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Abstract
Gradual typing combines static and dynamic typing in the same language, offering the benefits
of both to programmers. Static typing provides error detection and strong guarantees while
dynamic typing enables rapid prototyping and flexible programming idioms. For programmers
to take full advantage of a gradual type system, however, they must be able to trust their
type annotations, and so runtime checks must be performed at boundaries between static and
dynamic code to ensure that static types are respected. Higher order and mutable values cannot
be completely checked at these boundaries, and so additional checks must be performed at their
use sites. Traditionally, this has been achieved by installing proxies on these values to moderate
the flow of data between static and dynamic code, but this can cause problems if the language
supports comparison of object identity or foreign function interfaces.

Reticulated Python is a gradually typed variant of Python 3 implemented via a source-to-
source translator. It implements a proxy-free design named transient casts. This paper presents
a formal semantics for transient casts and shows that not only are they sound, but they work in
an open-world setting in which the Reticulated translator has only been applied to some of the
program; the rest is untranslated Python. We formalize this open world soundness property and
use Coq to prove that it holds for Anthill Python, a calculus that models Reticulated Python.

1 Introduction

Gradual typing [29, 37] enables the safe interaction of statically typed and dynamically typed
code. In recent years, gradual typing has been of interest not only to the research community
[24, 35, 34, 33, 25, 4, 3] but also to industry, as numerous new languages have arrived on
the scene with features inspired by gradual typing, including Hack [12] and TypeScript [22].

Gradually typed languages use the dynamic type ? and a consistency relation on types
to govern how statically typed and untyped code interacts: types are consistent if they are
equal up to the presence of ?. The consistency relation replaces type equality in the static
type system. For example, at a function call the type of an argument is required to be
consistent with the parameter type of the function, not equal to it. To prevent uncaught
runtime type errors, additional checks must be performed at runtime. These checks are
typically achieved by inserting casts as part of a type-directed, source-to-source translation.

Designing semantics for these casts in the presence of higher-order values and mutation
is a significant research endeavor (Herman et al. [20], Siek et al. [31, 33], etc.). The tra-
ditional approach [14, 29, 20] installs runtime guards (i.e. wrappers or proxies) on values,
which moderate between differently typed regions of code. Here we refer to this as the
guarded approach. Alternatively, the monotonic approach of Siek et al. [33] avoids proxies
by using runtime type information to lock down objects as they pass through casts. With
the monotonic approach, some programs that would execute without error under guarded
instead produce a runtime cast error. The related design of Swamy et al. [34] requires further
restrictions. For example, a function of the type ?→ ? cannot be cast to bool→ bool.

Reticulated Python1 is a platform for experimenting with different dialects of gradually

1 Named for the largestc species of snake in the Python family.
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typed Python [40]. One design implemented in Reticulated Python is the transient approach,
which uses pervasive use-site checks in lieu of guarding objects with proxies. This alternative
avoids a serious issue for guarded: proxies are not pointer-identical to the underlying prox-
ied object, a fact that results in significant and challenging-to-debug problems in practice.
Vitousek et al. [40] use Reticulated to examine the effects of proxies on gradually typed
Python programs and reproduced the problems observed by Van Cutsem and Miller [39].

Although significant research has focused on leveraging gradual typing to achieve per-
formance improvements [20, 42, 33], efficiency is not an aim of the transient design. Instead,
transient is an error-detecting technique, similar to the checked mode of Dart [17] (but
sound). It can be enabled during development and debugging and disabled for release.

Transient semantics modeled in Anthill Python

In this paper we present a complete formal semantics for Anthill Python,2 a gradually typed
calculus which models Reticulated Python and which uses the transient semantics. Anthill
Python supports much of the complexity of the Python object system, including bound
methods, multiple inheritance, and mutable class fields and methods.

Just as Reticulated programs are translated into Python and then executed, the dynamic
semantics of Anthill is defined by translation into an untyped language, µPython. We define
the dynamic semantics of µPython and a translation from Anthill to µPython, inserting
checks according to the transient semantics. While Vitousek et al. [40] informally described
transient, Anthill and µPython provide a mathematical description of the design.

Open world gradual typing

In addition, in this paper we show that the distinction between guarded and transient affects
more than object identity; it affects whether or not the language supports sound interaction
with foreign code in an “open world”.

Like many gradually typed languages, Reticulated Python translates input programs to a
target language with explicit casts, in this case standard Python 3. When using guarded, the
translated code cannot interact with untranslated Python code (in this paper referred to as
“plain Python”) without losing the usual type soundness guarantees of gradual typing [29]:
plain Python programs do not include the explicit casts necessary to maintain the invariants
expected by translated Reticulated programs. The transient approach, on the other hand,
does not make any assumptions about its clients. Instead, typed code performs all required
checks internally.

The guarded approach poses additional problems in the context of Python. CPython,
the reference implementation of Python, is implemented in C, and many built-in functions
are defined as C functions. Furthermore, Python supports C and C++ extension modules
— modules callable from Python that are implemented in C. This code does not respect the
abstractions used by guarded to ensure soundness and can mutate Python data structures
as raw memory, possibly violating invariants specified by Reticulated’s type system. The
transient semantics can soundly coexist with such foreign functions because it performs all
required checks within typed code at use sites.

In this paper we discuss a formal property called open world soundness which states that,
if a program is translated from a gradually typed surface language into an untyped target, it
can be embedded inside arbitrary untyped code without ever being the source of an uncaught

2 Named for the smallest species of snake in the Python family.
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type error. For gradually typed languages, open world soundness is a stronger property than
traditional type safety. We prove that open world soundness holds for the transient design
as modeled by Anthill Python and its translation to µPython. Our proof is machine-checked
by the Coq proof assistant and can be found at https://arxiv.org/src/1610.08476v1. It
relies on an auxiliary static type system for µPython that captures invariants about programs
translated from Anthill. This type system discriminates between translated code and plain
µPython code by tagging all reducible expressions with labels indicating the origin of the
expression. The type system places strong requirements on the translated expressions, while
untranslated code is unrestricted. We prove that the translation from Anthill to µPython is
type-preserving.

Open world soundness also allows programmers to benefit from gradual typing without
using its features themselves. Using transient, a Reticulated library writer can use static
types in their code, including on API boundaries. If this library is then translated to regular
Python, any Python programmer who uses the library will benefit from the improved error
detection resulting from Reticulated’s static types without having to use — or even know
about — Reticulated itself.

Contributions
We define the property of open world gradual typing and evaluate the guarded and tran-
sient designs with respect to it (Section 3).
We provide a formal semantics for the transient design in the form of Anthill Python,
a calculus that models Reticulated Python (Section 4). This semantics is defined by
translation to an untyped calculus, µPython, that models Python.
We prove that Anthill exhibits open world soundness, an extension of type soundness
which states that the translation from Anthill to µPython produces code that doesn’t go
wrong even when interoperating with plain µPython code (Section 5). The full proof in
Coq is at https://arxiv.org/src/1610.08476v1.

Section 2 discusses background and related work, and Section 6 concludes.

2 Background and Related Work

In this section we discuss related work and review the prior work on Reticulated Python [40].

2.1 Gradual typing
Researchers and language designers have been interested in mixing static and dynamic typ-
ing in the same language for quite some time [10, 1, 9]. Gradual typing, developed by
independently by Siek and Taha [29] and Flanagan [16], was preceded quasi-static typing of
Thatte [36], the Java extensions of Gray et al. [18], Bigloo, [27] and Cecil [11]. Gradual typ-
ing is distinguished by its use of the consistency relation (originally defined for nominally
typed languages by Anderson and Drossopoulou [6]) to govern where typed and untyped
code can flow into each other, and where runtime checks need to be performed to ensure
safety at runtime. See Siek et al. [32] for a detailed discussion of the core principles that
gradual typing aims to satisfy.

Allende et al. [5] develop an alternate cast insertion scheme for Gradualtalk [4] that
facilitates interaction between typed libraries and untyped clients without requiring client
recompilation. This approach, called “execution semantics” uses callee-installed proxies on

https://arxiv.org/src/1610.08476v1
https://arxiv.org/src/1610.08476v1
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function arguments. While similar to our semantics, this approach is still vulnerable to the
problems with proxies that we address with the transient approach (see Section 2.3).

Another relevant alternative design is the like-types approach [8, 42]. This approach
avoids proxies by splitting static type annotations into concrete types (whose inhabitants
are never proxied, and which cannot flow into dynamically typed code) and like types,
which can freely interact with dynamic code. This approach was used in designing a sound
variant of TypeScript called StrongScript, which obeys open-world soundness [26]. However,
because of the incompatibility of concrete and like types, it is not straightforward to evolve
a program in StrongScript from dynamic to static, as is frequently desirable. As a result,
the gradual guarantee of Siek et al. [32] does not hold for these designs.

Typed Racket [38, 35] includes first-class classes and supports open-world interaction
between Typed Racked modules and untyped Racket code. In that work, the authors are
aided by Racket’s module semantics, which allows functions exported from Typed Racket
into untyped code to be wrapped with a contract monitor that ensures that interaction
between typed and untyped code is sound even though untyped clients are unaware of the
static type system. These features allow Typed Racket to have open world soundness with
a guarded approach. Python does not have the same capabilities for controlling module
exports and faces the problems with proxies and foreign functions explained above.

In recent years, gradual typing, or ideas related to it, has become popular among indus-
trial language designers, with C# [7] adding a dynamic type and Typescript [22], Dart [17],
and Hack [12] offering static typechecking of optional type annotations. Academic language
designers have also retrofitted gradual typing to existing languages, such as Racket [38],
Smalltalk [4], Ruby [25], and Python [40].

2.2 Reticulated Python and the guarded cast semantics
Reticulated Python implements several designs for gradual typing, including guarded, the
traditional design for gradual typing [29, 20]. In this design, casts are inserted at the
locations of implicit conversions. For example, consider the following statically typed filter
function, which expects a parameter of type Callable([int], bool) (the syntax for function
type int→ bool).

