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Abstract—The volumes of data in Big Data, their variety and
unstructured nature, have had researchers looking beyond the
data warehouse. The data warehouse, among other features,
requires mapping data to a schema upon ingest, an approach
seen as inflexible for the massive variety of Big Data. The Data
Lake is emerging as an alternate solution for storing data of
widely divergent types and scales. Designed for high flexibility,
the Data Lake follows a schema-on-read philosophy and data
transformations are assumed to be performed within the Data
Lake. During its lifecycle in a Data Lake, a data product may
undergo numerous transformations performed by any number of
Big Data processing engines leading to questions of traceability.
In this paper we argue that provenance contributes to easier data
management and traceability within a Data Lake infrastructure.
We discuss the challenges in provenance integration in a Data
Lake and propose a reference architecture to overcome the
challenges. We evaluate our architecture through a prototype
implementation built using our distributed provenance collection
tools.

I. INTRODUCTION

Industry, academia, and research alike are grappling with
the opportunities that Big Data brings in mining data from
numerous sources for insight, decision making, and predictive
forecasts. These sources (e.g., clickstream, sensor data, IoT
devices, social media, server logs) are frequently both external
to an organization and internal. Data from sources such as
social media and sensors is generated continuously. Depending
on the source, data can be structured, semi-structured, or
unstructured. The traditional solution, the data warehouse,
is proving inflexible and limited [1] as a data management
framework in support of multiple analytics platforms and data
of numerous sources and types.

The response to the limits of the data warehouse is the Data
Lake [2], [1]. A feature of the Data Lake is its schema-on-read
(as opposed to schema-on-write which happens at ingest time)
where commitments to a particular schema are deferred to time
of use. Schema-on-read suggests that data are ingested in a
raw form, then converted to a particular schema as needed to
carry out analysis. The Data Lake paradigm acknowledges that
high throughput analytics platforms in use today are varied,
so has to support multiple Big Data processing frameworks
like Apache Hadoop1, Apache Spark2 and Apache Storm3.
The vision of the Data Lake is one of data from numerous

1http://hadoop.apache.org/
2http://spark.apache.org/
3http://storm.apache.org/

sources being dropped into the lake quickly and easily, with
tools around the lake as designated fishers of the lake, intent
on catching insight by the rich ecosystem of data within the
Data Lake.

This greater flexibility of the Data Lake leads to rich collec-
tions of data from various sources. It, however, leaves greater
manageability burdens in the hands of the lake administrators.
The Data Lake can easily become a “dump everything” place
due to absence of any enforced schema, sometimes referred
to in literature as a “data swamp” [3]. The Data Lake could
easily ignore the fact that data items in a Data Lake can exist in
different stages of their life cycle. One data item may be in raw
stage after recent generation where another may be the fined
result of analysis by one or more of the analysis tools. The
complications of data life cycle increases the need for proper
traceability mechanisms. In this paper the critical focus of our
attention is on metadata and lineage information through a
data life cycle which are key to good data accessibility and
traceability [4].

Data provenance is the information about the activities,
entities and people who involved in producing a data product.
Data provenance is often represented in one of two standard
provenance representations (i.e., OPM [5] or PROV [6]). Data
provenance can help with management of a Data Lake by
making it clear where an object is in its lifecycle. This
information can ease the burden of transformation needed by
analysis tools to operate on a dataset. For instance, how does
a researcher know what datasets are available in the lake for
Apache Spark analysis, and which can be available through
a small amount of transformation? This information can be
derived by hand by the lake administrator and stored to a
registry, but that approach runs counter to the ease with which
new data can be added to the data lake. Another issue with the
Data Lake is trust. Suppose a Data Lake is set up to organize
data for the watershed basin of the Lower Mekong River in
southeast asia. The contributors are going to be from numerous
countries through which the Mekong River passes. How does
the Data Lake ensure that the uses of the data in the lake are
proper and adhere to the terms of contribution? How does a
researcher, who uses the Data Lake for their research, prove
that their research is done in a way that is consistent with the
terms of contribution?

Provenance contributes to these questions of use and trust. If
the Data Lake framework can ensure that every data product’s



Fig. 1. Data Lake Architecture

lineage and attribution are in place starting from the origin,
critical traceability can be had. However, that is a challenging
task because a data product in a Data Lake may go through
different analytics systems such as Hadoop, Spark and Storm
which do not produce provenance information by default.
Even if there are provenance collection techniques for those
systems, they may use their own ways of storing provenance
or use different standards. Therefore generating integrated
provenance traces across systems is difficult.

