APPLICATIVE MULTIPROGRAMMING#

Daniel P. Friedman

David S. Wise

Computer Science Department
Indiana University
Bloomington, Indiana 47401

TecHNicAL ReporT No. 72
APPLICATIVE MULTIPROGRAMMING

DaNIEL P, FRIEDMAN
Davip S. Wise

Revisep: ApriL, 1979

¥Research reported herein was supported (in part) by the
National Science Foundation under grants numbered DCR75-06678 AOQ1,
MCS75-08145, and MCS77-22325.

Applicative Multiprogramming#
Daniel P. Friedman
David S. Wise
Computer Science Department
Indiana University

Bloomington, Indiana 47405

Abstract. This paper defines and describes a new data structure
construction mechanism which enables applicative programming
techniques to handle problems for which computational effort

must be distributed across several candidate expressions. This
technique may be used on purely internal structures or may be

used to organize computation and communication with external
asynchronous events. The new constructor, frons, takes its place
alongside the classic sequence constructor, cons, extending the
user's data structure from the list to the newly introduced fern.
A fern is a natural generalization both of a sequence and of a
multiset (an unordered set allowing duplicates). Content must

be specified as a fern is bullt, but order may remain unspecified
until elements are accessed; then the elements specified by
convergent expressions take theilr places at the front of the
structure. The formal semantics of ferns are presented 1in two ways
which are proved to be weakly equivalent in that any inter-
pretation under one may occur under the other. Examples presented

include an or operation which converges when any of its disjuncts

¥Research reported herein was supported (in part) by the National
Science Foundation under grants numbered MCS75-06678 A0l, MCS75-08145,

and MCST77-22325.

are true, a merge of arbitrarily many streams, and an airline
reservation system based on a rudimentary interrupt handler

monitoring an arbitrary number of input devices.

Keyword and Phrases: asynchronous recursion, fern, amb, multiset,

bag, frons, cons, list, sequence, prefix¥, stream, powerdomain,

nondeterminism, parallel processing, suspension, lazy evaluation,
call-by-need, call-by-delayed-value, unpredictable ordering,
interrupt, semaphore, monitor, serializer, fair merge, arbiter,

breadth-first search, generator.

CR Categories: L4.20, 4.32, 4.34, 4,13, 4.35.

Introduction

An example long standard in computer architecture is the
"interrupt" mechanism by which a peripheral device may
communicate with the central processor. The concept has been
more recently formalized as semaphores [70], monitors [2 ,29],
or serializers [27] in order to allow closely coupled processors
to share storage resources without interference. These constructs
are only a tool for grappling with the timing problems. Systems
programmers are still responsible for correctly programming very
low-level code which uses these tools. Theirs has become a
notoriously occult skill [//,23] which is unavailable to user
programmers who would now like to take advantage of asynchronous
and unpredictable program behavior by using many (parallel)
processors to solve a single problem. One should not be surprised
that the users do not have programming talents or the languages
at theilr disposal which would allow them to express parallelism
for any but the most obvious cases.

We have been working with applicative programming, a style
in which the only form of expression is the application of a
function to an argument (perhaps structured as an argument T38%) .
as an approach to these problems. At the elementary level, our

style of expression is quite familiar:
or:<FALSE TRUE TRUE> = TRUE .

In this case the disjunct function is applied, by the colon, to
the argument which is a sequence of three truth values. (Angle
brackets indicate the sequence of what occurs between them;
parentheses indicate their actual appearance following

evaluation.) Less familiar might be the definition of functions

using application recursively as the only "control structure"

factorial:n =
if iszero:n then 1
else product:<n factorial:pred:n>

is probably a familiar definition, but one can express

or:disjuncts =
if null:disjuncts then FALSE
elself first:disjuncts then TRUE
else or:rest:disjuncts

Jjust as precisely and more easily than with assignment statements
and loops. We believe that either of these definitions 1s more
expressive and easier to compose than similar programs written
with the more standard tools of iteration and assignment statements [§].
The problem of efficiency, often raised against such examples, is
not at issue here.

Others have approached practical problems with similar
abstract tools. Some [2 , 8] consider applicative styles
from the perspective of hardware and machine architecture.

Backus [1] and Hewlitt and Smith [2%] have considered such
expression from the perspective of software, and Burge [4 7 and
Kahn and MacQueen [37] have particularly considered applicative
programming in dealing with unbounded structures. The plethora
of results on program transformations which assume applicative
programs as the source [§,52,53 57, 5¢] suggests that although
this is not only metal for casting our programs, at least 1t is
ductile and malleable. Programs so expressed may be reshaped to

suit local hardware and demands for efficiency.

This style of expression is familiar in the form of lambda
calculus [6] and combinators [7] and programming languages
like ISWIM [398,4] and pure LISP [39]. We had already derived
results uncovering unforeseen parallelism [[/$] in fifteen-year
0ld LISP code written with standard sequence constructor
functions [M4] or a simple extension of functional application
to sequence of functions [/¥]. These appeared to subsume
expression of the "most obvious" cases of parallelism quite
easily; and our attention turned to expressing the less
obvious parallelisms, which seemed to require mystical programming
techniques, in an applicative fashion.

In McCarthy's formal axiomatic sense [37] the sequence S =
<a b ¢>, constructed with the sequence constructor cons, should
allow each element of the sequence to be accessed independently
of the convergence of the other two elements. We use the integer

i as a function to access the ith jtem of a sequence.
1:8 = a, 2:3 = b, and 3:5 = ¢,

each regardless of whether the other two elements diverge. The
axiomatization can be implemented by arranging that no element of

a sequence is ever evaluated until it is accessed, e.g. via the
lazy evaluation scheme [25], call-by-need [$3], or call-by-delayed-
value [54] protocol for function invocation. It may be effected

by replacing a value by a suspension of that value until it is

probed by an access function, which is only indirectly invoked
by the need of some sequential output device to display the

contents of a suspended result [/é6].

FEEEF

Could there be a way to construct an unordered structure U =
{a b ¢} suspended in a manner similar to the mechanism used by
cons? The idea is that 1:U would return the first convergent
value of the multiset (we call U a multiset since two elements
may converge to the same value yet its size is unaffected [3¥]).
The 2:U returns the second convergent value if there 1s one; and
3:U returns the third and is, therefore, defined only when all
three elements converge. The answer is "yes"; and the remainder
of this paper develops a constructor, frons, which is used in a
manner most similar to the sequence constructor defined by McCarthy

and used fluently by all LISP programmers.

¥XEE®

This new constructor allows the building of a structure
whose order is not preordained by the programmer, but as
accessed at runtime, that structure takes on a total ordering
as its prefix is accessed. The order will be determined then
by the necessary convergence of those items which are success-
fully accessed. If an item in the specified multiset cannot
converge because an asynchronous event has not occurred--
because a real-time signal has not been received-- then that
item is simply excluded from candidacy for "firstness". When
all real-time events on which its evaluation depends have occurred,
that item at last becomes a candidate to be first; and eventually
under a fair implementation it will be found to be the first item

of the multiset of some suffix. As the order of a multiset is

uncovered that multiset becomes indistinguishable from a 1list!

With a single new constructor function, the naturally extended
accessing functions, first and rest, and applicative programming
as the control we have developed an expression for several
programming techniques. For instance, breadth-first evaluation
may be specified by choosing the first of a (perhaps infinite)

multiset of the possible answers:
or:{and:{a b ¢} and:{d e f} and:{g h}}

It may not matter in this example if a, ¢, and g diverge. If

it turns out that b, e, and h are FALSE, then the entire expression
evaluates to FALSE. If 4, e, and f are TRUE, then so 1s the
expression. If convergence of even these values must await some
unknown event, then the evaluator proceeds until the requisite
event(s) occurs, since there can be no other value until then.
Semaphores or interrupts are drawn implicitly into the computation
by the evaluator, since the programmer need not specify their
direct control over this expression. When the necessary event
occurs, an indirect effect may be to cause convergence of the
logical expression above; but the creator of this expression need
not be aware of how "control" of the machine has returned to

yield his value-- of why his computation suddenly awakens and
proceeds. As we shall see, distributed evaluation 1s necessary

to the proper implementation of the constructor frons; and it
appears that frons allows us the power to express less obvious

parallel processing now familiar to systems programmers.

