
Evaluating Collectives in Networks of
Multicore/Two-level Reduction

U.S. Wickramasinghe∗, Luke D’Alessandro∗, Andrew Lumsdaine†, Ezra Kissel∗, Martin Swany∗ and Ryan Newton∗
∗Indiana University, Bloomington, USA

Email: ∗{uswickra,ldalessa,ezkissel,swany,rrnewton}@indiana.edu
†Pacific Northwest National Laboratory, Seattle, USA

Email: †andrew.lumsdaine@pnnl.gov

Abstract—As clusters of multicore nodes become the standard
platform for HPC, programmers are adopting approaches that
combine multicore programming (e.g., OpenMP) for on-node
parallelism with MPI for inter-node parallelism—the so-called
“MPI+X”. In important use cases, such as reductions, this
hybrid approach can necessitate a scalability-limiting sequence
of independent parallel operations, one for each paradigm. For
example, MPI+OpenMP typically performs a global parallel
reduction by first performing a local OpenMP reduction, followed
by an MPI reduction across the nodes. If the local reductions
are not well-balanced, which can happen in the case of irregular
or dynamic adaptive applications, the scalability of the overall
reduction operation becomes limited. In this paper we study the
empirical and theoretical impact of imbalanced reductions on
two different execution models: MPI+X and AMT (Asynchronous
Many Tasking), with MPI+OpenMP and HPX-5 as concrete in-
stances of these respective models. We explore several approaches
of maximizing asynchrony with MPI+OpenMP, including using
OpenMP tasking, as well as the case of MPI only, detaching
X altogether. We study the effects of imbalanced reductions for
microbenchmarks and for the Lulesh mini-app.Despite maximiz-
ing MPI+OpenMP asynchrony, we find that as scale and noise
increases, scalability of the MPI+X model is significantly reduced
compared to the AMT model.

I. INTRODUCTION

The standard HPC platform today is a cluster of multi-
core nodes (perhaps also including GPUs). Historically (and
perhaps obviously), programmers have used shared memory
approaches for parallel programming of multicore machines
and have used distributed memory approaches (aka MPI)
for programming clusters. Thus, the obvious approach for
programming clusters of multicore machines is to marry the
two approaches that have separately worked so well in the
shared and distributed memory worlds. The general moniker
for the resulting combination is “MPI+X” to reflect the fact
that there are a multiplicity of shared memory approaches (but
only one MPI).

Of course the expectation (or at least the hope) is that the
effect of “MPI+X” will provide the compounded benefits of
each and enable scalability on today’s largest machines as well
as into future exascale machines. The problem with MPI+X,
as has been famously noted, is in the “+”1. That is, there
are numerous problems in combining two separate parallel

1Quote attributed to Bill Gropp

programming paradigms as each carries its own interface, run-
time system, and high-performance programming idioms. It is
unlikely to expect independent approaches to simply compose.

In this paper we study one important use case in parallel
programming, namely global reduction, and investigate the
impact of the “+” in MPI+X — in our case we focus
on MPI+OpenMP in particular. For MPI+OpenMP, a global
parallel reduction can be performed by first performing a local
OpenMP reduction, followed by an MPI reduction across the
nodes. However, this approach imposes a serialization (albeit
a coarse one) of the operations in the parallel reduction —
i.e., it requires a reduction of the local variables followed
by a further reduction over those intermediate values. Such
a coarse serialization may not appear to be detrimental and,
as the obvious approach presented by the two systems, would
also seem to be the best possible approach. However, if the
local reductions are not well-balanced, which can happen in
the case of irregular or dynamic adaptive applications, this
serialization can cause problems and limit the scalability of
the overall reduction operation.

Collective communication is known to propagate and even
amplify noise effects and numerous studies have been con-
ducted on the effects of external noise [1]–[5] on application
scalability and the propagation of delays in the face of
collective communication or global synchronization barriers.
With MPI+X, there is a necessary sequence of operations
(local plus global) to realize a single compound operation.
In that case, the effect of computational irregularity becomes
isomorphic to that of system noise – but potentially orders
of magnitude larger. Given the importance of irregular and
dynamic adaptive applications, it is important to understand
the effects of MPI+X on the scalability of global reduction
operations (and ultimately other collectives).

One approach to ameliorating the effect of noise on col-
lective operations is to make the collective operation non-
blocking. This becomes problematic with the MPI+X approach
because only the MPI collective operation is readily trans-
formable into a non-blocking operation. That is, only the
second half of the compound operation can be overlapped with
other work – with the straightforward implementation the local
portion is not overlapped. Using a more sophisticated – and
complicated – approach to asynchrony allows the local work to

also be overlapped. However in this case, we are moving away
from strictly MPI+X to implementation of another paradigm
using MPI+X, namely AMT, which we discuss next.

Asynchronous Many Tasking (AMT) is an alternate ap-
proach to MPI+X for programming clusters of multicore
systems. The basic paradigm of AMT is to expose and exploit
maximum parallelism through large numbers of lightweight
threads. Moreover, existing AMT systems such as Charm++
[6], OCR [7], HPX-5 [8], and Legion [9] support shared
and distributed memory with a single runtime, programming
model, and paradigm. Although AMT is still a topic of active
research, and these systems are still under active development,
they do show promise for improved scalability, particularly for
irregular applications.

In this paper we study the empirical and theoretical impact
of imbalanced reductions on two different execution models:
MPI+X and AMT, with MPI+OpenMP and HPX-5 as concrete
instances of these respective models. We explore several
approaches of maximizing asynchrony with MPI+OpenMP,
including using OpenMP tasking. We study the effects of
imbalanced reductions for microbenchmarks and on syntheti-
cally noise injected Lulesh [10] mini-app. Despite maximizing
MPI+OpenMP asynchrony, we find that as scale and noise
increases, scalability of the MPI+X model is significantly
reduced compared to the AMT model.

This paper makes the following contributions:
• We implement and evaluate a portable framework and

an API, to profile and instrument load variation with
various distributions into parallel regions of an distributed
memory application on different runtimes.

• We implement a high performance unified collective
interface on a representative AMT called HPX-5.

• We empirically analyze effects of load variation on mul-
tiple runtime execution models namely, MPI+OpenMP,
MPI and our AMT instance using a tunable collective
microbenchmark.

• We analyze mini-app Lulesh, by injecting load at various
points and on various runtime conditions and results
compared with MPI+OpenMP and AMT implementation
of Lulesh.

The rest of the paper is organized as follows. Section III,
depicts a deeper look at the problem at hand. Section IV, we
consider the HPX-5 runtime and its collective implementation.
We discuss the overall design and features offered under its
asynchronous collectives framework. In Section V, we present
the details of the load injection benchmark and discuss the
usage scenarios subjected under three runtime systems. Then,
in Section VI, we study the load injected Lulesh application
and benchmarks which simulate performance characteristics
of 2 phase reduction under irregular workload.

II. RELATED WORK

Hoefler et al. have conducted a detailed analysis on impact
of external noise effects on communication synchronization.
These effects include operating system noise [3] and network
noise [1]. Studies such as [5] further shed light on modeling

Fig. 1: General outline for a common computation graph
found in HPC applications

noise to acquire analytical perspective to explore the effect of
noise on scalability of collective operations. Ferreira, Bridges,
and Brightwell [3] use noise-injection techniques to assess the
impact of noise on several large scale applications using ex-
tremely lightweight kernels. Beckman et al. [4] characterized
sources of noise (both internal and external) and analyzed the
performance on BlueGene/L systems, using a synthetic noise
injecting benchmark known as ‘selfish detour‘ benchmark.

Research work such as [11]–[14], report on MPI+OpenMP
usage patterns, how they can be applied to existing applica-
tions and possible challenges that may be encountered. Based
on this evidence only a handful of hybrid execution patterns
have deemed to be successful in practice mainly due to the
inherent integration complexity and performance implications
across the two runtime system boundaries. The dynamic load
balancing potential of MPI+OpenMP runtime execution model
has regularly been a subject of interest. Notably, Tafti et al.
[15], [16] have reported its early adoption on AMR based
irregular applications. More recently newer AMT runtimes
[17] have grown in popularity for tackling such large scale
irregular problems.

