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Preface

This volume contains the papers presented at Scheme ’14, the 2014 Scheme and
Functional Programming Workshop held on November 19, 2014 in Washington,
DC. This year’s workshop had more than 60 registered participants from insti-
tutions throughout the United States and across the globe. For the second time
this year’s workshop was co-located with Clojure/conj.

There were 13 submissions. Each submission was reviewed by at least 3 pro-
gram committee members. The committee decided to accept 8 papers. Not in-
cluded in these proceedings are the update on R7RS Working Group 2’s progress
by John Cowan, and Andy Wingo’s keynote talk, What Scheme Can Learn from
Javascript. Papers are listed by their order of presentation at the workshop.

We would like to acknowledge the hard work of everyone who helped make
Scheme ’14 possible, including the administrative staff at Indiana University,
the events management group at the Grand Hyatt Washington, the organizers
of Clojure/conj, and the rest of our program committee.

We would also like to thank Beckman Coulter, Cisco, and the Computer
Science department at Indiana University for their sponsorship.

September 11, 2015
Bloomington, Indiana

Jason Hemann
John Clements
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Implementing R7RS on an R6RS Scheme system

Takashi Kato
Bell ID B.V.

t.kato@bellid.com

Abstract
The Scheme language has three major standards; Revised5 Re-
port on the Algorithmic language Scheme (R5RS) standardised
in February 1998, the Revised6 Report on Algorithmic language
Scheme (R6RS) standardised in September 2007 and the Revised7

Report on the Algorithmic language Scheme (R7RS) standardised
in July 2013. R7RS, the latest standard of Scheme focuses on the
R5RS compatibility thus making R5RS implementations compli-
ant with it would not be so difficult. For R6RS implementations it
would be much more difficult; R7RS clearly says it is not a suc-
cessor of the R6RS. This paper describes the major differences be-
tween these two Scheme standards and how we made our Scheme
system, Sagittarius, compliant with both R6RS and R7RS, and
made it able to use both standards’ libraries seamlessly.

Keywords Scheme, R6RS, R7RS

1. Introduction
The Revised6 Report on Algorithmic language Scheme (R6RS) [2]
was completed in September 2007 with many new improvements
and a focus on portability. Some implementations were adopted for
R6RS. Some R6RS compliant implementations were created. In
July 2013, The Revised7 Report on Algorithmic language Scheme
(R7RS) [3] was completed with the focus on the Revised5 Report
on Algorithmic language Scheme (R5RS) [1] compatibility. Both
R6RS and R7RS are R5RS compatible, however these two stan-
dards are not totally compatible. Therefore, these two standards are
not able to share libraries nor scripts.

We have searched repositories on GitHub and Google Code with
keyword “R6RS” and “R7RS”, and repository language “Scheme”
in August 2014. On GitHub, there were 59 repositories related to
R6RS and 12 repositories related to R7RS. On Google Code, there
were 18 repositories related to R6RS and 8 repositories related to
R7RS.

Table 1: Number of Repositories
Keyword GitHub Google Code
R6RS 59 18
R7RS 12 8

[Copyright notice will appear here once ’preprint’ option is removed.]

The search result may contain implementations themselves and
may not contain repositories which do not have the keywords in
their description or searchable locations. So these are not accurate
numbers of repositories that provide libraries. However, it has only
been one year since R7RS standardised so we can expect the num-
bers of R7RS repositories to grow in near future. We have con-
cluded that it is important to support the R7RS on our Scheme sys-
tem, Sagittarius1 which base is R6RS, so that it would be beneficial
for future Scheme users. One of our goals is using R6RS libraries
in R7RS library form and vice versa. The following sections de-
scribe how we implemented the R7RS on top of the R6RS Scheme
system and how both R6RS and R7RS libraries can inter-operate.

2. Incompatibilities
R7RS lists numerous incompatibilities with R6RS. However, in-
compatibilities of procedures or macros are negligible because
both R6RS and R7RS support renaming import and export. So
we only need to define them for R7RS libraries. For example,
the R6RS let-syntax must be sliced into begin however
the R7RS one must create a scope. If an implementation has the
R6RS style let-syntax, then it is easy to implement the R7RS
style one with it. A possible implementation of the R7RS style
let-syntax would look something like the following:

Listing 1: R7RS style let-syntax

;; R7RS style let-syntax
(import

(rename (rnrs)
(let-syntax r6rs:let-syntax)))

(define-syntax let-syntax
(syntax-rules ()

((_ ((vars trans) ...) expr ...)
(r6rs:let-syntax ((vars trans) ...)

(let () expr ...)))))

Thus, the incompatibilities we need to discuss here are the lay-
ers that require deeper support of implementations such as library
forms and lexical notations.

2.1 Library forms
A library or module system is essential for modern programming
languages to allow programmers to reuse useful programs. How-
ever, the Scheme language did not provide this until the R6RS was
standardised. R6RS decided to call it a library system so we also
call it library system here. From Scheme language perspective, it
is quite a new concept. R7RS has also been standardised with a li-
brary system however it does not have the same form as the R6RS.

The R6RS has library keyword for library system whilst
the R7RS has define-library. The R6RS does not define

1 Sagittarius Scheme: https://bitbucket.org/ktakashi/sagittarius-scheme/
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mechanism to absorb incompatibilities between implementations
nor to check whether required libraries exist. Thus making a
portable library requires using unwritten rules. The library sys-
tem of the R7RS, on the other hand, does have the feature provided
by cond-expand keyword.

To demonstrate the difference between R6RS and R7RS library
forms, we show concrete examples of both. The library foo ex-
ports the variable bar and requires an implementation dependent
procedure.

2.1.1 R6RS library
The R6RS library system has rather fixed form. With the R6RS
library form, the library (foo) would look like the following:

Listing 2: R6RS library form

(library (foo)
(export bar)
(import (rnrs) (compat foo))

(define bar (compat-foo-proc)))

An R6RS library name can only contain symbols and a version
reference at the end of library name2, which must be a list of
numbers. Both export and import forms must be present only
once in respective order.

Here, the (compat foo) is a compatible layer of an
implementation-dependent procedure. R6RS does not have the
means to load implementation-specific code, however, there is a
de-facto standard supported by most of the R6RS implementations
listed on
http://www.r6rs.org/implementations.html. If the
implementation is Sagittarius Scheme, for example, then the file-
name of its (compat foo) library would be
compat/foo.sagittarius.sls which could contain some-
thing like the following:

Listing 3: Compatible layer

;; compat/foo.sagittarius.sls
(library (compat foo)

(export compat-foo-proc)
(import (sagittarius))

(define compat-foo-proc
implementation-dependent-procedure))

If the library wants to provide a default procedure, then it needs
to have compat/foo.sls as the default library file name. The
implementations first try to resolve the library file name with its
featured name then fall back to the default filename. This requires
the same number of compatible layer library files as implementa-
tions that the library would support. Moreover, it is not guaranteed
to be portable by the standard.

2.1.2 R7RS define-library
The R7RS library system provides much more flexibility than the
R6RS library system does. With the R7RS define-library
form, the (foo) library can be written something like the follow-
ing:

Listing 4: R7RS define-library form

(define-library (foo)
(import (scheme base))
(cond-expand

2 Version reference is optional and it is meant that user can choose a specific
version of using library. However, most of the implementations ignore it.

((library (bar))
(import (bar)))

(sagittarius
(import (sagittarius))
(define bar

implementation-dependent-procedure))
(else
(error "unsupported implementation")))

(export bar))

An R7RS library name can contain symbols and numbers, and
does not support library version references. Thus, (srfi 1) is
a valid library name whilst the R6RS one needs to be written
something like (srfi :1).

Moreover, unlike the R6RS library form, R7RS supports
more keywords, import, export, cond-expand, include,
include-ci and include-library-declarations. Us-
ing cond-expand makes the R7RS library system enables writ-
ing implementation-dependent code without separating library
files.

The above example does not show, however, using include or
include-ci, which enable including files from outside of the file
where libraries are defined. And include-library-declarations
includes files containing library declarations.

2.1.3 Export form
Besides those overall differences, the R6RS and R7RS have slightly
different syntax for the rename clause of export forms. The
R6RS export may have multiple renamed exporting identifiers
whilst the R7RS export only allows to have one renamed export-
ing identifier. So the R7RS form requires multiple rename clauses
to export more than one identifier with different names.

Listing 5: R6RS export

(export (rename (foo foo:foo)
(bar foo:bar)))

Listing 6: R7RS export

(export (rename foo foo:foo)
(rename bar foo:bar))

2.2 Lexical incompatibilities
Basic lexical representations for data types are shared between
R6RS and R7RS. However, the symbol escaping and the bytevector
notation from R6RS have been changed in R7RS3.

2.2.1 Symbols
A lot of R5RS implementations have a relaxed symbol reader that
allows symbols to start with “@” or “.” which R5RS does not
allow4. And some of de-facto standard libraries, such as SXML [4],
depend on it. However, R6RS does not allow identifiers to start with
these characters and mandates implementations to raise an error. So
writing those symbols requires escaping like the following:

3 Additionally, the R7RS supports shared data structure notations however
it is an error if program or library form contains it. Thus, only the read
procedure needs to support it and it can be defined in R7RS library. So we
do not discuss it here.
4 In R5RS, “it is an error” means implementations do not have to raise an
error so they may allow them as their extension. The same rule is applied to
R7RS. The R6RS has strict error condition. It specifies that which condition
implementations must raise.

2 2014/11/7



Listing 7: R6RS symbol escaping

\x2E;foo ;; -> .foo
\x40;bar ;; -> @bar

This does not break R5RS compatibility however it does break
de-facto standards and most R6RS implementations adopt the strict
lexical rule5. Therefore, non-R5RS symbols cannot be read by
these implementations.

R7RS has decided to allow those symbols so that implemen-
tations can use R5RS libraries without changing code. R7RS also
supports symbol escaping using vertical bars “|”. Hex scalar, the
same as R6RS supports, is also allowed inside of vertical bars. The
R7RS escaped symbol notation would look something like the fol-
lowings:

Listing 8: R7RS symbol escaping

|foo bar| ;; -> |foo bar|
|foo\x40;bar| ;; -> |foo@bar|

Hex escaped symbols are not required to be printed with
hex scalar even if the value is not a printable character such as
“U+007F”.

Unlike the R6RS, the R7RS hex escaping can only appear inside
of vertical bars6. Thus the two standards do not share the escaped
symbol notations.

2.2.2 Bytevectors
Since R6RS, Scheme can handle binary data structure called
bytevectors. The data structures can contain octet values which
are exact integers ranging from 0 to 28 − 1. Both standards support
it however the lexical notations are not the same. There is a Scheme
Requests For Implementation (SRFI) for binary data types, SRFI
4: Homogeneous numeric vector datatypes [5]. With this SRFI, the
binary data types are similar to bytevectors and can be written like
the following:

Listing 9: u8vector

#u8(0 1 255)

The SRFI defines more data types and their external representa-
tion such as 32 bit integer vectors. It also defines procedures such
as getters and setters.

R6RS has adopted its concept, but has not taken the name and
the external representation as it is. Instead, writing a bytevector
literal in R6RS looks like the following:

Listing 10: R6RS bytevector

#vu8(1 2 3)

To handle the other data types defined in the SRFI, the R6RS
provides conversion procedures which can treat a bytevector as if it
is a vector of other data type such as 32 bit integer. Take as exam-
ples bytevector-u32-ref and bytevector-u32-set!.
The first one can retrieve a 32 bit integer value from a bytevector
and the second one can set a 32 bit integer value into a bytevector.

R7RS, on the other hand, has decided to use the SRFI as it
is but only the octet values one. The lexical notation of R7RS
bytevector is the same as SRFI 4. Even though it has only one type
of bytevector, there is no conversion procedure provided.

5 Some implementations have strict reader mode and compatible mode.
6 Initially, the R7RS had both vertical bar notation and the R6RS style
hex scalar notation. But the R6RS compatible notation was removed.
http://trac.sacrideo.us/wg/ticket/304

3. Implemention strategy
There are several strategies to implement R7RS on R6RS. Here we
discuss handling different library forms and lexical notations.

3.1 Expander vs built-in
There are two portable R6RS expanders which provide the R6RS
library system, syntax-case and some procedures and the
macros. One is SRFI 72: Hygienic macros [6] and the other one
is Portable syntax-case (psyntax) [7]. These expanders pre-process
and expand libraries and macros. Knowing this gives us two pos-
sible solutions to implement the R7RS library system. One is to
build the R7RS library system on top of the R6RS library system
by transforming the R7RS define-library form to the R6RS
library form like these expanders do. We call this expander
style. The other one is for implementations to support the library
form as their built-in keyword. We call this built-in style. There are
advantages and disadvantages for both strategies.