The major dilemma facing the real-time programmer is handling
asynchronous and indeterminately occuring external events using

a programming style bullt upon deterministic and synchronous

interprocess communication. (At the microcode level each register
might be viewed as a process.) By embedding the asynchronous
events within a multiset and specifying the behavior of access

to that structure, we have cut the synchronous/deterministic stone
in a new and different fashion. We emphasize a structure, whose

access pattern i1s undefined a priori, but whose a posteriori

behavior is exactly that of a sequence; it becomes a sequence in
an unpredictable way. The programmer need only ascertain that
his program gives valid results no matter which of the possible
sequences appear. It will become evident in the examples that
this kind of correctness 1s easier to assure than the other
[1},23,36,44]. By removing any concern for order from the
programmer, we free him to specify what he wishes to do with
the results without worry for how the results were derived. The
intellectual effort occurs when he specifies the content of his
multiset (which is a statement of what can happen) and when he
specifies the use of each element as it 1s uncovered (which is a
statement assuming something has happened). He need not worry
about how it happened as does the "unpredictable" programmer
who must make sure that all computation paths are valid [=22].

In a sense the style is asynchronous programming as opposed
to "perceived nondeterministic" programming. The programmer

need not worry about flow of control on the arrival of external

signals since there is no explicit flow of control. Therefore,
the programmer who uses multisets to express what others

recognize as indeterminacy i1s working with a concept which is

more natural since it 1s freed of the discrete time assumption

of actual computers. To him the evaluation of all the unevaluated
elements of a multiset proceeds asynchronously, and the evaluator
is ,therefore, free to treat such evaluations as independent
parallel processes.

The remainder of this paper is in five parts. The next section
presents a semantics for indeterminately ordered structures as
ferns, a restriction of forests. This development allows a
graph-like visualization of the unordered structures intended,
and justifies the practical terminoclogy we use. It is followed
by a brief section presenting additional tools needed in the
third section. 1In order to present the user's vier of cons and
the new constructor, frons, the third section is the program of
an airline reservation system which handles many active or
inactive agents' terminals. The fourth section offers a concise

structure semantics for expressions involving cons, frons, first,

rest, and null which will be more useful than the earlier fern

semantics. We prove that the two semantics are similar (weakly
semantically equivalent). The conclusion argues that the user's
experience with data structures will strengthen that similarity
in practice because the programmer tends not to create duplicate
structures; rather he shares extant ones. Ongoing work is also

described there.

Fern semantics

A relation E on a set N is a subset of N x N; the elements
of N are called nodes and those in E are called edges. A

partial order is a relation, E, such that

(1) If (x,y) € E then (y,x) £ E (asymmetry).

(11i) If (x,y) € E and (y,z) ¢ E then (x,z) ¢ E (transitivity).
A partial order is irreflexive because if E is asymmetric then (x,x)
may not be in E. A relation is ancestral if (x,z) ¢ E and (y,z) ¢ E
together imply that either (x,y) € E, (y.%) € E;, or X = ¥.
Pairing a set with a relation on it (N,E) yields a digraph;

when the relation is a partial order it yields a partially ordered

set. A total order or a chain is a partially ordered set (N,E)

in whieh for all x,y € N elther (x,y) € E or (y,x) € E or x = y.

A node x ¢ N is minimal in the digraph (N,E) if (y,x) € E for

all y ¢ N. A chain is rooted if it includes a minimal element.

A forest is an ancestral partially ordered set in which every
embedded chaln is rooted. When we draw the directed graph of

a forest, below, we shall omit edges implied by transitivity

in the associated partial orders; the resulting graph (Hasse
diagram) appears like a bunch of trees. Elsewhere the term
"forest" applies to such a graph, rather than to one which includes
the edges implied by transitivity and included in our definition;

the difference 1is slight.

There is no explicit need in such figures to label the
nodes, because the circles representing the nodes themselves
are sufficient to represent the set N; we may, however, elect
to label each node according to some labelling scheme which
augments the forest to a labelled forest. A labelling of N

is a function from N to some domain D. A labelled forest is

a triple (N,E,V) where (N,E) 1s a forest and V is a labelling
of N.

Definition: A fern is a digraph (N,E) where

(i) There is a partition of N into three sets: B, L, and S
called the bud set, the leaves', and the sprout, respectively.

(ii) B is a singleton whose element, called the bud, is the
root of the sprout: BxS < E; NxB n E = 4.

(111) L is isolated: (LxN u NxL) n E = &.

(iv) The restriction of E to S, R = E n SxS, 1s such that the

sprout forms a fern: (S,R) is a fern.

Several observations follow fromitherndefinition of a.fern. Most
are apparent from studying Figure 1. A fern must have at least
one node (the bud) but the partitioning into bud set, leaves,.

and sprout need not be unique when there are no edges.

liyfe use the term leaf to mean something different than a terminal node.

._10_

The observation that every fern i1s a forest explains the
choice of the term "fern". A fern is like a forest, but the
branching is very spindly. One 1is reminded of the derivation
trees of linear grammars [2%], or the branching pattern of
the plant equisetum (Figure 2) or a Roman fountain (Figure 3).

Following upon this observation we define a labelled fern to be a

labelled forest whose underlying forest is a fern. Figure 1 illus-
trates a labelled fern. The symbol "1", read "bottom" is used
there to indicate that the labelling function does not converge

(in the recursive-function-theoretical sense) or does not

evaluate to a value in the label domain D (as opposed to the
extended domain DV [4] ,p. 358]). The labelling function in

Figure 1 may be perceived, therefore, either as a partial function
from N to D or as a total function from N to DY. The only
labelled ferns which we shall consider here either are infinite

or have at least one node whosge label is 1.

Definition: A sequence is a fern whose partition according to

the fern definition is such that L = @ and such that either

S =@ or (S,R) is a sequence.

A sequence is a fern with no leaves whose non-trivial sprout
forms a sequence. A sequence defines a total order on its set.

We may extend this concept to define labelled sequences as a

special case of labelled ferns. Labelled ferns may be finite
or infinite. In order to develop the specific concept of a finite

fern we introduce the concept of a null fern.

-11-

Definition: NIL is the labelled fern ({q},Z,{(q,1)}).

NIL is the most trivial fern; an alternative definiftion
(from the perspective of the labelling function being partial
recursive) is that NIL = ({q},2,0).

Our intent in defining a fern 1s to characterize all data
structures as labelled ferns. We, therefore, shall use the
terms "fern" and "sequence" for labelled fern and labelled
sequence, respectively. Since we shall embed these data structures
in a computational environment, we confront the need for a
semantics for ferns under some interpretation function, I, which
we presume to be already defined on non-ferns. (Non-ferns
include elementary items, elementary expressions which are built
using primitives not explicitly defined here, and function
invocation which may create environments that are also embedded

in I.) As we specify the interpretation of ferns we shall

arrange that the labelling function carry the interpretations
of its elements. The absence of a meaningful labelling in NIL
is therefore of no consequence, since we shall perceive NIL as
a structure to be devoid of content.

We now can begin to define our fern constructor, fons, and
present its semantics under an interpretation function I, which
determines the labelling functions. We define it in two steps

fonsT and fonsF with T and F indicating Boolean values.