1 def filter(fn:Callable([int],bool), lst:List(int))->List(int):
2 nlst = []
3 for elt in lst:
4 if fn(elt):
5 nlst.append(elt)
6 return nlst
7 filter(lambda x: x % 2 == 0, [1, 2, 3, 4])

The function created on line 7 has no type annotations, so it has type Callable([Dyn],
Dyn), where Dyn is the dynamic type. It is casted from Callable([Dyn], Dyn) to Callable([int],
bool) at runtime, because of a cast inserted at line 7 by the translation from Reticulated
Python to Python.

Casts on first-order values are checked immediately but casts on functions and objects
are not. With guarded, function casts install a wrapper on the function which, when called,
casts the input, calls the underlying function, and casts the result [15]. Casts on objects
return a proxy — a new object that casts fields and methods during reads and writes.

To see how object proxies are used to preserve type soundness, consider the example
in Figure 1, where the object Foo() is expected to have type {’bar’:int} by the typed f
function. The f function passes the object to the untyped g function which mutates the bar
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field to contain a string. Upon return from g, f accesses the bar field, expecting an int. The
code highlighted in yellow indicates the locations where proxies are installed. The object
bound to the parameter x in g is therefore not the object passed to g by f at line 6, but is
instead a proxy to that object. When g attempts to write a string to that proxy at line 4,
the proxy casts it to int, the type that y.bar is expected to have in f, which triggers a cast
error.

2.3 Guarded faces practical problems

1 class Foo:
2 bar = 42
3 def g(x):
4 x.bar = ’hello world’
5 def f(y:{’bar’:int}):
6 g(y)
7 return y.bar
8 f(Foo())

Figure 1 Soundness via proxies

The guarded approach is well studied, with many op-
timizations for space and time efficiency and addi-
tional features such as blame tracking [20, 28, 3, 41],
but a significant problem with guarded is that a proxy
is not identical to its proxied object. This issue
leads to unexpected behavior when pointer equality
checks (using Python’s is operator) are performed.
Van Cutsem and Miller [39] also encountered and dis-
cussed this issue. Vitousek et al. [40] found these
issues to be a significant problem in Reticulated
Python in guarded, preventing many programs from
running as expected.

A related issue is that Python programs can inspect the class of a value using the type
function, and the class of a proxy is a proxy class (rather than the class of the proxied
object). Programs that use reflection over the types of values can execute incorrectly when
the type function returns a proxy class rather than the expected class.

2.4 The transient cast semantics
To solve this issue, Vitousek et al. [40] implemented an alternative, called the transient
approach, that does not use proxies. (Vitousek et al. [40] report on the implementation of
transient but they do not define a formal semantics.) The transient design uses checks —
lightweight queries about the current state of a value — rather than proxy-building casts.
Checks are inserted into programs at function calls and object reads. This approach transfers
the responsibility for checking object reads and function return values from the object or
function itself to the context that is performing the read or call. From an implementation
perspective, this moves the checking from the runtime system (e.g. casts performed by object
proxies) into the translated programs’ code.

Figure 2 illustrates this difference. Figure 2a shows a program in which a function f takes
and uses a typed object parameter. The argument to the function comes from untyped code,
and thus any sound semantics for gradually typing will require some runtime checks when
running this program. Text in yellow indicates locations where checks must occur because
program values are entering into a context where they are expected to have a certain type
— either by being passed in as arguments, dereferenced from mutable state, or returned
from a function call.

Figure 2b shows the same program after explicit runtime checks have been inserted.
Checks are performed pervasively, including in statically typed code. The write at line 2
does not need a check because obj is not proxied and any reads of x will ensure that it
has the right type for its context. The highlighted parameters on line 1 indicate that the
function checks that z and obj have their expected types at its entry point, translated as
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(a) Pre-insertion:

1 def f(z:int, obj:{’x’:int,
’meth’:Callable([int],int)})
->int:

2 obj.x = 42
3 method = obj.meth
4 result = method(z)
5 return result
6
7 def g(y):
8 f(42, y)

(b) Post-insertion:

1 def f(z, obj):
check(z, int)
check(obj,{’x’:int,

’meth’:Callable([int],int)})
2 obj.x = 42
3 method = check(obj.meth,

Callable([int],int))
4 result = check(method(x), int)
5 return result
6
7 def g(y);
8 return check(f(42, y), int)

Figure 2 Check insertion by the transient semantics

the explicit checks at the beginning of the function body in Figure 2b. The check on line 3
verifies that obj.meth has a function type, and line 4 checks that the result of the function
call is an int. This transfer of responsibility from clients (and the proxies they install) to
typed code allows this design to succeed without needing proxies.

To see how transient preserves soundness in the presence of mutation, consider the exam-
ple in Figure 3, which contains the same program as Figure 1. Again, sites where transient
checks are made are highlighted in yellow . While guarded would install a proxy on y at line
6 to ensure that y.bar remains an int, the transient semantics passes y into g directly. The
strong update at line 4 proceeds, but the fact that a string has been written to y.bar will
not be observable within f. This is because at the dereference of y.bar at line 7, a transient
check will attempt to verify that y.bar is an int (the type expected in that context). When
this check fails, a runtime check error is reported.

1 class Foo:
2 bar = 42
3 def g(x):
4 x.bar = ’hello world’
5 def f(y:{’bar’:int}):
6 g(y)
7 return y.bar
8 f(Foo())

Figure 3 Soundness via transient

The lack of proxies and the reliance on use-site
checks in the transient approach means that many
of the problems with guarded are solved immedi-
ately. Object identity behaves normally because ob-
jects and their types are always the same as in plain
Python, and every check that does not fail simply re-
turns the checked value. On the other hand, checks
are pervasively installed even within typed code, and
in places where they would not be needed under
guarded. Thus transient is primarily useful as a de-
bugging tool, rather than something to be deployed
in production code.

Other approaches also tackle the problem of object identity: Keil and Thiemann [21]
present a solution based on the idea of making proxies transparent with respect to identity
and type tests. TypeScript [22], Dart [17], and other languages that compile to JavaScript
without any runtime checks are trivially free of proxies but their type annotations are not
enforced at runtime. Dart also offers a checked mode, wherein function arguments are checked
at runtime against optional type annotations, similar to the transient approach, but these
checks do not cover all cases and uncaught runtime type errors are still possible. However,
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transient solves an additional diffuculty that guarded faces: interoperability with untyped or
foreign code in an open world, which we discuss in the next section.

3 Open World Gradual Typing

In this section, we discuss the property of open world gradual typing, show that guarded is
an obstacle to it, and discuss the solution provided by transient. While this discussion is
specific to Python, many issues are broadly applicable to other dynamically typed languages
such as JavaScript and Clojure.

3.1 Guarded is unsuitable for an open world
While guarded is sound when all parts of a program have been seen by the typechecker and
translator, it is not always desirable or even possible for that to be the case. We examine
two situations where interactions between Reticulated programs and plain Python or foreign
functions are troublesome.

Plain Python clients cannot soundly use Reticulated programs with Guarded

Reticulated Python typechecks programs and translates them into Python 3, and once
they have undergone this translation, they can be executed by a Python interpreter. As
such programs are valid Python programs, we would like to use them in combination with
plain Python programs from different sources. Unfortunately, when using Reticulated with
guarded, this is not type safe and can cause programs to behave unexpectedly.

It is important here to distinguish plain Python programs from untyped Reticulated code.
The latter is Reticulated Python code that does not contain type annotations, but that is
translated into Python by Reticulated. This translation is not an identity transformation,
even on untyped Reticulated code: if the untyped code makes calls into typed code, it must
ensure that the values it passes into typed code are cast to their expected type.

Figure 4 shows interaction between translated Reticulated and plain Python, which is
problematic under the guarded semantics. Two modules, utils and fastexp, can communi-
cate freely with each other even though fastexp has no type annotations, because Reticu-
lated translates them (the dotted ; arrows at the bottom of Figure 4) both into Python
programs butilsc and bfastexpc with explicit casts. Because butilsc is a standard Python
module, the plain Python module interactive may attempt to use it. The interactive
module passes in a string (the result of input) where the type system expected an int, but
this error is not detected because, in the guarded approach, it was the responsibility of
interactive to provide the correct type by checking its arguments at the call site (or, in
the case of higher order values, installing a proxy around them). The result is a confusing
Python error:

1 File "utils.py", line 2, in is_odd
2 return x % 2
3 TypeError: not all arguments converted during string formatting

This is the same error that would occur in plain Python without static types, but now it
may be more difficult to debug: the programmer may not realize that they cannot trust the
type annotations.

This issue prevents programmers from writing Reticulated programs with types on API
boundaries and distributing them as servers for unknown, plain Python clients. Because
typed API boundaries are an important use case for gradual typing, this is a significant
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Module utils (Reticulated Python):

1 def is_odd(x:int)->int:
2 return x % 2
3 def intappend(lst:List(int),

x)->List(int)
4 list.append(lst, x)
5 return lst

Module fastexp (Reticulated Python):

1 import utils
2 def fastexp(x, n):
3 ... utils.is_odd(n) ...

Module interactive (Plain Python):

1 import utils
2 while True:
3 print(’Enter a number’)
4 inp = input()
5 print(utils.is_odd(inp))

butilsc bfastexpc

utils

;

fastexp

;

interactive

list.append

Typed UntypedForeign

Python

Retic.

Native

Figure 4 Reticulated and plain Python interaction

problem that reaches well beyond Python. This can be partially solved by providing untyped
API functions for plain Python clients and casting the client’s calls to static types internally
(an option discussed in the context of Gradualtalk by Allende et al. [5]). However, this alone
cannot guarantee safety in Reticulated’s context, because Python modules cannot selectively
export information to clients — clients can still access the typed functions.

Foreign functions cannot operate on proxies

Another issue arises because many of the built-in functions used by Python programs are
not defined in Python itself, but rather in compiled binaries. For example, in CPython the
append method for lists is defined in C code which is not accessible for introspection by
Reticulated and which, more importantly, does not use the same machinery for attribute
access as regular Python code.