Built-in style requires changing expanders or compilers. Thus,
it is the more difficult method to implement. However, it give us
more control so that it has the same expansion phase of existing
library systems. Thus, during a library compilation, it can refer the
same compile time environment as the expanders can.

Expander style is, on the other hand, easier to implement
and can keep the portable code intact. However, it may impact
the performance of loading libraries. It first needs to transform
define-library forms to library forms then underlying
R6RS expanders expand library forms and macros. Moreover,
transforming library forms may introduce phasing issues. Phasing
has been introduced for the R6RS library system with keyword for
to resolve macro-expansion time environment references. Psyntax
implicitly resolves the phase but the SRFI 72 expander mandates
explicit phasing. However, R7RS does not specify phasing because
it has only syntax-rules as its macro transformer and it does
not require phasing. It depends on underlying R6RS expanders,
however: the library form transformer would need to consider in
which phase imported libraries are used. Since R7RS does not
require phasing, the only case it would be a problem is that of pro-
cedural macros used in R7RS libraries. For example, suppose we
have the following R7RS library form.

Listing 11: Phasing

(define-library (foo)
(import (rnrs))
(begin

(define-syntax foo
(lambda (x)

(define-syntax name
(syntax-rules ()

((_ k)
(datum->syntax k

(string->symbol "bar")))))
(syntax-case x ()

((k)
(with-syntax ((def (name #’k)))

#’(define def ’bar)))))))
(export foo))

If underlying R6RS expanders have explicit phasing, then the
transformation of the define-library form to a library
form would need to traverse the macro foo to detect which phase
it requires. And it needs to add proper indication of the required
phase. One of the possible transformation results would be the
following:
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Listing 12: Possible transformation

(library (foo)
(export foo)
(import (for (rnrs) run expand))

(define-syntax foo
(lambda (x)

(define-syntax name
(syntax-rules ()

((_ k)
(datum->syntax k

(string->symbol "bar")))))
(syntax-case x ()

((k)
(with-syntax ((def (name #’k)))

#’(define def ’bar)))))))

Besides the phasing issue, R7RS also requires “include” mech-
anism as one of the keywords inside of define-library and
syntax. And this requires implementations to properly resolve file
paths. Suppose library foo includes “impl/bar.scm” which itself
includes “buzz.scm”. R7RS actually does not specify how this
nested include should be resolved however is seems natural that the
include form in “impl/bar.scm” should include “impl/buzz.scm”
just as the C’s #include preprocessor which resolves an included
file’s location from where its includer is located7.

Listing 13: Nested include

#|
File hierarchy
/
+ foo.sld

+ impl/
+ bar.scm
+ buzz.scm

+ buzz.scm
|#
;; foo.sld
(define-library (foo)

(import (scheme base))
(export bar)

(include "impl/bar.scm"))

;; impl/bar.scm
(include "buzz.scm")

;; impl/buzz.scm
(define bar ’bar)

;; buzz.scm
(define bar ’boo)

Suppose we have two files “buzz.scm”: one is inside of “impl”
directory and the other is in the same directory as “foo.sld” is lo-
cated. “impl/buzz” and “buzz.scm” define a binding barwhich has
values bar and boo, respectively. And a library foo exports the
binding bar. If implementations resolve this as the C’s #include
preprocessor does, then the bound value of bar would be a symbol
bar. However, if it does not, then it would be a symbol boo.

Implementing such a behaviour requires meta information of
source file locations and expression mappings, so R7RS library ex-
panders need to know where expressions are read from. Thus, the
expanders are required to traverse transforming expressions and

7 Implementations may decide to implement complete opposite way, that is
discouraging users to use nested include or include-ci syntax.

find include expressions to include nested inclusion properly.
However, finding these expressions also requires the analysis of
bindings. If the syntax include is shadowed or not imported,
then the expander should not resolve it as an include expres-
sion but a mere symbol. Therefore, it also needs to have binding
environment managing which the R6RS expander does. Moreover,
if a macro contains an include expression, this would also be
hard to implement in expander-style.

Listing 14: Macro with include

(define-syntax include-it
(syntax-rules ()

((_ file) (include file))))

In this case, the macro could be expanded anywhere and
the file location would depend on where it is expanded. Thus,
define-library expanders need to handle macros during
transforming so that they can resolve file locations properly.

3.2 Reader and writer modes
As we discussed, R6RS and R7RS have different symbol escaping
styles and lexical notations for bytevectors. It is not difficult to
support reading; supporting writing is more challenging. One of the
specific advantage of Lisp dialect languages is the read and write
invariance. Thus writing them in expected form is necessary.

One solution is to use #!. R6RS has the #!r6rs notation
so if a script has this, then implementations can choose R6RS
style writer. R7RS, on the other hand, does not define #!r7rs
notation and if implementations choose to strictly adhere to R7RS
then this would be an error. Therefore, switching reader or writer
mode by #! notation only works for R6RS scripts. Thus using
#! notation to switch mode without depending on implementation-
specific features requires the default mode of the reader and writer
to be R7RS.

Another solution is to detect library forms. When the reader find
define-library form, then it should switch to R7RS mode.
Doing this requires two-pass reading since a library form is one
S-expression. First the reader reads one expression and checks
whether or not it is a list whose first element is a define-library
symbol. If it is, then the reader needs to discard the expression and
re-reads it with R7RS mode. This only works for loading libraries
and reading expressions, and requires the reader to be able to han-
dle positioning. Writing the R7RS style symbols and bytevectors
requires something else.

Switching mode only works if reading and writing are done by
only one Scheme implementation. If more than one implementation
needs to share code or written S-expressions, then it will be a
problem. Suppose a server-client type application is running on
three implementations. The server is an R6RS and R7RS compliant
implementation and one of the clients is R6RS compliant, the other
client is R7RS compliant. Now the data exchange is done with
S-expressions so that all implementations can use the bare read
procedure. However, if the data being exchanged can also contain
bytevector, the server would not be able to determine which style of
bytevector form it should send. Unless, that is, the exchanging data
contains a client mode so that the server can detect which style of
notation it should use. This problem occurs not only for bytevectors
but also for escaped symbols.

Listing 15: Example situation

;; Server S is a hybrid implementation but
;; would return R6RS style lexical notation.

;; Client A is an R6RS implementation
Client A -- #vu8(1 2 3) --> Server S
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Client A <-- #vu8(1 2 3) -- Server S

;; Client B is an R7RS implementation
Client B -- #u8(1 2 3) --> Server S
Client B <-- #vu8(1 2 3) -- Server S

4. Implementing on Sagittarius
Sagittarius has strict R6RS read and write mode and relaxed mode.
The macro expander does not have an explicit macro expansion
phase so the compiler expands macros as well when it finds a
macro. The mode switch is done by #! notation and by default
it is set to relaxed mode which is close to R7RS compatible with
some extensions.

4.1 Library
We decided to implement define-library with the built-
in style so that macro expansions are done by the existing ex-
pander. For the most part, handling the R7RS library form could
be implemented in the same style as R6RS library system. How-
ever, unlike the R6RS, the R7RS allows all keywords inside of
define-library such as import and export to appear in
any order and any number of times.

Listing 16: Multiple imports

(define-library (foo)
(begin

(define bar ’bar)
(define foo ’foo))

(import (scheme base))
(begin (display bar) (newline))
(import (scheme write))
(export bar foo))

Import forms need to be collected before bodies are compiled,
otherwise the compiler can not find imported bindings referred by
body expressions. For example, if a body expression depends on
bindings exported from the library inside of import forms which
comes after the body expression, then the compiler raises an error.
During the process of collecting of import forms, the compiler
needs to keep the order of begin forms so that it can resolve bind-
ings properly when begin forms contain non-definition expres-
sions8.

Even though we have decided to take the built-in style, include
and include-ci need to be handled specially. These are resolved
in a hybrid way. The ones in define-library are resolved in
the expander style, thus when the compiler finds it in a library form,
it simply reads the files and slices the expressions into the library
form. Syntaxes of include and include-ci are resolved in
the built-in style so that they can be treated as bindings. However,
read expressions of both styles contain location information as part
of their meta information. This meta information is propagated to
compile time environments so that the compiler can see where the
source files are located.

The expander style include is expanded as it is. The only
thing that the compiler needs to consider is propagating the source
file locations to the rest of compilation unit.

The built-in style needs to be more careful. Besides the compiler
needs to consider bindings. If an include form appears in top
level, it is relatively easy to handle. However, if it appears in a
scope, then the compiler needs to consider lexical bindings. The
following is a simple example.

8 The R7RS allows to have non definition forms anywhere inside of begin
forms.

Listing 17: Local include

(let ((bar ’bar))
(include "bar.scm")
buzz)

;; bar.scm
(define buzz ’buzz)
(display bar) (newline)

The define form inside of “bar.scm” needs to be handled as
an internal definition. So the compiler needs to handle include
forms inside of a scope explicitly otherwise a define form would
be treated as a toplevel form and the compiler would raise an
error. If macros were expanded before compilation with proper
source location, this would not be a problem. However, this requires
accessing the meta information, and there is no way to do so on our
Scheme system.

Resolving export is straightforward. There are two ways to do
it: one is to implement an R7RS-specific one, and the other one is
to make the R6RS export able to handle the R7RS style as well.
We chose the latter, so that shared code can be used. However, we
are not certain that this was the right way to do it yet.

4.2 Reader and writer
The reader needs to adopt two incompatibilities with R6RS, one is
the escaped symbol and the other one is the bytevector literal. The
reader on our Scheme system adopted Common Lisp-like reader
macros, thus handling bytevector notation incompatibilities is just
adding the additional reader macro. Handling vertical bar-escaped
symbols also requires just adding the reader macro. However, when
reading usual symbols we need to provide both the R6RS symbol
reader and the R7RS symbol reader.

To make strict modes for R6RS and R7RS, the Scheme system
has three default readtables which are tables of bundled reader
macros. One is the R6RS strict mode, another one is the R7RS
strict mode and the last one is the default mode. Switching these
readtables requires #!r6rs or #!r7rs notations. As we already
discussed R7RS does not support #!r7rs, thus switching mode
with this is our specific extension and may break portability.

The writing of escaped symbols and the bytevectors literals is
also separated into modes. In the strict R6RS mode, the escaped
symbols are written without vertical bar and bytevectors are written
with #vu8 notation. In the strict R7RS mode, bytevectors are writ-
ten with #u8 notation. If an escaped symbol contains non-printable
characters then they are written in hex scalar. The default relaxed
mode can read both the R6RS and the R7RS lexical notations so
that it can understand both types of scripts and libraries. Its writer
mode is hybrid, escaped symbols are written in R7RS style9 and
bytevectors are written R6RS style.

Listing 18: Read/write symbols and bytevectors

;; mode: default
’|foo\x20;bar| ;; -> ’|foo bar|
’foo\x20;bar ;; -> ’|foo bar|

#vu8(1 2 3) ;; -> #vu8(1 2 3)
#u8(1 2 3) ;; -> #vu8(1 2 3)

;; mode: R6RS
#!r6rs

9 This is for an historical reason. Sagittarius was initially made as an
R5RS/R6RS Scheme system. So we did not have to consider the differ-
ence between bytevector lexical notations, and writing R6RS-style escaped
symbols in default mode breaks R5RS compatibility.
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’|foo\x20;bar| ;; error
’foo\x20;bar ;; -> ’foo\x20;bar

#vu8(1 2 3) ;; -> #vu8(1 2 3)
#u8(1 2 3) ;; error

;; mode: R7RS
#!r7rs
’|foo\x20;bar| ;; -> |foo bar|
’foo\x20;bar ;; -> |foo bar|10

#vu8(1 2 3) ;; error
#u8(1 2 3) ;; -> #u8(1 2 3)

5. Other R7RS features
We have discussed the major incompatibilities and how we handled
them. There are some other points that still need to be considered.

5.1 cond-expand
As we already discussed, the R7RS define-library form
allows the cond-expand keyword, which is based on SRFI
0: Feature-based conditional expansion construct [8] with the
library keyword extension. The library keyword allows
checking if the specified library exists on the executing imple-
mentation.

Listing 19: Library keyword in cond-expand

(define-library (foo)
(cond-expand

((library (srfi 1))
(import (srfi 1)))

(else
(begin

(define (alist-cons a b c)
(cons (cons a b) c)))))

(import (scheme base)))

The cond-expand form inside of a define-library
form can only have library declarations in its body. There is an-
other cond-expand defined as a syntax in R7RS which can be
used in expressions. This is close to SRFI 0 but added library
as a keyword. However, this body can only take expressions thus it
is invalid to write an import form11.