In this paper we propose a reference architecture for prove-
nance in a Data Lake based on a central provenance subsystem
that stores and processes provenance events pumped into it
from all connected systems. The reference architecture, which
appeared in early work as a poster [7], is deepened here.
A prototype implementation of the architecture using our
distributed provenance collection tools shows that the proposed
technique can be introduced into a Data Lake to capture
integrated provenance without introducing much overhead.

The paper’s three main contributions are: identification of
the data management and traceability problems in a Data Lake
that are solvable using provenance highlighting the challenges
in capturing integrated provenance. Second, a reference ar-
chitecture to overcome those challenges. Third, an evaluation
of the viability of the proposed architecture using a prototype
implementation with techniques that can be used to reduce the
overhead of provenance capture.

II. DATA LAKE ARCHITECTURE

The general architecture of a Data Lake, shown in Figure
1, contains three main activities: (1) Data ingest, (2) Data
processing or transformation and (3) Data analysis. A Data
Lake may open up number of ingest APIs to bring data from
different sources into the lake. In most cases, raw data is
ingested into the Data Lake for later use by researchers for
multiple purposes at different points of time. Activity in the
Data Lake can be viewed as data transformation: where data
in the Data Lake is input to some task, and output is stored
back to the Data Lake. Modern large scale distributed Big
Data processing frameworks like Hadoop, Spark and Storm are
the source of such transformations, especially for Data Lakes
implemented on HDFS. Mechanisms like scientific workflow
systems such as Kepler [8] and legacy scripts may apply as
well. As shown in Figure 1, a data product created as an
output from one transformation can be an input into another
transformation which itself may produce another one as a

result. Finally when all processing steps are done, resulting
data products are used for different kinds of analysis reports
and predictions.

(a) Data Flow (b) Data Lineage

Fig. 2. Data Lineage in a Data Lake

III. PROVENANCE IN DATA LAKE

A. Role of Provenance

The Data Lake achieves increased flexibility at the cost
of reduced manageability. In the research data environment,
when differently structured data is ingested by different or-
ganizations through one of multiple APIs, tracking becomes
an issue. Chained transformations that continuously derive
new data from existing data in the lake further complicate
the management. How can minimal management be added
to the lake without invalidating the attractive benefit of ease
of ingest? We posit that this minimal management is in the
form of mechanisms to track origins of the data products,
rights of use and suitability of transformations applied to
them, and quality of data generated by the transformations.
Carefully captured provenance can satisfy these needs allow-
ing, for instance, answers to the following two questions:
1.) Suppose sensitive data are deposited into a Data Lake;
social science survey data for instance. Can data provenance
prevent improper leakage into derived data? 2.) Repeating a
Big Data transformation in a Data Lake is expensive due
to high resource and time consumption. Can live streaming
provenance from experiments identify problems early in their
execution?

B. Challenges in Provenance Capture

Data in a Data Lake may go through number of trans-
formations performed using different frameworks selected
according to the type of data and application. For example,
in a HDFS based Data Lake, it is common to use Storm or
Spark Streaming for streaming data and Hadoop MapReduce
or Spark for batch data. Other legacy systems and scripts may
be included as well. To achieve traceability across transfor-
mations, provenance captured from these systems must be
integrated, a challenge since many do not support provenance
by default.

Techniques exist to collect provenance from Big Data pro-
cessing frameworks like Hadoop and Spark [9], [10], [11],
[12]. But most are coupled to a particular framework. If
the provenance collection within a Data Lake depends on
such system specific methods, provenance from all subsystems
should be stitched together to create a deeper provenance trace.
There are stitching techniques [13], [14] which bring all
provenance traces into a common model and then integrate
them together. However the process of converting provenance



Fig. 3. Provenance for Data Lakes: Reference Architecture

traces from different standards into a common model may lose
provenance information depending on the data model followed
by each standard. As a Data Lake deals with Big Data, most
transformations generate large provenance graphs. Converting
such large provenance graphs into a common model and
stitching them together can introduce considerable compute
overheads as well.

C. Provenance Integration Across Systems

To address provenance integration, we propose a central
provenance collection system to which all components within
the Data Lake stream provenance events. Well accepted prove-
nance standards like W3C PROV [6] and OPM [5] represent
provenance as a directed acyclic graph (G = (V, E)). A node
(v ∈ V) can be an activity, entity or agent while an edge (e =
〈vi, vj〉 where e ∈ E and vi, vj ∈ V) represents a relationship
between two nodes. In our provenance collection model, a
provenance event always represents an edge in the provenance
graph. For example, if process p generates the data product d,
the provenance event adds a new edge (e = 〈p, d〉 where p, d
∈ V) into the provenance graph to represent the ‘generation’
relationship between activity p and entity d.

