The Semantics of ParalleX, v1.0

Matteo Cimini, Jeremy G. Siek, and Thomas Sterling

Indiana University

1. Introduction

This document provides a mathematically precise definition of the ParalleX
execution model for large-scale parallel computing systems. The definition takes the
form of an operational semantics (Felleisen & Hieb, 1992; Kahn, 1987; Landin, 1964;
Plotkin, 2004). As such, the definition a) specifies the structure of an executing
ParalleX system, that is a snapshot of the system (aka. state of the system), and b)
provides a set of rules that determines the transition of one snapshot to another
snapshot. The transition rules typically involve the parts of the ParalleX system
devoted to control, e.g., program counters and analogous constructs. The entire
execution of a ParalleX system is described by a sequence of transitions, starting
with an initial snapshot §; and ending with the final snapshot S, for which no more
transition rules apply.

S1— 85, > 85— — S,

ParalleX describes parallel systems and their execution behavior, so it may seem
odd to use a sequence of snapshots to capture the intended behavior. For example,
suppose there are two computations, A and B, which could execute at the same time
in snapshot S,. If the two computations do not manipulate the same part of the
snapshot, then executing the two computations in sequence produces the same
behavior as having them run in parallel, that is, both orderings would result in the
same snapshot S, as in (2) and (3) below. In the following we label the transitions
with A or B to indicate which computation is executing when, and we write A|B to
mean that A and B occur at the same time.

S, =B S, (1)
S 4 838 8, (2)
S, —B §t—4S,, (3)

If, on the other hand, the two computations do manipulate the same part of the
snapshot, then there would be a data race, which in many systems leads to
undetermined behavior. In ParalleX, data races are ruled out by construction, that is,
by the combination of synchronization constructs and a programming discipline
that is backed by automatic static checking. So in this example, the programmer
would need to insert some kind of synchronization that would prevent
computations A and B from executing at the same time, and the semantics would
allow either ordering as shown below, where S,may differ from S,.

Sp 4 S35 8 5, (4)

S, —B §t—4 S, (5)
In this case, the resulting snapshot may depend on the ordering (S, or S;) so the
program may exhibit nondeterministic behavior. In such situations, the programmer
is expected to limit the differences in behavior to ones that do not affect the overall
correctness of the program.

The operational semantics described in this document specifies, for each ParalleX
program, the set of all allowed transition sequences. Section 2 introduces the
notation used throughout the document. The formal definition of ParalleX spans
Sections 3, 4 and 5. In particular, Section 3 defines the structure of a ParalleX
Snapshot. Section 4 defines ParalleX Control and Section 5 defines the Transitions.
Section 6 defines the static Discipline. The discipline supports automatic static
checking of ParalleX programs that guarantees data-race freedom.

This document covers the core entities and actions of ParalleX. In particular, it
describes processes, complexes, parcels, and local control objects. With respect to
actions, it specifies:

- Instantiation of new entities;

- Creation of new complexes;

- Parcel delivery;

- Memory operations (allocate, load, store, free, and copy);

- Arithmetic operations;

- Control of the execution flow (if, repeat, and subroutines);

- Arrays;

- Migration of entities and data to a different locality.

The future work relevant to this document includes:
- Expanding the formal semantics to the entirety of ParalleX, which includes
the addition of hierarchical names, hardware resources, and percolation.
- Completing the static checking discipline of Section 6.
- Expand this document in concert with ParalleX as it grows to include features
to address reliability, energy, real-time constraints, and introspection.

2. Preliminaries on Mathematical Notations

Before describing the ParalleX execution model, the mathematical entities and
notation used in the description are described. Numbers, symbols, tuples, sets,
multisets, and maps (i.e. functions). A symbol is a string of characters. A tuple is a
sequence of comma-separated entities enclosed in angle brackets, such as (4, 5, 3, 5).
A set is a collection of unique entities in which the ordering does not matter, such as
{4, 3,5}. Set membership is written with €, so 3 € {4,3,5}istrueand 7 € {4, 3,5} is
false. A multiset is like a set but allows multiple copies of an item. Entities can be
arbitrarily nested within entities. For example, (5, {2, 3}, 7) is a tuple containing
three entities. The second entity is a set that itself contains two entities: the
numbers 2 and 3. Standard operations are used for sets such as the union of sets ‘U’
and set difference ‘—°. Set difference on a multiset removes only one instance of the
elements being removed, i.e. € {3, 4, 3,5} - {3} results in the multiset {3, 4, 5}.

A map associates an output value with each of its inputs. The traditional notation
{0~ 0,1- 1,2 4,3 » 9} to describe maps is used. This particular map
associates the numbers 0 through 3 with their square. The domain (or dom for
short) of a map is the set of all input elements. The domain of this map is {0,1,2,3}.

Meta-variables are used for the purpose of referring to mathematical entities. They
are written in italics. Meta-variables are not themselves entities. For example, the
meta-variable ‘T’ is defined to refer to the set {2, 3} with an equation such as

T ={2,3}.
When a meta-variable is used in an expression, such as using T in the expression
3 € T, the expression has the same meaning as if the meta-variable T were replaced
by its definition. In this case, 3 € T has the same meaning as 3 € {2, 3}. As another
example, the expression (5, T, 7) refers to the same entity as (5, {2, 3}, 7).

Meta-variables are particularly useful for large entities. For example, the following
equation define the meta-variable F to be the above mapping from integers to their
squares.

F={0~01~12-43»94m16,..}
Now F can be used succinctly to talk about applying this map to several different
inputs.

F(1)=1, F(3)=9

Equations are used in two different ways: the first case defines the meta-variable F
and the second case tests for sameness, that is, the equation F(1) = 1 is true
because F(1) is the same entity as 1. Meta-variables are often used to store some
result and use it elsewhere, for example X = 4 and Y = 16 in the expressions

F(2)=Xand F(X) =Y.
In this document, we often construct functions that are similar to already-
constructed functions except that they differ on one input. The notation F{in - out}
refers to the map that is just like some mapping F except that it maps in to out.

For example, when F = {0 » 0,1 1,2 - 4,3 » 9, ...} as above, we have the map

F{2»0}={0~0,1-1,2~0,3 - 9}.
Records (i.e., structures) are modeled as maps whose domains are sets of symbols
that represent the field names of the record. For instance, a record R with two fields
field; and field, with values 3 and 4, respectively, is represented as the map
R = {field; » 3,field, » 4}. As records are maps, they can be read-from and
updated using map notation. For example, R(field,) reads field; of the record R and
R{field; » 5} updates field; of the record to 5. More precisely, we have

R(field,) =3
R{field, » 5} = {field; » 3, field, » 5}.

