALUE %'€; ;

{ (P & ADDRESS+.FLAG) v (P%%%%%SS*"FIELD g Ly ADDRESS+.FLAG)}

sting ADDRESS unless FLAG 1in FIELD with VALUE ‘{‘ﬁg .

Like other assignment axioms [12] these may not be
consistent if the ADDRESS reference has an alias in the expressions
for VALUE or P. Consistency is not threatened by an alias in
FLAG or FIELD since these must be simple field identifilers,
rather than expressions. An example of a proof using the second
axiom is iIn the following section. It shows that the aliasing
problem is considerably less than might be anticipated, because
the invariants concerning common memory can be universally bound;
universal quantification works because the uninterruptible
conditional allows FLAGged consistency to be sustained across
assignments to common memory.

With these conventions it is easy to distinguish fetches from
common memory (by the "4") from stores to common memory (using

"sting") and local register manipulations (using neither).
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A Detailed Example

In this secticn we present a detailed, although somewhat
fanciful, example of the use of sting. This simple program is
designed to be run simultaneously by an arbitrary number of
brocessors over a common memory with no mutual exclusion.

Sting instructions are the only synchronization tool. A proof
using one of the axioms above is included, and a hardware
implementation of the necessary shared memory has already appeared
[S].

An Easter egg hunt is a game played by millions of children
every year. Before such an event many dyed eggs are hidden on
a playing field. The hunt begins on a public signal, whereupon
many children scurry about the field, each claiming as many eggs
as each can find. Of course eggs can't be shared, so some may
not find any. Strategy is significant; an inexperienced player
often follows a more experienced player about the field, wondering
why he never finds unclaimed eggs in the same spots that the
experienced player just looked. If all players follow independent
search strategies (independent of the hiding strategy also) then
the uniformly hidden eggs will be equitably distributed at the
end of the game.

Our simulation of the Easter egg hunt uses a common memory
of MEMSIZE words with addresses ranging from 1 up to MEMSIZE
inclusive. (It will be necessarily to set MEMSIZE as a large

prime). Each memory location represents an egg and contains



all (at least relatively) prime.

Corollary: For all j, nj,MEMSIZE = 0. The corollary yields
a common termination condition for the generation above.

Let us assume initially that I4.CLAIMED = false for all
O0<I<MEMSIZE, indicating that no eggs have been claimed and first
satisfying the "claimed" invariant,

C = VI(0<I<MEMSIZE > (I4.CLAIMED > 0<I+.OWNER<K)).

The strategy followed by the jth child, using its local register
I, is then
begin
L = p.3
while I # 0 do
begin
sting I unless CLAIMED with (true, 3);
I := (I + pj) mod MEMSIZE

end end.

At this point we have justified the invention of this code
fragment. It remains to establish its validity in a multi-
processing environment. We shall do this by reformulating the
code as a proof below, using ghost variables [181 (Also
[151) from the previous section, and the global eclaimed invariant, C,
above. While the code is a trivial transformation of that above,
we do introduce the subscript J on the index I and on the
ghost variables to indicate that these values are local to one
of the K active processors, and thus are protected from the

activities of the others.
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We introduce the sequencing invariant

23] = I1 = M & Vi(0<i<GHOST, > n, 4+ .CLAIVMED) .

J » GHOST, 3 i

The code is here expressed as one of many parallel programs
(each identical but for the value of j and pj) enclosed in
cobegin-coend brackets, with the remark "Other K-1 children..."
indicating the other identical replications of code. The order
of the fragments inside these brackets is, of course, immaterial,
but the indexing is meaningful for use in the inductive proof.
The correctness of the multiprocessor code for an arbitrary

number of processors is accomplished by an induction of K.
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When K=1 (hence J

]

1) this proof is a conventional
Floyd-Hoare proof. The only interesting item is the pre- and
post-conditions on the sting instruction maintaining Invariant C
regardless of whether or not the contents at Ij actually
changed. The second axiom above applies here.

We now consider the validity of this algorithm when there is
an arbitrary number of children/processors. Since there is no
mutual exclusion (i.e. the await statement [181) there is no

qualification necessary to the concept of interference-free

[12]. We have a simple and intuitive concept of freedom from
interference: no assignment or sting statement may interfere

at all with the proof. The proof now proceeds (and expands) with
an induction step (respectively, recursion) on K.