In addition to capturing usage and generation, additional
details like configuration parameters and environment informa-
tion (e.g., CPU speed, memory capacity, network bandwidth)
can be stored as attributes connected to the transformation.
Inside each transformation, there can be number of interme-
diate tasks which may themselves generate intermediate data
products. A MapReduce job for instance has multiple map and
reduce tasks. Capturing provenance from such internal tasks
at a high enough level to be useful helps in debugging and
reproducing transformations.

When the output data from one analysis tool is used as the
input to another, integration of provenance collected from both
transformations can be guaranteed only by a consistent lake-
unique persistent ID policy [6]. This may require a global
policy enforced for all contributing organizations to a Data
Lake. This unique ID notion could be based on file URLs
and randomly generated data identifiers which are appended
to data records when producing outputs so that the following
transformations can use the same identifiers. It could also be
achieved using globally persistent IDs such as the Handle
system or DOIs. As a simple example, consider Figure 2a. The
data product d1 is subject to transformation T 1 and generates
d2 and d3 as results. T 2 uses d3 together with a new data

product d4 and generates d5, d6 and d7. Finally T 3 uses
d6 and d7 and generates d8 as the final output. When all
three transformations T 1, T 2 and T 3 have sent provenance
events, a complete provenance graph is created in the central
provenance collection system. Figure 2b shows the high level
data lineage graph which represents the data flow starting from
d8.

D. Reference Architecture

The reference architecture, shown in Figure 3, uses a central
provenance collection subsystem. Provenance events captured
from components in the Data Lake are streamed into the
provenance subsystem where they are processed, stored and
analysed. The Provenance Stream Processing and Storage
component at the heart of this architecture accepts the stream
of provenance notifications (Ingest API) and supports queries
(Query API). A live stream processing subsystem supports live
queries while storage subsystem persists provenance for long
term usage. When long running experiments in the Data Lake
produce large volumes of provenance data, stream processing
techniques become extremely useful as storing full provenance
is not feasible. The Messaging System guarantees reliable
provenance event delivery into the central provenance process-
ing layer. Usage subsystem shows how provenance collected
around the Data Lake can be used for different purposes. Both
live and post-execution queries over collected provenance with
Monitoring and Visualization helps in scenarios like the two
use cases that we discussed above. There are other advantages
as well such as Debugging and Reproducing experiments in
the Data Lake.

In order to capture information about the origins of data,
provenance must be captured at the Ingest. Some data products
may carry their previous provenance information which should
be integrated as well. Researchers may export data products
from the Data Lake in some situations. Such data products
should be coupled with their provenance for better usage.

IV. PROTOTYPE IMPLEMENTATION

We set up a prototype Data Lake and implemented a use
case on top of it to evaluate the feasibility of our reference
architecture. We used our provenance collection tools to cap-
ture, store, query and visualize provenance in our Data Lake.
The reference architecture introduces both stored provenance
processing and real time provenance processing for Data
Lakes. In this prototype, we implement stored provenance



Fig. 4. Data Lake use case

processing; real time provenance processing is future work.
The central provenance subsystem uses our Komadu [15]
provenance collection framework.

A. Komadu

Komadu is a W3C PROV based provenance collection
framework which accepts provenance from distributed com-
ponents through RabbitMQ4 messaging and web services
channels. It does not depend on any global knowledge about
the system in a distributed setting. This makes it a good
match for a Data Lake environment where different systems
are used to perform different data transformations. Komadu
API can be used to capture provenance events from individual
components of the Data Lake. Each ingest operation adds a
new relationship (R) between two nodes (a node can be an
activity(A), entity(E) or agent(G)) of the provenance graph
being generated. For example, when an activity A generates an
entity E, the addActivityEntityRelationship(A,
E, R) operation can be used to add a wasGeneratedBy
relationship between A and E. Using the query operations, full
provenance graphs including all connected edges can be gener-
ated for Entities, Activities and Agents by passing the relevant
identifier. Backward only and forward only provenance graphs
can be generated for Entities. In addition to that, Komadu API
consists of operations to access the attributes of all types of
nodes. Komadu Cytoscape5 plugin can be used to visualize
and navigate through provenance graphs.