3.1 Snapshot

A snapshot is a record that consists of a map M, which represents the memory of
the snapshot, and a multiset of parcels Q.

S = {memory — M, parcels - Q}
The map M is the abstraction of an unbounded number of memory cells that are
indexed by virtual addresses (addresses for short). Memory cells come in two
flavors, mutable cells that may be written-to multiple times and register cells
which may be written-to only a single time and for which reads block until the first
write (Arvind, Nikhil, & Pingali, 1987; Friedman & Wise, 1979; Halstead Jr., 1985).
The content of a memory cell is denoted with

M(a) =v,"".

The address a maps to the cell containing the value v which resides in locality #, has
multiplicity m, and is owned by the process at address p. Each ParalleX system has a
finite number of localities that roughly correspond to compute nodes. This
document does not consider physical addresses, as they are below the desired level
of abstraction. The multiplicity is either the symbol *, to indicate a mutable cell or 1
to indicate a register cell. Formally, the memory M map each virtual address to a 4-
tuple (v, £, m, p) that contains the value in the cell (symbol v), its locality (symbol [),
multiplicity (symbol m), and its owning process (symbol p). When a register has not
yet been written-to, its content is empty, written m. Otherwise the memory cell
contains a value. The description of values is postponed to the next section.
Graphically: A memory is represented in the following way. The memory below
contains two integers at addresses 1001 and 1002 and a real number at 1003, while
the cell memory at 1004 has not been written-to yet. The values at addresses 1001
and 1003 are at the same locality #; and are mutable cells. The integer at address
1002 is at a different location ¥, and is a register cell. The dots denote that the
memory can contain other entries.

Memory:

1001 3457 %

1008
1002 45,51
1003 (3.1415,7 %
1004 m

A parcel is the mechanism by which data action and control is transmitted between
localities. A parcel is closely related to the notion of active message. Parcels are not
first class entities and do not have addresses. Parcels reside in the multiset Q that
contains all of the parcels that are in flight. A parcel consists of the address a of the
receiver, a method name mname, payload data item d, and the continuation cont.

(The payload contains the arguments for the method invocation.) A parcel i takes
the following form.
n = {destination ~ a, method - mname, payload ~ d, continuation ~ cont }

A continuation is either the symbol None, denoting no continuation, or a mapping
from labels to parcels. Labels are names and can distinguish the role of the action
being taken by the continuations. For example, the label ‘error’ can be associated to
the parcel to send when an error occurs. Similarly, the label ‘next’ can be associated
to what to do next.

The description of data items is postponed to the next section.

Graphically: Below is the graphical representation of a parcel that is destined to
address 1001 for the invocation of the method m1 with argument 23. Notice that
such parcel has no continuation, hence it carries the symbol None.

Parcel:

{1001, m1, 23, None}

An example of snapshot. The snapshot of a system is represented as follows,
with the memory and the multiset of parcels together. The multiset of parcels is a
cloud that can contains multiple parcels.

Snapshot:

1001 34;1%

1008
1002 45,
1003 |3.1415,3 %
1004 n

{1001, m1, 23, None}

{1008, m2, 63, m}

3.2 Values (first-class entities)

A value is a first-class entity in that it has a virtual address and resides in the
memory. A value can be a data item, a compute complex or an object.

A data item is either atomic or compound. Atomic data includes integers, floating-
point numbers, and virtual addresses. Compound data span multiple addresses,
often contiguously addressed, and include entities such as arrays and tuples.
Besides residing in the memory, data items can be placed at the payload of parcels.

A compute complex (complex for short) is the main computational entity in
ParalleX. It is analogous to a thread except that a complex provides explicit support
for internal fine-grained parallelism. A thread has a single program counter and
executes a sequence of instructions. In contrast, a complex contains multiple
dataflow graphs (Dennis, 1974), each of which may execute multiple instructions in
parallel. Furthermore, a traditional thread has a procedure call stack (consisting of
activation frames) and the only active subroutine is the one at the top of the stack.
All other subroutines are essentially blocked, waiting for the return value from a
call. In contrast, a ParalleX subroutine call is non-blocking, so the caller continues
executing in parallel with the callee. As such, it does not make sense to use a stack
per se to organize and control the subroutine calls.

A compute complex is a multiset of activation frames, each of which is a structure
equipped with control, locals and a continuation.
f = {control » G, locals » L, continuation ~ cont}

Dataflow Graph:

b The control of a frame consists of a dataflow graph G.
Graphically, a dataflow graph is represented as usual, as the
+ «7 | example of the left shows. In Parallex a dataflow graph is a
multiset of instruction nodes. (The instructions are defined in
\ the Section Control.) For example, the dataflow graph on the
left is the following multiset of instructions:
{x «a+by « bX7,z «x+y,w «—x,q «wXz}
_ + The variables mentioned in the dataflow graph are divided in
inputs and outputs. For example, in the instruction
l l X < a + b the variables a and b are inputs and x is an output.
The edges of the dataflow graph are implicit: there is an edge
from node n, to node n, if one of the outputs of n, is an input
x of n,.

Frame:

Dataflow Graph:

Locals:
a 1001
b 1002
x 1004

Continuation:
None

Instructions mention variables. These are the
locals of a dataflow graph. The values of locals
are stored by a map L from variable names to
addresses of registers in the memory.
Therefore, L does not contain the actual data
for variables but it contains the virtual
addresses where the actual data is stored.
The picture on the left shows how frames are
graphically represented.

An example of complex in the memory
The memory below contains a complex at address 1005, which has been expanded

on the right. The complex contains several frames. This is pictorially displayed as if
the complex is made of several pages, each of which is a frame. The frame at the top
is the one being considered for computation. In this case, the dataflow graph strives

to performx < a+bandy « b X 7.As thelocals a and b point to memory cells
that have a value set, these instructions can take place and we say that the frame is
active, and so is the complex. These instructions can be performed in parallel. It is

importat to notice that all the other instructions are blocked. For example, w < —x

cannot immediately take place because x has not received a value yet.

Complex:

Dataflow Graph:

Locals:
L B
1002 45357 x 1004
1003 |3.1415;3+ s
1004 [Cont'ilr;:ztion:
1005 complex

A ParalleX object is an abstraction that encapsulates a method table MT, which
maps method names to method descriptions (defined in the Control section), and a
field table FT, which maps names to data items.

obj = {methods — MT, fields = FT, kind ~ k}
In ParalleX there are two types of objects: processes and local control objects (LCOs).
The content of the field ‘kind’ differentiates processes from LCOs: for processes the
field ‘kind’ is set to the symbol ‘Process’ and for LCOs is set to the symbol ‘L.CO’".

A ParalleX process is an object that can execute multiple compute complexes at the
same time, can have data and spawn subprocesses. Processes also provide memory
protection, as discussed later.

