REFERENCE COUNTING CAN MANAGE THE CIRCULAR

ENVIRONMENTS OF MUTUAL RECURSION¥*

Daniel P. Friedman

David S. Wise

Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHNICAL ReEPorT No. 73

REFERENCE CouNTING CAN MANAGE THE CIRCULAR
ENVIRONMENTS OF MuTtuaL RECURSION

DanieL P. FrRIEDMAN
Davip S, Wise
May, 1978

Keywords: Storage management, threads, closure, Y-combinator,
funarg, LISP, lexical scoping, ISWIM, applicative

programming.
¥Research reported herein was supported (in part) by the

National Science Foundation under grants numbered MCS75-06678 A0l
and MCST77-22325.

To appear in Information Processing Letters.

Introduction

In this note we advance reference counting [3] as a
storage management technique viable for implementing recursive
languages like ISWIM [14 , 2 71 or pure LISP [15] with
the labels construct for implementing mutual recursion from
SCHEME [19 1. Labels is derived from letrec [13 , 9]
and displaces the ;gggi operator [1% '], a version of the
paradoxical Ercombinator [4]. The key observation is that
the requisite circular structure (which ordinarily cripples
reference counts [12 , p.4127) occurs only within the
language--rather than the user--structure, and that the

references into this structure are well-controlled.

Two sorts of function bindings are provided in SCHEME,
and both require that the environment be attached to the
function definition to make a function closure, whenever
that function is bound as a value. The first, akin to the
funarg structure of LISP, occurs whenever a lambda-expression
is encountered by the evaluator. It results from a
lambda-expression being bound to a variable, which usually
occurs as an argument to another (e.g. maplist [L6377 .

This case includes the so called "upward" as well as "downward"
funarg. The second results from a labels structure, the
only expression in an applicative subset of SCHEME which can

generate circular structures.

In ISP 1.5 15] a function closure is represented
by a triple composed of the keyword funarg, a func-
tion definition (usually a LAMBDA-expression), and an
environment. In Figure 1 we have altéred this representation
slightly, saving a node and distinguishing the reference
to the environment, which may (Figure la) or may not
(Figure 1lb) be counted in the reference count scheme. In
this representation a closure 1s an environment . (or

association list [15]) preceded by two items: a keyword
(funarg or Bfunarg) and a function definition.

We shall differentiate closures built from labels with

the symbol Bfunarg because thelreference—count system treats
them specially. The interpretation of either closure by

the language intérprétér is the same; they are created and
destroyed differently. The bindings we establish through
Bfunarg (so-called because of the BETA notation of Sussman
and Steele [19] and suggestive of the backward environment
pointer) are significant because théy allow the programmer
to express mutual recﬁrsion of iodaili—defined functions.
This facility reduces the programmer's burden by reducing
global bindings (and the extra réstrictions that go with
them) while improving the performance of thé code because
active environments remain small (along with storage space

and access cost).

Using labels

A typical labels expression might appear like a prototype
of the form:
labels:<
(f ~ definition-of-f

g ~ definition~of-g
h ~ definition-of-h) expression>

Its meaning is that of the evaluation of expression in an

environment which includes the bindings of the function
identifiers f, g, and h to their corresponding definitions
(closed lambda-expressions). Moreover (and most significantly),
these closures refer to that same environment so that occurences
of the identifiers f, g, or h in any of the definitions or in

expression refer to these newly created function bindings and

nothing else. Other identifiers have the meaning determined
by their bindings in the non-local environment which envelops

the labels form.

The interpretation of labels is most similar to an

ALGOL 60 block. Closures establish "static" or "lexically-
scoped"”" bindings for the identifiers f, g, and h for all
lexical occurences of these identifiers within the labels
form. In contrast, many interpreters (e.g. LISP 1.5, APL,
and SNOBOLY [18]) provide "dynamic" bindings under which
the meaning of identifiers within a function definition
depends on the eventual environment of function invocation,
regardless of where the definition occurred. (LISP 1.5 even
allows the user to explicitly close function definitions at

any time in between by invoking it's function closer, function.)

The binding of an ordinary function identifier f appears
in Figure la. The environment referenced there never includes
the new binding of f, itself, because the closure is formed
before that binding: this new binding properly augments that
environment. Figure 1lb illustrates a function binding
established through labels. In this case the closure does
include the functional binding through a structure (the
associlation list or a-list) shown in Figure 2. The structure
there added to G in order to construct E results from the labels

form presented above.