This is illustrated by the intappend function in utils in Figure 4. Suppose intappend is
called from Reticulated code as follows:

1 import utils
2 utils.intappend([1,2,3],4)

Under the guarded semantics, at the call to utils.isodd at line 2, the list [1,2,3] is wrapped
in a proxy, which should prevent code from writing non-int values to it. However, when it
is passed to list.append as the receiver,3 list.append is not operating on the list [1,2,3],

3 For those unfamiliar with Python, list.append is an unbound method of the list class, and its first
argument is set as the receiver of the call. By calling list.append(x, ...) instead of x.append(...),
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but instead on a proxy to it.
Like any Python value, the proxy has to be an instance of some class. If the proxy’s

class was unrelated to list, then a list’s proxy would not appear to be a list instance to the
commonly-used isinstance function, causing many unexpected errors. Thus in Reticulated’s
implementation of guarded, this proxy will be a value whose class is a dynamically generated
subclass of the list class. However, this choice means that the proxy itself contains its own
list in the heap, distinct from the list it is proxying. As a proxy, its methods are replaced
with reflective calls to the underlying, proxied list, so this internal list is inaccessible to
Python code. The native code that implements list.append, however, directly operates on
the memory in the heap containing the list data of the proxy, bypassing the proxy’s methods.
As a result, the proxy cannot intercept and forward changes to the underlying list, and thus
list.append mutates the (empty and otherwise inaccessible) list contained within the proxy
itself and leaves the proxied list untouched. The overall result is that, quite surprisingly, the
result of the call at line 2 is [1,2,3] — the list that was passed in, unmodified.

As a result, Reticulated programs under guarded can behave unpredictably and in ways
contrary to their expected semantics. This problem is difficult to diagnose and its scope is
difficult to determine.

3.2 The transient cast semantics is sound in an open world
Though Vitousek et al. [40] discuss transient only as a technique to solve issues with type
identity, it also enables open world soundness. Transient transfers the responsibility for
checking object reads and function return values from the object or function itself to the
context that is performing the read or call. Therefore, if plain Python code passes ill-typed
values into translated code, checks within the typed module will detect a type mismatch and
report an error rather than causing a confusing error or not reporting the error at all. In
Figure 4, when [1,2,3] is an argument of list.append, it actually is the list [1,2,3] being
passed in, and native code can operate on it exactly as it normally would. Even if native
code mutates the list in an ill-typed way, it will be detected as soon as a dereference occurrs
within typed Reticulated code.

Furthermore, because transient avoids proxies, C code sees only the Python values that
were expected. When the interactive module calls utils, instead of a confusing error
referring to string formatting, the result will be a cast error saying that a string has been
passed in instead of an int.

4 Formalizing Transient with Anthill Python

The above section illustrates some of the complexities of integrating typed and untyped
code in Reticulated Python, and the ways that Reticulated code can be used in an open
world. This section formalizes these properties, and the transient design, with two calculi: a
gradually typed surface language named Anthill Python that models Reticulated and an a
calculus named µPython that models plain Python.

4.1 Design considerations of the type system
In this section we discuss some of the distinct features of Python that Anthill Python models
and how these features inform the design of Anthill’s static type system.

we avoid going through the proxy on x.
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Python classes

Like many dynamic languages, Python’s classes are first-class values which can be passed
between program components like any other kind of data. Therefore a static type system
for Python must give types to classes just as it does to objects and functions. In Python,
classes may also directly contain attributes which can be accessed and mutated, and they
can be extended with new fields. Such mutations to a class value can affect all its instances.
For example, one can add methods to a class after its creation and then call those methods
on any instance of the class. Classes are also themselves callable — calling a class is the
Python syntax for object construction.

These observations indicate that classes share elimination forms with both objects and
functions. To typecheck call sites and attribute reads or writes without undue restrictions,
the class types of Reticulated (and Anthill) are subtypes of both object and function types.

Object construction

Python objects come into existence with their object-local fields uninitialized. The user-
defined code in the __init__ method must instanciate them by mutating the receiver of
the method (represented as the first parameter of the method, called self by convention).
The __init__ method is not restricted to only initializing fields, though — it can contain
arbitrary Python code, including code that allows the partially initialized receiver to escape
into other functions. Consider the following code in which an object is specified to have x
and y fields of type int by the @fields decorator. The result is a failed check at line 8.

1 @fields({’x’:int, ’y’:int})
2 class Point2D:
3 def __init__(self:Point2D, x:int, y:int):
4 print(magnitude(self))
5 self.x = x
6 self.y = y
7 def magnitude(pt:Point2D)->float:
8 return math.sqrt(pt.x ** 2 + pt.y ** 2)

The problem here is that the annotation on line 3 that self is a Point2D is not true:
at that point, self does not obey the type that a Point2D is expected to have, lacking the
fields x and y. This problem is well known in other object-oriented languages such as Java,
and several solutions have been proposed [23, 13]. These approaches are substantially more
complex than the rest of the Reticulated type system, and by virtue of being gradually
typed, Reticulated can rely on dynamic type checks to preserve soundness. Reticulated
therefore requires that the receiver parameter of a constructor, i.e. self, is untyped. This
behavior matches Python, but it means that no program with objects can ever be truly fully
statically typed — every object goes through a dynamic initialization phase, after which it
can be injected to a static type by inserting a check at object instantiation sites.

4.2 Anthill Python

Anthill Python is a gradually typed calculus which models Reticulated Python. The syntax
of Anthill Python is defined in Figure 5.
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t ::= x | n | t(t) | t.` | t.` = t | let x = t in t | class(t):Lq,∆,∆M init=c; `=Mm; `=F t |
λx:A→A. t

m ::= ς xs, x:A→A. t
c ::= σ xs, x:A. t
q ::= ♦ | �
A ::= ? | int | A→ A | class Lq,∆,∆, AM | object Lq,∆M
∆ ::= ` : A

Figure 5 Syntax for Anthill Python. (Overlines indicate sequencing.)

4.2.1 Types
Anthill Python’s types include the dynamic type ?, integers, n-ary function types, and object
and class types.

Object types object Lq,∆M contain two parts: an openness descriptor q and an attribute
type ∆. Attribute types, written are partial maps from attribute names to types, and
represent the structural type of the object. An openness descriptor can be either ♦ for
“open” or � for “closed”. Open objects support implicit width downcasts, while getting or
setting fields not present in ∆ causes a static type error in a closed class; see Section 4.4.1.

Class types contain an openness descriptor and two attribute types. The first attribute
type contains the public interface for the class itself while the second represents the instance
fields present in every instance of the class, but not in the class itself. The instance fields are
used in the type system to derive object types from class types and the presence of instance
fields is checked at runtime after object construction. Class types also record the parameter
types of their constructors, so that object instantiations can be type checked.

4.2.2 Terms
Terms in Anthill Python include variables, numbers, applications, attribute access and up-
date, and n-ary functions with parameter and return type annotations. Methods and fields
are read from with t.` and written to with t.` = t, where ` is the name of an attribute; there
is no syntactic differentiation between accessing fields and methods.

Anonymous class definitions are also terms, and contain a number of components. The
openness descriptor q and the attribute types ∆1 and ∆2 specify the overall static type of
the class. The class’ constructor is given by init = c. In Python (and Reticulated), object
constructors are simply methods named __init__, but to simplify the semantics, Anthill
constructors c are a special syntactic form. Constructors lack a return type, because they
are only invoked during object construction, and they perform initialization by mutating a
fresh, empty object passed to the constructor.

The superclasses of a class definition are specified by the t immediately after the class
keyword. Fields and their initializing terms are defined by ` =F t. Methods m (specified
in class definitions by ` =M m) are similar to functions except that they always have an
explicit receiver xs as their first parameter. The F and M superscripts help to syntactically
distinguish between fields and methods. No type annotation is given for the receiver of a
method; it is treated as having the type of an instance of the enclosing class, as is typical
for object-oriented calculi [2]. Fields and methods are members of the class, though they
are accessible from instances, and constructors can define fields specific to an instance.
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4.3 µPython

e ::= x | n | e(e) | e.` | e.` = e | let x = e in e |
class(e): init = e; ` = e | λx. e | e ⇓S | a

S ::= pyobj | int | n→ | class Lδ, CM | object LδM
C ::= n | Any
δ ::= `

Figure 6 Syntax for µPython

The syntax of the target language
of our translation, µPython, is
given in Figure 6. µPython dif-
fers significantly from the “clas-
sic” cast calculi used by gradually
typed calculi, such as λ〈τ〉→ [29].
Typically, such targets are stat-
ically typed languages that use
explicit casts to inject to and
project from the dynamic type. In
contrast, µPython is dynamically
typed, like Python itself, and has an expression that performs transient checks.
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4.3.1 Expressions
The expressions of µPython mostly correspond to the terms of Anthill. Class declarations
do not syntactically distinguish between functions, methods, and fields, so all class members
are defined together, and constructors still appear as a separate entry in the class declaration
but are now simply expressions. The only new expressions introduced in µPython are heap
addresses and the check expression, e ⇓S , which checks that the runtime type of e after
evaluation corresponds to a type tag S.

4.3.2 Type tags
The runtime type checks of µPython check against type tags S. These tags represent in-
formation that can be checked shallowly and immediately about µPython values. The tag
pyobj is satisfied by all objects, int is satisfied by integers, and n→ is satisfied by functions
of n parameters, but makes no claims about the types of the parameters or return type of
the function. Object and class tags δ contain the set of attributes for their values, but not
the types of their contents. Class tags also optionally specify the arity of their constructors.

4.4 Translation from Anthill to µPython
Following the typical gradual typing approach, Anthill’s runtime semantics are defined in
terms of a type-directed translation into µPython. This translation rejects programs that
are statically ill-typed and inserts runtime checks according to the transient design. As
discussed in Section 3.2, transient inserts checks on all use sites of mutable and higher-order
terms, such as function applications or attribute accesses. The translation is designed to
ensure that, if a Anthill term t has type A, then its µPython translation e can be checked
against the type tag bAc (defined in Figure 8) without resulting in an error.

In this section, we discuss the details of this translation with reference to excerpts of
the translation relation. This translation is an algorithmic, syntax-directed transformation.
The translation is specified in full in Appendix A, Figure 16.