III. BACKGROUND

compute_region() {
while (some_condition()){
#pragma omp parallel
{

//execute shared memory parallel region
}
//global reduction
MPI_Allreduce()

}
}

Listing 1: General MPI+OpenMP pattern for a two-phase
reduction

Listing 2 and Figure 1 report a very simple but commonly
found execution pattern of a two-phase reduction barrier in
MPI+OpenMP programming model. One of the limitations of
executing such a program is the strict ordering of the local
reduction phase—using a fork-join model of parallel execu-
tion, which is followed by a global synchronization primitive
such as a collective operation. Figure 1 further illustrates
this limitation more thoroughly. The data flow graph depicts
Independent regions A and C (ie:- no directed edge) and
regions B, D as dependent. Region B relies on the output of

region A and then region D on both B and C. For irregular load
conditions, it would be especially beneficial to overlap work of
region C with B. However the implicit synchronization barrier
presents a limiting factor that makes it impossible to hide ir-
regularities in region A. Therefore naive MPI+OpenMP model
of programming can make it difficult to fully utilize available
processing resources for applications with similar parallel
data dependency characteristics. Newer Implementations of
(OpenMP version 3.0 and on) have attempted to mitigate
these issues by embedding dynamic loop scheduling and task
parallelism techniques, for example using latest additions to
programming constructs like pragma omp task, pragma
omp sections and nested regions. However introducing
these newer constructs to applications and transforming them
have become a matter of software complexity. Issues of
effectively controlling nested parallelism and obscure details
of performance tuning across hybrid runtime boundaries may
become hard problems and a matter of concern for many
hybrid application developers.

AMTs are the newer breed of distributed shared memory
runtime systems that have had a significant influence on
dataflow driven parallel programming. We contend that AMTs
provide a uniform approach to collectives even under uneven
load conditions. This is largely due to the asynchronous design
of AMT runtimes. For example considering the information
in Figure 1, AMTs can effectively overlap communication
and computation of region (A, B) and combine them with
region C, thus avoiding wait time for any costly intermediate
synchronization steps and increasing throughput. Threads, in
terms of early finishers, can compensate for late comers by
taking up more work while waiting for a collective com-
munication operation to complete. Features such as Active
Messages [18], over subscription, and global address spaces
can deliver AMT runtimes with additional options to balance
load by utilizing latency hiding and pipelining. Such runtimes
can provide collective communication primitives which may
be at least theoretically as efficient as any MPI implemen-
tation available. Moreover, AMTs such as CILK and TBB
have shown comparable if not better SMP performance than
OpenMP. More important to application developers, however,
is that AMTs are by design a unified programming model, and
so they avoid poor cross-runtime usability and performance
issues that can be present in hybrid execution models.

IV. HPX-5

For this work we have selected the HPX-5 exascale runtime
as our representative adaptive multithreaded runtime. HPX-
5 is based on the ParalleX execution model [19]. HPX-5
applications are written as diffusing shared memory programs
where threads explicitly send active messages to global ad-
dresses (GAS) where they become new lightweight threads.
Threads may block on globally allocated local synchronization
objects (e.g., futures, dataflow, etc) for control and data
synchronization, and may also perform non-blocking mem-
ory transfers (puts and gets) with the GAS directly. This
model of execution permits the runtime to tolerate latency

through concurrency within and across threads. The reference
implementation of HPX-5 [20] implements a conventional
work stealing scheduler [21] for local lightweight thread
scheduling, a high performance Partitioned GAS (PGAS) for
active message addressing and RDMA operations, and uses
the Photon RDMA library [22] for network transport.

Importantly, for our purposes on HPX-5, we implemented
a non-blocking collectives interface that operates at the
lightweight thread level. As with MPI, threads interact with the
collective through two phases, first joining the collective and
then later testing the collective for completion.2 This allows
threads to overlap collective communication with computation
and tolerate latency and irregularity.

Unlike MPI, there is no limit to the number of lightweight
threads participating in a locality, nor is there any external
synchronization required. HPX-5 collective scheduling is nat-
urally integrated into the HPX-5 runtime. This unified behavior
eliminates model-imposed barriers that are fundamental to all
MPI+X instantiations, and will be shown in Section VI to
be superior for tolerating the noise and irregular behavior
expected in exascale systems.

The HPX-5 reference process based allreduce implementa-
tion is equipped with local collectives combined with number
of virtual network typologies (binary, binomial trees, hierar-
chical, etc) for for efficient global communication.

A. A Collective Communication Framework

The HPX-5 programming model envelops the necessary
constructs required for developing a communication frame-
work for collectives. In the following sections we provide an
overview of the HPX-5 programming constructs and refer to
the primary API’s that are required in this context.

1) Task Parallelism in Synchronous Domains: Intra-node
level task parallelism can be achieved in a number of different
ways within the HPX-5 runtime. A work segment or a compute
task generally is enveloped by an HPX-5 action. Therefore
before any task is executed by the runtime, user or library
needs to register their respective actions. This is achieved
via the HPX-5 action registration interface either statically or
dynamically at runtime. Another consideration that needs to be
taken into account is the locality, or global address, at which
the set of tasks are spawned. Identifier HPX_HERE indicates
that tasks are spawned in a respective action’s local domain. In
other cases, a parent task must ensure that the virtual address
range it signals for spwawning belongs to its local synchronous
domain.

In general, all hpx_*_call_() API invocations causes a
parent action to spawn new parallel actions asynchronously. A
LCO synchronization object is passed onto the function call
as a parameter, except in the situations where the synchronous
variation of an interface is invoked. This LCO object will act

2In fact, collectives in HPX-5 are data-driven and not execution driven.
The identity of the joining threads is inconsequential, and the completion
of a collective operation triggers a set of registered continuations. This style
of operation is consistent with ParalleX and can encode arbitrarily complex
dataflow.

Fig. 2: HPX-5 Parent action spawns n parallel tasks and waits
on a LCO.

as a handle for some action, often the parent task, which
performs a join operation that may cause it to wait until
all spwaned child tasks created have terminated. The code
segment in Figure 2 illustrates this concept where a parent
action A0 spawns A1, A2...An actions locally and A0 waits
until all child actions have exited.

HPX-5 includes the ability to create a logical and LCO
which provides safe access to producer and consumer (i.e., the
parent in this case) actions to signal the completion of a paral-
lel task. The hpx_lco_wait clause provides an association
within the and LCO, which will cause a wait for n number
of inputs to complete. The scheduler is expected to yield the
calling threads at hpx_lco_wait and only wake up when
the values are ready to be read, providing opportunity for other
tasks to do useful work. Intra-node task parallelism can also be
achieved by the HPX hpx_par_for and hpx_par_call
interfaces. These calls are more suited to parallelize for loops
and nested for loops that occur commonly in many matrix
multiplication and linear algebra applications .

1 //main action
2 parent_action (..){
3 ..
4 ..
5 hpx_addr_t done = hpx_lco_and_new(size);
6

7 for (int i = 0; i < size; i++) {
8 hpx_call(HPX_HERE, _child_action,..,
9 done, args, ..);

10 }
11 hpx_lco_wait(done);
12 hpx_lco_delete(done, HPX_NULL);
13 ..
14 ..
15 }

Listing 2: HPX-5 C code for parallel invocation of an Action
named child action.

2) Communicating Domains: An Efficient inter-node com-
munication strategy is essential to realize a collectives frame-
work for a task parallel runtime. HPX-5 exhibits diversity in
this area in terms of unifying task level parallelism inside a
node and facilitating communicating domains by introducing
both native blocking and non blocking message passing meth-
ods in addition to as MPI-style SPMD communication across
nodes.

HPX-5 comprises a rich set of interfaces that can be used for
general point-to-point communication between domains. HPX-
5 also supports fully synchronous, locally synchronous, and
fully asynchronous interfaces. In terms of locally synchronous
API’s, HPX-5 provides local completion semantics where the
ownership of local buffers is released back to the user at the
end of a successful invocation.

The communication API consists of several categories,
namely a) remote procedure call interface for point to point
communication b) parallel loop interface for direct parallel
actions c) process level interface for ParalleX process creation,
management, and communication d) collectives interface for
group communication d) Remote Memory Access (RMA)
based interface for direct GAS interactions using put/get, and
e) low-level network interface for fine grained communication.

We do not intend to discuss all interfaces in this paper,
however, Table I lists those that are relevant to this work.
All asynchronous and partially synchronous API’s require an
LCO to be passed into a action call API. Here, an LCO acts
as a handle to wait or test until sufficient progress is made
to acquire the result of the action(s). Some of the API’s use
continuations as a versatile method to enforce synchronization
constraints such as to expose wait until and continue after
semantics in communication. HPX-5 uses a thread continue
interface within a running action to pass on the output value
to a desired continuation. A continuation will always be
associated with a particular domain along with an action to
be executed.