Processes are logical contexts

The memory cell at the virtual address of a process contains a structure obj, that is,
the description of the object. However, processes can have data and spawn
computational entities such as other processes or complexes. An object is virtually a
logical context that contains its data and tasks. The logical context is not explicit but
can be recovered through the parenthood information in the memory of the system.
Below we show an example. process1 has some data, one complex (complex1) and
two subprocesses: processZ and process3. process3 itself contains the subprocess
process4. The parent address of the initial process process1 is 0 by convention.

Memory layout:

1001 3457

1002

1003

1004

1005

1006

1007

Logical contexts made explicit

process1 process2 process4
Data: Data: {1035 64 , ,, Data:
Complexes: Processes: Complexes: Processes: Complexes: Processes:
complex1 complex2 e
process2 process4

process3

Data: [108]] , .

Complexes:

Processes:

Memory protection

Processes provide memory protection. A process may access the memory created by
any of its ancestors or descendents. For the previous example, the is depicted as
follows, where the green arrows denote that the pointed processes have read /write
access to each other’s data. Below, process1 and process4 also can communicate but,
for example, process3 cannot communicate with process2 nor process3.

process1 <:> process2 <:> process4

process3

Processes can span multiple Localities

A process may span multiple localities in that its data, processes and complexes may
be located in different localities. The locality associated with the virtual address of
the process itself is its primary locality. As an example, the primary locality of
process] is £,. The data at address 1001 and processZ are part of the process and are
in the same locality. While complex1 and processZ2 are part of process1 they are
localted locality #;, most probably because they have moved to another compute
node for energy-efficiency reasons. Therefore process1 spans the localities #; and ¢,
where the latter is the primary locality of process1.

A local control object (LCO) is an object that is synchronous in that it can have at
most one method running at a time. The notion of LCO is closely related to the
notion of a monitor. An LCO has only one complex that resides at the same locality of
the LCO itself. An LCO is therefore located in precisely one locality.

A summary of how computation evolves

At any time one of the active complexes can be selected for execution. Within the
complex, an activation frame is selected. Each frame has a dataflow graph containing
multiple instructions and one is chosen among those that are ready, that is, all
inputs to the instruction have been written-to. Depending on which instruction is
chosen, the execution may update the memory or change the multiset of parcels.

The picture below shows the transition for an addition operation. The snapshot is
on the left. The execution of instruction x < a + b updates the memory with x =

79. The instruction itself is consumed after execution. Finally, address 1005 contains
the resulting (modified) complex.

1001 34,0° 1001 3455
1002 5P 1002 459
1003 | 5141577 1003 | 31415105
1004] 1004 791&(’).6
1005 |complex’? 1005 |complex})°
LN] \ LI \
rDataﬂow Graph: th Dataflow Graph: H’

° ° Locals: Locals:
a 1001 a 1001

b 1002 b 1002

OO 1T W o

[-]
Qo

At any time a parcel in the multiset can be chosen for delivery. In the previous
example, the system could have chosen the parcel directed to 1001. Parcels are
actions at a distance: they trigger the creation of a complex in a different locality.
(More kinds of actions will be added as this document becomes more complete.)
The example below shows the transition that derives from delivering a parcel. The
snapshot contains a parcel destined to 1001. This parcel causes the execution of
method m1 with its parameter initialized to 23. The parent process of the integer 34
is process at address 1003. It is process that contains the method table and therefore
the dataflow graph for m1. The new complex is placed in a new address 1004 and
has the same locality and parent as 1001. The multiplicity for complexes is always *.

Continuation:
None

Continuation:
None

=

1001 345%
1002 457
1003 processlg%?-s

R—

1003
(2004 plexyy

1001 3470%
1002 59%
1003 pmcess}g?f'

~

4. Control

The control of a ParalleX system is specified in a format called ParalleX Bytecode
Representation (PBR). PBR, defined in Figure 4, is not meant for direct programming

by humans, but should be thought of as the target of compilation from higher-level
languages, similar to the role of Java Bytecode with respect to the Java language.

ParalleX Spec. spec ::=
Procedure Spec. proc ::=
Procedure Kind k=
Variable Spec. VS =
Method Table MT ::=
Method Spec. ms ::=
DataFlow Graph G:=
Instructions instr ::=
Operations op =
Multiplicity m::=

{name, » proc,, ..., name, - proc,}

{methods » MT, fields » VS, kind ~ k}

Process | LCO

{var, » T, ...,var, » T, }

{name, » ms,, ..., name, » ms,}

{params ~ VS, body - G}

{instry, ..., instr;, }

vary, ..., var, < op(vary, ..., vary)

instantiate | invokeMethod[name] | allocate[m] |
load | store | free | addressof | copy |

+ | — | X | = | const[literal] | if[G4, G;] |
repeat|[G,, G,, vary, var,,i] | call[sname] |
array|[T, m] | readAt | writeAt | continue|label] |
createContinuation[label, mname] |
addContinuation[label, mname]

1] *

Figure 4. ParalleX Bytecode Representation

A ParalleX specification is a mapping of names to procedure specifications, called
procedures. (A procedure is analogous to a class in object-oriented systems.) One of
the procedures must be named main and is implicitly launched when the program is
run. This will be the initial process of the program. Each procedure has a set of
fields whose lifetime is same as that of the running process and whose scope
includes all of the methods of the procedure. A procedure includes a method table
that contains one or more method specifications. One of the method specifications
must be named main. The main method is implicitly invoked when the process is
created. This will trigger the initial complex of a process.

A method specification contains a list of parameters and their types; this is the set
of local variable declarations. Additionally, a method specification contains the body
of the method, which is a dataflow graph.

5. Transitions

Further on Notation

When we access a memory cell asin M(a) = vz,”’p, it is some times the case that not
each of the information about location, multiplicity, and owner matters. In those
cases, we simply omit the irrelevant information as in M(a) = v or M(a) = v,.
When updating the content of a memory cell, if the multiplicity, owner, or locality is
not specified then those attributes remain as they were.

For example, given M (a) = 34,", the update M{a 45} is such that M (a) = 45,".

The representation of some ParalleX entities may nest complex structures. It is
typical for the formal semantics to work with maps inside maps. Map composition is
used for looking up some nested value concisely. For example, the formal semantics
often uses the expression f (locals)(x) that first calculates f (locals) for extracts the
map L of the frame f and then calls L(x). Another recurrent example of composition
is

M (a)(methods) (mname) = {params ~ {x; » Ty, ..., x, » T,}, body - G}
This expression retrieves the method specification associated with a name mname
within the method table of an object that is at address a.
Again, M (a) returns an object o that, whether process or LCO, it contains (at least)
{methods — MT, fields -~ FT}. The composition M (a)(methods) returns the method
table MT from which the method mname is then looked up.