4.4.1 Attribute reads and writes
Figure 7 shows the typechecking and translation rules for object reads and writes, as well
as the mems metafunction, which returns the attribute type ∆ representing the attributes
statically known to be present in the value being read from or written to.

Rules IGet and ISet are used for reads and writes from expressions that are statically
known to contain the attribute. In these cases, a check is inserted around the resulting
expression (IGet) or the expression to be written (ISet) to make sure it corresponds with
the type specified by the type of the object. The type tag for this check is generated from a
static Anthill type using the bAc metafunction, shown in Figure 8. In the case of ISet, the
type of the term to be written t2 must also be subtype-consistent (written .) with the type
of the attribute. This prevents static type errors, such as attempting to write an int into a
field that expects an object. Subtype-consistency, which can be thought of as subtyping “up
to” type dynamic [30], is defined in Figure 8, and indirectly uses the consistency relation ∼
[29] from Appendix A, Figure 21.

The other rules, IGet-Check and ISet-Check are used when it is not statically known
that the subject of a read or write contains the appropriate attribute, either because it is
of type ?, or because it has a class or object type that omits the attribute. In these cases,
the type system only allows the read or write if the object’s type is open (denoted ♦) — the
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Γ ` t ; e : A

(IGet)
Γ ` t ; e : A1 ∆ = mems(A1) ∆(`) = A2

Γ ` t.` ; (e.` ⇓bA2c) : A2

(IGet-Check)
Γ ` t ; e : A1 ∆ = mems(A1)
` 6∈ dom(∆) queryable(A1) = ♦

Γ ` t.` ; (e ⇓object L`M).` : ?

(ISet)
Γ ` t1 ; e1 : A1 Γ ` t2 ; e2 : A′2

∆ = mems(A1) ∆(`) = A2 A′2 . A2

Γ ` t1.` = t2 ; (e1.` = (e2 ⇓bA2c)) : int

(ISet-Check)
Γ ` t1 ; e1 : A1

Γ ` t2 ; e2 : A2 ∆ = mems(A1)
` 6∈ dom(∆) queryable(A1) = ♦

Γ ` t1.` = t2 ; (e1 ⇓object L∅M).` = e2 : int

mems(A) = ∆
mems(?) = ∅

mems(object Lq,∆M) = ∆
mems(class Lq,∆1,∆2, AM) = ∆1

queryable(A) = q

queryable(?) = ♦
queryable(object Lq,∆M) = q

queryable(class Lq,∆1,∆2, AM) = q

instantiate(∆,∆) = ∆

∆′1 = {x:inst-fun(A) | x:A ∈ ∆1}
∆′2 = {x:A | x:A ∈ ∆2, x 6∈ dom(∆1)}

instantiate(∆1,∆2) = ∆′1 ∪∆′2

inst-fun(A) = A

inst-fun(A0, . . . , An→A)=A1, . . . , An→A
inst-fun(A) = A if A 6= A1 → A2

Figure 7 Translation for attribute reads and writes

bAc = S

b?c = pyobj bintc = int bA1 → A2c = |A1|→ bobject Lq,∆Mc = object Lb∆cM

bclass Lq,∆1,∆2, AMc = class Lb∆1c, |A|M b∆c = {x | x:A ∈ ∆}

A . A

? . A A . ? int . int
|A1| = |A3| A3 . A1 A2 . A4

A1 → A2 . A3 → A4

∆1 . ∆2

object Lq1,∆1M . object Lq2,∆2M

∆1 . ∆3 ∆2 . ∆4 |A1| = |A2| A2 . A1

class Lq1,∆1,∆2, A1M . class Lq2,∆3,∆4, A2M

∆1 . ∆3

class Lq1,∆1,∆2, AM . object Lq2,∆3M

A2 . A1 object Lq, instantiate(∆1,∆2)M . A3

class Lq,∆1,∆2, A1M . A2 → A3

∆ . ∆
∀x ∈ dom(∆2). ∆1(x) ∼ ∆2(x)

∆1 . ∆2

∆ ∼ ∆

∀x ∈ dom(∆1) ∩ dom(∆2). ∆1(x) ∼ ∆2(x)
∆1 ∼ ∆2

Figure 8 Relations used by the Anthill translation. Vertical bars denote the size of a collection.
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Γ ` t ; e : A

(IFun)
Γ, x : A1 ` t ; e : A′2 A′2 . A2

Γ`(λx:A1→A2. t) ; (λx. let x = x ⇓bA1c in e) : A1→A2

(IApp-Dyn)
Γ ` t1 ; e1 : ? Γ ` t2 ; e2 : A

Γ ` t1(t2) ; (e1 ⇓|A|→ )(e2) : ?

(IApp-Fun)
Γ ` t1 ; e1 : A1 → A2 Γ ` t2 ; e2 : A′1

|A1| = |t2| A′1 . A1

Γ ` t1(t2) ; (e1(e2)) ⇓bA2c: A2

(IApp-Constr)
Γ ` t1 ; e1 : class Lq,∆1,∆2, A1M

Γ ` t2 ; e2 : A′1 |A1| = |t2| A′1 . A1 A2 = object Lq, instantiate(∆1,∆2)M
Γ ` t1(t2) ; (e1(e2)) ⇓bA2c: A2

Figure 9 Translation for functions and applications

definition of the queryable metafunction means that a ?-typed object is always ♦. Width
downcasts are implicitly performed on open types but not on closed types (�). IGet-Check
inserts a check to ensure that the attribute is present, but ISet-Check only checks that
the subject of the write is an object (i.e. not an integer or function) because attribute writes
can be used to add new attributes to objects and classes.

4.4.2 Functions and applications
The translation from Anthill to µPython for functions and applications is shown in Figure 9.
Anthill functions are translated into µPython functions using the IFun rule, which inserts
checks to ensure that parameters have their expected types in the body of the function.
Functions are not responsible for ensuring that they return results that correspond to their
return types (modulo static type errors). Instead, callers check that the resultant value is
of the appropriate type, as indicated by IApp-Fun and IApp-Constr. This is especially
important for constructor calls, which operate by mutating a dynamically typed empty
receiver (as discussed in Section 4.1 and below in Section 4.4.3). The caller is responsible
for checking that the resulting object has the type of an instance of the class.

4.4.3 Classes and objects
The rule for translating Anthill Python class definitions into µPython is given as IClass in
Figure 10. In this translation, the superclasses of the class are translated and have checks
placed around them to ensure that they are, in fact, classes — an error occurs if a class
declaration inherits from a non-class value.

Class fields, methods, and the constructor are also translated into µPython expressions,
and the latter two cases require new judgments. Constructors and methods are similar to
functions, using their first argument as the receiver. In IConstruct, the receiver xs has
dynamic type, because the instance has yet to actually be constructed. No concern is paid
to the return type because the return value is discared when called. Methods, translated
by IMethod, are similar, except that the receiver is given the type of an instance of the



16 Gradual Typing in an Open World

Γ ` t ; e : A

(IClass)
Γ ` ts ; es : As Aclass = class Lq,∆1,∆2, AcM Γ `σ c ; ec : Ac

Γ;Aclass `ς m ; em : Am Γ ` tf ; ef : Af e′s = es ⇓class Lbmems(As)c,AnyM

∀x ∈ dom(∆1), (`f ×Af ∪ `m ×Am ∪mems(As))(x) . ∆1(x)
Γ ` class(ts):Lq,∆1,∆2M init=c; `f =M m; `m =F tm ;

class(e′s): init = ec; `m = em, `f = ef : Aclass

Γ `σ c ; e : A

(IConstruct)
Γ, xs:?, x:A1 ` t ; e : A2

Γ `σ σ xs, x:A1. t ; λxs, x. let x = x ⇓bA1c in e : A1

Γ;A `ς m ; e : A

(IMethod)
Ao = object Lq, instantiate(∆1,∆2)M A′2 . A2 Γ, xs:Ao, x:A1 ` t ; e : A′2

Γ; class Lq1,∆1,∆2, AcM `ς ς xs, x:A1→A2. t ;
λxs, x. let xs = xs ⇓bAoc in let x = x ⇓bA1c in e : A1 → A2

Figure 10 Translation for classes and methods

enclosing class. In both cases, as in IFun, checks are inserted to ensure that the parameters
have the correct type.

IClass also ensures that all declared class attributes (those in ∆1) can be found in the
fields, methods, or superclasses of the class, and that their types are subtype-consistent with
their declared types.

As observed by Takikawa et al. [35], width subtyping for class types is statically unsound,
and because Anthill’s object types support width subtyping, classes do as well, as shown
in Figure 8. Anthill’s static type system does, therefore, admit some maximally annotated
programs that result in runtime check failures. (Since the self-reference of a constructor
is always dynamically typed, programs with classes are never fully annotated anyway.)
However, the pervasive nature of transient’s runtime checking means that this cannot lead
to uncaught type errors at runtime.

4.4.4 Eager and delayed error detection

The translation from Anthill to µPython inserts checks only when necessary to ensure sound-
ness, whereas Reticulated performs extra eager checks to provide better feedback to pro-
grammers. Eagerly checking objects does not aid in ensuring soundness, however, and
therefore the translation from Anthill to µPython installs only shallow checks at use sites.
For example, in the following program, a class specifies that its instances should have the
field x:int. However, its constructor instead writes a function to x.
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1 let C = class ()L♦, ∅, x:intM:
2 init=(σ self. self.x=λ z. z)
3 in let c = C()
4 in c.x

Reticulated would detect this error at the object instantiation site at line 3, because c.x
is a function, not an int. However, even if the constructor was corrected, c.x could still
become a non-int, if some untyped reference to c strongly updated x. In that case, fully
checking c at line 3 would have accomplished nothing in terms of ensuring soundness — it
still needs to be checked again at every use site. In Anthill, the error in the above program
is detected at the use site on line 4, when an inserted check attempts to verify that the result
of c.x is an int.