3) Collective Operations: The HPX-5 collective framework
is built upon three categories of collective types supporting
both intra-node and inter-node levels. These can be categorized
into the following, a) LCO based collectives, b) process
level collectives, and c) network level collectives. As briefly
described above, a process in HPX-5 encompasses a nested
group of child processes or threads operating within their
distributed memory space. Each process associates itself with
a termination group which is analogous to a communicator
in MPI/SPMD and can be waited or tested for process ter-
mination through a termination LCO. All HPX-5 inter-node
collectives created under this level of abstraction falls into
the process level category. Network level collectives operate
at the low level transport layer and follows more MPI-like
SPMD model for group communication. We first discuss
synchronization of LCO based collectives and then move into
the native process based and combined hierarchical approach
of inter-node and intra-node collective model.

Remote Procedure Calls Blocking Description
hpx call false Locally synchronous send
hpx call sync true Fully synchronous send
hpx call async false Fully asynchronous send
hpx call with continuation false Locally synchronous send with continuation action
hpx call when false Locally synchronous send executed dependent on an LCO control signal
Parallel Loop Calls Blocking Description
hpx par for false Locally synchronous parallel for loop
hpx par for sync true Fully synchronous parallel for loop
hpx par call false Locally synchronous generic parallel loop
LCO-Collective Calls Blocking Description
hpx lco reduce new true Returns a synchronized LCO object for reduce
hpx lco allreduce new true Returns a synchronized LCO object for allreduce
hpx lco alltoall new true Returns a synchronized LCO object for alltoall
hpx lco allgather new true Returns a synchronized LCO object for allgather
Process-Collective Calls Blocking Description
hpx process collective subscribe false Start a subscription phase to signal participation in a collective group
hpx process collective finalize false Stop subscription phase and prepare for group communication
hpx process broadcast false Start a domain wide broadcast w.r.t. process/collective group
hpx process allreduce False Start a domain wide allreduce w.r.t. process/collective group
Network-Collective Calls Blocking Description
coll init true Initialize collective communication group on network level
coll sync true Fully synchronous collective call on network
coll async false Fully asynchronous collective call on network

TABLE I: List of HPX-5 API’s for collectives and their functions.

1 main_action(){
2 ...
3 allreduce = hpx_lco_allreduce_new(inputs, outputs,
4 ...,..., rop);
5 sum_result = hpx_lco_reduce_new(n,...,..., rop);
6

7 //call allreduce join
8 hpx_call(.., join_synchronous_action,...,
9 &sum_result,..)

10 }
11

12 join_synchronous_action(hpx_addr_t allreduce,
13 int id, int input,
14 hpx_addr_t sum_lco) {
15 int result;
16 //do the actual join here
17 hpx_lco_allreduce_join_sync(allreduce, id,
18 sizeof(input),
19 &input, &result);
20

21 //set lco to result
22 hpx_call_cc(sum_lco, hpx_lco_set_action,
23 ..., &result, sizeof(result));
24 }
25

26 join_asynchronous_action(hpx_addr_t allreduce,
27 int id, int input,
28 hpx_addr_t sum_lco) {
29 int r;
30 //create future to hold allreduce sum
31 hpx_addr_t f = hpx_lco_future_new(0);
32 //we pass a future for async join
33 hpx_lco_allreduce_join_async(allreduce, id,
34 sizeof(input),
35 &input, &r, f);
36

37 //wait for value to be available
38 hpx_lco_wait(f);
39 hpx_lco_delete(f, ...);
40

41 //set lco to result
42 hpx_call_cc(sum_lco, hpx_lco_set_action,
43 ..., &result, sizeof(result));
44 }

Listing 2 illustrates a simple LCO based allreduce collective

Listing 3: HPX-5 C code for LCO based collective invoca-
tion

in both synchronous and asynchronous forms. As mentioned in
Section 2, an important distinction between the two methods
is that the latter will always provide some synchronization
LCO for lazy evaluation of the result while the former will
block the invocation until acquisition of the final result is
made available. In this example the main action initiates an
allreduce LCO with required arguments. The arguments
include number of producers who will continue to input
values, consumers who will eventually read the reduced values
and a pointer to a reduction operation that will applied at
the point of joining of the input values. HPX-5 supports
custom commutative and associative reduction operators for
this purpose. Once the collective has been initialized, users
may proceed with a collective join operation of choice
such as illustrated by join_synchronous_action and
join_asynchronous_action methods. The allreduce
LCO object will be responsible for synchronization and ex-
ecution of the reduction.

Allreduce LCO and other LCOs are synchronized state
machines that interact with the HPX-5 scheduler and thread
runtime. This mode of operation is very similar to traditional
monitors and semaphores used in other systems. By default
it supports signal wait semantics where producers are being
waited until all inputs are ready. And result is propagated
once all consumers are available to read them. The state of all
reduce LCO objects transits between REDUCE and SIGNAL
phases during synchronization phases. Furthermore, should the
need arise to propagate allreduce result to other actions, HPX-
5 provides auxiliary mechanisms such as reduce and future
LCO’s as in the case of sum_result in Listing 2. This is
another instance where data flow programming constructs in

HPX-5 can be useful for application routines.
However, it should be noted that this mode of collectives is

not always scalable. The overhead introduced by monitor and
lock based synchronization, and the sequential bottleneck on a
single reducer, are significant when the number of domains and
task parallelism increases. One of the new contributions HPX-
5 provides in the collective communication space is the process
based collective paradigm. Figure 3 illustrates a process based
allreduce example which encapsulate this concept.

1 main_action(){
2 ...
3 allreduce = hpx_process_collective_allreduce_new(
4 data_size,..., rop);
5 sum_result = hpx_lco_reduce_new(HPX_LOCALITIES,
6 ...,..., rop);
7

8 //call allreduce subscribe
9 for (int i = 0; i < HPX_LOCALITIES; ++i) {

10 hpx_call(..., subscribe_action,...,
11 &allreduce);
12 }
13 ...
14 //call allreduce join
15 for (int i = 0; i < HPX_LOCALITIES; ++i) {
16 hpx_call(..., reduce_Nblcoks, reduce,
17 &allreduce);
18 }
19 ...
20 //get result
21 hpx_lco_get_reset(reduce,.., &result);
22 }
23

24 static int subscribe_action(...,
25 hpx_addr_t allreduce) {
26 for (int i = 0; i < N; ++i) {
27 ...
28 future f;
29 int local_id =
30 hpx_process_collective_subscribe(
31 allreduce, hpx_lco_set_action, f);
32 }
33 return HPX_SUCCESS;
34 }
35

36 static int reduce_action(...,
37 hpx_addr_t allreduce,
38 input_value) {
39 hpx_process_collective_allreduce_join(
40 allreduce,..., &input_value);
41 hpx_lco_get_reset(future,..., &result);
42 HPX_THREAD_CONTINUE(result);
43 }

Listing 4: HPX-5 C code for process based collective
invocation, both synchronous and asynchronous classes of
API usage is shown

HPX-5 collective model integrates an intra-node accumu-
lation stage followed by a network level reduction stage
for process level invocation. As illustrated by Figure 4 the
main action should initiate hpx_process_collective-
_allreduce_new or similar interface to instantiate the
group communication constructs. This preparation step is
necessary to contextualize information required to save the
collective operational state during the run. Then the subscribe

Fig. 3: Organization of a process level collective operation.
A domain may be oversubscribed (indicated by the groups
surrounded by dashed circle).

step is used to signal to a parent network node that a particular
domain has been registered under it. This is particularly
important since we eventually perform a reduce-broadcast
type operation for allreduce.

Results are communicated by extending continuations on
each leaf domain and parent network domain at the subscrip-
tion phase. For example, each leaf domain will contain user
level continuations such as futures to propagate the result back
to the callee action, while the parent network domain will
contain a continuation for each leaf node to broadcast inter-
domain join output to its children. The subscription phase
is synchronized such that no two subscribers from the same
domain is registered twice under the same parent. Although
this synchronization is a requirement, it must be invoked once
for a respective collective invocation, thus resulting in minimal
overhead if the same collective is repeatedly reused.