Auxiliary Definitions
The locals of an activation frame do not contain the actual data to which a dataflow
graph refers. Rather, they contain the address where this data can be found in the
memory. For convenience, the formal semantics uses shorthand for hiding the
complexity behind this indirection. The auxiliary function lookup is used to lookup
some data. Given a name x, a frame f and a memory M, we first lookup the address
in the locals of the frame f and then query the memory M for returning the actual
value. We define the following shorthand.

lookup(x, f,M) = M(a) where a = f(locals)(x)

The function update hides the same indirection when updating the data associated
with a local variable. This function takes a map {x; » dj, ..., x,, = d,} of new
assignments, a frame f and a memory M, updates M at the addresses pointed to by
xs, and assigns the corresponding ds.
update({x; » dy, ..., x, » dp}, f, M) = M{a, » d4, ...,a, » d,,}
where a; = f(locals)(xy), ..., a, = f(locals)(x,)

We also define a family of functions for collecting the local variables that are used in
a dataflow graph.
locals_of (z « x+y) = {x,y,2}
locals_of (G) = {x | instr.x € localsOf (instr) and instr € G}

The auxiliary function distinct takes two or more sets of addresses as arguments and
makes sure that the sets do not contain the same address, thereby ensuring that
these “new” addresses are really new.

The next auxiliary function is responsible for allocating the registers associated with
the local variables of a compute complex. This function returns the map for the local
variables and the updated memory.

allocate_locals(G,p, €, M) = {{x; & ay, .., x, = a,}, M{a, » m}?, ..., a, » m;7})
where locals_of (G) = {x4, ..., x,} and distinct({a,}, ..., {a,}, dom(M)).

The function above returns a pair. The formal semantics makes use of the result of

such function with the expression allocate_locals(G,p, £, M) = (Lipcais, M'). This is

convenient to refer to the locals and the updated memory with symbols L;, ., and

M', respectively.

The allocation and initialization of variables (such as parameters of a method or

subroutine) is specified as follows. The x4, ..., x,, are the variables and z,, ..., z,, are

the initializers. Each variable is associated with a memory cell in locality #.
allocate_init(xy, ..., Xp, Z1, o) Zn, [0, M, €, M) = (L, M')

where L = {x; » a4, ..., X, » a,}

and M’ = M{a, » lookup(zy, f,M)},"?, ..., an » lookup(z,, f,M)}""}

and distinct({a,}, ..., {a,}, dom(M)).

When allocate_init is called with data instead of variables, memory lookup is
skipped, as follows.
allocate_init(xy, ..., Xp, dy, ..., dp, f,0,m,£,M) = (L, M")
where L = {x; » a4, ..., X, » a,}
and M' = M{a, » d4, ...,a, = d,}
and distinct({a,}, ..., {a,}, dom(M)).

As LCOs can execute only one complex at any given time, the available function
checks whether an LCO at address a,, does not contain any complex. This function is
called at any invoke operation destined to an LCO.

available(ap) = true

whenever M(ap)(kind) = LCO implies =3a’,C,m,¥.a’ # aand M(a) = C;n'ap
(false, otherwise)

Instructions of a process may access memory cells created by another process. This
access is granted according to a specific discipline. In particular, a process can
access the memory cells allocated by itself or that belongs to any of its ancestors and
sub-process. The ancestors function calculates the ancestors of a given address.
ancestors (a, M) = {a} U ancestors (ap, M) ifM(a) = v%

The function access_control checks whether the process at address a; has the right
to access the address a,.
access_control(a,,a,) = true whenever

a, € ancestors(a,) or a, € ancestors(a,)

(false, otherwise)

ParalleX selects instructions for execution. However, instructions are nested deep
inside maps (within complexes, within frames and finally within dataflow graphs).

The formal semantics uses the function fetch_instruction(M) = (instr, ’:,n’ap, M")
for conveniently fetching an instruction. This function acts on the memory M and
returns the picked instruction instr, the frame f ’T'ap from which instr has been

selected and the new memory M'where the instruction is removed at the proper
place.

fetch_instruction(M) = (instr, f ’:,n'ap, M")
where

,a
3a,C,m, 4, a,. M(a) = C;n P

f € C,and instr € f, and
C'=C—-fu{f'}andf' = f — {instr}.
M = M{aw C'}

and

In what follows, we provide the formal rules that defines when a ParalleX snapshot
can transition to another snapshot.

Instantiate an Object
The instantiate operation allocates a new object (process or LCO) in the same
locality as the executing complex, sets up its method table, allocates and initializes
its fields (from the arguments y;, ..., ¥,), and invokes its main method (binding the
arguments 7, ..., Z to its parameters). Formally, the transition rule can fire in some
snapshot S if the following conditions are met:

* M, = S(memory), fetch_instruction(M,) = (instr, ffl,Ml)

* instr =y « instantiate(pname, y, ..., Y, Z1, -+, Zi)

* prog(pname) =

{methods » MT, fields » {var, » T'4, ..., var,, » T',}, kind - objkind}
* MT(params) ={x; » Ty, ..., x; © T}

The new snapshot S’ is defined as follows:
S' = S(memory = update(y, ap,f, M;){ a, - obj}’p a' e Cmainj,'ap})

where
* o0bj = {methods » MT, fields » FT, kind = objkind}
* distinct({a,},{a'}, dom(M,))
control = MT (main)(body),
* Chnain = {jlocals = {this = a'} U Lygrqms U FT,(}
continuation —» None
. allocate_init(varl, e, VAT, V1, oo, Yoo A%, 2, Ml) = (FT,M,)
. allocate_init(xl, s Xpy Z1y r Zio | Oy 1, 4, Mz) = (Lparams, M3)

Invoke a Method of an Object (Create a Complex)

The invokeMethod operation begins the execution of a method by creating a
complex. The receiver of the invocation can be any addressable entity and the new
complex is placed within the same locality as the receiver. The code for the method
comes from the process that owns the receiver and the creation of a complex
consists in forming a complex (a multiset of frames) with only one frame that
executes that code. If the receiver is local, that is, if the locality of the sender and of
the receiver coincide, then complex creation happens immediately. If the receiver is
not local, then a parcel is sent to the receiver. The arguments to the method are
passed by value, that is, the contents of the registers associated with the arguments

Z4, ---, Zn- A ParalleX program that wishes to instead pass by reference can apply the
addressof instruction to the arguments (not defined yet). The last argument of
invokeMethod is the continuation for this operation.