Listing 20: cond-expand in expression

;; This is not a valid R7RS program
(cond-expand

((library (srfi 1))
(import (srfi 1)))

(else
(define (alist-cons a b c)

(cons (cons a b) c))))

Even though this is not a valid program, we decided to accept
this type of expressions its support is recommended one of the
R7RS editors [9].

10 It is an extension that’foo\x20;bar can be read in strict R7RS mode
even thoughit is defined to be an error.
11 R7RS defined that cond-expand can only have expressions and
import form is not an expression.

5.2 #!fold-case and #!no-fold-case
Like R6RS, R7RS has decided to make symbols case-sensitive.
However, until R5RS, the Scheme language was case-insensitive
so there may be some scripts or libraries that expect to be case-
insensitive. To save such programs, R7RS has introduced the
#!fold-case directive and the include-ci form.

If the reader reads #!fold-case then it should read ex-
pressions after the directive as case-insensitive, and if it reads
#!no-fold-case, it should read expressions after the directive
as case-sensitive. These directives can appear anywhere in scripts
or libraries. Thus, to handle this, ports need to have the state in
which they read symbols.

The symbols read in case-insensitive context need to be case
folded as if by string-foldcase. Thus comparing symbol ß
and ss needs to return #t in case-insensitive context12.

Listing 21: #!fold-case

#!fold-case
(eq? ’ß ’ss) ;; => #t

6. Interoperability
We show how R6RS and R7RS libraries cooperate on our Scheme
system.

Suppose we have the library (aif) which defines anaphoric
if macro with syntax-case. The macro aif is similar to if.
The difference is that it captures the variable it as the result of
its predicate and then and else forms can refer it. This is a typical
macro can not be written in syntax-rule.

Listing 22: aif

#!r6rs
(library (aif)

(export aif)
(import (rnrs))

(define-syntax aif
(lambda (x)

(syntax-case x ()
((aif c t) #’(aif c t (if #f #t)))
((k c t e)
(with-syntax

((it (datum->syntax #’k ’it)))
#’(let ((it c))

(if it t e))))))))

The R7RS library (foo) defines the variable foo using aif
defined in the R6RS library.

Listing 23: Using aif

(define-library (foo)
(import (scheme base) (aif))
(export foo)
(begin

(define foo
(let ((lis ’((a . 0) (b . 1) (c . 2))))

(aif (assq ’a lis)
(cdr it))))))

The variable foo can be used in user scripts, R7RS libraries or
R6RS libraries.

12 The R6RS mandates to support Unicode so string-foldcase does
full case folding.
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As we already mentioned, Sagittarius has implicit phasing so it
is also possible to use procedural macros in R7RS libraries without
the for keyword.

7. Conclusion
We have discussed the incompatibilities between R6RS and R7RS
and described implementation strategies. Then we discussed how
we built an R7RS Scheme system on top of an R6RS Scheme sys-
tem. What we have experienced so far is that as long as implemen-
tation could absorb those difference, there is no problem using the
R6RS library system and the R7RS library system simultaneously.
And we believe that this could be a big benefit for the future.

Implementing an R7RS-compliant Scheme system on top of an
R6RS Scheme system is not an easy task to do. Moreover, most
R6RS users do not habitually use R7RS and vice versa. However,
we believe that both standards have good points that are worth
taking. We think that complying standards is also important for
implementators.

We hope this will encourage R6RS implementators to make
their implementation R7RS compliant as well.
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Abstract
Dynamically typed languages ensure safety through the use
of type checks performed at run time. Static type inference
has been used to remove type checks but this approach is
limited in the absence of code duplication. This paper de-
scribes an alternate approach that generates multiple ver-
sions of the code to specialize it to the types that are observed
at execution time by using an extremely lazy compiler. The
laziness is important to limit the number of versions (limit
code bloat) and to generate more specialized code (increase
performance). We describe LC, a Scheme compiler which
implements this code generation approach. The compiler is
currently a prototype that cannot run large benchmarks, but
an examination of the generated code shows that many dy-
namic type tests can be removed.

1. Introduction
Dynamic languages are widely used both for writing small
scripts and more complex programs because they are expres-
sive and easy to use, but often they suffer from a lack of
performance. A main cause of this performance issue is that
the code does administrative work at execution such as type
checking, boxing and unboxing, etc.

As an example, consider this simple Scheme [1] expres-
sion:

(car (f 42))

In principle, a type test is performed by the car operation
at run time to ensure that the result of (f 42) is a pair. If it
isn’t, an error will occur at run time when invoking car.

An approach is to do a type inference to determine types,
if possible, before code generation [5]. Even if the informa-
tion known about the types is partial (but conservative) the
compiler can generate better machine code that is suitable
for all executions. Performing an expensive and more precise
type analysis is unfortunately not advisable in the context of
Just In Time (JIT) compilers because compilation, which is
done at run time, will negatively impact the execution time.

This paper describes code versioning, a code generation
approach for JIT compilers that aims to use this compile time
information to generate multiple versions of the same ma-
chine code, each one suitable for a particular execution con-
text. This approach is illustrated by the following example:

(define (foo a)

(car a))

(foo ’(1 2 3))

(foo (read))

In this code, there are two executions of the primitive
car. In the first one with a=’(1 2 3) the compiler knows
that the primitive is executed with a pair as argument. In
the second call to foo with a=(read) it knows that car
is invoked with a value of the same type as returned by
(read). Given that the type is unknown, the compiler will
generate two versions of the primitive in this order:

Pair version On the first call to foo, the compiler knows
that a is a pair, and knows that car expects a pair. It will
then generate a version which directly accesses the car

of the pair without performing any type test.

Generic version On the second call, the compiler has no
information about the type of a. It will generate a version
that contains a pair? type test on a.

While code versioning is extensible to other purposes,
this paper focuses only on removing type checks. We also
show how extremely lazy compilation can improve code
versioning both by improving its action to remove more type
tests and limiting the number of generated versions with the
goal to balance the extra cost of generated code size.

Other existing techniques already generate multiple ver-
sions of code and some of them work at the procedure or
loop level. Our technique aims to generate multiple versions
of all pieces of code as soon as the execution reaches a point
that the compiler can specialize with a recently discovered
type information. A consequence of this is that each func-
tion can have multiple entry points which causes some im-
plementation issues. We also present LC, our Scheme JIT
compiler that aims to implement all mechanisms required to
use code versioning and extreme laziness. LC avoids the use
of an interpreter and compiles executed parts of source pro-
grams directly to machine code.

This paper is organized as follows. Section 2 explains
some choices made in accordance with our goal. Section 3
presents the concept of code versioning and shows how it
can be implemented. Section 4 explains how the code ver-



sioning approach can be improved by using extreme laziness
and how it can reduce the size of the generated code. This
section also explains implementation issues. Then, section 5
briefly explains current experimental results. In Section 6 we
discuss the current limitations of our system and how they
can be avoided. Finally, sections 7 and 8 present future and
related work. Because LC is at an early stage of development
we do not have extensive benchmark results yet.

2. Compiler specifications
LC is a JIT compiler developed to experiment with code
versioning and lazy compilation for the Scheme language.
We made some choices consistent with this main goal:

Representations The compiler uses no intermediate repre-
sentation. It directly reads S-expressions and translates
executed code into machine code. Therefore, the com-
piler does not lose time generating other code represen-
tations. Moreover, because we chose an extremely lazy
compilation, the compiler will never run analysis such as
Data/Control Flow Analysis so the use of a representa-
tion such as Static Single Assignment (SSA) [3] or Three-
Address Code (TAC) [2] is discarded.

Compiler only Code versioning aims to generate faster
code by generating specialized versions of machine code.
Because our goal is to evaluate the benefits of this tech-
nique on generated machine code, we chose the strategy
to only compile executed code and never execute it with
an interpreter. So LC uses only a pure JIT compiler and
never interprets code.

Target platform Because we focus our research on the ben-
efits of the context on the generated machine code, the
target platform is not critical. We arbitrarily chose to
generate code for x86 64 family processors using only
a stack machine (without any register allocation algo-
rithm).

3. Code versioning
3.1 General principle
In statically typed languages, types are known at compile
time and the compiler can generate a unique optimized ver-
sion of the code suitable for all executions. In dynamically
typed languages, type declarations are not explicit so the
compiler embeds type tests on primitive operations to de-
tect type errors at run time. Run time type tests are one of
the main dynamically typed languages performance issues.
A solution to limit this issue is to use type inference to de-
termine types in expressions and generate code according to
this information. Type inference often involves static analy-
sis which is not suitable for JIT compilers. Other systems al-
low mixing dynamically typed languages with explicit type
declarations to improve performance (e.g. Extempore [14])
but such solutions lose the main characteristic of dynamic

PUSH a

PUSH b

ADD

JO overflow

JMP next-generator

Figure 1. Generated version, in pseudo assembly, for con-
text ((a . number) (b . number))

PUSH a

PUSH b

CMP (type a), (number)

JNE type-error

ADD

JO overflow

JMP next-generator

Figure 2. Generated version, in pseudo assembly, for con-
text ((a . unknown) (b . number))

languages. The JIT compilers, widely used in dynamic lan-
guages, allow to postpone the machine code generation of
executed code. A benefit is that the compiler can use infor-
mation newly discovered by execution to better optimize the
future generated code. Code versioning uses this informa-
tion to generate multiple versions of the same piece of code,
each one associated to a particular entry context and opti-
mized for this context. This involves that each piece of code
is now accessible by as many points as versions generated.
However, the coexistence of these versions will result in an
increase of the generated code size, but we will show that
this extra cost is attenuated by the use of an extremely lazy
compilation.

3.2 Implementation
Each piece of code is represented by a generator. The gen-
erator is the object that manages the versions of this piece of
code and acts as a code stub. A simple example of code ver-
sioning is for the Scheme expression (+ a b). The compiler
creates a generator for this expression. Let g be the generator
of this expression. At the beginning of execution, no version
is yet generated. As soon as an instruction i transfers con-
trol to this generator, and assuming that ctx is the current
context at this point, the generator follows this algorithm:

1. if g does not contain a version associated to ctx,
Generate a new version based on ctx*

2. Replace the destination of i by the address of the version

3. Transfer control to the newly generated version

*note that if i is the last instruction generated, we can just
overwrite i with this new version.

Figures 1 and 2 show an example of two generated ver-
sions of the same expression (+ a b) based on two differ-
ent contexts. Note that we use association lists to represent



contexts mapping identifiers to types. Figure 1 is based on
a context in which we know that a and b are both numbers.
So it is useless to generate dynamic type tests and we can
directly use the two values. In figure 2, we know that b is
a number but this time we do not have information about
the type of a. We can then directly use the value of b and
generate a dynamic type test for a only.

3.3 Improved closures
The traditional flat closure representation [7] is compatible
with code versioning. The main problem of this represen-
tation is that the procedure has only one entry point. The
compiler must generate code suitable for all executions and
this looses information about the argument types. In order to
take better advantage of code versioning, we decided to keep
multiple entry points corresponding to versions by modify-
ing this flat closure representation. The first field is now a
reference to a table which contains the entry points of the
procedure. Because of higher order functions, we must as-
sign an index to a given context that is the same for all clo-
sures. We will call this table the closure context table (cc-
table) for the following of this paper. For example, if a func-
tion is called with two arguments a and b and the context
ctx1 ((a . number) (b . number)), the compiler will
generate a code sequence similar to figure 4. Here the com-
piler associates ctx1 to the index 3 in the cc-table. So the
index for this specific context will now be the same for all
closures. When the compiler creates the cc-table, it fills all
the fields with the address of the function stub because there
is currently no generated version. When the stub is called,
the generator creates a new version associated to the context
and patches the cc-table of the closure at the correct offset to
jump directly to the generated version. Because our compiler
does not have a garbage collector yet, it currently creates a
fixed size table for each closure and stops execution on ta-
ble overflows. A consequence of this approach is that each
cc-table must be big enough to contain an entry for each call-
site context of the program. This limitation is discussed in a
dedicated section.

Figure 3 shows the changes made to classical flat closure
representation. The first closure on top is an example of a
closure just after its creation. This closure contains n non-
local variables and a cc-table of size 4. The second one,
at bottom, is the same closure after some executions with
two generated versions, one at address V1 for the context
associated to index 1, and the other at address V3 for the
context associated to index 3.