Once the reduction phase starts, each domain action
will invoke its local join operation using hpx_process-
_collective_allreduce_join, which is executed un-
der action reduce_action. Each of the local reductions
will take place in a lock free environment using thread local
buffers. When all input related to a domain has been made
available to a reducer, and the final result is ready, the reduced
value is communicated to the parent which then performs the
final reduction. Finally, using registered continuations (e.g.,
at subscribe phase) domain node(s) would broadcast the final
result back to leaf domains which will in turn propagate values

to any application using user continuations. This workflow of
a process level reduction/join is detailed in Figure 3 with leaf
domains indicated by R0, R1...Ri and phase domains indi-
cated by S0, S1...Sj . The parent phase domain T0 will contain
the final join result after the output of all join operations are
synchronized.

The process level local domain reduction phase avoids using
LCO synchronization altogether, instead it relies on thread
local buffers to store the partial reductions. This is useful
since synchronization overhead due to lock contention when
a domain is oversubscribed with multiple workers trying to
access the same shared buffer would be significant. Here,
more importantly, we introduce two implementation strategies
for inter-node collective communication for an asynchronous
task runtime: i) A continuation driven hierarchical collec-
tive implementation, and ii) a direct collective call using
an existing library supporting network-optimized collective
communication. Option (i) is the more native approach to
HPX-5 design and its programming constructs, while in (ii) we
use a more traditional approach that stems from inter-process
joins on SPMD clusters.

In the continuation-based hierarchical collective implemen-
tation we systematically extend each continuation action from
local domains to remote domains using native HPX-5 parcels.
Each parcel will contain a destination address (i.e, a future or
a GAS target), an action (hpx_lco_set_action) and data
primarily encoding the reduction value and its state. As shown
in Listing 3, the point at which this happens is dictated by invo-
cation of the hpx_process_collective_subscribe
call. This call provides users a subscription window to register
user and network level continuations until a corresponding
join is invoked. The continuation hierarchy can be considered
as a simplified overlay network where input values for a
reduction, join or broadcast values will be disseminated up
the network and computed results are pushed downwards
depending on the nature of the collective. Within the current
reference implementation we have implemented single level
hierarchiesto other Multi-level hierachical networks such as
N-ary tree, binomial tree. Other topological in the likes of
dissemination and “Bruck” are in the experimentation phase.

Fig. 4: Microbenchmark performance for HPX-5 Allreduce
with different HPX-5 specific implementations (parcel,
network), on Edison cluster (512 nodes/12000+ cores)

Fig. 5: Microbenchmark performance for HPX-5 Allreduce
with different HPX-5 parcel implementations (flat tree, N-
ary tree, binomial trees), on Cutter cluster (14 nodes/224
cores)

Fig. 6: Microbenchmark performance for HPX-5 , MPI,
MPI+X Allreduce on Edison cluster (512 nodes/12000+
cores)

B. Network Collective Implementation

Process based collectives by default use our native parcels
based implementation to create a continuation tree. Thus
drawing back from the current state of the network transports
available for HPX-5, users can decide to deploy two different
variations of collective runtimes, namely 1) PWC network
based collectives 2) ISIR network based collectives. Either
one of the mode can be enabled at HPX-5 compile time by
using the switches, -enable-photon or -enable-mpi respec-
tively. This does not however affect application level collective
interfaces in anyway and hence users can transparently decide
between the 2 implementations, depending on the performance
characteristics of the system.

HPX-5 traditionally supported point-to-point communica-
tion via its low-level network interfaces. These interfaces are
well defined in ‘xport mpi.h‘ and ‘xport photon.h‘ headers.
Beside the apparent use of point to point in HPX-5, these
were also used as vehicles for collective communication. For
example native process based collectives has used point-to-
point interfaces underneath, albeit being the general modus
of operand for the runtime. We need to emphasize that point
to point communication is no less powerful than a collective

interface, in fact is the inverse - efficient point to point
communication is the basis for a robust collective framework.
However our expectation is that runtime system may be able to
use optimized transports from network (ie:- efficient transports
from MPI and other RDMA libraries such as Photon) and
reduce any overhead involved.

Thus being true to this fact, we have implemented a new
native collective transport interface that will support inter
collectives natively at transport layer. HPX-5 network interface
defines three basic methods for network layer collectives on
2 network transports namely, MPI and Photon. For MPI, we
used underlying MPI * collective interfaces while for Photon,
we implemented native collective library using LibNBC (Non
blocking collective library used in OpenMPI) as the substrate.
As listed on Table 1 these include interfaces to initialize
collectives and perform both synchronous and asynchronous
collective patterns. Figure 4 report the performance evalua-
tion of Allreduce operation with different HPX-5 collective
transports available. This includes network level collectives
discussed in this section and pure parcel based implementation.
Figure 5 evaluates LCO based collective implementation with
other hierarchical parcel implementations. Figure 6 report the
performance comparison of HPX-5 allreduce collective (we
picked the best case here) with other runtime implementations
such as MPI and MPI+X.

V. EMULATING LOAD IMBALANCE

Fig. 7: Benchmark overview for computation load injection

To perform our study, we developed a framework that
can inject various amounts of load into existing programs. It
was important that this framework capture the core ideas we
wanted to highlight in irregular applications, irrespective of
the underlying runtime execution model. Our design is based
on several criteria identified below.

• Enabling injection of load at varying amounts (amplitude)
or conforming to a particular distribution

• Enabling injection of load at identified points - locality or
light weight process of an distributed memory application

• Enabling portability across different runtime execution
models such as MPI+OMP and HPX-5

• Enabling a lightweight profiler/tracer to identify regions
of significance for load injection

We describe the implementation in detail in the following
sections.

A. A Framework for Load Injection

Our framework uses the method of Fixed Work Quantum
(FWQ) to inject and measure load across application regions.
FWQ assumes that the minimum time tu or unit work as we
refer to it from this point on, represents the perfectly balanced
execution of a program region. However all other times unit
work can be perturbed by ti - tu or an overhead time which we
will refer to as to. Earlier work [1], [3] used similar techniques
in their noise injection benchmarks that emulate minuscule
amounts of system noise. However unlike the measurement
of external background noise in benchmarks, we do not try
to keep work quantum tu to a bare minimum since our
benchmark will specifically try to mimic actual workload on
real world applications. Therefore we have implemented load
injection of a resolution that can be measured in anything from
microseconds to any order of magnitude of seconds , and that
can be directly correlated to constant factor of compute cycles.

Fig. 8: Sample load variation on benchmark 16-node
infiniband cluster

1) Input for Load Injection: Our benchmark allows input
of basic load distribution properties at runtime using --base
arguments which take unit work (tu), amount of maximum
overhead (tu/to %) to inject as an percentage of unit work,
number of threads on each locality to inject into (tpn) and
a time or work resolution unit. Injected load can be emulated
either using a sleep such as a high resolution system timer
based nanosleep() system call or with regular spinning
by cpu instructions. Although both modes are supported, In
our study we argue that using regular spinning using no-op
instructions is much more effective since cpu yielding methods
such as sleep are susceptible to underlying operating system
and runtime system optimizations that will interfere with the
anticipated outcome. Moreover, idle cpu cores are highly
capable of absorbing noise from other parts of the system
[23], which may result in skewed measurements.

Figure 7 is an illustration of an overview of a load-injection
framework and the base MPI+OpenMP benchmark work.
In MPI+OpenMP we would like to emulate varying load
at local reduction region or a #pragma omp parallel
region, thus making sure we observe effects such as delays
in parallel threads can propagate into global synchroniza-
tion step. The offset triangle emphasizes the time difference
between the end of the local reduction phase barrier and
the start of the global synchronization point. Our benchmark

essentially calculates workload assignment at the initialization
stage and then transports the respective work assignment via
run_kernel(work_ledger_t* work) interface. This
interface abstraction provides each runtime system or appli-
cation a mechanism to implement and emulate a irregular
compute-heavy region.

Our benchmark was designed to support different load/noise
distributions as well. The uniform injection mode acts as the
perfectly load balanced base case. Other distributions allow
load/noise variation by varying random distribution parameters
for mean, standard deviation, etc. A scaled version of distri-
bution will scale just one load assignment with an overhead
by a specified percentage relative to unit work and all others
will remain uniform. Others follow the statistical properties
of their respective distributions and will depend on the input
parameters (specified by -r [a, b] for uniform random , -g
(µ, σ) for gaussian , -p (λ−1) for poisson and -e λ for
exponential distribution). We depend on known algorithms
such as Multiplicative LCG (Linear Congruential Generator)
and Box Mueller transform for psuedo-random generation of
distributions. Figure 8 report a scatter plot at injecting load at
an MPI+OpenMP execution region, on a small 16 node cluster
which emulates the effect of load variation under different
random distributions.