Invoke Method on Local Receiver
The first transition rule handles the local case, when the executing complex and the
receiver process are in the same locality. If the object owner of the receiver is an
LCO then the transition requires that the LCO has no other active complexes. We
allocate the new complex and registers for its local variables, and we pass (by
reference) the parameters. Formally, this transition rule can fire in some snapshot S
if the following conditions are met:

* M, = S(memory), fetch_instruction(M) = (instr, fp , M;)

* instr = invokeMethod[mname]|(r, z, ..., Z,,)

* a, =lookup(r,f,M,)

¢ Ml(ar) = v;:rap' ‘gl = €2

* available(ay)

. Ml(ap)(methods)(mname) = {params » {x; » T}, ..., x,, = T,,}, body » G}

e cont = lookup(y, f,M,)
The new snapshot S’ is defined as follows:

S'" = S{memory —» M3{a,., - C;Z'ap}}
where
control » G,
* € = {jlocals ~ ({this » a,} U Lgrgs U Liocass)s (}
continuation = cont

. allocate_locals(G, ap,fz,Ml) = (Lipcais» M2)

. allocate_init(xl, e s Xy Z15 s Zpy 5 Qs 1,€2,M2) = (Largs M3)

° anew $ dom(M3)

Initiate Invoke Method for Remote Receiver
The second transition rule handles the remote case, in which a parcel is created to
transmit the method invocation to the receiver.
Formally, this transition rule can fire in some snapshot S if the following conditions
are met:

* M = S(memory), fetch_instruction(M) = (instr, f, ,M")

* instr = invokeMethod[mname]|(r, z, ..., Z,,)

* a, = lookup(r,f,M")

m,a
* M(a)=v, ",

* either £y # £, or £; = £, and not available(ay,)),
* cnt = lookup(y, f,M")
The new snapshot S’ is defined as follows:
S'" = S{memory - M’, parcels = Q U {rr}}
where
* 1 = {destination ~ a,, method - mname, payload ~ d,continuation = cnt}

* Q = S(parcels) and d = (lookup(zy, f,M"), ..., lookup(z,, f,M"))
The Figure below shows an example of a method invocation triggering the creation
of a parcel to trigger the method on a remote receiver, that is, a receiver in a locality
that is different from the complex that is invoking the method.

Complex Memory Parcels
=) @D - o) ()| fms ||
2001: 5
Locals 200n: 3
recv: 3000 \
invokeMethod[mname] arg 1: 2001
500 Localities
arg n: n .
cont: 4000 / 3000: 42
Complex Memory Parcels

2001: 5 dest: 3000, method: mname,

payload: <5...3>, cont: 4000

Locals 200n: 3
recv: 3000
arg 1: 2001

cont: 4000

arg n: 200n :'3'(')00: 42

Parcel Delivery (Invoke Method)
At any time, the system can deliver one of the parcels that are sitting in the multiset
of parcels (if other conditions are met). This transition rule can fire in some
snapshot S if the following conditions are met:

* M = S(memory) and Q = S(parcels)

e mwEQQ

* 1w = {destination ~ a,, method » mname, payload ~

(d4, ..., dy), continuation ~ cont}

e M(a,) = v:l'ap

* available(ay)

* M(a,)(methods)(mname) = {params - PS, body - G}

e PS={x;»Ty ..., x, »T,}
The new snapshot S’ is defined as follows:

e S'= S{memory » M’ {anew - C{,l'ap}, parcels = Q — {m}}
where

control » G,
* C = {jlocals ~ ({this » a,} U Lgrgs U Liocats) (3}
continuation » cont
. allocate_locals(G, ap,fz,M) = (Lipcaiss M")
* Largs = {xl B dy, e, Xy O dn}
* Qpew € dom(M,)

The Figure below shows an example of parcel delivery in the case when the receiver
is an LCO. In this case, the LCO must not have an active complex prior to fetching the
parcel and creating the new complex.

Local Control Object Memory Parcels
Methods
name: {params: PS, body: G} dest: 3000, method: name,

payload: <5...3>, cont: 5000

No Complex 3000: 42 in 4000

4000: LCO

1

Local Control Object Memory Parcels
Methods
name: {params: PS, body: G}
3000: 42 in 4000
Complex
4000: LCO
Locals
G +4055: Complex
P1: 4060
. . 4060: 5
Continuation: | pn: 406n
5000 |/ |406n: 3

Continuation Creation
The createContinuation operation stores a continuation that prescribes action for
one label. Actions for further labels can be specified by using this continuation with
the addContinuation instruction.
The created continuation can then be passed as the last argument of an
invokeMethod instruction.

* M = S(memory), fetch_instruction(M) = (instr, f,M")

* instr = x < createContinuation[label, mname](r, zy, ..., Zp, V)

* a, = lookup(r,f,M")
The new snapshot S’ is defined as follows:

e S§'= S{memory » M"{a,.,, ~ {label » m}}}

* 1 = {destination ~ a,, method - mname, payload ~ d,continuation = cnt}
* cnt = lookup(y, f,M") and d = (lookup(z,, f,M"), ..., lookup(z,, f,M"))

* Quew &€ dom(M')

e M" =update({x » azen}, fL M)

Adding to Continuations
The addContinuation operation augments a continuation with the association of
some action to a label. The returned variable can then be passed as the last
argument of an invokeMethod instruction.
* M = S(memory), fetch_instruction(M) = (instr, f,M")
* instr = z « addContinuation[label, mname](x,1, 2y, ..., Z,, V)
* cont; = lookup(x, f,M")
* a, = lookup(r,f,M")
The new snapshot S’ is defined as follows:
e S§'= S{memory » M"{a,.,, + cont,;{label » m}}}
where
* 1 = {destination ~ a,, method — mname, payload ~ d,continuation =
cont,}
* cont, = lookup(y,f,M") and d = (lookup(z,, f,M"), ..., lookup(z,, f,M"))
* Opew € dom(M,)
* M" =update({z = anew}, f, M')

Invoke the Continuation: local invocation
The continue operation invokes the continuation of the frame. If the invocation is
local then it is immediately performed, otherwise a parcel is sent (next case).
* M = S(memory), fetch_instruction(M) = (instr, f, ,M,)
* instr = continue[label]
e f = {control » G, locals ~ L, continuation » cont} and © = cont(label)
* 1 = {destination ~ a,, method - mname, payload ~ d,continuation =
cont,}
e d=(dy, .., dy)
* M(a,) = ngl'ap'ﬁ =4,
* available(ay)
s M, (ap)(methods)(mname) = {params » {x; » T}, ..., x,, = T,,}, body » G}
The new snapshot S’ is defined as follows:
S' = S{memory » Ms{ae, ~ C;Z'ap}}
where
control » G,
e ¢ ={{locals » ({this » a,} U Largs VU Liocats)s ¢}
continuation = cont,
. allocate_locals(G, ap,fz,Ml) = (Lipcais» M2)

o allocate_init(xl, vy X, e, e dp, f ap, 1,#2,M2) = (Largs,Mg)
anew $ dom(M3)

Invoke the Continuation: remote invocation
The continue operation sends a parcel when the invocation is not local.
M = S(memory), fetch_instruction(M) = (instr, f, ,M")

* Q = S(parcels)

* instr = continue[label]

* f = {control » G, locals ~ L, continuation ~ cont}

* 1 = cont(label)

* a, = m(destination)

© M(a)=v, ",

* either 1 # £, or £, = £, and not available(ay)).
The new snapshot S’ is defined as follows:

S" = S{memory » M’, parcels » Q U {r}}

Allocate a Memory Cell

The allocate[T,m] operation creates a memory cell of type T at a new address, using
multiplicity m, and places the cell in the same locality as the “hint” argument x,
which is optional. If there is no hint argument, the locality is the same as the
compute complex that executes the operation. The new address is returned into y.