4.5 Dynamic semantics of µPython
The runtime behavior of µPython is defined in terms of a single-step reduction semantics
using evaluation contexts, shown in Figure 12. The runtime structures (values, heaps, etc.)
are defined in Figure 11. The reduction relation e | µ −→ r steps from a pair of an expression
e and a heap µ to some result r, which is either an error or a pair of an expression and a heap.
Values are numbers, functions, and heap addresses. Heaps contain mappings from addresses
a to heap values h, which are either classes or objects. Class heap values contain references
to all superclasses and all of the class’ attributes, and objects contain instance variables and
a reference to the object’s class. Error results come in two varieties: casterror, which is
the result of a check v ⇓S that fails, or pyerror, which is the result of a dynamic type error
(such as, for example, calling a number as though it were a function). We choose to have
such cases reduce to an actual result, rather than treating them as stuck states, because
µPython is a dynamically typed language which contains not just programs translated from
Anthill, but other programs which produce runtime errors; a µPython program that reduces
to pyerror is the equivalent of a Python program that raises a TypeError exception. As
rules EPyError and ECastError in Figure 12 show, both kinds of errors are propagated
upwards by the context rules.

Rules ECheck1 and ECheck2 show µPython’s reduction rules for transient’s type
checks, which use the check metafunction defined in Figure 12. In all cases, the reduc-
tion results in either a casterror or the checked value itself. The cases where the checked
value is an address are the most interesting: class values can be called like functions and read
from/written to like objects, so the check can be successful with both function and object
type tags. The hasattrs metafunction, used for verifying if all attributes in δ are reachable

v ::= n | a | λx. e
E ::= � | E(e) | v(v,E, e) | E.` | E.` = e | v.` = E | let x = E in e | E ⇓S |

class(v,E, e): init = e; ` = e | class(v): init = E; ` = e |
class(v): init = v; ` = v, ` = E, ` = e

µ ::= a 7→ h

h ::= Class(a){init = e;M} | Object(a){M}
M ::= ` = v

r ::= (e | µ) | casterror | pyerror

Figure 11 Runtime syntax for µPython
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from a heap value, and param-match, used for checking the arity of a callable value, are
defined in Appendix A, Figure 21.

Most remaining reduction rules for µPython are standard, except that every case that
would be stuck in a statically typed calculus has a reduction to pyerror. Application
requires some work: the value being called may be a class, in which case an empty object is
created and passed to the object’s constructor (EApp2). Method lookup on objects, shown
in rule EGet1 and the lookup metafunction, is complex: methods have to be looked up from
a class, curried, and given the receiver as the first argument. The getattr partial function,
which traverses the inheritance hierarchy of its argument to find the definition site of an
attribute, is defined in Appendix A, Figure 21.

One quirk to the lookup metafunction is that attempting to access a class’ nullary method
from an instance leads directly to a casterror, rather than a pyerror. In Python, method
arities are reduced by one when called from an instance, because the instance is bound to
the first parameter as the receiver. A nullary method bound like this essentially expects
−1 arguments: calling it with zero arguments results in a type error, because too many
arguments were provided. In Reticulated, a transient check on such a function always fails,
but rather than providing uncallable, “negative-ary” functions in Anthill, such an evaluation
simply results in casterror.

The semantics of µPythondo not refer to casts, types, or other features related to trans-
lation from Anthill, except in the type check rules and the method access rule (as mentioned
above) — everything else is as expected for an untyped language. This supports our claim
that µPython models Python, and that we do not have to modify the underlying semantics
of Python itself in order to implement Reticulated with the transient semantics, nor do we
require a complicated implementation of proxies capable of handling Python’s features, as
does guarded. The complex parts of µPython’s semantics implement features like method
binding, and are not affected by the existence of runtime type checks.

5 Open World Soundness of Anthill Python

With static and dynamic semantics for Anthill Python, we now wish to show that Anthill
admits the property of open world soundness. That is, an Anthill program, translated into
µPython, can interact with other µPython code without the translated Anthill code causing
any pyerrors. However, in our presentation so far µPython does not distinguish between
translated and untranslated code, so we begin by introducing origin tracking to µPython
expressions. This indicates whether an expression originated in typed or untyped code.

Since µPython is a dynamically typed language, there is nothing preventing programs
from resulting in runtime errors. For example, consider the following µPython program, in
which a function f calls its argument on the integer 42.

1 let f = (λ v. v(42)) in
2 f(21)

Since f is passed 21 at line 2, this program will result in a pyerror at the call site in line 1 by
rule EApp3. Suppose instead that f was typed Anthill Python code rather than µPython:

1 let f = (λ v:Callable([int], int). v(42)) in
2 ...

This version specifies that f’s parameter be a function. It can then be translated into
µPython and used in place of the original f:
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e | µ −→ r

(EStep)
e | µ −→ e′ | µ′

E[e] | µ 7−→ E[e′] | µ′

(EPyError)
e | µ −→ pyerror

E[e] | µ 7−→ pyerror

(ECastError)
e | µ −→ casterror

E[e] | µ 7−→ casterror

(ECheck1,2) v ⇓S | µ −→

{
v | µ if check(v, µ, S)
casterror otherwise

(EApp1,2,3) v1(v2) | µ −→



e[x/v2] | µ if v1 = λx.e

and |x| = |v2|
let _ = if v1 = a

v′(a′, v2) and µ(a) = Class(a′′){init = v′;M}
in a′ | µ′ and a′ fresh

and µ′ = µ[a′ 7→ Object(a){∅}]
pyerror otherwise

(ELet) let x = v in e −→ e[x/v]

(EClass1,2)
class(a): init = v;M | µ −→



a′ | µ[a′ 7→ h] if µ(a) = Class(a′′){init = v′;M ′}
and param-match(v, µ,Any)
and h = Class(a){init = v;M}
and a′ fresh

pyerror otherwise
(EClass3)
class(v1): init = v2;M | µ −→ pyerror if v1 6= a

(EGet1,2) a.` | µ −→
{
r if lookup(a, µ(a), `, µ) = r

pyerror otherwise
(EGet3) v.` | µ −→ pyerror if v 6= a

(ESet1,2,3) a.` = v | µ −→



0 | µ[a 7→ h′] if µ(a) = Object(a′){M}
and h′ = Object(a′){M [` = v]}

0 | µ[a 7→ h′] if µ(a) = Class(a′){init = v′;M}
and h′ = Class(a′){init = v′;M [` = v]}

pyerror otherwise
(ESet4) v1.` = v2 | µ −→ pyerror if v1 6= a

e | µ −→∗ r

(MRefl)
e | µ −→∗ e | µ

(MPyErr)
e | µ 7−→ pyerror

e | µ −→∗ pyerror

(MCastErr)
e | µ 7−→ casterror

e | µ −→∗ casterror
(MChain)

e | µ 7−→ e′ | µ′ e′ | µ′ −→∗ r
e | µ −→∗ r

Figure 12 µPython evaluation rules
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check(v, µ, S)

check(v, µ, pyobj) check(n, µ, int)
hasattrs(a, δ, µ)

check(a, µ, object LδM)
|x| = n

check(λx.e, µ, n→ )

µ(a) = Class(a′){init = v;M}
param-match(v, µ, n+ 1)

check(a, µ, n→ )

µ(a) = Class(a′){init = v;M}
param-match(v, µ, C) hasattrs(a, δ, µ)

check(a, µ, class Lδ, CM)

lookup(a, h, `, µ) = r

M(`) = v

lookup(a, Object(a′){M}, `, µ) = v | µ
getattr(a, `, µ) = v

lookup(a, Class(a′){init = v′;M}, `, µ) = v | µ

` 6∈ dom(M)
getattr(a, `, µ) = v v 6= λ`.e

lookup(a, Object(a′){M}, `, µ) = v | µ

` 6∈ dom(M)
getattr(a, `, µ) = v v = λx.e |y| = |x| − 1
lookup(a, Object(a′){M}, `, µ) = λy.v(a, y) | µ

` 6∈ dom(M) getattr(a, `, µ) = v v = λx.e |x| = 0
lookup(a, Object(a′){M}, `, µ) = casterror

Figure 13 Relations used in µPython evaluation

1 let f = (λ v. let v = v⇓1→ in
2 (v(42))⇓int) in
3 f(21)

The result is a µPython program that is partially translated, typed Anthill code (highlighted
in yellow ) and partially code that originates in µPython. In this case, the result of the
program is no longer pyerror, but a casterror at line 1, which indicates that f has been
passed something of the wrong type. Open world soundness guarantees that mixed programs
like this can only result in pyerror in those sections that originated in µPython.

To reason about such mixed programs, we describe portions of a program as originating
in either Anthill or µPython. Consider again the example from above, but with origin made
explicit:

1 let f = (λ v. let v = v⇓1→ in
2 (v(42)◦)⇓int) in
3 f(21)•

The call site at 2 is labeled ◦ to indicate that it originated Anthill, and should never
result in pyerror. The call site at line 3, on the other hand, is labeled • to indicate that it
originated in µPython, and can result in pyerror.

In the remainder of this section, we further develop this notion of origin, and use it in
defining a type system for µPython, which enforces restrictions on code that originated in
Anthill while being permissive for code that does not. We then use this type system to prove
open world soundness.



Michael M. Vitousek and Jeremy G. Siek 21

p ::= ◦ | •
e ::= . . . | e(e)p | e.`p | e.`p = e | class(e):p init = e; ` = e

r ::= . . . | pyerror(p)
Σ ::= a:S
C ::= � | C(e)• | e(e, C, e)• | C.`• | C.`• = e | e.`• = C | class(e, C, e):• init = e; ` = e |

class(e):• init = C; ` = e | class(v):• init = e; ` = e, ` = C, ` = e |
let x = C in e | let x = e in C | C ⇓S | λx. C

Figure 14 Labeled syntax and contexts for µPython

5.1 Expression origin
Figure 14 shows the syntax of µPython extended with origin labels p. In this system, there
are only two labels: ◦, for code translated from well-typed Anthill Python programs, and •,
for code that originates in µPython and is not statically typed.