2) Input for Overlapped Work: As illustrated by Figure
1, different runtime systems may enable communication and
computation overlap to increase throughput by allowing in-
dependent work region C to be executed during network
communication. that can be overlapped with core parallel com-
putation region. Our framework allows emulating overlapping
work by calling run_overlapped_work(uint64_t
qw, uint64_t ow). An overlapped work segment may
present itself in 2 flavours, a) non parallalizable b) parallaliz-
able. A non parallalizable overlapped work segment may have
too many data dependencies such that any parallalization of
respective code region is either impossible or impractical. We
identify this as sequential overlap. Consequentially we identify
a parallalizable work segment as parallel overlap.

Parameters for overlapped execution is input by arguments
--mode [mode] [qw] [ow], which takes a mode switch, total
overlapped region and overlapped work quantum, both relative
to the unit work. The mode switch can enable different
versions of overlap (sequential or parallel) on three runtime
execution environments, HPX-5, MPI and MPI+OpenMP.

B. MPI+OpenMP Benchmark

Listing 5 report MPI+OpenMP benchmark with load
being injected at the parallel region. The benchmark first
calculates the load to be assigned to each thread spawned by
initializing the load-injection framework at root rank. Then
the assignment data are scattered to respective ranks using
MPI_Scatter(). To ensure all simulated MPI processes
start at the same time from the benchmark code region, we
enforce an MPI_Barrier() based synchronization point
just before timing starts and threads are spawned to emulate

respective injected workloads.

run_kernel(){
...
result = run_omp_kernel(work, ...)
MPI_Iallreduce(&result, ... , &mpi_request)
while(not done)
MPI_Test(&mpi_request, &test, ..)
test &= run_overlapped_work()

}

Listing 5: MPI+OpenMP pseudo code example for over-
lapping parallel regions

1) Overlapping parallel regions: This benchmark supports
3 modes of overlapped execution against both sequential
and parallel (cf. Section V-A2) overlap segments, a) Regular
parallel OpenMP regions b) OpenMP sections with nested
regions and c) OpenMP task with nested regions. The first
mode of overlapping does not require any special OpenMP
constructs. With the implicit synchronization barriers at lo-
cal parallel regions in MPI+OpenMP, it is not advisable to
backfeed any extra (overlapped) work into a parallel region
during the local reduction phase. Therefore, the default modus
operandi for MPI+OpenMP is to overlap with global collective
operation. This needs to be implemented with non-blocking
versions of the MPI collective communication repertoire.
However, most non-blocking MPI collective algorithms do re-
quire multiple iterations of network communication operations
[24] to complete, and so they require the MPI_Test to be
invoked progressively. Therefore as in sequential case, if an
overlapped region is too large it may hinder the collective
network progression and decrease overall throughput of the
program. Listing 5 report the respective pseudo code.

run_kernel(){
...

#pragma omp parallel
// all threads are falling through this line
#pragma omp single
// only one thread is here
#pragma omp task
result = run_omp_kernel(work, ..)
MPI_Allreduce(&result, ..)

#pragma omp task
run_overlapped_work()

// execute reduction+overlapped work
}

Listing 6: MPI+OpenMP pseudo code for overlapped par-
allel region with OpenMP task

run_kernel(){
...

#pragma omp sections
// start execute reduction+overlapped work
#pragma omp section
result = run_omp_kernel(work, ..)
MPI_Allreduce(&result, ..)

#pragma omp section
run_overlapped_work()

// other threads may branch around here
...

Listing 7: MPI+OpenMP pseudo code for overlapped par-
allel region with OpenMP section

OpenMP 3.0 parallel tasks and sections implementation
enables execution of independent parallel regions by mutually
exclusive teams of threads. Nested parallelism and friends are
ably supported by modern OpenMP implementations including
both gcc and intel compilers - although the native intel version
widely regarded to have an edge. Listings 6, 7 present the the
pseudo code for executing an overlapped kernel with either
OpenMP section or OpenMP task region.

The difference between tasks and sections is subtle but
lies in the time of execution of the parallel regions. Tasks
will be queued and always will execute in a differed fashion,
for example when a thread encounters an implicit or explicit
synchronization point.3 OpenMP sections however, will
spawn only the required number of threads for the enclosed
the sections construct and threads will not leave it until (unless
specified by a nowait clause) all sections have been exe-
cuted. For this reason, to allow parallel regions within them,
we enabled nested parallelism using omp_set_nested()
API or by setting env variable OMP_NESTED to TRUE.

run_kernel(){
...

#pragma omp parallel
MPI_Iallreduce(&do_work(),&result, .. , &req[tid])
run_overlapped_work()
#pragma omp single

// progress network
MPI_Waitall(num_r, req, status);

...

Listing 8: MPI benchmark pseudo code with MPI per
thread communicator and parallel threads implemented
by OpenMP

C. MPI Benchmark

We developed an MPI benchmark for irregular work-
loads that performs the same 2-level hierarchical reduction
task with overlap segments but without an OpenMP ker-
nel. Thus MPI benchmark avoids a parallel region with
an implicit synchronization barrier. The benchmark was
implemented by creating a single parallel region after
MPI_Init_thread(MPI_THREAD_MULTIPLE) that per-
formed the reduction operation. Next, the overlapped segments
were placed on the parallel region either in omp single
or all parallel regions, depending on overlapped segment at
hand is either sequential or parallel, respectively. Since logical
divisions within a communicator is impossible with current
MPI standard, our design required a per threaded communi-
cator for reduction operations. However this design can be
supplemented by proposed MPI-4 endpoints [25] proposal if
it is incorporated into the standard in the future. Listing 8
report the pseudo code for aforementioned benchmark.

3omp pragma parallel region is an implicit synchronization point in
Listing 6

D. HPX-5 Benchmark

In HPX-5 all the functionality of a 2-phase reduction can
be encompassed by a single collective invocation(cf. Section
IV). As an example for allreduce operation the corresponding
invocation is the process based collective interface hpx-
_process_collective_allreduce_join [20].

struct elem[
int id
long work
long overlap]

// main parallel reduction action
hpx_work_action(elem, allreduce){
hpx_process_collective_allreduce_join(
do_work(elem->id), allreduce, ...)

}
run_kernel_action(elem_addr[], N, allreduce) {
// Create an array of futures for asynchronous
// threads for this iteration.
Future sync[N + 1]
for (i = 0 --> N)
// Reduce asynchronously across the local work
// (reduce joins the collective)
sync[i] = hpx_call(elem_addr[i], hpx_work_action,

&allreduce)
// Post the asynchronous overlaped work.
sync[N]=hpx_call(HPX_HERE, overlap, and, elem_addr)
// Wait for this iteration to complete.
hpx_wait_all(sync)

}

Listing 9: HPX-5 inspired pseudo code shows the parallel
execution of 2 phase reduction operation and overlapped
work region.

HPX-5 benchmark start with the initialization phase at root
locality by initializing the load-injection framework and then
performing a asynchronous broadcast operation with the use
of hpx_call() interface. Overlapping work is a trivial task
in HPX-5 due to the asynchronous nature of operations. HPX-
5 will spawn a single or multiple threads for the overlapped
work depending on overlapped segment is either sequential
or parallel, respectively. Listing 94 report the pseudo code
for the benchmark. HPX-5 action reduce correspond to the
local/global reduction region while overlap action refers to
the parallel independent work region. HPX-5 Futures are used
to detect the termination of all work regions.We also collect
timing data by writing directly to a shared memory region on
locality root from all other localities (including root itself)
using one sided operation hpx_gas_memput_rsync().