-12 -

Definition: If I[f] = F = (N,E,V) is a labelled fern, we define

the extension of I to fonsT to be

I[fonsT(x,f)] = (Nu{ql}, E v {g}xN, V u {(q,I[x])})
where g is some new node not in N or elsewhere in I. The set

E is time-dependent in the sense that it contains all edges

defined a priori or a posteriori (as a result of side-effects

from EUREKA as set forth below).

The minimal elements of a fern are the bud and the leaves.
the effect of fons, is to extend the labelled fern F by including
a new element whose value is that of I[x]. Furthermore, that
element will be the unique minimal element in the resulting

fern a priopi.

If a fern is built from NIL using only fonsp,, then the
interpretation of the result under I must be a sequence. Thus
the effect of fonsy is that of the well-known constructor cons
which builds lists like in LISP [39]. From this observation
[f4] and from results on parameter passing mechanisms [5%, S55]

we make the important observation that the interpretation

Ilfonsp(x,f)] defined above converges whether or not I[x] (or I[f])
does?. This will be particularly important in defining the
interpretation of the rest function below which, as we shall see,

is defined independently of x.

“The same remark applies to fons,. 1In a lattice theoretic approach [4¢]
establishing that a datum 1is congtructed using fonsE is therefore
sufficient to prove that it is not L.

13

Because finite sequences are so useful in list processing,
we shall specify a special notation for them.
Notation: I[<>] = NIL;
Tl<x., =x

1 Xy eee xk>ﬁ = IHfonsT(xl, L<Xy oes x>)1

So far the ferns which result from these interpretations are
not useful in and of themselves. We specify three functions,

null, first, and rest, which the programmer may use to probe

these ferns, and then specify how the fern is presented as a
list if it is to be viewed in its physical manifestation.

First we shall define a non-deterministic transformation,
EUREKA, on ferns. The effect of EUREKA is to locate some
element which is minimal in the fern. If the fern has leaves
then EUREKA refines the fern by adding edges so that the chosen
node becomes the unique minimal element. This is called
promotion. EUREKA chooses the unique minimal element by finding
a node g such that q ¢ LuB and V(gq) # L. Thus, EUREKA has a
side-effect of augmenting the definition of the fern in question

a posteriori, and all these edges--although they may be added

later-- appear to have been in that fern all the time. If the

fern has no leaves, then EUREKA leaves it unchanged.

Definition: If F = (N,E,V) is a labelled fern then

F if L = @;
EUREKA(F) =
(N, E v {g}x(N-{q}), V) if L # @

where q € N is minimal in E, and V(g) # L

\?ugmented3 to equal EUREKA(F).

et F = (N,E,V) and F' = (N',E',V') and
if q,r ¢ NnN' then (g,r) € E implies (gq,r) ¢ E'.
These edges are added g posteriorl as suggested earlier.

=4 Y

After EUREKA has been called once, its invocation on the
same fern thereafter must behave as the identity function. The
selection of the minimal element q, which will be promoted to
be the unique minimal element in F, is deterministic when the
fern has no leaves, and once EUREKA has been successfully
invoked no leaves will remain. In the case, however, that
there is at least one leaf EUREKA is a mapping strict [$&4] in
the label of some leaf or of the budq; that is, EUREKA cannot

converge until some such label converges.

Definition: If I[f] = F = (N,E,V) is a labelled fern then

' , TRUE, if |N| = 1;

IMnull(r)] =

FALSE, otherwise.

and if q is the unique minimal node in (N,E) after EUREKA(F) then
Ilfirst(f)] = V(q).
I[rest(f)] = (M, E n MxM, V n MxD¥T) where M = N - {aq};

(i.e. F with q removed).

These are the only primitive operations defined on ferns!
Even when a person asks to see a fern, he may at best ask to
see a copy of the linear traversal of that fern using null,
first, and rest. Such a linear traversal will be a
topological sort [23] of the partial order originally embedded

in the fern and would appear as a list.

YA function is strict in its iER parameter if divergence of the itR

argument implies divergence of the function. We are extending
this concept to promotion of ferns with labels actlng as arguments.

=4 5w

Definition: The 1list of a fern is the 1list of characters defined

by the PRESENT operation below (o denotes string concatenation):
print image of I[xﬂ}if I[x] is an elementary item;
PRESENT[x] =
Ll L TRAVERSE[Xﬂ§if I[x] is a labelled fern.
TRAVERSE is the traversal of I[x] up through the right parenthesis:

myn if I[null(f)];

]

TRAVERSE[f]
LPRESENTEfirst(f)ﬂ o TRAVERSE[rest(f)], otherwise.
Thus far we have defined labelled ferns in general, but we
have given fern semantics only for labelled sequences. Moreover,
we have two ways to specify sequences; using the constructor
fons, (i.e. cons) and using the angle-bracket convention for
finite ferns. In both cases the PRESENT operation produces a list
which is 1little more than a homomorphism of the interpretation
down the seguence; EUREKA is deterministic on such structures.

The definition of first and rest, however, already handles

a fern which is not a sequence.

Definition: A multiset is a labelled fern whose partition

according to the fern definition is such that S = @°.

The only multiset which i1s a sequence is NIL. Thus NIL
suffices to represent the empty multiset as well. We note that
the partition of a non-empty multiset (which determines the
bud set) is not unique. If every element in a labelled forest is

minimal then it is necessarily a multiset.

5This definition is consistent with Knuth's usage [34]; note that
the labelling of a fern allows duplicate values. Waldinger [s¢]
(see also [47]) uses the term "bag" for a structure which appears
similar to our multiset. There are significant differences
however. A bag may only have a finite number of elements. Every
element of a bag must be computationally convergent (in D) whereas
we allow labels on elements of a multiset to diverge (through a
divergence of the labelling function).

16

We complete the definition of the general fern constructor

in order to allow the construction of multisets.

Definition: If I[f] =F = (N,E,V) is a labelled fern then

I[fonsF(x,f)ﬂ = (Nu{ql}, E, V u {(q,I[xD})

where q 1s some new item not in N.

The set E is time-dependent as it was in the definition of fonsT_

Thus,' we have 1interpretations on Egggg for either of
the two Boolean values for B. We thereby have defined our
two fern constructor functions as just one if we perceive B
as a third argument which specifies whether or not edges are
to be added into the fern a priori as it is constructed. The
interpretation is that when B = I then edges are specified as
an element is added to the fern; when B8 = F no new edges are
added, leaving open the possibility that they (or their inverses--
not both) may be added at some later time. Just as fons, is
called cons by programmers, in the example section we shall

rename fons_ to frons since it adds leaves to the fountain-like
i

ferns.

A notation for multisets, analogous to the notation for

sequences (using angle brackets), is quite useful.

Notation: TIl{}] = NIL;

IE{Xl % xk}l = IEfonsF(xl, 1z, o 2,30 3]

2

Because we allow labelled ferns which are neither multisets
nor labelled sequences it should be obvious that there is no

restriction on the way that the fonsB constructors may be

i

interweaved. At this time we do not know any obvious uses which
would require the programmer to specify such hybrid ferns.
Nevertheless, @ we extend the bracketing notation to

include such hybrids by using vertical bars.

Notation: IE{xll > S S xk}ﬂ = IﬂfonsT(xl, {x2 Xg wi Xk})1

g 3

Thus thelpresence of a following bar indicates that ggggT is
the necessary constructor; its absence indicates that ;gggf is
the constructor. Hence <a b ¢ d> = {a| b| ¢| d|} under I. The
effect is that the vertical bar follows a necessary choice for
a bud.