4. Extremely lazy compilation
While many Scheme compilers use Ahead Of Time (AOT)
compilation (e.g. Gambit [13], CHICKEN [12]), there are
several strategies used by JIT compilers for dynamic lan-
guages. Some of them only compile hot spots to machine
code to improve performance and use an interpreter for other

Figure 3. Closure example at creation, and with two gener-
ated versions

; pop closure

POP R1

; return address is the

; continuation stub address

PUSH continuation

PUSH a

PUSH b

; get cc-table

MOV R1 <- [R1]

; jump at offset 3

JMP [R1+3*8]

Figure 4. Assembly code to jump to a procedure entry point
associated to a context

executed code [6]. This can be done at multiple levels such
as loops and functions. Another widely used strategy is to
compile executed pieces of code just before their execution
(e.g. Google V8 [11]). With this strategy, the more lazy the
compiler is, the more it compiles only the executed code. For
example, a compiler may compile only executed functions,
but some branches of the function may not be executed, or
only compile executed branches to be lazier. Using this strat-
egy the compiler doe not lose time to compile code that is
never executed.

4.1 An asset for code versioning
There are two advantages to using an extremely lazy com-
piler: Compile only executed code to save time and improve
the efficiency of code versioning. If the compiler is lazier, it
has more useful information in the current context:

(let ((v (foo)))

(+ v 42))



Figure 5. Example of lazy-code object

In this example, if the compiler is not lazy enough it does
not have information about the type of v and generates a dy-
namic type test of v for the expression (+ v 42). With an
extreme laziness, the compiler generates the machine code
after the foo function returns and it’s possible that the type
of v is known. If v is a number, the generator compiles a
version without dynamic type test on v. At this point, the
compiler does not care about the future executions. If foo
always returns a number, the generator never compiles other
versions and no type test is performed. On the other hand
if foo returns other types, then other versions will be gen-
erated. In these two cases the extreme laziness removes the
type test (at least in some cases) and improves performance.

One of the main weaknesses of code versioning is the
coexistence of multiple versions of the same code which
results in an increase of generated code size. Taking the
expression (+ a b) as an example, we have to generate
exactly 5 versions:

• No dynamic type test if a and b are numbers
• One dynamic type test on a if b is a number and a is

unknown
• One dynamic type test on b if a is a number and b is

unknown
• Two dynamic type tests if both are unknown
• An error if the type of a or b is known but not number

The extreme laziness allows the compiler to generate only
executed versions of the code. Thus the number of versions
is reduced which in turns reduces the size of the machine
code.

4.2 Implementation
To keep the advantage of code versioning and be extremely
lazy, LC uses lazy-code objects. Each piece of code of the

(define (gen-ast ast successor)

...

(if (eq? (car ast) ’+)

(let* ((lazy-add

(make-lazy-code

(lambda (ctx)

(pop r1)

(pop r2)

(add r1 r2)

(push r1)

(jump-to successor

(ctx-push (ctx-pop ctx 2)

’number)))))

(lazy-arg1

(gen-ast (caddr ast)

lazy-add)))

(gen-ast (cadr ast) lazy-arg1)))

...)

(let ((obj (gen-ast ’(+ a b)

(make-lazy-code

(lambda (ctx)

(pop r1)

(return))))))

(execute obj))

Figure 6. Creation of lazy-code objects chain for expression
(+ a b)

source program is represented by one of these objects. Fig-
ure 5 shows an example of a lazy-code object. This object
contains two main elements. The first one on the left is the
generator presented in Section 3.2 which is able to generate
a new version of the code that it represents. The second on
the right is a table which contains all the addresses of gen-
erated versions in memory, each one associated to the entry
context. All lazy-code objects are used similarly to Continu-
ation Passing Style, when the compiler creates one object, it
also gives the successor object (represented at the bottom of
figure 5). Again with the example of expression (+ a b) if
the compiler knows that both are numbers, and if it does not
care about overflows, it creates exactly 4 lazy-code objects:
(1) End of program object. This will clean stack, restore reg-
isters and return. This object is the last in execution flow so
it does not have successor object. (2) Object for +. The code
generated by this object performs the add operation: it will
pop two values from the stack, add them, and push the re-
sult. When the compiler creates this object it gives object 1
as successor. (3) Object for b. This object generates the code
to compute the value associated to identifier b. i.e. it pushes
the value on the stack. For this object, the successor is object
2. (4) Object for a. This time the successor object is object 3.
Figure 6 shows an example of the code which creates these
4 objects for this expression.



So the compiler creates a chain of lazy-code objects. At
this point no machine code is yet generated for the expres-
sion. To execute the expression, the compiler transfers con-
trol to the generator of object 4. This generator follows the
algorithm presented in Section 3.2 to generate an inlined
version (or patch the jump). Because the context cannot
be changed the compiler can trigger multiple generators to
compile code as long as a branching expression is not yet
encountered. This removes the useless jumps between ver-
sions in execution flow. In the previous example, as soon as
the generator of a is called, the compiler will generate all
machine code because there is no branching instruction until
the end of this small program.

4.3 Procedure call problem
Because the compiler is lazy, it does not know the position of
the entry point of the continuation when it generates the code
to call a procedure. As shown in figure 7, our solution is to
create a temporary code stub for this continuation. When the
compiler generates the code for the call site, it pushes the
address of this temporary stub as return address and jump,
using closure, to the generator (or existing version associ-
ated to this context) of the procedure. When the compiler
generates the code of the procedure return, it writes a classic
return instruction which actually jumps to the continua-
tion generator. As soon as the continuation is generated, the
stub patches the call site to replace the current return address
(continuation stub address) by the actual address (position of
the machine code of continuation). Note that the context is a
mandatory argument since the procedure stub cannot gener-
ate a version without this information. The push closure

instruction is doubly useful here, first it is used to access
non-local variables from generated code, but it is also used
by the procedure stub to patch the cc-table as explained be-
fore. The right side of the figure shows the state after execu-
tion of the call site, procedure, and continuation.

4.4 Context construction
In order to take maximum advantage of code versioning
and remove even more type checks, it is important to have
as much information as possible within the context when
compiling a piece of the code. There are two ways to build
this context.

When the compiler is compiling constants, the type of
the constant is known at compile time and we can extend
the context to generate the next objects. Assuming the com-
piler uses a context that associates a type to each value on
the stack, if it generates the code for a lazy code object con-
taining a constant (10 for example), then it will generate an
instruction push 10 and, as there are no branches, will start
generating the next object by adding the type information
number to the value on top of the stack. Therefore, if the
next object uses this value (in a + for example) the dynamic
type test on the value is then unecessary.

The second possibility to build up the context is to take
advantage of the lazy compilation and the organization of the
objects, that is similar to continuations, to have more infor-
mation at execution. Let us take, for example, the expression
(+ (+ a 1) (+ a 2)). In this case, a flow-sensitive static
analysis [8] should detect that the second type test on a is
not necessary. Even if such analysis can be performed in fast
way, their cost is significant for a JIT compilation. The figure
8 shows, though simplified, the lazy code objects created for
this expression. This figure also shows an example of execu-
tion where both the information about the type of each value
on the stack and the types related to identifiers are contained
within the context. As soon as the expression is executed the
generation of the first block starts. The stack is then empty
and the compiler doesn’t know the type of a yet. The com-
piler will generate the code for a and then start the genera-
tion process of the next block with the new context within
which the stack contains an only unknown element. When
the code of the first primitive + is created for that version,
the compiler doesn’t know the type information regarding
a and will then generate a dynamic test. The next block in
the execution flow will then be created with the new context
within which the compiler already knows that a is a num-
ber. When the second primitive + is reached, the compiler
knows that the two operands are numbers and no dynamic
test is then necessary. The process will be the same for the
third primitive. Here, we notice that the compiler can take
advantage of this design to improve the context and remove
useless tests without influencing performance which static
analysis would do.

5. Experimental results
As our implementation is still a prototype, it is then impos-
sible to run large tests. However, current tests show that the
compiler removes a lot of dynamic type tests. As an exam-
ple, figure 5 shows the execution times needed to compute
the 40th Fibonacci number in 3 ways.

The first one uses LC. This execution time also contains
JIT compilation. The second one is to execute a binary
compiled using Gambit in similar conditions (e.g. inline
primitives) and the last one is the same than the previous
though in not safe and fixnum mode. So the third case does
not execute any type tests and can be taken as a reference.

Although the use of LC makes the computation slower,
it’s only slower by a factor of about 1.33. There are two
explanations to this result: The compiler currently doesn’t
do any optimization on generated code and uses a stack as
execution model.

In the example of Fibonacci recursive function, code ver-
sioning allows the compiler not to execute any test if n < 2
(instead of 1 without type information of code versioning)
because the compiler knows the parameter type. It will exe-
cute exactly 2 tests for a call with n > 1 (instead of 5 with-
out type information of code versioning) because the com-



Figure 7. Procedure call before and after execution

Figure 8. Simplified representation of lazy code objects
chain for expression (+ (+ a 1) (+ a 2)) with example
of context during generation.

Implementation Time (ms)
LC 2411
GSC 1810
GSC (fixnum and not safe) 757

Figure 9. Execution time to find the 40th Fibonacci number.

piler must test the type of returned values for the addition
operands.

6. Limitations
6.1 Closure size
The combination of code versioning and extreme laziness
has some limitations. In this section, we explain these limi-
tations, and discuss potential solutions. The first major limi-
tation is the construction of closures. As said in Section 3 all
closures must follow the same mapping of context to entry
point index in cc-table. Therefore all closures are the same
size in heap whether it exists a lot of versions or none for a
procedure. Because the actual number of used contexts itself
depends on execution, thus the better way to measure the
impact of this limitation in heap is by empirical way, but be-
cause LC is now at an early stage of development we are not
yet able to measure this impact. Because we focus only on
types, two contexts are equals only if they contain the same
types:

ctx1 = (number number number)

ctx2 = (number boolean number)

ctx3 = (number number number)

In this example the 3 contexts represent a stack frame
containing 3 values. Here ctx1 = ctx3, ctx1 != ctx2 and ctx2



!= ctx3. So all procedure entry contexts could be represented
by a list of types corresponding to the types of the argu-
ments. We know that the maximum number of contexts for a
procedure with p parameters is exponential and would have
serious consequences on memory. Even though this is an ex-
treme case wherein all possible contexts are actually used, it
is a case we have to handle. There are several possibilities to
limit this maximum:

Function curryfication could completely avoid the closure
size problem at a price of performance.

Limit the number of contexts by simply stopping the gen-
eration of versions if a fixed number of contexts is
reached.

Keep only hot contexts in cc-table. We can only generate
versions of procedures for contexts frequently used.

Combination of previous points

6.2 Generated code size
The other important limitation is the size of the generated
code. This problem is similar to the size of closures because
again it’s not possible to theoretically predict how many ver-
sions will be generated and the final code size. An empiri-
cal study could give us more information on its impact. We
expect that lazy-compilation, which allows compiling only
executed code will balance the size problem caused by the
coexistence of multiple versions of the same code. More-
over, in most of current systems, memory is a less precious
resource than performance. A possible consequence of code
versioning could be that it is not a suitable technique for em-
bedded systems and others memory limited platforms.

6.3 Return type
To be more efficient and have as much information as pos-
sible, the spread of the context is really important. We gave
before the example of the call sites. If we have more infor-
mation on arguments types in current context, we can gener-
ate more specialized versions of the function as long as this
information is spread to the function stub. Another important
spread of the context is all the information about returned
value from function to the call continuation stub. LC cur-
rently loses this information by assuming that the returned
type is unknown even if the type is known in function con-
text. The reason is that we cannot patch the call site directly
by replacing the stub address by the generated version ad-
dress because another execution with the same context may
cause a different execution and maybe a different return con-
text.

(define (foo n)

(if (even? n)

42

#f))

(foo m)

...

This example illustrates the problem. Assuming m = 3 and
we know that m is a number, the call (foo m) will cause
the compiler to generate a version of foo with a number
as entry context. When the function returns, we know that
the returned value type is a boolean because (even? 3)

is false. It’s clear here that the same call with the same
context, for example with m = 4, will use the same entry
point of previously generated version of foo but results in
a different entry context for the continuation. This entry
context depends both on the call site and on the context of
the return point of the function. So the only possible way to
correctly spread the context from return point is to associate
a return destination with both caller and context. LC does
not currently use this kind of mechanism.

7. Future work
In its current state there is a lot of work to do on LC compiler
to reach a decent implementation of Scheme which uses
code versioning with extreme laziness. This section presents
the most important work to accomplish.