VI. RESULTS AND DISCUSSION

We performed a number of synthetic benchmarks with
varying, scale and load injection characteristics to investigate
effect of outliers to a global reduction. Apart from the synthetic
benchmarks, we choose a bulk synchronous parallel applica-
tion, LULESH to test load injection. All benchmarks were
carried out on a small scale HPC cluster “Cutter” at IU (gcc

4The actual HPX-5 version requires more lines of code but performs exactly
this parallelization

72.3%

86.3%

87.6%

78%

64.8%

83.8%

−4.66% −1.27% −1.24%0

100

200

300

400

500

32 256 2048

cores

s
lo

w
d

o
w

n
 a

ft
e

r
lo

a
d

 i
n

je
c

ti
o

n
 (

%
)

dynamic

guided

static

(a) uniform

124%

263%

105%

237%

91.8%

188%

−3.58% −1.27% −1.55%0

100

200

300

400

500

32 256 2048

cores

s
lo

w
d

o
w

n
 a

ft
e

r
lo

a
d

 i
n

je
c

ti
o

n
 (

%
)

dynamic

guided

static

(b) scaled

186%

302%

191%

282%

186%

264%

−4.3% −1.27% −3.11%0

100

200

300

400

500

32 256 2048

cores

s
lo

w
d

o
w

n
 a

ft
e

r
lo

a
d

 i
n

je
c

ti
o

n
 (

%
)

dynamic

guided

static

(c) exponential

Fig. 9: Lulesh MPI+OMP version relative performance (slowdown) with different noise Injection and OMP par for loop
scheduling methods on Cori (upto 2048 cores)

Region ID Function Name Average Time (%)
5 CalcHourglassControlForElems 45.20
3 CalcFBHourglassForceForElems 34.65
1 InitStressTermsForElems 14.39
12 CalcKinematicsForElems 0.80
2 IntegrateStressForElems 0.78
13 CalcLagrangeElements 0.60

TABLE II: List of functions with largest time spent
(descending order) on OMP par for regions in Lulesh
MPI+OMP version

14.53%

8.32%

8.61%

0.34%

0.36%
1.47%

3.26%

0.41%
1.23%

9.95%

3.07%

7.32%

−44.49%

−9.45%

−0.34%

−25

0

25

8 27 64 125 216

problem size (factor)

s
lo

w
d

o
w

n
 a

ft
e

r
lo

a
d

 i
n

je
c

ti
o

n
 (

%
)

HPX−5+PWC

HPX−5+PWC+Oversubscribe

MPI+OpenMP

Lulesh relative performance on Cutter with scaled noise

(a) scaled

14.36%

5.1%

5.81%

0.34%

0.75%

1.9%

3.37%

1.71%

2.08%

6.78%

0.88%

7.78%

−43.09%

−9.95%

−1.17%

−25

0

25

8 27 64 125 216

problem size (factor)

s
lo

w
d

o
w

n
 a

ft
e

r
lo

a
d

 i
n

je
c

ti
o

n
 (

%
)

Lulesh relative performance on Cutter with random exponential noise

(b) exponential

Fig. 10: Lulesh Slowdown on Cutter cluster under scaled
and exponential noise injection (upto 224 cores)

0.78%

3.1%

4.28%

2.09%

0.59%

9.09%

0.42%

0.52%

5.17%

0.78%

3.1%

4.28%

2.09%

0.59%

9.09%

0.42%

0.52%

5.17%

0.0

2.5

5.0

7.5

10.0

12.5

1000 4913 10468

problem size (factor)

s
lo

w
d

o
w

n
 a

ft
e

r
lo

a
d

 i
n

je
c

ti
o

n
 (

%
)

HPX−5

HPX−5+Oversubscribe

MPI+OpenMP

Lulesh relative performance on Edison with scaled noise

(a) scaled

2.45%

0.53%

4.27%

3.18%

0.7%

4.43%

1.45%

0.67%

4.35%

2.45%

0.53%

4.27%

3.18%

0.7%

4.43%

1.45%

0.67%

4.35%

0.0

2.5

5.0

7.5

10.0

1000 4913 10468

problem size (factor)

s
lo

w
d

o
w

n
 a

ft
e

r
lo

a
d

 i
n

je
c

ti
o

n
 (

%
)

Lulesh relative performance on Edison with random exponential noise

(b) exponential

Fig. 11: Lulesh Slowdown on Edison cluster under scaled
and exponential noise injection (upto 12000+ cores)

/ open-mpi env) and on a large scale HPC clusters “Edison”,
“Cori” (intel / cray-mpich env) on NERSC Berkley cluster.

0.03

0.04

0.05

0.06

0.07

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

ti
m

e
 (

s
)

collbench_hpx−5

collbench_mpi+omp

collbench_mpi+thread_comm

scale=0.2x

0.03

0.04

0.05

0.06

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

ti
m

e
 (

s
)

scale=0.5x

0.03

0.04

0.05

0.06

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

ti
m

e
 (

s
)

scale=1.5x

(a) scaled 0.2x-1.5x

0.05

0.10

0.15

0.20

0.25

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

ti
m

e
 (

s
) collbench_hpx−5

collbench_mpi+omp

distribution=uniform

0.05

0.10

0.15

0.20

0.25

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

ti
m

e
 (

s
)

distribution=scaled 2.5x

0.05

0.10

0.15

0.20

0.25

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

ti
m

e
 (

s
)

distribution=random uniform

0.05

0.10

0.15

0.20

0.25

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

ti
m

e
 (

s
)

distribution=gaussian

0.05

0.10

0.15

0.20

0.25

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

ti
m

e
 (

s
)

distribution=exponential

(b) random distributions

Fig. 12: Microbenchmark performance results on various
noise/load distributions on Cutter cluster (upto 224 cores)

0.05

0.10

0.15

0 20 40 60 80 100 120 140 160 180 200

overhead

ti
m

e
 (

s
)

collbench_hpx−5

collbench_mpi+omp

collbench_mpi+thread_comm

distribution=uniform

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120 140 160 180 200

overhead

ti
m

e
 (

s
)

collbench_hpx−5

collbench_mpi+omp

collbench_mpi+thread_comm

distribution=random uniform

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120 140 160 180 200

overhead

ti
m

e
 (

s
)

collbench_hpx−5

collbench_mpi+omp

collbench_mpi+thread_comm

distribution=gaussian

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120 140 160 180 200

overhead

ti
m

e
 (

s
)

collbench_hpx−5

collbench_mpi+omp

collbench_mpi+thread_comm

distribution=exponential

Fig. 13: Microbenchmark performance for scaling ampli-
tude of load/noise with gaussian,poisson,uniform random,
exponential distributions on Cutter cluster (224 cores)

At small scale we ran up to 16 nodes/256 cores on Intel Xeon
E5 16 core 2.1GHz processors supported by an dual Infiniband
QLogic/Mellanox Network. Large scale experiments were
followed on ’Edison’ and ’Cori’, upto 1024 nodes/24576 cores
on Cray X30 Intel ’Ivy Bridge’ 24-core, 2.4 GHz processor

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

collbench_hpx−5

collbench_mpi+omp

collbench_mpi+thread_comm

dist,ovlp=uniform, 10

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

scaled 2.5x

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

uniform random

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

gaussian

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

exponential

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

20

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

40

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

80

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.1

0.2

0.3

16 32 48 64 80 96 112 128 144 160 176 192 208 224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

Fig. 14: Microbenchmark scaling performance with se-
quential overlap work segment size (fixed overhead) under
multiple distributions on Cutter cluster (upto 224 cores)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

collbench_hpx−5

collbench_mpi+omp

collbench_mpi+thread_comm

dist,ovlp=uniform, 10

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) scaled 2.5x

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) uniform random

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) gaussian

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) exponential

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) 20

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) 40

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) 80

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.0

0.1

0.2

0.3

0.4

24 48 96 192 384 768 1536 3072 6144 12288 24576

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

Fig. 15: Microbenchmark scaling performance with se-
quential overlap work segment size (fixed overhead) under
multiple distributions on Edison cluster (upto 24000+
cores)
nodes and Intel ’Haswell’ 32-core, 2.3 GHz processor nodes
respectively, backed up by a Cray ’Aries’ Dragonfly network
with aggregated MPI bandwidth of ∼8GB/s.