Unlike typical blame labels in contracts and gradual typing, which attach to casts or
contract monitors [3, 15, 35], these labels are attached to expressions, and specifically to
elimination forms that can result in pyerror. (No labels are attached to, for example, let-
binding, because let-binding cannot on its own lead to a pyerror.) We also change the
pyerror result so that it reports the origin of the expression that triggered the error. Code
translated from Anthill is always labeled with ◦, while µPython programs entirely labeled
with • represent untyped Python code. The version of µPython’s dynamic semantics that
includes origin is shown in Appendix A, Figure 19; it differs from that shown in Figure 12
only in its use and propagation of labels.

5.2 Applying types to µPython
In addition to indicating whether a dynamic type error occurred in typed or untyped code,
origin labels also let us define a type system for µPython in order to state and prove open
world soundness. This type system relates expressions to type tags S, as defined in Figure
6, which are repurposed as types. An illustrative excerpt of this type system is shown in
Figure 15. Two rules are provided for each labeled expression, one for ◦ and one for •. The
• rule requires that all subexpressions be typed as pyobj, which is the top of the subtyping
hierarchy for S as shown in Figure 8, so no programs can be rejected unless they contain
◦-labeled expressions. The ◦ rules are more restrictive — a ◦-labeled expression is well-typed
when it cannot step to pyerror, and so ◦ rules require that subexpressions have the specific
types necessary to ensure that. All expressions of either variety, other than checks and
introduction forms, are typed as pyobj. This ensures runtime type checks exist in ◦-labeled
code, because type checks are the only way to obtain expressions with precise types like int
and n→ (other than introduction forms like numbers or lambdas).

In rule TCheck, the type of a check expression is its type tag. In TApp we require
that, in a call labeled with ◦, the callee has a function type. The only way for it to have
a function type is if it is a bare lambda, if it is a variable bound by TLet, or if it is some
other expression nested within a check (typed by TCheck). By contrast, TApp-Dyn places
no requirements on the types of subexpressions of an untyped, •-labeled application. Even
if a subexpression has a more specific type, pyobj is the top of the subtyping hierarchy,
so by TSubsump any well-typed expression can appear in function position. Therefore, an
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Γ;Σ ` e : S

(TSubsump)
Γ;Σ ` e : S2 S2 <: S1

Γ;Σ ` e : S1

(TCheck)
Γ;Σ ` e : pyobj
Γ;Σ ` e ⇓S : S

(TLet)
Γ;Σ ` e1 : S1 Γ, x:S1|Σ ` e2 : S2

Γ;Σ ` let x = e1 in e2 : S2

(TApp)
Γ;Σ ` e1 : n→ Γ;Σ ` e2 : pyobj |e2| = n

Γ;Σ ` e1(e2)◦ : pyobj

(TApp-Dyn)
Γ;Σ ` e1 : pyobj Γ;Σ ` e2 : pyobj

Γ;Σ ` e1(e2)• : pyobj

S <: S

S <: pyobj int <: int
S1 <: S2 S2 <: S3

S1 <: S3

δ2 ⊆ δ1

object Lδ1M <: object Lδ2M

class Lδ, nM <: class Lδ,AnyM
δ2 ⊆ δ1

class Lδ1, CM <: class Lδ2, CM class Lδ, CM <: object LδM

class Lδ, nM <: n→

Figure 15 Excerpt of type system for typed expressions in µPython

obviously ill-typed program like 4(2) (calling 4 as though it were a function) will be ill-typed
if the call is labeled with ◦, but allowed if it is labeled with •. The full type system for
µPython with labels is shown in Appendix A, Figure 17.

5.3 Code contexts allow embedding typed code in untyped
To reason about Anthill-translated code interacting with other µPython code, we use code
contexts C[19]. Contexts are defined in Figure 14; in this work we are concerned with
embedding typed code in untyped contexts, so these contexts are •-labeled. Code contexts
are typed using the judgment C : Γ;S1 ⇒ Γ′;S2, where if the hole in a context C is filled by
an expression of type S1 under Γ, then the result is an expression of type S2 under Γ′. We
write C[e] for the composition of a context and an expression, which is itself an expression.
For example, � : Γ;S ⇒ Γ;S, because a hole filled by an expression is just that expression.
The full rules for typing contexts are given in Appendix A, Figure 20.

5.4 Open world soundness
Armed with notions of origination and a type system for µPython, we can now describe the
proof of open world soundness and its key lemmas.

First, if an Anthill term t has type A under Γ and is translated into a µPython expression
e, then e has type bAc under bΓc.4

I Lemma 1 (Anthill translation preserves typing).
If Γ ` t ; e : A, then bΓc; ∅ ` e : bAc.

4 Here, bΓc is the result of applying bAc (see Figure 8) to all the types in Γ.
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If Γ ` c ; e : A, then bΓc; ∅ ` e : |A|→ .
If Γ;A1 ` d ; e : A2, then bΓc; ∅ ` e : bA2c

If e is plugged in a context C : bΓc; bAc ⇒ ∅;S, then the resulting term C[e] has type S.

I Lemma 2 (Composition). If C : Γ;S ⇒ Γ′;S′ and Γ; ∅ ` e : S, then Γ′; ∅ ` C[e] : S′.

Finally, when C[e] is evaluated, if it does not diverge it will result in a value of type S,
a casterror, or a pyerror that points to untyped code as the source of the error (i.e. e is
not responsible).

I Lemma 3 (Preservation). If ∅; Σ ` e : S, Σ ` µ, and e | µ −→ e′ | µ′, then ∅; Σ′ ` e′ : S
and Σ′ ` µ′ and Σ v Σ′.

I Lemma 4 (Progress with no typed pyerrors). If ∅; Σ ` e : S and Σ ` µ, then either e is a
value or e | µ −→ r and either:

r = pyerror(•), or
r = casterror, or
r = e′ | µ′.

These key lemmas let us prove the overall statement of open world soundness:

I Theorem 5 (Open world soundness). If Γ ` t ; e : A, then for any context C such that
C : bΓc;bAc ⇒ ∅;S, we have that ∅; ∅ ` C[e] : S and either:

for some v,Σ, µ, C[e] | ∅ −→∗ v | µ and ∅; Σ ` v : S and Σ ` µ, or
C[e] | ∅ −→∗ pyerror(•), or
C[e] | ∅ −→∗ casterror, or
for all r such that C[e] | ∅ −→∗ r, have r = e′ | µ′ and there exists r′ such that
e′ | µ′ −→ r′.

This theorem states that no program can ever result in pyerror(◦), which would indicate
an uncaught type error in translated Anthill code. Type soundness in the usual sense is an
immediate corollary of this theorem, by choosing C to be the empty context �.

We proved this theorem for the Anthill and µPython languages using the Coq proof as-
sistant; the completed proof files are available at https://arxiv.org/src/1610.08476v1.
A sketch of the proof can also be examined in Appendix B. The proof combines a typical
progress and preservation type soundness proof (for µPython, and so including many addi-
tional cases for errored terms) with proofs that the translation relation is type preserving
and that composition of terms and contexts is well-typed.

5.5 Ramifications of open world soundness
Because Anthill admits open world soundness, a program written in Anthill can be used
by native µPython clients. For example, an Anthill library can put type annotations on
its API boundaries, and these types will be checked, preventing difficult-to-diagnose errors
from arising deep within the library — even if the library is used by code which has no
concept of static types. Furthermore, the Anthill code is protected from errors arising due
to mutation. While foreign functions are not modeled directly in the Anthill and µPython
calculi, note that the distinction between untyped Python programs and compiled C code
is relevant in guarded because of the presence of proxies. Since Anthill and µPython lack
proxies, however, this distinction is irrelevant, and such foreign functions can be modeled as
untranslated µPython code, and thus open world soundness shows that calls to such code
within Anthill programs will not interfere with Anthill’s type soundness.

https://arxiv.org/src/1610.08476v1
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We conjecture that Reticulated Python is also open world sound when using the transient
semantics; it is certainly closer to open world soundness than the guarded semantics. Evi-
dence for this exists in the work of Vitousek et al. [40]. They found that Reticulated Python
ran all of their case studies without error under transient, while it could not successfully ex-
ecute one of them when using guarded. Further, more modifications to the typed programs
were necessary when using guarded to avoid errors caused by proxy identity problems.

Combined with its ease of implementation, the fact that transient admits open world
soundness means that it is a realistic and useful technique in designing gradually typed
languages like Reticulated Python. It does require performance overhead in its pervasive
checks, and we envision practical implementations offering a “switch” to allow developers to
debug their program with thorough type checking and disable it for production (similar to,
but more complete than, Dart’s checked mode). Open world soundness demonstrates that
it is useful in circumstances that challenge guarded, and its ease of implementation makes it
more practical than other approaches.

6 Conclusions

The traditional guarded approach for the runtime semantics of gradually typed languages,
based on proxies, is well-understood and powerful, but it is unsound in an open world in
when applied to languages like Python. The transient design for gradual typing provides an
alternative approach which is open world sound.

In this paper we develop a formal treatment of transient with calculi that model Retic-
ulated Python and Python. Furthermore, we discuss a formal property that is relevant
to source-to-source implementations of gradually typed languages, open world soundness,
which states that typed code can be embedded in untranslated code without causing un-
caught type errors. We prove that our calculi admit the open world soundness principle and
mechanize the proof in Coq.

Many industrial gradually typed languages avoid runtime checking altogether. This
is especially relevant when the system is designed to translate to an underlying language
whose semantics cannot be modified by the designer of the surface language. Reticulated
Python and the transient semantics demonstrate that gradual typing can be implemented
straightforwardly, without modifying the target language’s semantics, and while allowing
interoperation and preserving soundness.
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A Appendix: Full semantics

Figure 16 shows the translation from Anthill Python to µPython, and Figure 17 shows the
type system used to prove soundness for µPython. Figures 18 and 19 show the runtime
semantics of µPython, and are identical to Figures 13 and 12 in the main body of the paper
except for the addition of origin labels p. Figure 20 shows the typing judgments for contexts
C. Figure 21 shows assorted metafunctions not defined in the main body of this work.