Although the programmer appears to have 1little need to use
the bar notation, ferns which are neither sequences nor multisets
may arise as internal structures as EUREKA works its intent on
multisets. For instance, Figure 1 might arise as the result of

interpretations on the multiset {jj mm} to which gg, hh, ii, kk,

and 4 were subsequently added, and later to which 4a, bb, cc,

dd, ee, and ff were added. Here we assume that I[aa] = AA,

I[bb] = BB, Tlecel = cc, I[adl = DD, If[eel = EE, I[ff] = FF,

I[lggl = GG, I[hh] = HH, I[ii] = v, I[J31 = JJ, Ilkk] = KK,

T[22] = LL, and I[mm] = MM. Using the brace-bar notation Figure 1

might also have arisen from
{cc ee bb dd aa ff gg| kk ii 22 hh jj| mm}

or f{ee cc dd bb aa ff gg| 11 kk 22 hh jj| mm}.

For comparison, Figure 4 arises from the sequence <aa bb cc dd>
and Figure 5 illustrates the multiset {ee ff gg hh} under these

assumptions.

-18-

Let us consider the a posteriori effects of EUREKA on the

graph representation of the fern F of Figure 1. Suppose that we
find that I[first(f)] = cC (where I[f] = F). The implication is
that EUREKA selected the node associated with CC (i.e. cc) as its
"chosen one" from among those associated with aa, bb, cc, dd,

ee, ff, and gg; 1t was chosen because its label converged to CC.
EUREKA adds edges to F to yield the labelled fern (which is the
transitive completion of the one) in Figure 6. Henceforth and

previously F equals this fern!!

It follows from Figure 6 that we could describe I[rest(f)]
as {aa bb dd ee ff gg| hh ii kk 2% jj| mm} represented there by
the fern excluding the node associated with CC and Iff] will
now be {cc| aa bb dd ee ff gg| hh ii kk 2¢ jj| mm}. Extending
the example further we might consider the effect of EUREKA on F
after discovering that I[first(rest(f))] = GG. Figure 7 illustrates
the effect of adding more edges to F. In this case a new level
is not introduced into the picture (viewed as a tree); instead the
new edges have the effect of pushing leaves from one level up to
the next because it is the bud which EUREKA has promoted. Figure 7
also indicates how the accessing--the use-- of F slowly coerces it
into a sequence. At this point only the first two elements of F
have been probed, but the structure has been augmented so that
those two probes have reproducible results. Another interpretation
of Figure 7 is the situation after the PRESENT operation has
traversed the first two elements of F, but not yet the remainder;
the list which it presents appears as "(CC GG ... ". Any plcture
of a fern other than (a prefix to) the list it represents would

anticipate eventual effects of EUREKA.

= g9-

Implementation of the first invocation of fthe function

first or rest (i.e. EUREKA when there is more than one

element) requires some sort of parallel evaluation strategy
over all label computations on elements which are minimal

in the fern. The implementor is free to choose any strategy
he likes, so long as no such computations are neglected.

(We have not excluded the possibility of an infinite number
of minimal elements.) A correct implementation converges

to the first convergent minimal label of a fern (whenever
there is but one) and a good implementation will converge
fairly rapidly. For instance, in the case where the fern, F,
is a multiset of external events (like console keystrokes),
only one of which actually occurs, we would expect first:f
to converge very quickly after a key was actually pushed.

As an example of such a situation, consider the disjunction
of three such values, any one of which may be undefined, dependent
on external "force fields", or sufficiently defined but extremely
difficult to compute. In spite of these adversely defined values,
some one of the three is very simple to compute and is, in fact,
TRUE. The problem is that we don't know which one it is!
Consider the interpretation of the expression "or:<x y z> in
which the three arguments are structured as a sequence. The
standard code for or in the introduction requires that the

first argument, x, convergegbefore the rest are accessed. If

-20-

the arguments are structured as a multiset, however, there is
no necessity of evaluation in any particular order. The
interpretation of "or:{x y z}" provides that evaluation of all
three disjuncts proceeds simultaneously--that is, evaluation of
any one does not preclude progress on evaluation of any other.
The first value to converge becomes the first element in the
multiset (actually, now a hybrid), and so the code for or above
now imposes a "call-by-convergence" protocol. The first disjunct
which produces a TRUE label will terminate computation of the
disjunction. Until then the evaluation of all disjuncts proceeds;
so it doesn't matter which of the three eventually becomes TRUE.
If one of them does then the disjunction itself is well-defined.
We close this section with the remark that the domain of
the labels has thus far remained unspécified. We could specify
that domain to include ferns and elementary items, SO that the
structures defined here would have depth as well as width when
traversed, say by the PRESENT operation. The possibility of
a label being a subfern thus generalizes ferns to include
the classic data structures like Lists [2®3] and trees. One
should not confuse the sprout infrastructure, which has
implications for the eventual order of the list which a fern
represents, with the infrastructure of a subfern which is but

one label in that underspecified ordering.

-21-

Additional tools

Before we turn to practical applications of the multiset,
we return to some elementary implementation considerations.
The first problem is to reconcile our use of brackets in the
intrecduction with our definition of them as a shorthand for
constructing ferns above. Second 1s the introduction of some
elementary primitive functions. Third is the definition of a
strictify primitive as a two argument identity function which
is strict in both arguments.

The interpretation of an angle-bracketed sequence in the
previous section is a fern, specifically a labelled sequence.

The interpretations of first and rest on such a sequence yield

the interpretations of the respective elements in the same way

that we would expect such probings to behave on the angle-bracketed

sequences of the Introduction. This is true because the underlying

fern is a total order; and there can be no change in the order of

the values seen by first and rest (i.e. EUREKA would always behave

as an identity function). We depend on the interpretation, I,

to assure that the wvalues are unchanged as well. The definition

of braced multisets in the previous section similarly meets our

design for such structures anticipated in the introduction.

0D

We have already seen the use of angle-bracketed and braced
argument lists in the example of disjunction at the end of the
previous section. This notation will be used extensively 1in
the code of the following section. In all cases it is consistent
with the notions of structure outlined in the Introduction and
reconciled here so that the interpretations of the user's code
first:x, rest:x, null:x, cons:<x y>, and frons:<x y> are
respectively I[first(x)], Ilrest(x)], I[null(x)], I[fonsT(x,y)],

and I[fonsF(x,y)ﬂ.

Definition: The predicate same is defined by the interpretation

I[same(x,y)] = (I[x] = Ilyl) where I[y]l is always an

elementary value.

As mentioned above wesghall use the syntax, same:<x y>, rather
than the parenthesis notation here. The other primitives are
arithmetic, and we define them less formally. We assume the
functions, succ and pred, and the predicate iszero which respectively
return the successor, the predecessor, and the "zeroness" of
their argument. As an example of their use, we define a function
which yields an infinite sequence of the integers greater than

or equal to 1:
integers:1 = cons:<i integers:succ:i> .
We can then define the sequence of all natural numbers by

naturals = integers:0

-23-

Finally we define the strictify primitive. Because we shall
be dealing with structures whose order depends on the convergence
of (the labels of) their elements and because the values of those
elements themselves may be structures, we require a convenlent
notation for passing the convergence or divergence up through
those structures to the computations of the (labels of the)
elements of a multiset.

Definition: Ilyl if Ilx] # 13
I[strictify(x,y)] =

1, otherwise.

A few examples will suffice to demonstrate the generality of
strictify. Each of these examples uses strictify to recover
familiar semantics of some older functions. Consider valuecons
as the function strict in both arguments as normally implemented
using call-by-value protocol in LISP or Landin's prefix* [37, 4]
which is similar but only strict in the first argument. Both
may be implemented in terms of cons which suspends evaluation

of both arguments until probed with first or rest [4]:

valuecons:<x y> = strictify:<x strictify:<y cons:<x y>>>;

prefix¥*:<x y> = strictify:<x cons:<x y>>

Finally we consider restricting a parallel conditional

primitive [42,20] to the more common sequential conditional [4F,S4]:

seqif:<pred then else> = strictify:<pred
parif:<pred then else>>

|

The airline reservation system

In order to demonstrate the facility of nondeterministic
programming with the new constructor frons, we present a few
example programs leading to an airline reservation system
which solve problems of nondeterminism in an applicative style.