A. Case Study - Lulesh

We used MPI+OpenMP version of LULESH, a proxy
application for shock hydrodynamics to study the effects of
irregular load at scale with different OpenMP loop scheduling
options . Furthermore we analyzed the ability to absorb irreg-
ular noise by two (2) implementation versions of LULESH
namely, a) MPI+OpenMP b) AMT implementation of HPX-
5 (also called ’LULESH parcels’ version). HPX-5 ’parcels’
version was adapted directly from the MPI version of the
LULESH code. In MPI+OpenMP version of LULESH, MPI
handles coarse-grained domain-level parallelism and OpenMP
is used for more finer grain parallelism within each MPI

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

collbench_hpx−5

collbench_mpi+omp

collbench_mpi+thread_comm

dist,ovlp=uniform, 50

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) scaled 2.5x

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) uniform random

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) gaussian

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) exponential

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) 60

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) 70

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

) 80

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

0.2

0.4

0.6

0.8

16 32 48 64 80 96 112128144160176192208224

cores

m
e

a
n

 t
im

e
 /

 i
te

ra
ti

o
n

 (
s

)

Fig. 16: Microbenchmark scaling performance with parallel
overlap work segment size (fixed overhead) under multiple
distributions on Cutter cluster (upto 224 cores)

0.2

0.4

0.6

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

collbench_hpx−5

collbench_mpi+omp

collbench_mpi+omp−sec

collbench_mpi+omp−task

collbench_mpi+thread_comm

dist,ovlp=uniform, 50

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
) scaled 2.5x

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
) uniform random

0.4

0.5

0.6

0.7

24 48 96 192 384

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
) gaussian

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
) exponential

0.2

0.4

0.6

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
) 60

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

0.4

0.5

0.6

0.7

24 48 96 192 384 768 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

0.2

0.4

0.6

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
) 70

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

0.4

0.5

0.6

0.7

24 48 96 192 384

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

0.2

0.4

0.6

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
) 80

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

0.4

0.5

0.6

0.7

24 48 96 192 384

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

0.4

0.5

0.6

0.7

24 48 96 192 384 768 1536 3072 6144 12288

cores

m
e
a
n

 t
im

e
 /
 i
te

ra
ti

o
n

 (
s
)

Fig. 17: Microbenchmark scaling performance on five
runtime environments (HPX-5, MPI, MPI+OpenMP,
MPI+OpenMP Sections and MPI+OpenMP Tasks), with
parallel overlap work segment size (fixed overhead) under
various noise/load distributions on Edison cluster (upto
12000+ cores)
process. The MPI+OpenMP LULESH implementation uses
MPI across nodes and OpenMP for cores in-node, allowing
reductions of the hydro and Courant constraints to be calcu-
lated within the threads [10] on a task before messages are
sent between tasks. We observed that all the parallel compute
regions contributing to lagrange leap frog computation was
followed by a time constraint calculation which involved
a global reduction operation. Thus this usage pattern was
consistent with the cases we discussed above (cf. Listing 2)

One observation from the MPI+OpenMP LULESH code
was that OpenMP parallel regions were kept separate from

MPI communication, hence it was easier for us to select
parallel regions that could be injected with artificial load.
There were possible 30 OpenMP parallel regions in Lulesh
code but we identified five (6) most significant parallel regions
to inject load into by profiling all regions with our framework
as shown in Table II. Percentage time spent on these parallel
regions were observed from an average ∼1 to ∼45% in the
selected six regions for number of problem sizes and scales
we tested on different clusters. Even-though LULESH does
not have any inherent load imbalance problem, with load
injection we were able to observe behavior that can occur
due to irregular noise in parallel regions of applications. More
importantly we could characterize its ability to absorb such
pressure on different runtime choices.

Figure 9 report a sample execution run of Lulesh on “Cori”
HPC cluster spanning upto 2048 cores. We chose a fixed
problem size of 48 and executed 100 timecycles to take
average running time on Lulesh execution. Four types of
experiments were tested on MPI+OpenMP LULESH. First
we kept a base experiment which did not inject noise into
LULESH, and subsequently tested LULESH performance on
varying amounts of load injection with scaled, uniform, and
uniform random distributions. Additionally we tested its per-
formance degradation scheduled under ’static’, ’dynamic’ and
’guided’ OpenMP modes. We injected a load of 2us units on
each experiment with overhead being kept constant at 200%
relative to tu. We understandably noted a gradual slow down
in LULESH performance with different noise distributions,
worst being with ’exponential’ noise outliers 9. We observed
that ’static’ OpenMP parallel loop schedules performed the
worst with ∼265 to ∼300% slowdown in ’exponential’ noise
injection. LULESH OpenMP instances that were powered by
’dynamic’ OpenMP loop scheduling, were the best performers
with average slowdown ranging as low as from ∼1 to ∼5%.

Figure 10 and 11 report LULESH relative running time
differences (w.r.t. running time of LULESH without any
noise injection) on three implementation choices, under scaled
and exponential noise outliers in their respective parallel
regions. We analyzed LULESH on MPI+OpenMP and HPX-
5 (’Parcels’) implementations scaling up to 216 cores on
“Cutter” and 12000+ cores on “Edison”. ’Parcels’ version of
LULESH was executed on two (2) different modes, regular
and oversubscribed. In all cases total problem size was kept
at same value 5 for each experiment instance, however in
oversubscribed mode we increased the number of domains
per each HPX-5 processor node. The oversubscribed mode
enabled HPX-5 work stealing scheduler to efficiently work
in overdrive, which was evident from the observed results.
In this mode HPX-5 was able to absorb the noise outliers
most effectively, sometimes showcasing speedup of ∼45%
for smaller problem sizes and negligible slowdown of ∼1%
to ∼3% for larger problem sizes. MPI+OpenMP version of
LULESH reported the worst mean running time with ∼1% to

5All experiments conducted were weak scaling on LULESH. Total problem
size was given by num of domains . problem size3

∼10% slowdown on Cutter and ∼5% to ∼10% on Edison.

B. Microbenchmarks
We developed benchmarks that were purpose built to com-

pare aforementioned properties under different runtime ex-
ecution models HPX-5, MPI+OpenMP and MPI (cf. Sec-
tions V-D, V-B and V-C). In particular all microbenchmark
experiments were based upon 2 categories of execution. a)
Load characteristics when outliers are present in parallel
compute region followed by global synchronization b) Load
characteristics when outliers are present in parallel compute
region and also extra overlapped work region is embedded.
Our initial set of results belong to case a) while the figures
followed later will focus on case b). It is important to note that
on all microbenchmark experiments that follows, unit work tu
, was kept at constant 40 units. Furthermore all experiments
we will show error bars of of 90% confidence interval.

Figure 12a report results of experiments where a single
noise outlier were injected into the threads in the parallel
region. AMT reported better performance in majority of in-
stances compared to MPI and MPI + OpenMP execution. We
observed a maximum mean slowdown of about 66% in MPI
while 28% in MPI+OpenMP version w.r.t. AMT execution at
224 cores. We also noticed that HPX-5 can absorb pressure
from a maximum single outlier about 1.5 times the unit work.

Several benchmarks tested load injection into the parallel
kernel of the MPI+OpenMP and HPX-5 execution following
specific random probability density function of which param-
eters we discussed above (cf. Section V-A1). Each experiment
pertaining to a particular random distribution was supplied
with an maximum overhead tomax value to 2x times unit work
tu. 6

Next we adjusted statistical parameters accordingly to fit
between the scaled range, for example gaussian mean was set
at the mid range 2(tu) and sigma parameter was set 1(tu) .
Similarly random uniform distribution parameters [a, b] were
set between tu and 3(tu), and so on. We observed that our
AMT version was able to complete the reduction faster than
MPI+OpenMP counterpart (Figure 12b). We also noticed that
the mean latency variation when scaling was significant in
MPI+OpenMP, 90% increase from initial value, compared to
19% increase in HPX-5 under exponential noise injection.

Furthermore we tried scaling amplitude of noise outliers,
tomax value under different distributions. Results on small
scale cluster Cutter can be seen in Figure 13. The maximum
overhead tomax parameter was scaled from 2 units to 200
units under various distributions at a constant number (14
nodes/224 cores) of processors (while making sure necessary
adjustments to the random probability distributions were made
accordingly). Increased overhead understandably caused lin-
ear slowdown with different random distributions, yet AMT
showed better adaptability with increased amplitude of noise.

A compelling case for AMTs is seen when 2 phase reduction
was overlapped with an additional compute region. Most in-
teresting effects from our benchmark can be spotted in Figure

6Each parallel load injection ti was scaled between tu and 3.tu

14, 15 for sequential overlap and Figure 16, 17 for parallel
overlap (cf. Section V-A2). We started with a base case with
uniform noise/load injection with a lower overlap segment
size setting. On this base case, reduction performance of all
runtimes were about the same (+/−5% to 15% gap in running
time), as being shown by the above figures. In both sequential
and parallel overlap case, MPI+OpenMP generally performed
poorly with scale, compared to the execution of either MPI
or AMT. However in parallel overlap case, MPI+OpenMP
implementation performed better than its sequential setting, es-
pecially when uniform and scaled noise outliers were present.
We observed slightly different performance characteristics in
MPI+OpenMP execution on the two cluster environments.
Mainly, various differences in runtime implementations of
MPI+OpenMP (open-mpi vs cray-mpich and gcc vs intel
respectively) have contributed towards this behavior. A rapid
performance degradation of MPI+OpenMP execution in some
instances were due to the cascading effect of implicit syn-
chronization barrier on MPI+OpenMP local reduction. As
discussed earlier, such situations prohibit processors from
engaging in other useful work or progressing the network.