First, the information in context is really important. If
it has more information, the compiler can generate more
specialized versions and remove more dynamic tests. An
important way to reach this goal is to correctly spread the
new information over execution. We said that one of the
limitations of the current implementation of LC is that the
spread of returned value information is not yet handled. This
particular point is one of our future work.

Another important task is to perform some experiments to
validate or invalidate both techniques. The first step will be
to reach a more decent implementation, then we will execute
some standard Scheme benchmarks and then study these
results and compare them to other implementations.

8. Related work
Chevalier-Boisvert [10] first presented the technique of code
versioning that can be used to remove dynamic type checks.
Our technique uses a similar approach which allows the
compiler to lazily generate multiple versions of the same
code. But it applies to a more specific level because each
node of the AST has its own versions. With the use of contin-
uations, the compiler can then generate the versions directly
from the AST without the use of intermediate representation
or analysis. The code versioning is also extended to the gen-
eration of multiple function entry points.

Some works have been done on getting as much infor-
mation as possible on types such as tagging optimization.
Henglein [5] improved this optimization using type infer-
ence and apply it to Scheme language. Such optimizations
require one or more passes on the representation and require
additional calculations which goes against our goals and the
extremely lazy compilation. Moreover, these optimizations
are mainly used to increase the use of procedure inlining



to generate an unique optimized version of the code which
works regardless of the entry context.

Adams et al. [8] developed a flow-sensitive analysis to
infer types based on the static analysis CFA. Although this
algorithm reduces the cost of traditional CFA and is flow-
sensitive, so it take cares of type predicates and others re-
lated operators, it performs analyses in O(nlogn) which is
significant for a JIT compiler and implies this technique to
be more suitable for AOT compilation. As explained in sec-
tion 4.4, our technique removes type tests and take care of
execution flow without additional cost.

A more close work than ours was done by Chambers
and Ungar for self language [4]. Their technique, code cus-
tomization, is used to generate multiple versions of the same
procedure specialized depending on the type of the mes-
sage’s receiver. Moreover, this technique takes only advan-
tage of type information while code versioning is extensible
to other uses (e.g. register allocation).

Gal et al. [6] suggest to accumulate type information
to specialize traces in order to remove some dynamic type
tests. This technique is called trace-based compilation. This
technique implies the use of a trace-based compiler and is
made to specialize code at loop level. On the other side code
versioning specialize each piece of code. While trace-based
optimization is close to our approach, it implies the use of
both a compiler and an interpreter and then rely on a more
complex architecture than code versionning which only uses
a compiler.

The work done on Mercury compiler [9] is also worth
mentioning. This compiler uses a similar design than ours by
using a lazy code generator for example to improve register
allocation, but this compiler only uses lazy design to delay
code generation for AOT compilation.

9. Conclusion
This paper has presented the technique of code versioning
which allows the compiler to generate multiple versions of
machine code based on compile-time known information.
LC is our implementation of a Scheme compiler which uses
code versioning coupled to an extremely lazy compilation
design which improves its effect. LC currently is at an early
stage of development and we are not yet able to measure
the actual benefits of this technique as well as its impact
on generated code size. There is a lot of remaining work
to reach a decent implementation of the Scheme language
which exploits code versioning / extreme laziness and cor-
rectly spreads context over execution.

The current tests show that LC compiler removes a lot of
dynamic type tests on generated code. This is why we are
expecting good results for this technique. The next step will
be to validate the results by experiments.
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Abstract
The challenges of implementing high level, functional lan-
guages on extremely resource-constrained platforms such as
micro-controllers are abundant. We present Microscheme:
a functional language for the Arduino micro-controller.
The constraints of the Arduino platform are discussed, and
the particular nuances of Microscheme are justified. Mi-
croscheme is novel among compact Scheme implementa-
tions in that it uses direct compilation rather than a virtual
machine approach; and an unconventional compiler archi-
tecture in which the tree structure of the input program is
determined during lexical analysis.
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1. Introduction
Micro-controllers are becoming increasingly popular among
hobbyists, driven by the availability of low-cost, USB-
programmable micro-controller boards, and by interest in
areas such as robotics and home automation. The Arduino
project [9]—which provides a range of Atmel and ARM-
based development boards—is notable for its active commu-
nity and extensive wealth of supporting materials. The offi-
cial Arduino IDE supports only C and C++, relying on the
avr-gcc [10] compiler, and the avr-libc [11] and wiring [14]
libraries. The Arduino community, however, consists largely
of hobbyists and hackers, who have no overriding predispo-
sition for working in C. Therefore, by providing a functional
language targeting the Arduino hardware, there is an op-
portunity to introduce a new group of users to the world of
functional programming.

We present Microscheme: a functional programming lan-
guage for the Arduino micro-controller. Microscheme is pre-
dominantly a subset of R5RS Scheme [1]. Specifically, ev-
ery syntactically valid Microscheme program is a syntacti-
cally valid Scheme program (up to primitive naming). Mi-
croscheme is tailored specifically to micro-controller appli-
cations, targeting the 8-bit ATMega chips used on most Ar-
duino boards.

The targeted controllers are 8-bit, Harvard architecture ma-
chines (meaning code and data occupy physically separate
storage areas), with between 2KB and 8KB of RAM, run-
ning at 16 MHz. Implementing high-level, dynamic, func-

tional features on such a constrained platform is a significant
challenge, and so the Microscheme language has been de-
signed to accommodate realistic micro-controller programs,
rather than achieving standard-compliance. Microscheme is
currently lacking first-class continuations, garbage collec-
tion, and a comprehensive standard library. Also, its treat-
ment of closures is slightly unsatisfactory. Nonetheless, it
has reached a state where useful functional programs can be
run natively and independently on real Arduino hardware,
and is novel in that respect.

The contents of this short paper are focussed on the design
of the language and runtime system, and the particular diffi-
culties of the target platform. Far more detail can be found in
the report [8] or via the project website www.microscheme.
org. Following in the spirit of the work of Ghuloum [5], it
is hoped that this project might help to de-mystify the world
of functional language compilation. The compiler was con-
structed using the methodology set out in [5], by producing
a succession of working compilers, each translating an in-
creasingly rich subset of the goal language. This exploits
the hierarchical characteristic of Scheme, whereby a small
number of fundamental forms describe the syntax of ev-
ery valid Scheme program; and an implementation-specific
collection of primitive procedures are provided for conve-
nience. Thus, exploiting “how small Scheme is when the
core structure is considered independently from its syntactic
extensions and primitives.” [4] These primitive procedures,
which add input/output capabilities and efficient implemen-
tations for low-level tasks, can all be compiled as special
cases of the ‘procedure call’ form. This methodology also
simplifies the building of a type system, because most of
the prototyping can be done with the integer and procedure
types, while richer types such as characters, strings, lists and
vectors are bolted on later.

There are a number of great materials on Scheme imple-
mentation in Scheme, and indeed there are many shortcuts
to be enjoyed by writing a self-hosting Scheme processor.
However, the implementation of Scheme is itself an exercise
of great educational worth, even to those who are not pro-
ficient Scheme programmers. Therefore, we posit that there
is a place in our field for Scheme implementations in lan-
guages other than Scheme. The Microscheme compiler is
a recursive-descent, 4-pass cross-compiler, hand-written in
pure C (99), directly generating AVR assembly code which



is in turn assembled by the ‘avr-gcc’ assembler, and up-
loaded using the ‘avrdude’ tool [12]. It is designed to run
on any platform on which the avr-gcc/avrdude toolchain will
run. (And therefore, any platform on which the official Ar-
duino IDE will run.)

2. The Language
Microscheme is based around ten fundamental forms: con-
stants, variable references, definitions, ‘set!’, ‘begin’, ‘if’,
lambda expressions and procedure calls as well as the ‘and’
and ‘or’ control structures. ‘Let’ blocks are compiled as
lambda expressions via the canonical equivalence. An ‘in-
clude’ form is provided to enable code re-use. The available
primitive procedures include arithmetic operators, type pred-
icates, vector and pair primitives, Arduino-specific IO and
utility functions. Microscheme has comments and strings
(compiled as vectors of chars). There is no provision for
hygienic macros, of a ‘foreign function interface’. Mi-
croscheme has no Symbol type and no ‘quote’ construct,
but has a variadic (list a b c ...) primitive for build-
ing lists.

The following code listing shows a successful Microscheme
program for driving a four-wheeled robot using stepper mo-
tors. The speed and direction of stepper motors are con-
trolled by sending pulses to a number of ‘coils’. Stepper
motor control is achieved in Microscheme by defining a list
of 4 integers for each motor, corresponding to digital I/O
pins, to which pulses are sent in sequence to achieve rotation.
The ‘list.ms’ Microscheme library provides common higher-
order functions such as ‘for-each’ and ‘reverse’, which are
used throughout this program.

The following program runs comfortably inside even the
leanest Arduino device. But, due to its lack of garbage col-
lection, some Microscheme programs will simply run out
of available RAM before completion. In fact, it is possi-
ble to program in a heap-conservative style. By making sure
that expressions causing new heap space to be allocated are
placed outside of “loops” in the program, and using mutable
data structures, programs can easily be written which do not
run out of RAM. Even programs which run indefinitely can
be designed to survive without garbage collection. This is
unsatisfactory, however, because such a style is a departure
from the established and intended character of Scheme.

Microscheme currently contains an unorthodox, last-resort
primitive for memory recovery of the form (free! ...).
The expressions within the free! form are evaluated, but any
heap space allocated by them is re-claimed afterwards. This
feature is a bad idea for all sorts of reasons, and it is best
characterised as “avoiding garbage collection by occasion-
ally setting fire to the trash can”. On the other hand, since
Microscheme has no provision for multi-threading, it is pos-
sible to use it safely.

(include "libraries/io_uno.ms")

(include "libraries/list.ms")

; The left and right stepper motors are

defined as lists of four I/O pins ,

set as outputs.

(define mleft (list 4 5 6 7))

(define mright (list 11 10 9 8))

(define reverse-mleft (reverse mleft))

(define reverse-mright (reverse mright))

(for-each output mleft)

(for-each output mright)

; This procedure takes two lists of pins ,

and sends pulses to them in sequence

(define (cycle2 m1 m2)

(or (null? m1) (null? m2)

(begin

(high (car m1))

(high (car m2))

(pause 4)

(low (car m1))

(low (car m2))

(cycle2 (cdr m1) (cdr m2)))))

; To move the robot forward X units ,

cycle both motors 32*X times.

(define (forward x)

(for 1 (* x 32) (lambda (_)

(cycle2 mleft mright))))

; To rotate the robot to the right , cycle

the left motor fowards and the right

motor in reverse. &vv.

(define (right x)

(for 1 (div (* x 256) 45) (lambda (_)

(cycle2 mleft reverse-mright))))

(define (left x)

(for 1 (div (* x 256) 45) (lambda (_)

(cycle2 reverse-mleft mright))))

; This procedure recursively defines one

side of a Koch snowflake

(define (segment level)

(if (zero? level)

(forward 1)

(begin

(segment (- level 1))

(left 60)

(segment (- level 1))

(right 120)

(segment (- level 1))

(left 60)

(segment (- level 1)))))

; Drive the robot around one side of a

third order Koch snowflake

(segment 3)



Type Upper Byte Lower Byte
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0

Integer 0 data× 15
Pair 1 0 0 address× 13

Vector 1 0 1 address× 13
Procedure 1 1 0 address× 13
Character 1 1 1 0 0 - - - char × 8

Null 1 1 1 0 1 - - - - - - - - - - -
Boolean 1 1 1 1 1 0 0 b - - - - - - - -

Unused 1 1 1 1 0 - - - - - - - - - - -

Table 1: Data tagging arrangement

3. Runtime System Design
3.1 Type System

Scheme has a strong, dynamic, latent type system. It is
strong in the sense that no type coercion occurs, any value
stored in memory has a definite type, and procedures are
only valid for a specific set of types. It is dynamic in the
sense that variable names are not prescribed types by the
programmer, and a given identifier can be bound to values
of any type during runtime. Therefore, it is necessary for
values to ‘carry around’ type information at runtime, which
is referred to as latent typing. A consequence of dynamic
typing that functions might be presented with values at run-
time which are not of the expected type, and so runtime
exceptions must be caught and reported. The built-in types
supported by Microscheme are procedures (functions), in-
tegers1, characters, Booleans, vectors, pairs and the empty
list (a.k.a. null), which is considered to be a unique type.
Linked lists are built recursively using pairs and the empty
list. Strings are supported by the compiler, and are com-
piled as vectors of characters. Though this range of built-
in types is minimal, it is powerful enough that richer types
may be implemented ‘on top’. For example, ‘long integer’
and ‘fixed-point real’ libraries have been developed for Mi-
croscheme, which use pairs of integers to represent numbers
with higher precision. Providing a ‘numerical stack’ by com-
bining simpler types is precisely in the spirit of Scheme min-
imalism.