In reading these examples one should notice how nondeterminism

i1s isolated into the data structure, so that the program is

rather simple! First we consider the problem of flattening a

multiset of streams [37] (i.e. sequences constructed by prefix¥)
into a list. In this example the argument, a matrix with two
unbounded dimensions (i.e. the number of rows and the number of
elements in each row may be infinite, in which case the first
two lines of merge are meaningless).
merge:M =
if null:M then M
elselif null:first:M then merge:rest:M

else cons:<first:first:M
merge: frons:<rest:first:M rest :M>> .

The use of the two constructor functions in merge is particularly
interesting. Assuming that the value for M is defined appropriately,
we can interpret the four possible substitutions of the two
constructors in those two positions. If both were cons, then
merge would append [40] all the rows of M in the order they are
presented in M; if the first row of M is infinite then that row
would be copied. With the constructors as in the definition of
merge, the effect is to interleave the various rows of M, so the

order of each one is preserved, but elements from other rows may

-25-

be interspersed in the final result. If both constructors
were frons, the effect would be to allow any shuffling [34] of
all the elements of the array as an ordering in the result.
(In the unusual case that the first constructor were frons
and the second one were cons, a similar shuffle would result;
but elements in the result would be restricted to rows only

up through the first infinite one in M.)

The interleaving behavior is what we desire for the
next example. We would like to write a nondeterministic
input driver for a time-sharing system. Specifically, we
want to solve the input problem for the airline reservation
system [$9,9]. 1In that problem we have an arbitrary number
of remote agents' terminals each producing an infinite
stream of characters. Each stream forms a row of an input
matrix. Thus every row is infinite (as time passes); and
there are an indeterminate number of rows (new terminals may
be activated at any time). The problem is to write an
applicative program which will accept these characters as
soon as they are typed (regardless of the inactivity of an
other terminal) and interleave them into a single input

stream with each character identified according to its source.

—96-
We require an auxiliary function which will transform a
file --a sequence of characters-- into a sequence of pairs
——a character and the signature of the file. Furthermore,
that sequence of pairs, and all its suffixes, should be
strict in the convergence of their first characters. This
strictness precludes convergence of such sequences until
their first character has been typed at the corresponding

remote terminal.

identify:<file id> =
if mullzfile then file
else strictify:<first:file
cons:<<first:file id> identify:<rest:file id>>>

(Even though identify specifies a full computation over file,
the reader should satisfy himself that each step is suspended
until it is needed [~].)

Tt is the multiset of identified files which must be merged.
Let us assume that files is a sequence of the sequential files
to be interleaved. Then we may invoke the function fanin upon
files and naturals in order to generate the desired stream of

agents' communication:

fanin:<files signatures> = merge:identifyall:<files signatures> ;

identifyall:<files signatures> =
frons:<identify:<first:files first:signatures>

identifyall:<rest:files rest:signatures>>

The identifyall function is used to convert the sequence of files

and signatures into a multiset of "strictified-identified" files.

Thus, the application of first in merge can only yield a result

from an active terminal.

-27-

For example, suppose we have three files being generated
in real time by three different terminals. A file being so
typed is viewed as an infinite list of characters which
becomes finite only when the wire over which i1t communicates
is cut. Of course, that may happen only after the computer
running fanin has been decommissioned; so fanin does not allow for
finite files. Suppose that Jefferson types file-0 as (WHEN I N _
THE COURSE _OF_HUMAN ... and Lincoln types
file-1 as (FOURSCORE AND_SEVEN_YEARS _
& &8 yew and Rip Van-Winkle is at terminal 2 typing nothing
at all, then fanin:<<Jefferson Lincoln Van-Winkle> naturals>

might return
((W 0)(H O0)(E 0)(F 1)(0 1)(N 0)(U 1)(_ 0)(R 1)(T S A

or any of several other shuffles of the two active files.
Given a finite number of files, the function fanin accomplishes

the same work as Kosinski's arbiter [357].

Just as fanin merges a sequence of files into a single list,
there 1s an inverse function which takes the result of fanin
(i.e. a list of character-index pairs) and produces the original
list of files. We call this function fanout. It has the
property that "fanout:fanin:<files naturals> = files. The
intended use of fanout is to distribute results of a multiple
valued function to several devices [/7]. In many cases that
function, in turn, calls fanin to assemble its input into an
ordered stream. The function buildup inserts a new file in the

th

indexX: position of a list of files. The new file is the old

file with a character consed onto the front of the file.

-28-

fanout:pairs = buildup5<first:paifs"fanout:rest:pairs> ;

buildup:<<char index> files> =
1f iszero:index then cons:<cons:<char first:files>

rest:files>
else cons:<first:files
buildup:<<char pred:index> restifiles>> .
(N. B. that buildup uses a structured formal parameter [2%].)
The result of fanout may be passed to I/0 media, but if each
file of the result is tied to a sequential device, the results

appear overlapped with the input [/é]. Because all files are

here presumed to be unbounded, we have no null tests.

We are at last prepared to write an airline reservation
system [/2] as a classic problem representative of
real-time programming systems. The essence of this problem
lies in its need for a shared data base, the planes' bookings,
and for the organization of simultaneous requests from booking
agents. For each of these requirements the use of a protected
critical section (using a semaphore [/0], a monitor [3 ,29], or
a serilalizer [27]) is generally required. We dispense with
the issue of a shared data base by returning a "changed" data
base as one of the results of the function which changes the
data base; we have discussed elsewhere [/?] how these "suspended
copies" of a file guarantee its integrity. The issue of
simultaneous requests has been solved by fanin, although we
have yet to guarantee that all booking agents will receive
attention while the system remains completely busy. This issue

of fairness is addressed elsewhere [Z/].

-29-

Our solution works with just one plane and an arbitrary
number of agents. (Our airline is adding agent terminals all
the time.) Generalization to a full system is not a formidable
task. The requests from each agent (individual at a terminal)
are structured as a sequential file; and the responses to each
agent are also structured as a sequential file. The parameters

for airlinereservationsystem are the request files and capacity

of the plane. This is the essential structure of the system:

alrlinereservationsystem:<files capacity> =
fanout : genresponses:<fanin:<files naturals> capacity> .

The function genresponses takes as parameters a sequence

of character-index pairs and the seating capacity of the plane.
The character of each pair is the request. If the request is
R (C) then it is a reservation (cancellation). If the request
is a different character, then it is an unknown command. If
the request is a reservation and there are no vacancies, then
the response is F (full); otherwise the request is echoed
implying success. If the request is a cancellation and there
have been no reservations, then the responseis E (empty);

otherwise the request is echoed implying success. If the request

is not C or R, then the current number of vacancies, perhaps
stale information, is returned indicating no action. This
description of the airline reservation system is also the outline
of the auxiliary function gen. The case where a successful

reservation (cancellation) is made 1s handled by declaring one

30

of the seats occupied (unoccupied) with "pred:vacancies"

(succ:vacancies). The function genresponses (i.e. gen) only

builds sequences. More nondeterminism can be realized by building
the structure of responses with frons or by using parallel

evaluation of conditional expressions [20].

genresponses:<pairs capacity> =
gen:<first:pairs rest:pairs capacity capacity>;

gen:<<request index> pairs vacancies capacity> =
if same:<request R> then

if iszero:vacancies then cons:<<F index> gen:<first:pairs

rest:pairs
vacancies

capacity>>
else cons:<<R index> gen:<first:pairs

rest:pairs
pred:vacancies
capacity>>
elseif same:<request C> then
if equal:<vacancies capacity> then cons:<<E index> gen:<first:pairs
o - rest:pairs
vacancies
capacity>>

else cons:<<C index> gen:<first:pairs
rest:pairs
succ:vacancies
capacity>>
else cons:<<vacancies index> gen:<first:pairs
rest:pairs
vacancies
capacity>>

-31-

Structure semantics

In this section we present an alternative and more formal
semantics for the constructors cons and frons (here again called
fons, and fons). This semantics will appear to be a
purely functional presentation, except for the use of the
nondeterministic operator amb. McCarthy [39] proposed amb an an

"ambiguity" operator of two parameter which is strict in neither:

Definition: x 1L o¢ & @s

AMB(x,y) =94y if y # 1;

1, otherwise.