B. Data Lake Use Case

The Data Lake prototype was implemented using an HDFS
cluster and the transformations were performed using Hadoop
and Spark. Analysing data from social media to identify trends
is commonly seen in Data Lakes. As shown in Figure 4,
we have implemented a chain of transformations based on
Twitter data to first count hash tags and then to get aggregated
counts based on categories. Apache Flume6 was used to collect
Twitter data and store in HDFS through the Twitter public
streaming API. For each tweet, Flume captures the Twitter
handle of the author, time, language and the full message and
writes a record into an HDFS file. After collecting Twitter
data over a period of five days, a Hadoop job was used to
count hash tags in the full Twitter dataset. A new HDFS
file with hash tag counts is generated as the result of the
first Hadoop job which is used by a separate Spark job to

4http://www.rabbitmq.com/
5http://www.cytoscape.org/
6https://flume.apache.org/

(a) Forward Provenance (b) Backward Provenance

Fig. 5. Forward and Backward Provenance

get aggregated counts according to categories (sports, movies,
politics etc). We just used a fixed set of categories for this
prototype implementation to make it simple. In real Data
Lakes, these transformations can be performed by different
scientists at different times. They may use frameworks based
on their preference and expertise. That is why we used two
different frameworks for the transformations in our prototype
to show how provenance can be integrated across systems.

Komadu and its tool kit was used to build the provenance
subsystem (shown in Figure 3) in our prototype. Komadu sup-
ports RabbitMQ messaging system and includes tools to fetch
provenance notifications from RabbitMQ queues. A RabbitMQ
instance was deployed in front of our Komadu instance so that
all provenance notifications generated by Flume, Hadoop and
Spark goes through a message queue in RabbitMQ. Ingested
provenance events are asynchronously processed by Komadu
and stored in relational tables. Stored provenance remains as
a collection of edges until a graph generation request comes
in. This delayed graph generation leads to efficient provenance
ingest with minimum back pressure. This helps in a Data Lake
environment where high volumes of provenance are generated.

To assign consistent identifiers for data items in our Data
Lake, we followed the practice of appending identifies to data
records when output data is written to the Data Lake. Subse-
quent transformation uses the same identifiers for provenance
collection. Provenance events were captured in our prototype
by instrumenting the application code that we implemented
for each transformation. Tweet capturing code in Flume was
instrumented to capture provenance at the data ingest into the
Data Lake. Map and Reduce functions in the Hadoop job and
MapToPair and ReduceByKey functions in the Spark job were
instrumented to capture provenance from transformations. We
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Fig. 6. Experiments based on prototype Data Lake

implemented a client library with a simple API (like Log4J
API for logging) which can be used to easily instrument Java
applications for provenance capture. It minimizes the prove-
nance capturing overhead by using a dedicated thread pool to
asynchronously send provenance events into the provenance
subsystem. In addition to that, the client library uses an event
batching mechanism to minimize the network overhead by
reducing the number of messages sent into the provenance
subsystem over the network.

C. Provenance Queries and Visualization

After executing the provenance enabled Hadoop and Spark
jobs on collected Twitter data, Komadu query API was used
to generate provenance graphs. Komadu generates PROV-
XML provenance graphs and it comes with a Cytoscape
plugin which can be used to visualize and explore them.
Fine-grained provenance includes input and output datasets
for each transformation, intermediate function executions and
all intermediate data products generated during the execution.
Provenance from Flume, Hadoop and Spark have been inte-
grated together through the usage of unique data identifiers.

Figure 5 shows forward and backward provenance graphs
generated for a very small subset of tweets. Forward prove-
nance is useful to derive details about the usages of a particular
data item. Figure 5a shows a forward provenance graph for
a single tweet. It shows the hash tags generated by that
particular tweet in Hadoop outputs and the categories to which
those hash tags contributed in Spark outputs. A backward
provenance graph starting from a category under Spark outputs
is shown in Figure 5b. This graph can be used to find all
tweets which contributed for that category. For example, if
a scientist wanted to get an age distribution of the authors
who tweeted about sports, it can be done by finding the set of
Twitter handles of the authors through backward provenance.

D. Performance Evaluation

To build our prototype, we used five small VM instances
with 2 CPU cores of 2.5GHz speed, 4 GB of RAM and 50
GB local storage on each instance. Four instances were used
for the HDFS cluster including one master node and three
slave nodes. Total of 3.23 GB Twitter data was collected over
a period of five days by running Flume on the master node.
Hadoop and Spark clusters were set up on top of our four node
HDFS cluster. One separate instance was allocated to set up
the provenance subsystem using RabbitMQ and Komadu tools.