Table 1 shows the data tagging scheme used. It was chosen
to use fixed memory cells of 16 bits for all global variables,
procedure arguments; closure, vector and pair fields. Cells
of 16 bits are preferable because they can neatly contain
13-bit addresses (for 8KB of addressable RAM), as well
as 15-bit integers. Although 32-bits or more is the modern
expectation for integer types; this is a 8-bit computer, and so
a compromise was made. The instruction set contains some
restricted 16-bit operations such as addition ‘ADDIW’ and

1 We choose to say ‘integer’ rather than ‘fixnum’, to maximise familiarity
for all readers

subtraction ‘SBIW’, so 16-bit arithmetic is reasonably fast.
(Those instructions are restricted in the sense that they can
only be used on certain register pairs.)

The tagging scheme is biassed to give maximum space for
the numeric type. The MSB (most significant bit) of every
value held by Microscheme is dedicated to differentiating
between ‘integers’ and ‘any other type’. It is important that
the MSB is zero for integer values, rather than one, because
this simplifies the evaluation of arithmetic expressions. Nu-
meric values can be added together, subtracted, multiplied or
divided without first removing the data tag. A mask must still
be applied after the arithmetic, because the calculation could
overflow into the MSB and corrupt the data tag. At the other
end of the spectrum, Booleans are represented inefficiently
under this scheme, with 16 bits of memory used to store a
single Boolean value. The richer types are represented fairly
efficiently, with 13-bit addressed pointing to larger heap-
allocated memory cells. Overall, this system provides a com-
pact representation for the most commonly used data types;
as necessitated by the constraints of the Arduino platform.
There is scope for the addition of extra built-in types in the
future, as values beginning 11110− are currently unused.

Microscheme’s strong typing is achieved by type checking
built-in to the primitive procedures. When bit tags are used
to represent data types, type checking is achieved by apply-
ing bit masks to data values, which corresponds directly with
assembly instructions such as ‘ANDI’ (bitwise AND, imme-
diate) and ‘ORI’ (bitwise OR, immediate). Therefore, low-
level type checking is achieved in very few instructions. The
tagging scheme allows for ‘number’ type checking in even
fewer operations, using a special instruction which tests a
single bit within a register:

SBRC CRSh , 7

; skip next if bit 7 of CRS is clear

JMP error_notnum

; jump to the 'not a number ' error

This is precisely how type checking is achieved on the argu-
ments to arithmetic primitives.



3.2 The Stack

By eschewing first-class continuations, it is possible to im-
plement Scheme using activation frames allocated in a last-
in first-out data structure, as in a conventional call stack,
rather than a heap-allocated continuation chain; thus exploit-
ing the efficient built-in stack instructions with which most
microprocessor architectures are equipped. Microscheme
uses a call stack in this way.

Since a program without first-class continuations will always
be evaluated by a predictable traversal of the nested con-
structs of the language, activation frames on the stack can
safely be interleaved with other data, providing a pointer
to the current activation frame (AFP = Activation Frame
Pointer) is maintained. Therefore, the stack is also used
freely within lower-level routines such as arithmetic prim-
itives, so the stack is used at once as a call stack and an
evaluation stack. Any Microscheme procedure takes its ar-
guments from the stack, and stores a single result in a special
register (CRS = Current ReSult).

3.3 Memory Layout

The available flash memory (RAM) is allocated the address
range 0x200 to 0x21FF for the Arduino MEGA (and 0x100

to 0x8FF for the Arduino UNO). Such differences are han-
dled by model-specific assembly header files, included au-
tomatically at compile-time, containing definitions (such as
RAM start/end addresses, dependant on the installed mem-
ory size) derived from the relevant technical data sheets. Dif-
ferent ATMega chips could easily be supported by writing
equivalent definition files. Microscheme uses the first 2× n
bytes of RAM for global variable cells, where n is the num-
ber of global variables in the program. The remainder of the
space is shared between the heap and the stack, in the famil-
iar “heap upwards, stack downwards” arrangement.

Objects on the heap are not restricted to the two-byte cell
size used elsewhere. The built-in procedures to work with
heap-allocated objects determine the size of each particular
object from the information contained within it. Procedures,
pairs, and vectors are heap-allocated types. When a value
of these types is held by a variable, the 2-byte variable
cell contains the appropriate data type tag, followed by a
13-bit memory address, pointing to the start of the area of
heap space allocated to that structure. Therefore, there is a
built-in layer of indirection with these types. Figure 1 shows
the layout of the objects in detail. Note that the closure
object contains a ‘parent closure’ reference. This forms a
traversable chain of closures for each procedure object to
its enclosing procedures, as required for lexical scoping.

3.4 Register Allocation

The ATmega series of micro-controllers are purported to
have 32 general-purpose registers [2]. In reality, most of
these registers are highly restricted in function, and the nu-

. . .

car low Reference Address

car high Ref + 1

cdr low Ref + 2

cdr high Ref + 3

Pair object

. . .

length low Reference Address

length high Ref + 1

element 1 low Ref + 2

element 1 high Ref + 3

element 2 low Ref + 4

element 2 high Ref + 5

. . .

element n low Ref + 2n

element n high Ref + 2n+ 1

Vector object

. . .

arity Reference Address

entry low Ref + 1

entry high Ref + 2

parent closure low Ref + 3

parent closure high Ref + 4

cell 1 low Ref + 5

cell 1 high Ref + 6

cell 2 low Ref + 7

cell 2 high Ref + 8

. . .

cell n low Ref + 2n+ 3

cell n high Ref + 2n+ 4

Closure object

. . .

Figure 1: Heap-allocated object layout

For details of the stack layout, see section 3.5.

ances in the following allocation are crucial to the feasibility
of Microscheme.



r0 MULX r16 GP1
r1 r17
r2 TCSS r18 GP2
r3 r19
r4 falseReg r20 GP3
r5 zeroReg r21
r6 unused r22 PCR
r7 r23 unused
r8 unused r24 CCP
r9 r25

r10 unused r26 HFP
r11 r27
r12 unused r28 CRS
r13 r29
r14 unused r30 AFP
r15 r31

Table 2: Register Allocation Table

The Microscheme runtime system requires 4 registers to be
reserved for special purposes. The ‘CCP’ (Current Closure
Pointer) stores a reference to the ‘closure’ or ‘procedure
object’ of the currently executing procedure, if any. The
‘HFP’ (Heap Free Pointer) stores the address of the next
available byte of heap-storage; where any new heap object
should be allocated. The ‘CRS’ (Current ReSult) stores the
result of the most recently evaluated expression, or sub-
expression. Finally, the ‘AFP’ (Activation Frame Pointer)
points to the first byte of the current ‘Activation Frame’
on the stack. This is where procedure arguments are found.
These four values require 16 bits each, and are placed in
the register pairs (24:25) to (30:31) so that 16-bit arithmetic
operations may be used, as discussed in section 3.1.

The first major challenge with these allocations is that each
of the CCP, HFP, CRS and AFP will—at some point—
hold memory addresses to be dereferenced. However, the
instruction for indirect memory access is only valid on the
final three register pairs. The chosen solution is to place the
CCP in register pair (24:25). When the CCP is dereferenced,
Microscheme swaps it into the pair (26:27), performs the
necessary memory access, then swaps it back again. This is
based on the plausible estimation that closure lookup is less
frequent than argument lookup, writing to the heap or using
the result of the previous calculation.

The allocation is further restricted by the fact that the
IJMP instruction—for branching to a code address stored in
memory—is only valid on the register pair (30:31). Ideally,
therefore, this pair should be reserved for use when calling
a procedure. This would mean relegating the HFP, CRS or
AFP to another register pair, as with the CCP, and swap-
ping them in when necessary. This is really not acceptable,
because those registers are frequently used in all programs.
The chosen solution is to temporarily ‘break’ the register

allocation during a procedure call. When a procedure call is
reached, the register pair (30:31) is temporarily overwritten
with the target code address, and the callee is expected to re-
store the value. This arrangement works out neatly, because
the value of the Activation Frame Pointer changes during a
procedure call. Its new value is equal to that of the Stack
Pointer, immediately after the context switch. Therefore, the
callee procedure can restore the AFP with two simple in-
structions: IN AFPl, SPl and IN AFPh, SPh.

The final restriction to the allocation table is that the in-
structions ‘LDD’ and ‘STD’, for indirect memory address
with constant displacement, are only available on the final
two register pairs. This instruction is crucial for working ef-
ficiently with heap-allocated objects. Figure 1 shows how
heap-allocated objects are structured with a single reference
address, followed by data fields which appear at some calcu-
lable displacement from it. Using the ‘LDD’ and ‘STD’ in-
structions, those fields can be accessed with a single instruc-
tion. Therefore, the CRS is allocated to register pair (28:29),
because it will sometimes store references to heap-allocated
objects. By elimination, the HFP must be allocated to regis-
ters (26:27).

Altogether, the register allocation is extremely dense, and
deals with a large number of instruction set nuances to min-
imise the number of instructions generated. Some of the re-
maining registers (with restricted uses) are used to speed up
certain low-level routines, and registers 6 thru 15 are avail-
able for use by future features such as a garbage collector.
The register/instruction set restrictions are a significant lim-
iting factor to the provision of high-level language features.
By eschewing first-class continuations, a design has been
found that produces reasonably few instructions, while re-
taining a nucleus of functional features (including first class
functions, higher order functions, lexical scope and closures)
and is recognisably a subset of Scheme.

3.5 Calling Convention

Figures 2, 3 and 4 show typical assembly listings for a
procedure call, and the layout of activation frames. Between
them, these demonstrate the calling convention for standard
(non tail-recursive) procedure calls.

The code for a procedure call is rather long, in comparison to
a typical C function call, because a Scheme procedure call
is a rather more sophisticated act. Scheme has a dynamic
type system, and allows any expression to take the place of
‘procedure name’ in the procedure call form. This is a cru-
cial part of the ‘functions are first-class values’ idea, as it
allows for higher-order procedure calls: where the result of
a procedure is itself a procedure, which is, in turn, called.
However, it is not practicable to determine, before runtime,
whether that expression will in fact evaluate to a procedure.
By the same token, it is not possible to determine before-
hand whether the correct number of arguments are given



PUSH AFPh ; Push the current AFP onto the stack

PUSH AFPl

LDI GP1 , hi8(pm(proc_ret_χ)) ; Push the return address onto the stack

PUSH GP1

LDI GP1 , lo8(pm(proc_ret_χ))
PUSH GP1

PUSH CCPh ; Push the current CCP onto the stack

PUSH CCPl

; Repeat for each argument:

[code for argument i] ; Evaluate each outgoing argument

PUSH CRSl ; and push it onto the stack

PUSH CRSh

[code for procedure expression] ; Evaluate the procedure expression

MOV GP1 , CRSh ; Mask out the lower 7 bits of the

ANDI GP1 , 224 ; upper byte of the result

LDI GP2 , 192 ; Check that we 're left with the type

CPSE GP1 , GP2 ; tag for a procedure. Otherwise:

RJMP error_notproc ; jump to the 'not a procedure ' error

ANDI CRSh , 31 ; Mask out the data tag from the procedure

MOV CCPh , CRSh ; The remaining value is the address

MOV CCPl , CRSl ; of the incomming closure object.

LD GP1 , Y; Y=CRS ; Fetch the expected number of arguments

LDI PCR , α ; from the closure object.

CPSE GP1 , PCR ; Check against the given number. Otherwise:

RJMP error_numargs ; jump to the 'number of args ' error

LDD AFPh , Y+1; Y=CRS ; Load the procedure entry address

LDD AFPl , Y+2; Y=CRS ; from the closure into register Z (AFP)

IJMP; context switch ; Jump to that address.

proc_ret_χ: ; On return from the procedure:

POP AFPl ; restore the AFP.