AMB in and of itself is not a continuous function [#§] because
it may not return the same result when applied repeatedly to
the same arguments (but a continuity argument is available if
we consider powerdomain constructions E¢5:JT]) This would be a
serious difficulty for functional semantics if we let it happen,
but our use of AMB is restricted to those situations wherein
AMB may only be applied to the same arguments but once. The
call-by-need or call-by-delayed value protocol is assumed
here [$%,55,257], and AMB will only occur as an argument within a
structure-buillding operation; since we view each structure as a
different value (cf. the conclusion following) none of these

invocations are repeated.

There is a strong similarity between our use of AMB and
call-time choice [26]. Call-time choice may be perceived as an
AMB expression passed as an argument in a call-by-need protocol.
(Run-time choice may be similarly perceived as an AMB expression

passed as an argument under a call-by-name protocol.) Functional

. RS

semantics are available for call-time choice under the non-
repetitive convention which we assume here, sc the reader is
free to perceive our use of AMB in that way if he chooses.
For the purpose of this section we shall restrict the
definition of strictify from above to a meta-language form

which only returns Boolean values.

Definition: STRICTIFY(x,b) = b if x # 1 and b is a Boolean value.

We now proceed to extend an interpretation function according
to structure semantics. As we did in the development of fern
semantics, let us assume that we have an interpretation, I',
which i1s already defined for elementary items, elementary
expressions, and function invocation (which might create new
environments and thus new incarnations of I'). We shall define
the extension of I' to structures in the same way that we extended
I to ferns. Then, under the assumption that I on non-ferns is
the same as I' on non-structures, we shall demonstrate that I'= I'.

We define the set of all computational structures to include
the set of atomic items and the set of structures S which are
quadruples (or trivially NIL).

D=Au S;

(NTL} u (D1 x st x {TRUE, FALSE}' x w);

S
where w is the set of natural numbers; the fourth element 1is only
used as an index on the quadruple whose effect on semantics is %o
guarantee uniqueness of structure,.

Tn the following definition the occurrence of "i e w" denotes

a new integer which has not occurred in any other quadruple. As

BTG

mentioned above, for any structures indexed by such an 1 as a
fourth element, an AMB expression as the third element is evaluated
at most once and its evaluation 1s delayed until accessed. That
is, as any structure is created, its fourth element is assigned a
new (and different) number--say the time since Creation-- so that
no other structure just like it is ever built again. This
identification plays the same role as the uniquely created nodes
(to be distinguished from the labels) in the fern semantics. The
purpose of it is to allow the "same" structure to be constructed

twice and yield different structures.

Definition:

TRUE if I'[f] = NIL, the trivial element of S;
I'[null(f)] =
FALSE if I'[f] is a quadruple in S.

(I Tl
I'[rl,
TRUE,
i) where i € w.

(I'x],

'[£],

AMB(STRICTIFY(I'[x], TRUE),
STRICTIFY(I'[first(f)], FALSE)),

i) where 1 ¢ w.

I'HfonsT(X,f)I

I'ﬂfonsF(x,f)B

I'[first(f)] = FIRST(I'[f]) where
FIRST(NIL) = 1
FIRST((u,v,TRUE,Jj)) = u; and
FIRST((u,v,FALSE,j)) = FIRST(v).

I'lrest(f)] = REST(I'[f]) where

REST(NIL) = 1;

REST((u,v,TRUE,j)) = v; and

REST((u,v,FALSE,j)) =
(1
REST(v),
AMB(STRICTIFY(u, TRUE),

STRICTIFY(FIRST(REST(v)), FALSE),

i) where i ¢ w.

-3 lU—

Notation: As before with I' for I:

1}

I'l[<x1 Ky oo xk>ﬂ I‘[fonsT(xi, <Kp e xk>)];

PRy % wes Byl I'[fonsp(x,, {x, ... x, 11;
I‘E{xil Xy voe X 3] = I'[fonsy(xy, {x, ... x D13

1t[<>l= BIL = I"[{}].

The interpretation of "structure expressions" is a quadruple,
but that quadruple is unrelated to the triple which is a Tern;
it is a nested structure quite similar to the direct union which
McCarthy [#2] used to interpret sequences. There is a natural
interpretation here also of the value B in ggggs; if it is T then
the third item in the interpretation will be TRUE and if it is F
then AMB introduces some uncertainty. In the following theorems
we shall see that this uncertainty is resolved by convergence, much
like the way that edges are added to ferns by EUREKA under
interpretation I.

In both the fern semantics and the structure semantics defined
here we note that the interpretations of the arguments to ggggs
are embedded within the result. In the case of ferns, those
interpretations became part of the labelling; here the
interpretations are embedded more directly into the quadruple
(and sometimes under AMB in the third position). It is necessary
that the triple which is the fern--or quadruple which is the
structure-- be constructed with these interpretations suspended
(called-by-delayed-value) until they are needed; otherwise these
definitions are futile. Most importantly, the invocation of AMB

is postponed until either first or rest of a structure is to be

interpreted and then that invocation in that structure never

occurs again!

-35-

Definition: (equivalence)

] = I'[f] iff
IIf] = T'[f] or
(Ilfirst(f)] = ¥'[tirst(f)] and

Ilrest(f)] = I'[rest(f)] J .

Lemma 1: If I[x] = I'[x] whenever x is an elementary expression
(i.e. not involving structures), and if f is an expression of the

form fonsF(xl,fonsF(XQ, & ok fonsF(xn fonsp(xn, S I &

=

where n = w or y = NIL (corresponding to the notation {x, x

= & @ X
1 2 n})

where every X, (1 > 0) is an elementary expression and at most
one Xj is such that Iij] # 1, then I[f] = I'[f].

Proof: If n = 0 then I[f] = NIL = I'[f]. If n > 0 and all
IExiﬂ = 1 then all I'Exiﬂ = 1 because each Xg is elementary. Hence

EUREKA cannot converge so I[first(f)] = Ilrest(f)] = L. Moreover,

all the STRICTIFY factors to AMB must similarly diverge since they

are strict in each I'[Xiﬂ so I'[first(f)] I'[rest(f)] = t.

If n > 0 and there is a J such that Iﬂxj] a # L then I'ijﬂ = a
and I[xi] = [= I'Exiﬂ for 1 # j. The strictness properties of
EUREKA require that EUREKA(I[f]) make the node associated with xj
minimgl. Similarly, the STRICTIFY patterns require that the only
TRUE wvalues iIn the structure of I'[f] be associated with I[xj].

So Ilfirst(f)] = Iﬂxj] = I'[first(f)]. If n = 1 then I[rest(f)] =
NIL = I'[rest(f)]; otherwise I[rest(f)] = I'[rest(f)] by the

argument preceding when all Iﬂxiﬂ = 1. [

36

Lemma 2: If I[x] = I'[x] whenever x is an elementary
expression and if f is an expression of the form
fonsF(xl, fonsF(XQ, —_— fonsT(xn,y) ...)) (corresponding to

{xy 25 von x }) where Ily] = T'[yl, x; (i > 0) is an

T
elementary expression and at most one xj is such that Iﬂxjﬂ # L,
then I[£] = 1'[f]).