This transition rule can fire in some snapshot S if the following conditions are met:

* M = S(memory), fetch_instruction(M) = (instr, f*,M")

e instr =y « allocate[T, m](x)

* a, = lookup(x,f,M'")

* M’(ax) =Dy

* access_control(a,, ay)
The new snapshot S’ is defined as follows:

S" = S{memory » M"{ape, IT'%}}
where
Anew & dom(M’)
* M" =update({y » anew} f,M')

Load from Memory

The load operation retrieves the values stored at the address in argument x, putting
the loaded value into y. It also puts the address in z, which facilitates the static
discipline described in the Discipline section.

This transition rule can fire in some snapshot S if the following conditions are met:
* M = S(memory), fetch_instruction(M) = (instr, f*,M")
* instr =y,z < load(x)

* a, = lookup(x,f,M'")
* M'(a,) = d,access_control(ay, a,)
The new snapshot S’ is defined as follows:
S" = S{memory ~ update({y » d,z » a,}, f,M')}

Store to Memory

The store operation places the value stored in x into the memory cell addressed by
the address in y. It also puts the address of y in z, which facilitates the static
discipline (see the Discipline section). If the multiplicity of the memory cell is 1
(write-one), then the memory cell must be empty (m) to perform the store.

This transition rule can fire in some snapshot S if the following conditions are met:
* M = S(memory), fetch_instruction(M) = (instr, f*,M")
* instr = z « store(x,y)
* d=lookup(x, f,M') and a, = lookup(y, f,M")
. M’(ay) =v™ andm = 1 impliesv = m
* access_control(ay, a,)

The new snapshot S’ is defined as follows:
S' = S{memory ~ M”{ay - dm}}
where
e M'" = update({z - ay},f,M’)

The Figure below shows a sequence of operations: allocating a memory cell, storing
the integer 7 into it, and then loading that integer back out again.

Complex Memory Complex Memory

. Locals) Locals
neighbor neighbor
neighbor: 1042 neighbor: 1042

x: 1045 x: 1045

. 1042: 1042: ...
allocate[T,1] | |y- 1046 y: 1046
z: 1047 z: 1047

: 10457 : 1045: 7
w: 1048 1046: ® C w: 1048 vt |
° '@ 1047; ™ 1047: 1050
1048: = m m 1048: ®
m 1050; ™

Complex Memory Complex Memory
Locals Locals
neighbor neighbor -
neighbor: 1042 neighbor: 1042
x: 1045 x: 1045 -
: 1042: ...
y: 1046 1042:... y: 1046
z: 1047 z: 1047 P
1045: 7 1045: 7
: w: 1048
@ @ w: 1048 1046: = |:> @ @ 1046: 7
1047: 1050 1047: 1050
1048: 1050 1048: 1050
m load
1050: 7 1050: 7

& W Of

Free Memory
This transition rule can fire in some snapshot S if the following conditions are met:
* M = S(memory), fetch_instruction(M) = (instr, f%,M")
* instr = free(x)
* a, =lookup(x,f,M")
* access_control(a,, ay)

The new snapshot S’ is defined as follows:
S" = S{memory » (M' —{a,})}

Arithmetic Operations
The following transition rule defines the behavior of the addition operation. The
other arithmetic operations are similar. This transition rule can fire in some
snapshot S if the following conditions are met:

* M = S(memory), fetch_instruction(M) = (instr, f,M")

* instr=z<x+y

* dy = lookup(x, f,M") and d, = lookup(y, f,M")
The new snapshot S’ is defined as follows:

S' = S{memory - (update({z > dy +dy}, f,M’))}

The Figure below shows an example of this transition. The snapshot on the left has a
ready addition operation in green. The snapshot on the right shows the results of
the addition, with the result stored in the memory location for local variable c.

Complex Memory Complex Memory

Control Locals 1000:3 Control Locals 1000: 3
1001: 4 1001: 4

O AN ® ® ||\
: b: 1001
(e) e 1002 2000: @ 2000: 0

©
©

Constant Operations
This instruction stores a literal, such as ‘3’ or ‘True’, into a variable.
This transition rule can fire in snapshot § if the following conditions are met:
* M = S(memory), fetch_instruction(M) = (instr, f,M")
* instr = x < const[lit]
The new snapshot S’ is defined as follows:
S' = S{memory ~ update(x, lit, f,M")}

Copy Operation
This transition rule can fire in snapshot § if the following conditions are met:
* M = S(memory), fetch_instruction(M) = (instr, f,M")
* instr =y < copy(x)
* lookup(x,f,M") =d,
The new snapshot S’ is defined as follows:
S' = S{memory ~ (update(y = d,, f,M'))}

AddressOf Operation
This transition rule can fire in snapshot § if the following conditions are met:
* M= S(memory),M(a) =C,f €C
* y <« addressOf(x) € f(control)
* xwa' € f(locals)
The new snapshot S’ is defined as follows:
S’" = S{memory ~ (update(y » a’, f,M)){a » C'}}
where
* CO={ v -1N}
* f'"= f{control » (f(control) — y < addressOf(x))}

Conditional Operation

An if operation, of the form
if[Gy, G,]1(x)

activates either dataflow graph G; or G, depending on the value in x. It does so by
augmenting the complex (that is, the multiset of frames) with an additional frame.
As this operation modifies the multiset of frames of the selected complex, the
function fetch_instruction is not adequate. Below, we fetch the complex with no
auxiliary functions.

This transition rule can fire in snapshot § if the following conditions are met:
* M= S(memory),M(a) =C,f €C
* if[G4, G2](x) € f(control)
e lookup(x,f,M") = v,
If v, = true then the output snapshot S’ is the following:
S" = S{memory » M{a ~ C'}}
where
* O={f v -1N}
* f'= f{control » (f(control) — {if[G,, G,](x)}) U G;}

If v, = false then the output snapshot S’ is the same as above except that the graph
G, is added to the control instead of G;.