POP AFPh

Figure 2: Procedure Call Routine (Caller Side)

χ = an identifier unique to this procedure call
α = 2× arity of this procedure

proc_entry_χ:
IN AFPl , SPl ; The new activation frame starts wherever

IN AFPh , SPh ; the stack pointer is now

[code for procedure body]

ADIW AFPl , α ; Set the AFP just below the arguments

OUT SPl , AFPl ; Set the stack pointer just below the arguments

OUT SPh , AFPh

POP CCPl ; Restore the old CCP from the stack

POP CCPh

POP AFPl ; Pop the return address , from the stack ,

POP AFPh ; into register Z (AFP)

IJMP ; Jump to that address

Figure 3: Procedure Call Routine (Callee Side)

χ = an identifier unique to this procedure
α = 2× arity of this procedure



. . .

argument n low ← AFP (Activation Frame Pointer)

argument n high AFP + 1

. . .

argument 2 low AFP + 2n− 4

argument 2 high AFP + 2n− 3

argument 1 low AFP + 2n− 2

argument 1 high AFP + 2n− 1

previous CCP l AFP + 2n

previous CCP h AFP + 2n+ 1

previous AFP l AFP + 2n+ 2

previous AFP h AFP + 2n+ 3

return address l AFP + 2n+ 4

return address h AFP + 2n+ 5

Activation Frame

. . .

Figure 4: Activation Frame Layout

for the procedure. These two conditions must be checked
at runtime; costing in the order of 20 clock cycles per pro-
cedure call. The procedure call code has been designed so
that a large segment of it (including those two checks) is
constant across all procedure calls, and can be ‘outlined’ to
a subroutine at the assembly level, saving hundreds of lines
of assembly code (i.e. hundreds of bytes) in the generated
executable.

The calling convention and activation frame are designed
with tail recursion in mind, but are also influenced by the
register restrictions described in the previous section. The
CCP and AFP are changed upon a procedure call, and must
be restored when that procedure returns. The new CCP is set
by the caller, while the AFP must be updated by the callee.
The previous values are saved in the activation frame, along
with the return address and arguments. The AFP is stored
in register pair (30:31), which is also needed for jumping to
instruction addresses held in memory. Therefore, it must be
restored after by the caller, after the procedure has returned.

3.6 Tail Recursion

Scheme implementations are required [1] to be properly
tail recursive. Tail-call-elimination is performed by the Mi-
croscheme compiler at the parsing stage. Procedure calls are
eagerly transformed into tail-calls whenever they are in a tail
context. Unlike ordinary procedure calls, tail calls reuse part

[code for argument i]

PUSH CRSl

PUSH CRSh

[code for procedure expression]

MOVW TCSl , CRSl ; Save proc

ADIW AFPl , [2*α]
OUT SPl , AFPl

OUT SPh , AFPh

SBIW AFPl , [α + β]
LDD GP1 , Z+[β - i]

PUSH GP1

. . .
MOVW CRSl , TCSl ; Restore proc

LDI PCR , %i

MOV GP1 , CRSh

ANDI GP1 , 224

LDI GP2 , 192

CPSE GP1 , GP2

RJMP error_notproc

ANDI CRSh , 31

MOV CCPh , CRSh

MOV CCPl , CRSl

LD GP1 , Y;CRS

CPSE GP1 , PCR

RJMP error_numargs

LDD AFPh , Y+1; Y=CRS

LDD AFPl , Y+2; Y=CRS

IJMP; context switch

Repeat for each incom-
ing argument

Shift all the incoming
arguments down into
the activation frame

This code is the same
for every procedure
call, so it is outlined (at
the assembly level) to a
subroutine

Figure 5: Tail Call Routine (Caller Side)

χ = an identifier unique to this procedure
α = 2× arity of outgoing procedure
β = 2× arity of incoming procedure

of the current activation frame; thus ensuring constant-space
performance for recursive calls, and releasing memory ear-
lier for non-recursive calls. The activation frame (figure 4)
is designed with this operation in mind. The ‘return’ infor-
mation for the enclosing procedure is left in-tact, while the
arguments are overwritten. This causes the callee procedure
to ‘return’ to the enclosing context, instead of the current
context. Figure 5 shows the caller-side calling convention
listing for a tail call.

3.7 Exception Handling

Due to Scheme’s dynamic nature, runtime exceptions are
unavoidable. As well as the procedure call exceptions de-
scribed in section 3.5, there are type, bounds and arithmetic
exceptions, and a ’custom’ exception that may be raised pro-
gramatically (for example, to constrain the domain of a func-
tion). The arduino is a standalone device, with no direct text-
based output, and there is no guarantee that the user will con-
nect any sort of output device to the Arduino. However, the
Arduino standard does guarantee that an LED is connected



to digital pin 13 on any compliant board; and so this is the
only assured means of communicating with the user. There-
fore, digital pin 13 is reserved by Microscheme as a status
indicator. The LED is switched off during normal operation;
but flashes in a predetermined pattern when an exceptional
state is reached. (One flash for ‘not a procedure’, two flashes
for ‘wrong number of arguments’, and so on.) Conversely,
there is no guaranteed means of input whatsoever; so Mi-
croscheme does not support any kind of exception recovery.
When an exceptional state is reached, the device must be re-
set. There is no convenient way of reporting the location at
which the exception occurred, so it is left to the programmer
to determine the program fault by its behaviour up until the
exception.

3.8 Syntactic Sugar

The compiler supports strings, comments and ‘includes’.
Strings are not a distinct type, but are compiled as vec-
tors, where each element of the vector is a character con-
stant. The expression (define message "Hello!") is
syntactic sugar for the less convenient expression (define

message (vector #\H #\e #\l #\l #\o #\!)). True
vectors use approximately half the space of cons-based lists,
and were included in Microscheme specifically to enable
the efficient storage of strings. The disadvantage with vec-
tors is that they cannot easily be concatenated in-place; but
since memory space is at such a premium on the Arduino,
the denser representation is preferable. The (include . . .)
form is treated as an instruction to the parser to include an
external program as a node in the abstract syntax tree (as
is the nature of tree structures). The parser simply calls the
‘lexer’ and ‘parser’ functions separately on the included file,
and makes the resultant Abstract Syntax Tree a node in the
overall tree. ‘Include’ and commenting allow for the devel-
opment of a suite of libraries, and a richer numerical stack.

4. Related Work
Other notable micro-controller-targeting Scheme implemen-
tations include PICOBIT, BIT and ARMPIT Scheme. PICO-
BIT [7] consists of a front-end compiler, and a virtual ma-
chine designed to run on micro-controllers comparable to
the Arduino (less than 10 kB of RAM). This arrangement
is interesting, because the implementation is portable to any
micro-controller platform for which the virtual machine can
be compiled. PICOBIT deliberately targets a subset of the
Scheme standard, on the basis of “usefulness in an embed-
ded context”. First-class continuations, threads and unbound
precision integers are considered useful, while floating-point
numbers and a distinct vector type2 are left out. While the
aims of PICOBIT are closely aligned to this project, Mi-
croscheme will occupy quite a different Scheme subset.

2 Efficient vectors are contiguous arrays, rather than linked lists.

Another impressive virtual-machine based implementation
is BIT [3], which features real-time garbage collection, and
has been ported to different micro-controllers.

ARMPIT Scheme [6] (targeting ARM micro-controllers) is
a well-documented, open-source software project, with a
large number of real-world working examples. Unusually,
ARMPIT’s designers intend that the micro-controller is used
interactively, with a user issuing expressions and awaiting
results via a serial connection. In other words, ARMPIT
turns the micro-controller into a physical REPL (read-eval-
print-loop) machine.

There are other projects which allow control of a micro-
controller via a functional language running on some con-
nected PC, such as via the Firmata library [13]. Though
these tools present a way of ‘controlling an Arduino from
a functional language’, they are clearly an altogether differ-
ent kind of tool than a native compiler. Using such a library,
one could never program an autonomous machine that strays
away from its creator’s workstation.

5. Conclusion
While Microscheme requires further work (notably: research
into the feasibility of garbage collection and provision of a
full suite of libraries) before it can be considered a complete
programming tool, a significant amount of ground has been
covered, and the compiler is in a usable state. By program-
ming in a memory-conservative style (which, in any case,
is an inevitability with this class of device) the adventur-
ous Scheme programmer or Arduino hacker can very rapidly
start writing programs to run natively on the Arduino, and
such programs have proven successful, including:

• Robotic control programs, such as in section 2
• Programs recursively drawing fractals (~200 LOC) Demon-

strating the correctness of the calling convention over
thousands of recursive calls

• Library programs providing functions for digital I/O,
long and fixed-point numeric types, standard higher-
order list functions, ASCII manipulation and interfacing
with LCD modules (~400 LOC)

• ‘Countdown’ program driving a multi-segment LED dis-
play (~200 LOC)

• Program for testing vintage SRAM chips (~300 LOC)
• Program for reading RPM signal from a car engine, driv-

ing a bar-graph LED display (~200 LOC)
• Various programs using an LCD module for text display

Moreover, the details presented here will hopefully find
some educational use, or otherwise fill a gap in the litera-
ture surrounding Scheme implementation.
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Abstract
The typical representation of structures (a.k.a. records) in-
cludes a header and type descriptor that are a considerable
overhead when the structures have few fields and the pro-
gram allocates a large number of them. We propose structure
vectors that group many structures of the same type, remov-
ing the need for a header and type descriptor for each con-
tained structure. This paper describes our implementation of
structure vectors within the Gambit Scheme system. Micro-
benchmarks indicate that structure allocation is faster, struc-
ture access is roughly the same speed, and type checking is
substantially slower. On real applications we have observed
speedups of 7% to 15%.

1. Introduction
Scheme structures (a.k.a. records) of f fields can be straight-
forwardly implemented as a specially tagged vector of length
f +1 containing a reference to a type descriptor and the val-
ues of the fields. The type descriptor is useful to attribute
to the structure a unique type different from all other types
of structures. It is also a convenient place to store meta in-
formation such as the field names used for pretty-printing,
and the super type in systems supporting structure type in-
heritance. In a typical memory management system, mem-
ory allocated objects are prefixed by a header containing the
object’s primary type (e.g. to distinguish vectors from struc-
tures), a length, and fields used by the garbage collector. For
a structure, the space for this header and the type descriptor
adds an overhead that can be relatively high when the num-
ber of fields is small.

In the Gambit Scheme system (a Scheme to C compiler),
the header, type descriptor, and the fields, each occupy a ma-
chine word (32 or 64 bits). Moreover, small objects (less than
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(define-type point x y)

HD TD x y

AAA…AAA01
reference to 

structure

Figure 1: A 2D point structure type definition and its repre-
sentation with a header, type descriptor and x and y fields

256 words) are managed using a Cheney-style compacting
garbage collector with a factor of two memory use bloat due
to the unused but reserved space in the tospace (i.e. an ob-
ject of length n words causes 2n words of memory to be
reserved for it). Given that structures are often small, there
is a considerable space overhead and a run time overhead
for managing structures. Figure 1 shows the layout of a 2D
point structure with fields x and y and a tagged reference
to the structure. Note that Gambit uses the two lower bits
for the tag, and memory allocated objects are either tagged
with 11 for pairs, or 01 for all other types). The state of
the structure is stored in 4 words, but a total of 8 words of
memory will be reserved for this structure by the memory
manager (the tospace remains live between garbage collec-
tions to guarantee that a garbage collection can always be
performed without running out of memory).

In some applications, it is necessary to manage many
structures of the same type and there is a delimited region
of code where these structures are live. An example is the
construction of a 3D polygon-based model composed of 3D
points to be sent to a GPU for rendering. The data becomes
dead after it is sent to the GPU.

For such applications we propose structure vectors, a
compact representation of a group of structures of the same
type. The type descriptor is only stored once in the structure
vector, and each contained structure occupies space for its
fields only. Figure 2 shows the layout of a 3 element struc-
ture vector of 2D points. In typical uses, structure vectors
are large objects so they are managed by a non-compacting
garbage collector that does not suffer from the factor of two
bloat of the copying garbage collector. The allocation of an n
element structure vector of structures with f fields requires



HD TD x y x y x y

AAA…AAA01
reference to 

structure vector

BBB…BBB11
reference to second 
contained structure

Figure 2: Representation of a structure vector containing 3
2D points

2 + nf words. This compares well to the 2n(2 + f) words
required for allocating the structures individually. For a large
n there is a factor of 2 + 4/f space savings (e.g. a factor of
4 for f = 2, a factor of 3.333 for f = 3, a factor of 3 for
f = 4).

There are a few important issues to address in imple-
menting structure vectors. To allow handling each contained
structure individually, e.g. passing them to a function expect-
ing a structure, it is necessary to have internal references to
the elements of the structure vector. Operations on structures
(access to fields, type checking, etc) must work transparently
on individually allocated structures and contained structures.
To access the type descriptor of a contained structure, and
implement the garbage collector, there must be a way to find
the structure vector that contains the structure given a refer-
ence to that structure.

This is solved by storing all structure vectors in a single
fixed depth container tree, similar to the page tables used
in the implementation of virtual memory (Silberschatz et al.
[1]), that maps addresses to the structure vectors that span
that address. A single container tree is needed for managing
all live structure vectors. The use of a fixed depth tree has
the advantage that an address lookup can be done with a fast
to execute fixed number of unconditional indirection.