Proof: The proof above suffices except when n = 1 or j = n.
When n = 1, then I[first(f)] = Iﬂxn] regardless of whether it is
L or not because EUREKA has no choice to make; I[rest(f)] = Ily]
then. In that case I'[first(f)] = I'Exn] since there is no
STRICTIFY to resolve and I'[rest(f)] = I'lyl. So I[f] = I'[f].
Ifn>1and j = n then I[first(f)] = IExn] = I'[Xnﬂ = I'[first(f)]
for reasons similar to the proof of Lemma 1, but I[rest(f)] is Ilyl
with n-1 leaves labelled 1 added. Similarly, I'[rest(f)] is a
structure in which the STRICTIFY pattern defers to convergence
in I'[yl. It turns out that
I[fonsF(xi, fonsF(xz, «o. fonsg(x,_4,¥) «..))1 =
I'[fonsp(x,, fonsp(x,, ... fonsF(xn_l,y) win)))

where I[xiﬂ = 1 s0 I[rest(f)] = I'[rest(f)]. O

Definition: (similarity)

I[f] ~ 1'[f] iff

I[f] = I'[f] or the sets of possible interpretations
P = I[<first(f) rest(f)>]; (P is a subset of the range of I)
P' = I'[<first(f) rest(f)>]; (P' is a subset of the range of I')

(Where I and I"may“be relations rather than functions.)
are such thatV(x,r)ePH(x',r')eP' such that x~x' and r~r' and

W(x',r")eP' (x,r)eP such that x~x' and r~r'.

-

Lemma 3 If I[f] = I'[f] then I[f] ~ I'[f].

Proof: Under the = definition there is 1little choice for
interpretation because equality at the eventual elementary labels
is necessary. Thus, P and P' are singleton sets and so

I[fY ~ I'[£] trivially.

Lemma 4: If Iﬂxi] = I‘ﬂxi] for 1 £ i <nand f is an
expression of the form fonsF(xi, fonsF(xz, ol fonsF(xn,y) pwd LJ
where n = w or y = NIL then I[f] ~ I'[f].

Proof: The argument follows that of Lemma 1 but the order
of elements may be permuted if there is more than one path
that EUREKA or STRICTIFY--with AMB-- can choose. For any
Iﬂxj] # L, however, we can envision a quantum of time when
Iﬂxi] =1 for 1 # j, apply Lemma 1 and then allow Iﬂxiﬂ to be
whatever value is necessary. This trick may be applied
successively to restk(f); using oracles to select Xj in various
orders. For each choice we may envision various elements of
P and P' respectively, according to the order that the non-=i.
elements were chosen. The sets P, P' generated this way, have
associated pairs (x,r) and (x',r') added by applying similar
oracles. This generation includes all interpretations when all
oracles are considered. Hence I[f] ~ I'[f]. O

Lemma 5: If Iﬂxi] = I'Exi] for 1 <i < nand f is an
expression of the form fonsE(xl, fonsF(xg, N fonsT(xn,y) sem 33
where I[y] ~ I'[yl then I[f] ~ I'[f].

Proof: The argument follows that of Lemma 2 using Lemma 4, O

-38-

Theorem: If I[x] = I'[x] when x is an elementary (non-fern)
expression then for all expressions x, I[x] ~ I'[x].

Outline of Proof: We must also include expressions involving

null which were not considered in the lemmas, but null is never
strict in the interpretations within a fern so we may consider it
as an elementary function. When x 1s a fern-expression we need
only apply Lemma 4 or 5 if it yields a fern of elementary values.
If the fern has "depth" or subferns, then Lemmas 4 and 5 must

be extended; this can be done recursively with the pairs in By B
having depth along the first projection (x and x' in the definition
of ~) as well as the second (r and r' as already occurs with

Lemmas 4 and 5) B

The theorem states that for any interpretation under either
fern or structure semantics there is an interpretation under the
other. We cannot require that the semantics of fern expressions
be the same when nondeterminism (EUREKA or AMB) is involved. We
can, however, say that a given meaning 1s possible in the sense
that the program would allow 1t to be chosen as well. Thus the
semantics are ®sufficiently” similar to be the same. In any two
implementations the way that nondeterministic choices are made
will determine whether we can say that they are the same in the
strong (=) sense. Here we are satisfied with a weak (~)

similarity.

Conclusion

We have presented a single structure builder for applicative
languages known as fons. The semantics of fons are given in two
different, but related formulations. The first, a restriction of
a forest called a fern, offers the user a visualization of the
data structures which result from using fons; it also offers
insight into the terminology which we have coined and which may
be comfortably used when dealing with the other semantics. The
second semantics is more abstract but also more concise.
Formalists and implementors should prefer it to the first.

These two semantics are shown to be equivalent in a weak
sense: that any result under one interpretation is also possible
under the other. The argument does not approach the formality
of similar powerdomain constructions [4$,3/], but it is sufficient

for the purposes here.

We have been careful to embed the interpretation of any
element fonsed into a fern into that fern. The subsequent
interpretations of first and rest on that fern will always recover
the original interpretation of that element regardless of whether
or not the interpreting function has changed in the meantime
(say, by creating a new environment of lambda bindings.) That
embedded interpretation need not be completed until later when

the structure is probed; it may be suspended until then.

=

Indeed, the embedded interpretations play exactly the same
role within a data structure as the suspensions play within
list structures (here called sequences),

The suspension of
content within data structures is necessary for implementing
call-by-need semantics in a structure language, and such an
implementation is sufficient to impose call-by-need semantics
when the structures so suspended are the environments.

Here again we are using call-by-need semantics when we

prescribe the a posteriori effects of EUREKA in a fern or the

unique invocation of each AMB expression in a structure. If
we have two references to the same structure then the probings
of that structure are always the same. Repeatedly probing
the same structure must give the same results. Although there
is choice to be made in ordering the fern, that choice is made
but once. If we attempt to build the same fern twice, however, then
two ferns result and the strongest claim we can make is, as in the
theorem, similarity. Strong semantic equivalence (=) is available
on a data structure built once, but if it is rebuilt, performance is
not the same--only similar (~). The "onceness" perspective does not
allow, however, for structures to be shared.

We have chosen to embed nondeterminism in structure in order
to take advantage of the programmer's existing respect for data
structures. DBecause of space conservation goals, most users
already try to share structures as much as possible; such habits
preclude problems of foreseeably similar ferns (because if the

similarity is predictable then the second fern should be a borrowed

-41 -

reference to the first). Thus, practice--not semantics-- will
advance semantic equivalence of structures.

There is a perspective on ferns which bears mention. We
specified formal semantics as labelled ferns in a way in which
the indeterminate property (the choice of edges to be added) is
separated from the semantics of content (the labels themselves).
One useful interpretation of the semantics of the fern is that
The edges are not added to yield a topological sort, but that
they were there all the time in the guise of an oracle which
would add the correct edges. All the effort given here merely
prescribes the correct oracle. From that perspective we are
rather close to the powerdomain arguments.

Thus the single constructor fons is handed to the user in
two flavors: "cons and frons. An interpreter

for an earlier version of cons/frons exists [3@] and work

continues on a newer version. This style of programming is
being applied to the real time problems of patient monitoring [so]
and radar tracking [49]. Another paper [21]

addresses the issue of fairness in resolving indeterminant choices.

Acknowledgement: We thank Steven D. Johnson and particularly

Mitchell Wand for numerous constructive discussions and critical
readings. Early encouragement from John Backus and James H. Morris,
Jr., pushed this work along. We also thank Carl Hewitt who
suggested the airline reservation problem and Robert Tennent

who offered some thoughtful proposals on an earlier version.

10.

i

12«

13.

=l

REFERENCES

Backus, J. Can programming be liberated from the
von Neumann style? A functional style and its algebra
of programs. Comm. ACM 21, 8 (August, 1978), 613-641.