B Appendix: Open World Soundness

The full mechanized proof of open-world soundness for Anthill and µPython is presented
in the Coq files anthill1.v, anthill2.v, anthill3.v, and anthill4.v. The semantics
of the mechanized proof differ from those presented here in that the reduction is single-
step without evaluation contexts, and the receiver is the last parameter of constructors and
methods, rather than the first. The Coq proof also does not use a heap type Σ, but instead
uses the heap directly in the µPython typechecking relation and the theorems (but ignoring
the values of object fields).

This section contains proof sketches of the key lemmas and most important technical
lemmas, as well as the proof of open-world soundness.
I Technical Lemma 1 (Environment weakening). If Γ;Σ ` e : S and Γ ⊆ Γ′ then Γ′; Σ ` e : S.

Proof Sketch. Straightforward induction on Γ;Σ ` e : S. J

I Main Lemma 1 (Anthill translation preserves typing).
If Γ ` t ; e : A, then bΓc; ∅ ` e : bAc.
If Γ ` c ; e : A, then bΓc; ∅ ` e : |A|→ .
If Γ;A1 ` d ; e : A2, then bΓc; ∅ ` e : bA2c

Proof Sketch. By induction on Γ ` t ; e : A, Γ ` c ; e : A, and Γ;A1 ` d ; e : A2. In the
IFun, IMethod, and IConstruct cases, use Technical Lemma 1. J

I Technical Lemma 2. If Σ ` µ and ∅; Σ ` a : S, then a ∈ dom(Σ).

Proof Sketch. By induction on ∅; Σ ` a : S. J

I Technical Lemma 3 (Canonical forms). If ∅;Σ ` v : S and Σ ` µ, then:
If S = int, then v = n.
If S = n→ , then either
v = λx.e and |x| = n, or
v = a and µ(a) = Class(a′){init = v′;M} and param-match(v′, µ, n)

If S = class Lδ, CM, then v = a and
µ(a) = Class(a′){init = v′;M} and
param-match(v′, µ, C) and hasattrs(a, δ, µ).
If S = object LδM then v = a and either
µ(a) = Class(a′){init = v′;M} and
hasattrs(a, δ, µ), or
µ(a) = Object(a){M} and hasattrs(a, δ, µ).

If S = pyobj then for some S′ 6= pyobj, S′ <: S, ∅;Σ ` v : S′

Proof Sketch. By induction on ∅; Σ ` v : S. In case TSubsump, proceeding by cases on S
and frequently using Technical Lemma 2. J
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Γ ` t ; e : A

(IVar)
Γ(x) = A

Γ ` x ; x : A

(IInt)

Γ ` n ; n : int

(ILet)
Γ ` t1 ; e1 : A1 Γ, x:A1 ` t2 ; e2 : A2

Γ ` let x = t1 in t2 ; let x = e1 in e2 : A2

(IGet)
Γ ` t ; e : A1 ∆ = mems(A1)

∆(x) = A2

Γ ` t.x ; e.x◦ ⇓bA2c: A2

(IGet-Check)
Γ ` t ; e : A1 ∆ = mems(A1)
x 6∈ dom(A1) queryable(A1) = ♦

Γ ` t.x ; (e ⇓object LxM).x◦ : ?

(ISet)
Γ ` t1 ; e1 : A1 Γ ` t2 ; e2 : A′2

∆ = mems(A1)
Γ ` t1.x = t2 ; e1.x

◦ = e2 : int

(ISet-Check)
Γ ` t1 ; e1 : A1 Γ ` t2 ; e2 : A2

∆ = mems(A1) x 6∈ dom(A1)
queryable(A1) = ♦

Γ ` t1.x = t2 ; (e1 ⇓object L∅M).x◦ = e2 : int

(IFun)
Γ, x : A1 ` t ; e : A′2 A′2 . A2

Γ`λx:A1→A2. t;λx. let x = x ⇓bA1c in e:A1→A2

(IApp-Dyn)
Γ ` t1 ; e1 : ? Γ ` t2 ; e2 : A
Γ ` t1(t2) ; (e1 ⇓|A|→ )(e2)◦ : ?

(IApp-Fun)
Γ ` t1 ; e1 : A1 → A2 Γ ` t2 ; e2 : A′1

|A1| = |t2| A′1 . A1

Γ ` t1(t2) ; (e1(e2)◦) ⇓bA2c: A2

(IApp-Constr)
Γ ` t1 ; e1 : class Lq,∆1,∆2, A1M Γ ` t2 ; e2 : A′1

|A1| = |t2| A′1 . A1 A2 = object Lq, instantiate(∆1,∆2)M
Γ ` t1(t2) ; (e1(e2)◦) ⇓bA2c: A2

(IClass)

Γ ` ts ; es : As Aclass = class Lq,∆1,∆2, AcM Γ `σ c ; ec : Ac
Γ;Aclass `ς m ; em : Am Γ ` tf ; ef : Af e′s = es ⇓class Lbmems(As)c,AnyM

∀x ∈ dom(∆1), (`f ×Af ∪ `m ×Am ∪mems(As))(x) . ∆1(x)
Γ ` class(ts):Lq,∆1,∆2M init=c; `f =M m; `m =F tm ;

class(e′s): init = ec; `m = em, `f = ef : Aclass

Γ `σ c ; e : A

(IConstruct)
Γ, xs:?, x:A1 ` t ; e : A2

Γ `σ σ xs, x:A1. t ; λxs, x. let x = x ⇓bA1c in e : A1

Γ;A `ς m ; e : A

(IMethod)
Ao = object Lq, instantiate(∆1,∆2)M A′2 . A2 Γ, xs:Ao, x:A1 ` t ; e : A′2

Γ; class Lq1,∆1,∆2, AcM `ς ς xs, x:A1→A2. t ;
λxs, x. let xs = xs ⇓bAoc in let x = x ⇓bA1c in e : A1 → A2

Figure 16 Translation from Anthill Python to µPython (including origin)
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Γ; Σ ` e : S

(TSubsump)
Γ;Σ ` e : S2 S2 <: S1

Γ;Σ ` e : S1

(TVar)
Γ(x) = S

Γ;Σ ` x:S

(TAddr)
Σ(a) = S

Γ;Σ ` a:S

(TInt)

Γ;Σ ` n:int

(TApp-Dyn)
Γ;Σ ` e1 : pyobj Γ;Σ ` e2 : pyobj

Γ;Σ ` e1(e2)• : pyobj

(TApp)
Γ;Σ ` e1 : n→ Γ;Σ ` e2 : pyobj |e2| = n

Γ;Σ ` e1(e2)◦ : pyobj

(TGet-Dyn)
Γ;Σ ` e : pyobj

Γ;Σ ` e.x• : pyobj

(TGet)
Γ;Σ ` e : object LxM

Γ;Σ ` e.x◦ : pyobj

(TSet-Dyn)
Γ;Σ ` e1 : pyobj Γ;Σ ` e2 : pyobj

Γ;Σ ` e1.x
• = e2 : int

(TSet)
Γ;Σ ` e1 : object L∅M Γ;Σ ` e2 : pyobj

Γ;Σ ` e1.x
◦ = e2 : int

(TClass-Dyn)
Γ;Σ ` es : pyobj Γ;Σ ` em : pyobj Γ;Σ ` ec : pyobj

Γ;Σ ` class(es):• init = ec;x = em : class Lx,AnyM

(TClass)
Γ;Σ ` es : class Lδ,AnyM δ′ =

⋃
δ Γ;Σ ` em : pyobj Γ;Σ ` ec : (n+1)→

Γ;Σ ` class(es):◦ init = ec;x = em : class Lx ∪ δ′, nM

(TFun)
Γ, x:pyobj; Σ ` e : pyobj

Γ;Σ ` λx. e : |x|→

(TCheck)
Γ;Σ ` e : pyobj
Γ;Σ ` e ⇓S : S

(TLet)
Γ;Σ ` e1 : S1 Γ, x:S1;Σ ` e2 : S2

Γ;Σ ` let x = e1 in e2 : S2

Σ;µ ` a : S

(THClass)
µ(a) = Class(a′){init = v;xf = vf}

hasattrs(a, δ, µ) param-match(a, µ, C) Σ(a′) = class Lδ′, C ′M ∅;Σ ` vf : pyobj
Σ;µ ` a : class Lδ, CM

(THObject)
µ(a) = Object(a′){xf = vf}

hasattrs(a, δ, µ) Σ(a′) = class Lδ′, C ′M ∅;Σ ` vf : pyobj
Σ;µ ` a : object LδM

Σ ` µ

dom(Σ) = dom(µ) ∀a ∈ dom(Σ). Σ;µ ` a : Σ(a)
Σ ` µ

Figure 17 Type system for µPython (including origin)
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lookup(a, h, `, µ, p) = r

M(`) = v

lookup(a, Object(a′){M}, `, µ, p) = v | µ

` 6∈ dom(M)
getattr(a, `, µ) = v v 6= λ`.e

lookup(a, Object(a′){M}, `, µ, p) = v | µ

` 6∈ dom(M)
getattr(a, `, µ) = v v = λx.e |y| = |x| − 1

lookup(a, Object(a′){M}, `, µ, p) = λy.v(a, y)p | µ

` 6∈ dom(M) getattr(a, `, µ) = v v = λx.e |x| = 0
lookup(a, Object(a′){M}, `, µ, p) = casterror

getattr(a, `, µ) = v

lookup(a, Class(a′){init = v′;M}, `, µ, p) = v | µ

Figure 18 Relations used in µPython evaluation, with origin labels

I Technical Lemma 4 (Heap weakening). If Γ;Σ ` e : S and Σ v Σ′ then Γ;Σ′ ` e : S.

Proof Sketch. By induction on Γ;Σ ` e : S, subsuming class types to object types when
necessary. J

I Technical Lemma 5. If Σ ` µ and Σ;µ ` a : S and hasattrs(a, δ′, µ), then
If S = class Lδ, CM, then δ′ ⊆ δ.
If S = object LδM, then δ′ ⊆ δ.

Proof Sketch. By induction on Σ;µ ` a : S. J

I Technical Lemma 6. If Σ ` µ and ∅; Σ ` v : S and param-match(v, µ, n), then ∅; Σ ` v : n→

Proof Sketch. By cases on v. J

I Technical Lemma 7 (Substitution). If Γ, x : S1;Σ ` e : S2 and ∅;Σ ` v : S1 then Γ;Σ `
e[x/v] : S2.