Since the structure between E and G in Figure 2 is derived
from interpretation of one labels form, it is constructed all
at once. At creation there are, therefore, no shared references

into that new piece of the association 1list. Furthermore, each

use of this structure in the interpreter to resolve a reference
(assoc in LISP) involves a traversal which will be completed
before E is dereferenced.

It is important that this traversal does not alter the
structure, nor does i1t create any sharing. If the desired
value 1s found then either it does not contain a circular

reference, or it is copied immediately and the copied value

is returned. Since the only circular references in our scheme
arise from labels environments, the interpreter need only
check to see if the value to be returned starts with Bfunarg
If it does not, then the value may be borrowed and a shared

reference may be returned without delay.

_ ~3=
If it does then that closure is copied as a funarg,

requiring two new nodes and a new reference (counted) to

The environment; all references to the circular structure
remain at the head, E in Figure 2. Most often these two
nodes are recovered immediately because the closure is
passed directly to the system evaluator which consumes it
before a second reference can be established. (Any other

use of a closure, as another function's parameter or value,
occurs so rarely that actual copying of a Bfunarg closure as
a funarg closure will be the exception rather than the rule.)
This is the only way closures may be used with so-called
"first order" functions or a call-by-need [21] pretocol where
the only time a functional binding is sought is when it will
be applied by the evaluator. With second-order functions
under a call-by-value protocol (like pure LISP) these

copied structures could proliferate within the system at

some cost in space, but fortunately practical instances

of such programs are quite rare.

Not counting circular references

The dotted edges in Figure 2 illustrate the only circular
references in the system. Thesge
circularities only occur in the environment structure which
is created, accessed, and destroyed exclusively by the
interpreter. Since the user is not provided with field

altering primitives (i.e. rplaca, rplacd, set in LISP), he

has no way of constructing his own circular structures.
Such restrictions occurring in languages like pure LISP
have particular import for parallel processing systems [20]
aside from the implications for storage management considered

here.

~-6-

As a result of these observations, the circular links,

dotted in Figure 2, need not be counted by the reference

count scheme. The reference count of the node referenced

by E 1s one just after creation of the environment between

E and G. It may rise and fall as it is "borrowed" and
"erased" [3] and when it eventually falls to zero, all

the nodes i1illustrated in Figure 2 accessible from E, but not
from G are necessarily recoverable. That reccvery cannot occur,
however, until all use of the closures bound to f, g, and h has
been completed; the accession of any of these bindings would
have resulted in a copied closure including a counted reference
to E, precluding its recovery, and so if E is dereferenced

completely then there will never be any more access to those closures.

On recovery, the distinction between funarg and Bfunarg is
significant. When an environment is dereferenced and its
structure is recovered, any structures (atomic identifiers and
their bound values) indirectly referenced will have their
reference counts decremented; if to zero then those structures
will be recovered in turn. The reference count of the environment
within a dereferenced funarg closure has its reference count
decremented as does the function definition of the closure, but
the environment within a Bfunarg closure is treated differently.
such environment references, the dotted ones in Figure 2, are
dereferenced but there is no reference count manipulation; the fact
that a Bfunarg closure is being recovered is sufficient to demon-
strate that its environment is already recovered. So the Bfunarg
indicator tags the environment link as a sort of thread [17] with

respect to storage recovery.

Tmplications

In this sectlion we make several observations about
reference counts and circular structures. The first is
that these remarks extend to nodes of more than two fields
rather naturally, although two is sufficient to argue the
matter and to mimic its application in LISP. Indeed,
Figure la or Figure 1lb each illustrate a closure which
probably would require only a single node in any efficient
implementation, instead of the pair of nodes shown.

Second 1s the description of the certain sort of
circular structures which may be handled by a reference
counting storage manager. We specify three criteria, the
first two of which guarantee that there will be no shared
references (reference counts above one) anywhere within a
cycle except at the head. Firstly, circular structures
should be created all at once (in our case by the inter-
pretation of labels) so that no shared reference is created
before the circularity is established. Secondly, any use
of a proper suffix of the cycle (a Bfunarg closure in our
example) must be copied as an independent and non-circular
structure rather than being borrowed or shared. Finally,

in order that the storage recovery mechanism avoid the

circularity, the circular link to the head of the cycle
must be "tagged" (by B for instance) so that it will be
treated as null on recovery. Taken together, these

three restrictions -assure that the cycle is referenced

and dereferenced as a unit; no part of a circular structure
will be created before or will be preserved after any other

part.

The third observation 1s a degenerate case of the
circular structure considered above. Figure 3 illustrates
self-references to a node from within the same node. Such
references need not be included in the reference counts
for the same reasons that we considered before. These
circular structures are created all at once by a single
field assignment, they have no references except at the
front (since there is nothing internal to reference), and

the circular "thread" is easily recognizable without a

"tag" like B (by the reflexive pointer).