Berkling, K. J. Reduction languages for reduction
machines. Second Annual Meeting of Computer Architecture
(1975), 133-138.

Brinch Hansen, P. Operating System Principles, Prentice-Hall,
Englewood Cliffs, NJ (1973).

Burge, W. H. Recursive Programming Techniques, Addison-
Wesley, Reading, MA (1975).

Burstall, R. M., and Darlington, J. A transformation
system for developing recursive programs. J. Assoc.
Comput. Mach. 22, 1 (January, 1975), 129-14T,

Church, A. The Calculi of Lambda Conversion (Ann. of
Math. Studies 6), Princeton Univ. Press, Princeton (1941).

Curry, H. B., and Feys, R. Combinatory Logic I, North-
Holland, Amsterdam (1958).

Dennis, J. B. First version of a data flow language.
In B. Robinet (ed.), Programming Symposium, Springer,
Berlin (1974), 362-376.

Dennis, J. B. A language design for structured concur-
rency. In J. H. Williams and D. A. Fisher (eds.), Design
and Implementation of Programming Languages, Springer,
Berlin (1977), 231-20h2.

Dijkstra, E. W. Co-operating sequential processes. In
F. Genuys (ed.), Programming Languages, Academic Press,
London (1968), u43-112.

Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S.,
and Steffens, E.F.M. On-the-fly garbage collection: an
exercise in cooperation. Comm. ACM 21, 11 (November, 1978),
966-975.

Donovan, J. J., and Madnick, S. E. Software Projects,
McGraw-Hill, New York (1977), 377-383.

Floyd, R. W. Nondeterministic algorithms. J. Assoc. Comput.
Mach. 14, 4 (October, 1967), 636-644.

2l

28.

29.

30.

3L

3

33.

34.

35.

36.

37.

38.

39.

B [I

Hewitt, C. E., and Atkinson, R. Parallelism and
synchronization in actor systems. Proc. Uth ACM Symp.
on Principles of Programming Languages (1977), 267-280.

Hewitt, C. E., and Smith, B. Towards a programming
apprentice. IEEE Trans. Software Engrg. SE-1, 1
(March, 1975), 26-145.

Hoare, C.A.R. Monitors: an operating system structuring
concept. Comm. ACM 17, 10 (October, 1974), 549-557.

Johnson, S. D. An Interpretive Model for a Language
Based on Suspended Construction. M.S. thesis, Indiana
University (1977).

Kahn, G., and MacQueen, D. Coroutines and networks of
parallel processes. In B. Gilchrist (ed.), Information
Processing 77, North-Holland, Amsterdam (1977), 993-998.

Keller, R. M. Denotational models for parallel programs
with indeterminant operators. In E. J. Neuhold (ed.),
Formal Description of Programming Concepts, North-Holland,
Amsterdam (1978), 337-366.

Knuth, D. E. The Art of Computer Programming 1, Funda-
mental Algorithms (2nd ed.), Addison-Wesley, Reading, MA
(L9737 ;

Knuth, D. E. The Art of Computer Programming 2, Semi-
numerical Algorithms, Addison-Wesley, Reading, MA (1969),
551

Kosinski, P. R. A data flow language for operating
systems programming. Proc. ACM SIGPLAN-SIGOPS Interface
Meeting, SIGPLAN Notices 8, 9 (September, 1973), 89-94.

Lamport, L. Proving the correctness of multiprocess
programs. IEEE Trans. on Software Engineering SE-3, 2
(March, 1977), 125-143.

Landin, P. J. A correspondence between ALGOL 60 and
Church's lambda notation. Comm. ACM 8, 2 (February, 1965),
89-101.

Landin. P. J. The next 700 programming languages. Comm.
ACM 9, 3 (March, 1966), 157-162.

McCarthy, J. A basis for a mathematical theory of
computation. In P. Braffort and D. Hirschberg (eds.),
Computer Programming and Formal Systems, North-Holland,
Amsterdam (1963), 33-T0.

4o.

41,

42.

43,

uh,

45.

46,

47,

18,

g .

50.

5L.

52,

Bas

-45-

McCarthy, J., Abrahams, P. W., Edwards, D. J. 5 Hart, T. P
and Levin, M. E. LISP 1.5 Programmer's Manual, M.I.T.
Press, Cambridge, MA (1962),, Chapter 1.

Manna, Z. Mathematical Theory of Computation, McGraw-
Hill, New York (197%), Chapter 5. y

Manna, Z., and McCarthy, J. Properties of programs and
partial functional logic. In B. Meltzer and D. Michie (eds.),
Machine Intelligence 5, Edinburgh Univ. Press, Edinburgh
(1970), 27-37.

d'Onfrio, C. Le Fontane di Roma, Staderini, Rome (1957), 22.

Owickli, S., and Gries, D. An axiomatic proof technique
for parallel programs I. Acta Informatica 6, 4 (August,
1976), 319-340.

Plotkin, G. D. A powerdomain construction. SIAM J.
Comput. 5, 3 (September, 1976), 452-487.

Rabin, M.0., and Scott, D. S. Finite automata and their
decision problems. IBM J. Res. Develop. 3, 2 (April, 1959),
114-125. Also in E. F. Moore (ed.), Sequential Machines,
Addison-Wesley, Reading, MA (1964), 63-91.

Robinson, L., and Levitt, K. N. Proof techniques for
hierarchically structured programs. Comm. ACM 20,
4 (April, 1977), 271-282.

Scott, D. S. Logic and programming languages. Comm. ACM 20,
9 (September, 1977), 63L-641.

Smoliar, S. W. Using applicative techniques to design
distributed systems. Proc. Specifications of Reliable Software,
IEEE Cat. No. 79 CH1401-9C (BEpril, 1979)., 150-161.

Smoliar, S. W., and Palmer, D. F,. An applicative model
for the design and analysis of distributed architectures.

- Internal Working Paper, General Research Corp., Santa Barbara, CA.

Smyth, M. B. Power domains. J. Comp. Sys. Sci. 16 (1978),
23-36.

Steele, G. L., Jr. LAMBDA: the ultimate declarative.
A.I. Memo No. 379, Mass. Inst. of Tech., Cambridge (1976).

Steele, G. L., Jr. RABBIT: a compiler for SCHEME. A.I.
Tech. Rept. No. U474, Mass. Inst. of Tech., Cambridge
(May, 1978).

Vuillemin, J. Correct and optimal implementation of
recursion in a simple programming language. J. Comp. Sys.
Sci. 9, 3 (June, 19T74), 332-354.

55.

56.

58.

59.

-Ug~-

Wadsworth, C. Semantics and Pragmatics of Lambda-calculus,
Ph.D. dissertation, Oxford (1971).

Waldinger, R. J., and Levitt, K. N. Reasoning about
programs. Artificial Intelligence 5, 3 (Fall, 1974),
235-316.

Wand, M. Continuation-based program transformation
strategies. J. Assoc. Comput. Mach. (to appear).

Wegbreit, B. Goal-directed program transformation. IEEE
Trans. Software Engrg. SE-2, 2 (June, 1976), 69-79.

Yonezawa, A., and Hewitt, C. E. Modelling distributed
systems. 5th Intl. Joint Conf. on Artificial Intelligence

(1977), 370-377.

|

" [3 1T ‘uasy paTTaqeT ¥ T eundTg

4 33 4dad) 49 wv
9 © o O (o) o)

~49-

Flgure 3. Fons olei (also known as La fontana di S. Maria in
Trastevere [43]) in 1675. s

=ihd=

EE FF GG HH 1
0% OO, >0 ©

The multiset I[{ee ff gg hh}].

Figure 5.

=83~

Db = [JFi388a:98ayy __H, h. 9an3 Ty
00,
(@)

PN

O oprr o o

T v_v_\/q HH 44 33 da 88 wv