Proof Sketch. Straightforward induction on Γ, x : S1;Σ ` e : S2. J

I Main Lemma 2 (Preservation). If ∅;Σ ` e : S, Σ ` µ, and e | µ −→ e′ | µ′, then ∅;Σ′ ` e′ : S
and Σ′ ` µ′ and Σ v Σ′.

Proof Sketch. By induction on e | µ −→ e′ | µ′. Uses Technical Lemmas 2, 3, 4, 5, 6, and
7. J

I Corollary 1 (Iterated preservation). If ∅;Σ ` e : S, Σ ` µ, and e | µ −→∗ e′ | µ′, then
∅;Σ′ ` e′ : S and Σ′ ` µ′ and Σ v Σ′.

Proof Sketch. Straightforward induction on e | µ −→ e′ | µ′. In case MChain, apply Main
Lemma 2. J

I Main Lemma 3 (Progress). If ∅;Σ ` e : S and Σ ` µ, then either e is a value or e | µ −→ r

and either:
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e | µ −→ r

(EStep)
e | µ −→ e′ | µ′

E[e] | µ 7−→ E[e′] | µ′

(EPyError)
e | µ −→ pyerror(p)

E[e] | µ 7−→ pyerror(p)

(ECastError)
e | µ −→ casterror

E[e] | µ 7−→ casterror

(ECheck1,2) v ⇓S | µ −→

{
v | µ if check(v, µ, S)
casterror otherwise

(EApp1,2,3) v1(v2)p | µ −→



e[x/v2] | µ if v1 = λx.e

and |x| = |v2|
let _ = if v1 = a

v′(a′, v2)p and µ(a) = Class(a′′){init = v′;M}
in a′ | µ′ and a′ fresh

and µ′ = µ[a′ 7→ Object(a){∅}]
pyerror(p) otherwise

(ELet) let x = v in e −→ e[x/v]

(EClass1,2)
class(a):p init = v;M | µ −→



a′ | µ[a′ 7→ h] if µ(a) = Class(a′′){init = v′;M ′}
and param-match(v, µ,Any)
and h = Class(a){init = v;M}
and a′ fresh

pyerror(p) otherwise
(EClass3)
class(v1):p init = v2;M | µ −→ pyerror(p) if v1 6= a

(EGet1,2) a.`p | µ −→
{
r if lookup(a, µ(a), `, µ) = r

pyerror(p) otherwise
(EGet3) v.`p | µ −→ pyerror(p) if v 6= a

(ESet1,2,3) a.`p = v | µ −→



0 | µ[a 7→ h′] if µ(a) = Object(a′){M}
and h′ = Object(a′){M [` = v]}

0 | µ[a 7→ h′] if µ(a) = Class(a′){init = v′;M}
and h′ = Class(a′){init = v′;M [` = v]}

pyerror(p) otherwise
(ESet4) v1.`

p = v2 | µ −→ pyerror(p) if v1 6= a

e | µ −→∗ r

(MRefl)
e | µ −→∗ e | µ

(MPyErr)
e | µ 7−→ pyerror(p)
e | µ −→∗ pyerror(p)

(MCastErr)
e | µ 7−→ casterror

e | µ −→∗ casterror
(MChain)

e | µ 7−→ e′ | µ′ e′ | µ′ −→∗ r
e | µ −→∗ r

Figure 19 µPython evaluation rules, with origin labels
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C : Γ;S ⇒ Γ;S

� : Γ;S ⇒ Γ;S
C : Γ;S1 ⇒ Γ′;S3 S3 <: S2

C : Γ;S1 ⇒ Γ′;S2

C : Γ;S ⇒ Γ′;pyobj Γ′;∅ ` e : pyobj
C(e)• : Γ;S ⇒ Γ′;pyobj

Γ′;∅ ` e : pyobj Γ′;∅ ` e : pyobj C : Γ;S ⇒ Γ′;pyobj
e(e, C, e)• : Γ;S ⇒ Γ′;pyobj

C : Γ;S ⇒ Γ′;pyobj
C.x• : Γ;S ⇒ Γ′;pyobj

C : Γ;S ⇒ Γ′; pyobj Γ′;∅ ` e : pyobj
C.x• = e : Γ;S ⇒ Γ′; int

Γ′;∅ ` e : pyobj e : Γ;S ⇒ Γ′;pyobj
Γ;Σ ` e.x• = C : Γ;S ⇒ Γ′; int

Γ′;∅ ` es : pyobj Γ′;∅ ` em : pyobj Γ′;∅ ` ec : pyobj C : Γ;S ⇒ Γ′;pyobj
class(es, C, es):• init = ec;x = em : Γ;S ⇒ Γ′;pyobj

Γ′;∅ ` es : pyobj Γ′;∅ ` em : pyobj Γ′;∅ ` ec : pyobj C : Γ;S ⇒ Γ′;pyobj
class(es):• init = ec;x = em, x = C, x = em : Γ;S ⇒ Γ′;pyobj

Γ′;∅ ` es : pyobj Γ′;∅ ` em : pyobj C : Γ;S ⇒ Γ′;pyobj
class(es):• init = C;x = em : Γ;S ⇒ Γ′;pyobj

C : Γ;S ⇒ Γ′, x:pyobj; pyobj
λx. C : Γ;S ⇒ Γ′; |x|→

C : Γ;S ⇒ Γ′;pyobj
C ⇓S′ : Γ;S ⇒ Γ′;S′

C : Γ;S1 ⇒ Γ′;S2 Γ′, x:S2;∅ ` e : S3

let x = C in e : Γ;S1 ⇒ Γ′;S3

Γ′;∅ ` e : S2 C : Γ;S1 ⇒ Γ′, x:S2;S3

let x = e in C : Γ;S1 ⇒ Γ′;S3

Figure 20 Type system for µPython contexts
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r = pyerror(•), or
r = casterror, or
r = e′ | µ′.

Proof Sketch. Induction on ∅;Σ ` e : S. In the -Dyn cases, this lemma is trivial, since the
catch-all evaluation rules that lead to pyerror(•) satisfy the lemma. J

I Main Lemma 4 (Composition). If C : Γ;S ⇒ Γ′;S′ and Γ;∅ ` e : S, then Γ′;∅ ` C[e] : S′.

Proof Sketch. By induction on C : Γ;S ⇒ Γ′;S′. J

I Technical Lemma 8 (Typed code blames •). If e | µ −→ pyerror(p) and ∅; Σ ` e : S and
Σ ` µ, then p = •.

Proof Sketch. Straightforward induction on e | µ −→ pyerror(p), noting that ◦-labeled
code cannot take steps that lead to pyerror. J

I Corollary 2. If e | µ −→∗ pyerror(p) and ∅; Σ ` e : S and Σ ` µ, then p = •.

Proof Sketch. Induction on e | µ −→∗ pyerror(p), applying Technical Lemma 8 in the case
for EChain. J

I Theorem 1 (Open world soundness). If Γ ` t ; e : A, then for any context C such that
C : bΓc;bAc ⇒ ∅;S, then ∅; ∅ ` C[e] : A and either:

for some v,Σ, µ, C[e] | ∅ −→∗ v | µ and ∅; Σ ` v : S and Σ ` µ, or
C[e] | ∅ −→∗ pyerror(•), or
C[e] | ∅ −→∗ casterror, or
for all r such that C[e] | ∅ −→∗ r, have r = e′ | µ′ and there exists r′ such that
e′ | µ′ −→ r′.

Proof. From Main Lemma 1, bΓc;∅ ` e : bAc. Then from Main Lemma 4, ∅;∅ ` C[e] : S.
Either C[e] | ∅ diverges or it does not. If it does, the theorem is satisfied immediately;
otherwise, we have some r, C[e] | ∅ −→∗ r, such that either r 6= e′ | µ′ or 6 ∃r′, e′ | µ′ −→ r′.
In the latter case, by Main Lemma 3, either e′ is a value or there exists some r′, e′ | µ′ −→ r′.
The latter is a contradiction, and so e′ is a value. By Corollary 1, ∅; Σ′ ` e : S and Σ ` µ′
for some Σ′.

If r = casterror, the theorem is satisfied. If r = pyerror(p), by Corollary 2, the
theorem is satisfied. J
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param-match(v, µ, C)

param-match(λx.e, µ,Any)
|x| = n

param-match(λx.e, µ, n)
µ(a) = Class(a){init = v;M}

param-match(a, µ,Any)

µ(a) = Class(a){init = v;M} param-match(v, µ, n+ 1)
param-match(a, µ, n)

getattr(a, x, µ) = v

getattr(a, x, µ) =



M(x) if µ(a′) = Object(a′){M}
and x ∈ dom(M)

getattr(a′, x, µ) if µ(a) = Object(a′){M}
and x 6∈ dom(M)

M(x) if µ(a′) = Class(a′){init = v;M}
and x ∈ dom(M)

getattr(a′k, x, µ) if µ(a) = Class(a′0, . . . , a′k, . . . , a′n){init = v;M}
and x 6∈ dom(M)
and ∀i, 0 ≤ i < k, getattr(a′i, x, µ) 6= v

hasattr(a, x, µ)

getattr(a, x, µ) = v

hasattr(a, x, µ)

hasattrs(a, δ, µ)

∀x ∈ δ. getattr(a, x, µ)
hasattrs(a, δ, µ)

Σ v Σ

∀a ∈ dom(Σ1). Σ2(a) <: Σ1(a)
Σ1 v Σ2

A ∼ A

? ∼ A A ∼ ? int ∼ int
∆1 ∼ ∆2

object Lq1,∆1M ∼ object Lq2,∆2M

∆1 ∼ ∆3 ∆2 ∼ ∆4 |A1| = |A3| A1 ∼ A3

class Lq1,∆1,∆2, A1M ∼ class Lq2,∆3,∆4, A2M

|A1| = |A3| A1 ∼ A3 A2 ∼ A4

A1 → A2 ∼ A3 → A4

Figure 21 Other metafunctions
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