Assume that the proof of the algorithm is valid for K
brocessors. Let us introduce a K+16t processor executing the
same code into the cobegin-coend statement. This new processor
has its own index--J, registers I‘j and GHOSTJ, and a prime
number-—pj, none of which are in use by any other processor.

(We note that a fixed value for MEMSIZE restricts the availability
of smaller unused primes. Thus the induction is not validly
extended to all integers, K, unless MEMSIZE grows with K, (say

by advancing to the next prime with each increment to K.) No
assignments to IJ or GHOS‘I‘J interfere with any of the proofs
of the other K processes, because these are private local

registers. Similarly, the assignments and stings in the other K

processes do not interfere with
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begin (¥scorekeeper#)
for I :=1 to MEMSIZE - 1 do SCORE[I] := 65+
for I :=1 to MEMSIZE - 1 do
begin
repeat E := I+ until E.CLAIMED;
SCORE[E.OWNER] := SCORE[E.OWNER] + 1
end
end
It is quite possible that all scores are tallied before all
children have quit hunting. Those that continue to hunt, of

course, won't find any more eggs.
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processor. This is called regression [10] and is benign

since in the worst case the process proceeds at the pace of the
slowest processor.

What we do not tolerate is regression from a "final state."
Each process may be eventually coaxed into an immutable final
state, whence no processor may duplicate or change the results
in its record in common memory. In the single assignment
(particularly, the applicative) languages which interest us,
that final record is the value computed by that process and it
would be wrong to allow any other processor to change it. In a
lazy evaluation scheme one might associate a process with a
suspension [81 and its final state with its ultimate value.

Using an EGG metaphor, we imagine that we have several eggs
that we are trying to hatch. Each egg may or may not hatch, and
we must hatch at least one. Hatching is encouraged by COAXing
the contents of an egg; COAX is 1 function which returns slightly
new contents of an egg to be stored in memory until later. Once
an egg is hatched, however, it must not be touched. The problem
is to signal a hatched egg, a final state, to all other processors
which may be coaxing it, so that they do not touch it, even to
store another hatched result.

Ordinary synchronization primitives can solve this problem,
but they generally require some processor level synchronization
to stop or start (block or free) other processors. The solution
below uses sting to remove all synchronization to the memory, so

that coaxing processors run with no inhibitions except access to
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In fact the example in [10] actually had two such
coaxable fields at each address, which required that the FIELD
being stung be specified. That motivated the "in FIELD" option
in the syntax and semantics set forth above, but not used here.
(Those two fields correspond to the two fields in LISP opera-

tional semantics for cons.)
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Comparisons and Conclusions

There are many synchronization primitives, defined operati-
onally and formally in the literature. Some have been implemented
directly in processor hardware. To our knowledge, this is the
first which is proposed with the intention of being implemented
exclusively in memory hardware of a multiprocessing system.

Controls like monitors [2], semaphores [5]1, test-and-
set [19], or compare-and-swap [4] are described as
inhibitions placed on the flow of control. A direct implementation
would require much subliminal signalling among processors at every
cycle in order that each would know that it could proceed. This
communication is an undesirable burden if it is disjoint from
other communication, because 1t constrains the growth of the
system and because it increases the connections required to add a
new processor into the system. Moreover, requirements for rapid
signalling may constrain the number of possible signals to be
much less than, say the size of the main memory. If such inter-
processor communication is included in other communication
streams (e.g. a bus), processors may be so overburdened with
this important communication that they can make little progress.

Of course, one synchronizing primitive often can be used to
emulate another, but we are not considering simulation-here. We
are very much concerned with alleviating interprocessor
synchronization to take advantage of the efficiencies of single-
assignment or applicative-style programming. These approaches

are already characterized by relative freedom from interference
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among processors. Sting is an effort to extend this behavior into
indeterminate programs [10].

In the case of sting the synchronization is handled over a
virtual circult between processor and shared memory and by a
simple gating of one bit onto the write-enable line at the memory
location. Figure 1 shows a schematic for a memory designed for
the Easter egg hunt. The cost of the processor/memory switch will
appear in any multiprocessor; we increase our return by designing
it to help in synchronization. The cost of the gating is a slight
decrease in the speed of common memory, which will never be noticed

with many processors and significant switching delays.

Dedication: This paper is dedicated in memory of Douglas Goode,

who developed the circuilt presented here as Figure 1.
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