Such direct self-reference may, therefore, be handled
by any reference count storage manager regardless of the
number of pointer fields in the node. They need not be
isolated to distinguished structures like the system-managed
environments, but may be allowed in ﬁser structure as well.

We have used a structure like that in Figure 3 to represent

infinite homogeneous lists [6 _] in the reference count
implementation of our applicative language [11 J]. The
structure shown here represents an infinite list of zeroes,

the zero vector of infinite length.

Conclusion

The approach presented here should be related to remarks
of others [10,16] who advance reference counting as a storage
manager. Because reference counting is a manager which
operates in localized regions of storage, it ameliorates many
of the problems of garbage collection particularly in a
real-time, multiprocessing environment. (The recent work of
Baker [1] and Gries [8] address these problems in either
real-time or multiprocessing environments, respectively.)

In extending reference counting to somewhat limited circular
structures, we encountered the same restrictions that have
been proposed for programming languages: that bindings be
created all at once, never to be altered [5,7,20], but to be
destroyed all at once on abandonment. The viability of
reference counting for management of storage for parallel
processors appears curiously consistent with the kinds of

constraints it imposes on using circular structures.

10.

1.

12.

13-

14,

REFERENCES

H. G. Baker, Jr. List processing in real time on a
serial computer. Comm. ACM 21, L4 (april, 1978),

W. H. Burge. Recursive Programming Techniques,
Addison-Wesley, Reading, MA (1975).

G. M. Collins. A method for overlapping and erasure
of 1ists. Comm. ACM 3, 12 (December, 1960), 655-65T7.

H, B. Curry and R. Feys. Combinatory Logic I,
WHorth-Holland, Amsterdam (1955).

D. P. Friedman and D. S. Wise. Aspects of applicative
programming for file systems. Proc. ACM Conf. on
Language Design for Reliable Software, SIGPLAN Notices 124
3 (March, 1977), 41-55.

and . Functional combination.
J. Comput. Languages 3, 1 (1978), 31-35.

and . Aspects of &pplicative programming for
parallel processing. IEEE Trans. Comput. C=27,
(April, 1978), 289-296.

D. Gries. An excercise in proving parallel programs
correct. Comm. ACM 20, 12 (December, 1977), 921-930.

Cc. E. Hewitt and B. Smith. Towards a programming
apprentice. IEEE Trans. Software Engrg. SE-=1, 1
(March, 1975), 26-45.

D. Ingalis. The Smalltalk-76 programming system. Proc.
5th ACM Symp. on Principles of Programming Languages

(1978), 9-16.

S. D. Johnson. An Interpretative Model for a Language
Based on Suspended Construction. M.S. thesils,
Tndiana Uniwersity (1977).

D. E. Knuth. The Art of Computer Programming 1,
Fundamental Algorithms (2nd ed.), Addison-Wesley,
Reading, MA (1973).

P. J. Landin. The mechanical evaluation of expressions.
Computer J. 6, 4 (January, 1964), 308-320.

. The next 700 programming languages. Comm. ACM 9,
3 (March, 1966), 157-162.

J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart,
and M. E. Levin. LISP 1.5 Programmer's Manual,
M.I.T. Press, Cambridge, MA (1962).

H. Moravec. The role of raw power in intelligence.
Unpublished (May, 1976).

A. J. Perlis and C. Thronton. Symbol manipulation
by threaded lists. Comm. ACM 3, 4 (April, 1960), 195-204.

T. W. Pratt. Programming Languages: Design and
Implementation, Prentice-Hall, Englewood Cliffs, NJ (1975).

G. J. Sussman and G. L. Steele, Jr. SCHEME: an
interpreter for extended lambda calculus. AI Memo 349,
Mass. Inst. of Tech. (December, 1975).

G. Tesler and H. J. Enea. A language design for
concurrent processes. Proc. Spring Joint Computer
Conf., Thompson, Washington (1978), Z03-L08.

C. Wadsworth. Semantics and Pragmatics of Lambda-calculus.
Ph.D. dissertation, Oxford (1971).

1a.) T T
'
!
Y

— T o
FUNARG

independent
environment

o———n-T o
\

\\ \
\ \
\ BFUNARG defn-of-g \

i /

N
~ /
~ -~ - . /
= circular link g,

—
_— e m— s oams

Q —-t—1—@
-0 ——§

to environment

Figure 1. Functional bindings.

3

O —<—1—o

Figure 3. A node with reference count of 3.