The Figure below depicts an example if operation. The condition is true, so the
graph G1 (the cloud) is activated to become part of the current dataflow graph.

Complex Memory Complex Memory

Locals Locals
1000: true 1000: true

x: 1000 |:> x: 1000
if[G1, G2] @

Repeat Operation
A repeat operation, of the form

repeat|[G¢, Gg, V, X1, oo, Xn1(2Z1, v’ Z1)
executes the body Gy as long as the condition G is true. The variables z; are used to
initialize the loop variables x;. The condition G is expected to read from the x;
variables and put its Boolean result in variable y. The body of the loop Gj is
expected to read from the x; variables and put its results in x;. Once the condition is
false, the loop discontinues. Each time through the loop, the graphs G- and G
become activated in a new frame.

This transition rule can fire in snapshot § if the following conditions are met:
* M= S(memory),M(a) =C,f €C
e repeat|G., Gg, Y, X1, -, X](Z1, ---, Zn) € f(control)
* lookup(z,,f,M) =d; and ..., and lookup(z,, f,M) = d,

The new snapshot S’ is defined as follows:
S" = S{memory » M'{a — C'}}
where
e C' ={faenU{fIU(C—{f})
* fanew = f{control » G. Uif[G’, 0] ()}
e M'=update({x; » di, ..., x> dp}, f, M)
* G’ = Gg U {repeat[G, Gg,V, X1, ..., X] (x'1, .., X')}
* f'= f{control » (G — {repeat|[G., Gg,y, X1, ..., Xn1 (21, ..., Z,)})}

The Figure below shows an example of this transition, with the repeat instruction
creating a new frame that computes and tests the condition, which if true, then
executes the body of the loop and possibly another iteration, represented by
another repeat instruction.

Complex Complex

R

repeat[Gc, Gb, y, x1, ..., xn]

if([G', 0]

repeat[Gc, Gb, y, x1, ..., xn]

Call to a Subroutine
A call operation takes the following form.
call[sname](z,, ..., z,,)

The effect of this operation is to create a new frame that will be placed within the
complex where the operation originates. The frame will execute in parallel with
other frames of the same complex and with the ones of the other complexes and it
may use local variables. Notice that the category of subroutine names (sname) is
assumed to be disjoint with those ones of method names (mname) and procedure
names (pname).
This transition rule can fire in snapshot § if the following conditions are met:

* M= S(memory), M(a) =C%,f €C

e call[sname](zy, ..., Z,) € f(control)

. M(ap)(methods) (sname) = {params ~ PS, body - G}

e PS={x;» Ty ..., x, »T,}

* lookup(z,,f,M) =d; and ..., and lookup(z,, f,M) = d,
The new snapshot S’ is defined as follows:

S’ = S{memory » M'{a » C'*?}}
where
faew = f{control » G, continuation ~ None}
M' = update({x; » dy,...,xp = dn}, f, M)
C'={faew VIV (C - {fD

f' = f{control » f(control) — {call[sname](zy, ..., z,)}}

The Figure below shows an example call to a subroutine. A new frame is added to
the complex to execute the dataflow graph G associated with the subroutine.

Complex Memory Process
Frame 501: Process Methods
2000: Complex in 501 name: {params: PS, body: G}
@ @ 2001: 5
200n: 3
Locals
callname] arg 1: 2001
arg n: 200n

1l

Complex Memory Process
L—1
Frame 501: Process Methods
2000: Complex in 501 name: {params: PS, body: G}
2001: 5
200n: 3
arg 1: 2001
4060: 5
arg n: 200n
406n: 3
Frame
G Locals
P1: 4060
Continuation: Pr: 406N
None

Array Creation

The z « array[T, m](x, y) operation initializes an array of elements of type T. The
size of the array is contained in x and each element can be accessed with
multiplicity m. A new address is assigned to the array, i.e. to the first element of the
array. The following elements are placed at addresses that are contiguous in the
memory starting from the address of the first element. The array is placed in the
same locality as the “hint” argument y, which is optional. If there is no hint
argument, the locality is the same as the compute complex that executes the
operation. The address of the array is returned into z.

This transition rule can fire in snapshot § if the following conditions are met:
* M = S(memory), fetch_instruction(M) = (instr, f*,M")
* instr = z « array[T, m](x,y)

lookup(x, f,M") = d, and lookup(y, f,M") = a,,

M'(ay) = v,
* access_control(ay, a,)

The new snapshot S’ is defined as follows:

m,ap
'

m,ap

4 +10 w)

S = S{memory M” {a - Cl, a-nm e, @ 4 dy o .;n,ap}}
where
* distinct({a’,a’ + 1, ...,a" + d,}, dom(M))

* M" =update({z— a'},f,M")

Array Access: read operation
The z,, z, < readAt(x, y) operation accesses the array at address y in order to read
its element at the index in x. This value is returned into z;. As for the load operation,
we facilitate our typing discipline by returning the address being accessed, in
particular it is returned into z, (see the Discipline section).
This transition rule can fire in snapshot § if the following conditions are met:

* M = S(memory), fetch_instruction(M) = (instr, f*,M")

* instr = z;,z, < readAt(x,y)
lookup(x, f,M") = d, and lookup(y,f,M') = a’
M (a +d,)=d

* access_control(a,,a’)
The new snapshot S’ is defined as follows:

S" = S{memory - update({z; » d,z, » a' +d,}, f,M')}

Array Access: write operation

The z' « writeAt(x, y, z) operation accesses the array at address y in order to set its
element at the index in x with the value in z. In order to facilitate our typing
discipline, the address being accessed is returned into z’ (see the Discipline section).
[f the multiplicity of the memory cell is 1 (write-one), then the memory cell must be
empty (m) to perform the store.

This transition rule can fire in some snapshot S if the following conditions are met:
* M = S(memory), fetch_instruction(M) = (instr, f*,M")
* instr = z' « writeAt(x,y, z)
* lookup(x,f,M") = d,, lookup(y, f,M") = a’ and lookup(z, f,M') = d
* M'(a'+dy)=w;" andm = 1impliesw = =
* access_control(a,,a’)
The new snapshot S’ is defined as follows:
S" = S{memory » M"{(a’ + d,) » d}'}}
where
* M" =update({z' » a' +d,},f,M")

Migration
The runtime system implementing ParalleX may move entities from one locality to
another for the purposes of reducing communication and load balancing. Thus, we
include the following transition. In snapshot S, suppose there is an object in locality
£.