Figure 14, 15 report a significant slowdown in regular
MPI+OpenMP w.r.t MPI and AMT execution, when the over-
lap percentage value being gradually increased. For sequential
overlapped segments on Cutter, MPI+OpenMP reported a
maximum of ∼2X to ∼4X slowdown (on different distri-
butions) while MPI exhibited only a maximum of ∼0.65X
slowdown compared to the AMT running time. On Edison
cluster however scaling upto 24000+ cores, we noticed that
MPI threaded execution outperforming our AMT instance
marginally. In this case MPI+OpenMP reported a maximum
of ∼3X to ∼6.5X slowdown while MPI reported a ∼0.2X to
∼0.4X speedup compared to AMT execution. When the same
benchmarks were carried out for parallel overlapped segments
on Cutter (Figure 16), we observed a relative slowdown around
∼10% to ∼50% w.r.t. AMT execution for gaussian, random
and exponential distributions. In the presence of scaled noise
outliers however, MPI threaded mode on average performed
45% slower than MPI+OpenMP and 55% slower than AMT.
In this case MPI synchronization overhead at smaller scales
with native MPI thread modes failed to amortize over relatively
small parallalization gain.

Our final benchmark (Figure 17) tested 2 additional modes
of execution for MPI + OpenMP, namely asynchronous sec-
tions and tasks, on Edison scaling upto 12000+ cores. AMT
execution performed better than other runtime options in most
of these instances with parallel overlap segments and more
importantly we noted that it was able to absorb pressure at
these large scales while maintaining a relative running time
significantly lower than to that of all MPI+OpenMP modes of
2 phase reduction. We observed a mean slowdown of ∼2% to
∼35% in MPI+OpenMP task execution while MPI+OpenMP
sections was ∼2% to ∼25% w.r.t. AMT execution. However
MPI+OpenMP sections benchmark displayed the best perfor-
mance in the presence of scaled noise outliers with ∼6%
speedup against AMT. Both MPI only threaded mode and

MPI+OpenMP regular version behaved similarly at scale with
relative slowdown ranging from ∼2% to ∼30% against AMT
execution mode.

VII. CONCLUSION

Naively combining MPI+X in a bulk synchronous parallel
way necessarily includes a sequential barrier bottleneck be-
tween the X collective and the MPI collective. More involved
combinations (e.g., using OpenMP tasks) can eliminate that
barrier, but expose the disjoint nature of the MPI and X
schedulers. As systems increase in size and real problems
become more irregular, these effects will impact the scala-
bility of applications using MPI+X. An AMT runtime with
integrated collective support has no sequential bottleneck and
has unified scheduling and is therefore not subject to these
same scalability limitations.

Our results indicate that given above situations, MPI +
OpenMP performance varied rapidly across different execution
modes and environments. Effectiveness of other alternatives
such as threaded MPI largely depended on the size and
structure of irregularity. More importantly, results demonstrate
that on both small and large scales a reference AMT im-
plementation was able to outperform MPI + OpenMP 3.0
on a simple collective microbenchmark that simulates load
imbalance. Furthermore, as applications are able to expose
overlapped work with the non-blocking collective this benefit
increased, as the HPX-5 reference runtime effectively used
this overlapped work to tolerate system noise and workload
irregularities. These results indicate the importance of further
development, implementation, and investigation of AMT as an
effective approach for current and future large-scale heteroge-
neous parallel computing.

REFERENCES

[1] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing
the influence of system noise on large-scale applications by
simulation,” in Proceedings of SC 2010. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 1–11. [Online]. Available:
http://dx.doi.org/10.1109/SC.2010.12

[2] ——, “The impact of network noise at large-scale communication
performance,” in IPDPS 2009, May 2009, pp. 1–8.

[3] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing
application sensitivity to os interference using kernel-level
noise injection,” in Proceedings of SC 2008. Piscataway, NJ,
USA: IEEE Press, 2008, pp. 19:1–19:12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1413370.1413390

[4] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj,
“Benchmarking the effects of operating system interference on
extreme-scale parallel machines,” Cluster Computing, vol. 11, no. 1, pp.
3–16, Mar. 2008. [Online]. Available: http://dx.doi.org/10.1007/s10586-
007-0047-2

[5] S. Agarwal, R. Garg, and N. K. Vishnoi, “The impact of noise on
the scaling of collectives: A theoretical approach,” in International
Conference on High-Performance Computing. Springer, 2005, pp. 280–
289.

[6] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in Proceedings of OOPSLA’93,
A. Paepcke, Ed. ACM Press, September 1993, pp. 91–108.

[7] T. Mattson, R. Cledat, V. Z. Budimlic, Cave, S. Chatterjee, B. Se-
shasayee, R. van der Wijngaart, and V. Sarkar., “OCR the open com-
munity runtime interface, version 1.0.0,” June 2015.

[8] T. Sterling, M. Anderson, P. K. Bohan, M. Brodowicz, A. Kulkarni, and
B. Zhang, “Towards exascale co-design in a runtime system,” in EASC
2014, Stockholm, Sweden, Apr 2014.

[9] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:
Expressing locality and independence with logical regions,” in
Proceedings of SC 2012. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 66:1–66:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389086

[10] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. Devito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and
C. H. Still, “Exploring traditional and emerging parallel programming
models using a proxy application,” in IPDPS 2013, May 2013, pp. 919–
932.

[11] J. Corbalan, A. Duran, and J. Labarta, “Dynamic load balancing of
mpi+openmp applications,” in ICPP 2004, Aug 2004, pp. 195–202 vol.1.

[12] F. Cappello and D. Etiemble, “Mpi versus mpi+openmp on the ibm sp for
the nas benchmarks,” in Supercomputing, ACM/IEEE 2000 Conference,
Nov 2000, pp. 12–12.

[13] S. Bova, C. Breshears, R. Eigenmann, H. Gabb, G. Gartner, B. Kuhn,
B. Magro, S. Salvini, and V. Vatsa, “Combining message-passing and
directives in parallel applications,” SIAM News, vol. 32, no. 9, 1999.

[14] E. Lusk and A. Chan, “Early experiments with the openmp/mpi
hybrid programming model,” in Proceedings of IWOMP’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 36–47. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1789826.1789831

[15] W. Huang and D. Tafti., “A parallel computing framework for dynamic
power balancing in adaptive mesh refinement applications.” in Proceed-
ings of Parallel Computational Fluid Dynamics, 1999.

[16] W. Huang and D. K. Tafti, “A parallel adaptive mesh refinement algo-
rithm for solving nonlinear dynamical systems,” International Journal of
High Performance Computing Applications, vol. 18, no. 2, pp. 171–181,
2004.

[17] J. S. Firoz, M. Barnas, M. Zalewski, and A. Lumsdaine, “Comparison
of single source shortest path algorithms on two recent asynchronous
many-task runtime systems,” in ICPADS 2015. IEEE, 2015, pp. 674–
681.

[18] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,
“Active messages: A mechanism for integrated communication and
computation,” in Proceedings of ISCA 1992. New York, NY, USA:
ACM, 1992, pp. 256–266.

[19] H. Kaiser, M. Brodowicz, and T. Sterling, “Parallex an advanced parallel
execution model for scaling-impaired applications,” in Proceedings of
ICPPW 2009. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 394–401.

[20] “HPX-5,” available from http://hpx.crest.iu.edu.
[21] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded com-

putations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, Sep.
1999.

[22] E. Kissel and M. Swany, “Photon: Remote memory access middleware
for high-performance runtime systems,” in IPDPSW 2016, May 2016,
pp. 1736–1743.

[23] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the
missing supercomputer performance: Achieving optimal performance
on the 8,192 processors of asci q,” in Proceedings of SC 2003.
New York, NY, USA: ACM, 2003, pp. 55–. [Online]. Available:
http://doi.acm.org/10.1145/1048935.1050204

[24] T. Hoefler and A. Lumsdaine, “Design, Implementation, and Usage of
LibNBC,” Open Systems Lab, Indiana University, Tech. Rep., Aug.
2006.

[25] J. Dinan, P. Balaji, D. Goodell, D. Miller, M. Snir, and
R. Thakur, “Enabling mpi interoperability through flexible
communication endpoints,” in Proceedings of EuroMPI 2013. New
York, NY, USA: ACM, 2013, pp. 13–18. [Online]. Available:
http://doi.acm.org/10.1145/2488551.2488553