In order to minimize the provenance capture overhead,
we used a dedicated thread pool and a provenance event
batching mechanism in our client library. When the batch
size is set to a relatively large number (>500), execution
time becomes almost independent of the thread pool size as
the number of messages sent through the network reduces.
Therefore, we set the client thread pool size to 5 in each of
our experiments. Figure 6a shows how the provenance enabled
Hadoop execution time for a particular job varies when the
batch size is increased from 100 to 30000 (provenance events).
As per this result, we set the batch size to 5000 in each of
our experiments. We used JSON format to encode provenance
events and the average event size is around 120 bytes. The
average size of a batched message sent over the network is
around 600 KB (5000 x 120 bytes).

Figure 6b shows the execution times of the Hadoop job for
different scenarios. Column ‘original’ represents the Hadoop
execution time without capturing any provenance. In order
to relate Map and Reduce provenance, we had to use a
customized value field (in key-value pair) which contains data
identifiers like in Ramp [10]. As shown by ‘custom val’
column in the chart, usage of customized value introduces
an overhead of 19.28% and that is included in all other
cases. Execution overhead depends on the granularity of
provenance as well. Columns ‘data prov komadu’ and ‘full
prov komadu’ shows the execution times of Hadoop when
our technique is used to capture provenance. Data provenance
(data relationships only) case adds a 36.47% overhead while
full (data and process relationships) provenance case adds a
56.93% overhead. Table I shows a breakdown of provenance
sizes generated for each case in Hadoop for the input size
of 3.23 GB. Size of provenance doubles for full provenance
case compared to data provenance and that leads to greater
capturing overheads. As it is a common practice [10] to write
provenance into HDFS in Hadoop jobs, we modified the same
Hadoop job to store provenance events in HDFS as well
and compared the overhead with our method. As shown by
‘data prov HDFS’ and ‘full prov HDFS’ columns in Figure
6b, that adds larger overheads compared to our techniques.
Better performance have been achieved by modifying or
extending Hadoop [11]. But our techniques operate completely
on application level without modifying existing frameworks.

Figure 6c shows the execution times for the Spark job for
different scenarios. Like in Hadoop, we used a customized
output value to include data identifiers in Spark as well. That
adds an overhead of 7.5% compared to original execution



TABLE I
SIZE (IN GB) OF PROVENANCE GENERATED BY HADOOP

Map Combine Reduce Total

Data Provenance 3.232 1.281 0.529 5.042

Full Provenance 9.733 1.824 0.813 12.37

time as shown by ‘custom val’ column. Data provenance and
full provenance cases using Komadu add overheads of 76.1%
and 108.35% respectively. Overhead percentages added by
provenance capture in Spark is larger compared to Hadoop as
Spark works faster than Hadoop and our techniques introduce
same level of overhead in both cases.

V. RELATED WORK

Apache Falcon7 manages the data lifecycle in Hadoop Big
Data stack. Falcon supports creating lineage enabled data
processing pipelines by connecting Hadoop based process-
ing systems. Apache Nifi8 is another data flow tool which
captures lineage while moving data among systems. Neither
tool captures detailed provenance within transformation steps
(like in Figure 5). Few recent studies target provenance in
individual Big Data processing frameworks like Hadoop and
Spark. Wang J. et al. [9], [16] present a way of capturing
provenance in MapReduce workflows by integrating Hadoop
into Kepler. Ramp [10] and HadoopProv [11] are two attempts
to capture provenance by extending Hadoop. Provenance in
Apache Spark [12] and provenance in streaming data [17]
have also been studied. Capturing provenance in traditional
scientific workflows [18], [19] is another area which has been
studied in depth. None of these studies focus on integrating
provenance from different frameworks in a shared environ-
ment. While any of these Big Data processing frameworks can
be connected to a Data Lake, as we argued above, a Data Lake
can not depend on such framework specific provenance col-
lection mechanisms due to provenance integration challenges.
Therefore, provenance stitching [13] techniques are hard to
apply. Wang, J. et al. [20] identify the challenges in Big
Data provenance which are mostly applicable in a Data Lake
environment. Distributed Big Data provenance integration has
been identified as a challenge in their work where we present
a solution in the context of a Data Lake.

VI. CONCLUSION AND FUTURE WORK

The reference architecture for integrated provenance demon-
strates early value of data provenance as a lightweight ap-
proach to traceability. Future work addresses the viability
of the approach in obtaining necessary information without
excessive instrumentation or manual intervention. Scalability
of the technique is to be further assessed within a real Data
Lake environment. Persistent ID solutions have tradeoffs; the
suitability of one over another in the Data Lake setting is
an open question. We have implemented only the stored
provenance processing techniques in the presented prototype.

7http://falcon.apache.org/
8http://nifi.apache.org/

But our reference architecture highlights the power of real-
time or live provenance processing in Data Lakes which is
also left as a future work.
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