M(a) = v;n'ap where M = S(memory)
Then the object can be relocated to another locality ¢’

S" = S{memory » M{a le'ap}}

6. Discipline

Data races arise from unsynchronized accesses to the same address where at least
one of the accesses is a write. For example, the below dataflow graph contains a data
race because the store and load instructions can execute in parallel on the same
memory address.

Complex

allocate[T,*]

store load

To prevent data races, ParalleX programs follow a static discipline called fractional
permissions (J. T. Boyland, 2010; J. Boyland, 2003). This approach associates a
numeric value between 0 and 1 (inclusive), a fraction, with every pointer. The
fractions for the pointers to the same address are required to sum to exactly 1 at any
point in time. In general, a pointer with a fraction of 1 is guaranteed to be the only
pointer to its address and can therefore perform a write without concern for a data
race. A pointer with a fraction of less than 1 is not allowed to write. A pointer with
any fraction greater than zero can be used to read from its address because there
cannot be another pointer that has a fraction of 1, that is, no other pointer can be
used to write to the address.

The above description applies to pointers to mutable cells. The story for pointers to
register cells is slightly different because registers have built-in synchronization.

With registers, we still need to make sure that there are no concurrent writes to the
same register, but we can allow reads to be concurrent with the single writer
because the register causes reads to block until the write is complete. Writing to a
register only requires a 2/3 or greater permission. As usual, reading requires any
positive (non-zero) permission.

In the context of a ParalleX method specification, we define a set of rules to track
how the fractional permissions flow through the dataflow graph. Each of the rules is
expressed as a node of the dataflow graph with fractions on the inputs and outputs.
Each fraction is associated with a unique identifier, a letter, which we call a symbolic
address. There is a one-to-one correspondence between symbolic addresses and
allocate operations, so we annotate the allocate node with the symbolic address.
The symbolic address is representative of all the actual addresses that would be
produced at runtime by that allocate operation. (For example, the allocate
operation could appear inside a loop.) The fractions on the inputs represent lower
bounds on what is allowed. The fractions on the outputs specify how the output
fraction is computed from the input fractions.

The first rule we consider is for the allocate operation, shown below. The allocate
node has been annotated with a unique identifier, in this case ‘b’. The output p has a
fraction of 1 that is associated with this symbolic address b. Thus, the output can be
used for reading and writing.

allocate[T,*,a]

Y

Next we consider the rule for the load operation. The input p1 must be a pointer
with non-zero permission (1/n) and the output pZ is the same symbolic address
with the same permission. The output y has the pointed-to type T from p1.

p1 : ptr(T, a1/k)

p2 : ptr(T, a1/k)

The store operation requires permission 1 from the input pointer p1. The type for
input x must match the pointed-to type T for p1. The output p2 has the same
symbolic address as pI with the same permission 1. (If the pointer p1 is to a register
cell, then the permission must be 2/3 or greater.)

store

\
p2 : ptr(T, 1a)

The free operation requires permission 1 from the input pointer x, as shown in the

diagram below.
X : ptr(T, 1a)

\

free

To prevent the unrestricted duplication of permissions, we depart from Boyland’s
approach and require that each variable has only a single out edge, that is, it is only
used once. This is called a affine variable (Walker, 2005). However, to use the result
of a computation more than once, a program can use a split instruction to duplicate
the value and also make sure that the permissions are divided appropriately. We
define a novel addition operator on types, used below in the type of p1, to control
how permissions are divided when the program contains nested pointers.

p1: ptr(T1+T2, f1+f2)

v
split[T1,T2,f1+f2]

To combine permissions, a program can use the join instruction, shown below.

join

Figure 1 shows an example dataflow graph that satisfies the rules. In such a
situation we say that the dataflow graph is well-typed, even though the rules talk
about more than just types. In the example, we allocate a mutable memory cell, store
the integer 7 into it, load from it twice (into variables x and z), add those numbers,
and store the result back into the same memory cell. Thus, at the end of this
dataflow graph, the memory cell contains 14. Even though this program contains
several loads and stores, there are no data races. The store of 7 is guaranteed to
occur before the two loads and the two loads are guaranteed to happen before the
store.

allocatelint, *, a] const[7]

]

store —> p,: ptr(int,1a)

P, : ptr(int, 1a)

\

store

ps - ptr(int, 1a)

Figure 1. Example of a well-typed dataflow graph

7. Conclusion

This document formally defines the basic entities and actions of the ParalleX
execution model. The definition is an operational semantics that specifies an
abstract notion of a snapshot of an entire parallel system and it specifies how the
system can evolve by transitioning from one snapshot to the next. The semantics is
inherently nondeterministic in that ParalleX enables high degrees of parallelism, but
much of the difficulty that stems from non-determinism, i.e. data races, is controlled
by a discipline of static checking based on fractional permissions.

References

Arvind, Nikhil, R., & Pingali, K. (1987). [-Structures: Data structures for parallel
computing. In J. Fasel & R. Keller (Eds.), Graph Reduction (Vol. 279, pp. 336-
369). Springer Berlin Heidelberg. http://doi.org/10.1007/3-540-18420-1_65

Boyland,]. (2003). Checking Interference with Fractional Permissions. In
Proceedings of the 10th International Conference on Static Analysis (pp. 55-72).
Berlin, Heidelberg: Springer-Verlag. Retrieved from
http://dl.acm.org/citation.cfm?id=1760267.1760273

Boyland,]. T. (2010). Semantics of Fractional Permissions with Nesting. ACM Trans.
Program. Lang. Syst., 32(6), 22:1-22:33.
http://doi.org/10.1145/1749608.1749611

Dennis,]. (1974). First version of a data flow procedure language. In B. Robinet
(Ed.), Programming Symposium (Vol. 19, pp. 362-376). Springer Berlin
Heidelberg. http://doi.org/10.1007 /3-540-06859-7_145

Felleisen, M., & Hieb, R. (1992). The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 103(2), 235-271.

Friedman, D. P., & Wise, D. S. (1979). Applicative Multiprogramming.

Halstead Jr., R. H. (1985). MULTILISP: A Language for Concurrent Symbolic
Computation. ACM Trans. Program. Lang. Syst., 7(4), 501-538.
http://doi.org/10.1145/4472.4478

Kahn, G. (1987). Natural Semantics. In Symposium on Theoretical Aspects of
Computer Science (pp. 22-39). Springer.

Landin, P.]. (1964). The Mechanical Evaluation of Expressions. The Computer
Journal, 6(4), 308-320.

Plotkin, G. D. (2004). A structural approach to operational semantics. Journal of
Logic and Algebraic Programming, 60-61, 17-139.

Walker, D. (2005). Substructural Type Systems. In B. C. Pierce (Ed.), Advanced Topics
in Types and Programming Languages. MIT Press.