In the next section, we cover the algorithms used to
construct and maintain the container tree. In section 3, we
present the modifications to the Gambit Scheme runtime re-
quired by the implementation of structure vectors. This is
followed by a brief performance evaluation and a discussion
of related work.

2. Container Tree
The container tree maps contained structure references to
the structure vector that contains them. This tree spans the
whole memory and is indexed using a fixed number of bit
fields from the reference (Figure 3). Some of the lower bits
of a reference are unused in the container tree indexing pro-
cess. This is possible because of the alignment constraint
imposed on structure vectors that are aligned to addresses
that are multiples of 4096. The container tree is allocated in
the C heap using malloc and only one instance is created for
the runtime. It is accessed through the C functions that im-
plement container allocations, etc. It is also accessible to the

NULL NULL

NULL NULL NULL NULL

HD TD x y x y HD TD x y x y x y

index

index

32 bit reference to 
contained structure

11 bits 9 bits 12 bits

ROOT

BBBBBBBBBBBBB11

Figure 3: Container tree and access using a 32 bit reference
to a contained structure

garbage collector that keeps it up to date during collection
(but it is not a GC root).

The nodes at a given level of the tree are vectors of the
same power of 2 size containing pointers to nodes at the
next level of the tree, or to structure vectors at the leaves
of the tree. Different layouts for the two supported word
sizes (32 and 64 bits) are used to minimize the amount
of memory used. Whenever a structure vector is allocated
or freed, the tree is automatically updated to reflect those
changes using runtime methods hooked to the allocator and
garbage collector respectively. Accesses to the leaves of the
container tree are performed by an unconditional chain of
indirection calculated directly from the structure reference.

2.1 Managing Nodes
The container tree is composed of two levels on 32 bit word
platforms and five levels on 64 bit platforms. A reference to
the top level node is kept in a global variable (ROOT) so as to
make it available to the runtime. Each node contains a field
for every distinct value possible in the set of bits indexing
it. The root node is slightly larger than the others since it is
unique while at least one new node is usually allocated for
typical (large) vector. References to the vectors are chained
through the nodes with a pointer to the next node being left in
the corresponding field. The leaves of the tree contain boxed
pointers to the structure vectors.

In order to simplify testing for unused paths and preserve
space while ensuring that every single path down the tree has
the same length, we use the NULL pointer as a marker for ab-
sent subtrees. This allows testing if a path is used through a
simple pointer comparison. We can guarantee through run-
time type tests that only internal references will ever be fol-
lowed in the container tree since only contained structures
have the correct tag.

To add a structure vector to the tree, we first need to add
nodes to the tree to ensure that the addresses spanned by
the vector have corresponding full depth subtrees in the con-
tainer tree. To do so, we recursively go down in the subtree



#if ___WORD_WIDTH == 32

#define ___GET_CONTAINER(ref) \
(ROOT[(ref)>>21] \

[((ref)>>12) & 0x1FF])

#else

#define ___GET_LOW_OFS(n) \
(___WORD_WIDTH - (n*10) - 9)

#define ___GET_CONTAINER(ref) \
(ROOT[(ref)>>52] \
[((ref)>>(___GET_LOW_OFS(1))) & 0x3FF]\
[((ref)>>(___GET_LOW_OFS(2))) & 0x3FF]\
[((ref)>>(___GET_LOW_OFS(3))) & 0x3FF]\
[((ref)>>(___GET_LOW_OFS(4))) & 0x3FF])

#endif

Figure 4: Container tree access macros

spanned by the vector adding a node each time we come
across a NULL pointer. Once all the nodes have been added,
we write references to the vector in every leaf that corre-
sponds to the addresses it spans. Note that the allocation can
be optimized to add at most 3 nodes to each level of the tree
because the middle node can be reused (it is an array con-
taining the same pointer).

Since structure vectors are managed by the garbage col-
lector, we add a hook to ensure that all references to the vec-
tor are removed from the container tree before it is freed.
As we always allocate the vector as a non-movable object,
we don’t have to worry about a change in the contained ad-
dress (which would require rebuilding the whole tree) during
the collection. To prune the now unneeded subtree, we recur-
sively check whether the nodes are shared and then free them
if they are not. By construction, only the outermost nodes at
a given level may be shared because structure vectors span
contiguous addresses so we can get away with only check-
ing these. We make sure that all references that belong to the
vector we are removing are set to NULL.

2.2 Accessing the Vectors
The container tree has a fixed depth for a given architecture
and every path for a live contained structure is guaranteed
to have that depth. This property allows us to navigate it
to fetch the structure vector corresponding to an address
without any conditional tests. We do this by systematically
extracting the relevant bits for a given level to calculate the
index at which the reference to the next level will be stored.
The last such reference will be a boxed pointer to the vector.

The container tree is used by the garbage collector when
it encounters a reference to a contained structure by allow-
ing it to find the structure vector containing the contained
structure. This structure vector is then considered live by the
garbage collector.

(define-type foo x y z)
(define c (make-foo-vector 1000000))
(define s (foo-vector-ref c 999))
(foo-vector-set! c 999 11 22 33)
(foo-x s) ;; => 11
(foo-y-set! s 44)
(foo? s) ;; => #t

Figure 5: Example of structure vector functions

Scheme code also accesses the container tree when get-
ting the type descriptor of a contained structure, using the
function ##contained-type that is directly inlined in the gen-
erated code.

3. Structure Vectors
Our implementation of structure vectors use the define-type
(Figure 5) macro as an interface. The macro was extended
to generate definitions for a structure vector constructor, and
getter and setter specialized to the type. Those definitions
(whether functions or macros) are constructed from the type
information using a set of new primitives. Several changes to
the Gambit runtime were made to introduce these, notably
to the tagging scheme, to define-type and to the garbage
collector.

3.1 Tagging
In order to maintain compatibility with existing accessors,
we re-purpose the tag used by pairs, i.e. 11, to dedicate it to
contained structures (pairs now use the 01 tag and the header
needs to be accessed by the pair? primitive). Consequently,
a reference to a structure can be tagged with 01, when it is
an individually allocated structure, or with 11, when it is a
structure contained in a structure vector.

The type-checking primitives for structures must account
for the two possible structure layouts. Given that there are
now two different tags denoting structures, we must also
switch our field access primitives from using a simple sub-
straction (which the C compiler is normally able to opti-
mize away) to a mask removing the tag bits when unbox-
ing a reference (Figure 6). In other words, we must use

UNTAG(obj) rather than UNTAG AS(obj, tSUBTYPED).
Since Gambit does not currently optimize redundant boxing
and unboxing, these extra operations represent a significant
overhead on structure accesses.

3.2 Structure Vector Primitives
For a structure type name foo, the make-foo-vector, foo-
vector-ref and foo-vector-set! definitions are built as calls
to primitives. The first allocates a large non-movable object
as a structure vector and then adds it to the container tree. To
ensure that no structure vector shares the same page, extra
memory equal to the page size is allocated at the end of
the object. This form of allocation is managed by a mark
and sweep collector and is reserved for large objects (over 1



#define ___TB 2

#define ___tSUBTYPED 1
#define ___tCONTSTRUCT 3

#define ___TAG(ptr,tag) \
(((___WORD)ptr)+(tag))

#define ___UNTAG(obj) \
((___WORD*)((obj)&-(1<<___TB)))

#define ___UNTAG_AS(obj,tag) \
((___WORD*)((obj)-(tag)))

Figure 6: C macros to tag and untag references

#define ___CONTAINERREF(c,s,i) \
___TAG(((___WORD*) \

___UNTAG_AS(c,___tSUBTYPED))+ \
(___INT(i) * ___INT(s)), ___tCONTSTRUCT)

Figure 7: Code generated to access a contained structure

(define (##structure-type obj)
(if (##contained? obj)

(##contained-type obj)
(##vector-ref obj 0)))

Figure 8: Type access primitive

kilobytes). Fragmentation of this memory space is no worse
then using C’s malloc since only large memory blocks are
allocated there.

The definition for foo-vector-ref is compiled to a C macro
(Figure 7) that simply bumps the pointer to the vector
and retags it to the contained structure tag. The offset is
calculated by passing it the index of the structure and it’s size
(in words). The structure’s size is provided by the define-
type macro. In order to maintain full transparency when
using regular structure functions on contained structures, the
pointer returned by the accessor is offset by the usual amount
from the first field and thus points two fields into the previous
structure.

The macro or function (foo-vector-set!) supplements the
normal constructor (make-foo). It initializes a structure in
the vector by setting all of its fields to the values passed in
parameters. The compiled code thus resembles closely the
normal constructor without, of course, the allocation.

We have modified the primitives that deal with type test-
ing (##structure-type, ##structure-instance-of?, etc.) to dif-
ferentiate internal references from normal structures (Figure
8) and to recover their type descriptor through the container
tree instead of accessing the first field in the structure.

All the primitives provided except the allocator (where al-
most all the work is done directly in C anyway) are automat-
ically inlined to C macros in code declared as unsafe. Type

(declare (standard-bindings) (extended-bindings)
(fixnum) (not safe) (block) (inlining-limit 0))

Figure 9: Declaration used for the benchmarks

checks in those primitives are also automatically removed by
specializing the calls to the unchecked version.

3.3 Changes to the Garbage Collector
The addition of structure vector primitives requires slight
modifications to the garbage collector. First we need to en-
sure that the container tree is updated whenever a vector is
reclaimed. To do so we introduce a new subtype for struc-
ture vectors (several values are still unused in our subtyping
scheme so this does not pose any problem). Whenever we
reclaim a non-movable object, we test to see if it matches
this subtype and call a method to prune the tree as necessary.
We also need to ensure that a vector is never freed while
a reference to a structure it contain is still live. To do so,
whenever we encounter a reference to a contained structure
(with the tag tCONTSTRUCT), we recover the vector it-
self with GET CONTAINER and substitute it to the object
being scanned.

4. Evaluation
To assess the performance of the new primitives, we use
benchmarks that are implemented both using individually al-
located structures (baseline) and with structure vectors. To
remove outliers, we run each benchmarks 20 times and re-
move the highest and lowest value. We then take the geo-
metric mean of the remaining values. We have set the var-
ious programs to have execution times of at least around 1
second. All the benchmarks were run in both 32 bits and 64
bits mode on a machine with a 2.2 GHz Intel core i7 with 8
GB of RAM.

Our benchmark programs were compiled by using gsc to
generate an executable file. To ensure similar execution be-
tween the baseline and structure vector versions, we use a
set of declarations (Figure 9). The standard-bindings and
extended-bindings declarations allow the compiler to assume
that primitives are never redefined and can thus be inlined.
The fixnum declaration allows the use of fixed precision in-
tegers instead of the generic numeric tower. Not safe lets the
compiler specialize primitives into unsafe versions and per-
form other optimization. Block specifies that the whole pro-
gram is contained in the file. The inlining-limit sets a max-
imum factor of growth that is acceptable during inlining. It
is set to 0 (no growth) to prevent different loop unrolling be-
tween comparable benchmarks. To avoid making unneces-
sary function calls, we also specify that all type definitions
generate their methods as macros.



4.1 Benchmarks
To evaluate important aspects of our system’s performance,
we have a series of benchmarks testing specific aspects:
structure alloc, structure20 alloc, structure access, structure
set!, type access and prop-access. The structure alloc pro-
gram allocates a vector and sets every field to a new point
structure with 2 fields. To do this, the baseline version allo-
cates a vector and sets each field to a reference to the result
of a call to the structure constructor. The version using struc-
ture vectors will allocate one (and initialize the type tree)
and then set internal fields using point-vector-set!. The same
operation is done on structures of 20 fields in structure20 al-
loc. We also measure the time spent on garbage collection
(structure20 alloc gc) and on time taken without factoring
the initial allocation of the vector and the initialization of
the type tree in the new primitive’s case (structure20 alloc
no-init). The structure access program repeatedly accesses
every structure stored in a plain vector of individually allo-
cated structures or a structure vector, structure set! sets them
to a new value instead. The type access and prop-access pro-
grams access the type descriptor or field of a single structure
that is either an internal reference or a normal structure using
the typical accessors defined by define-type. An obvious so-
lution to large sets of small structures would be to ditch the
structure mechanics and write theirs fields inline in a vector
of size #fields× #structures. These fields are not compatible
with the usual structure operations, but benchmarks are in-
cluded where appropriate to show how the basic operations
would compare with structures and structure vectors.

Three other programs, convex envelope, quicksort and
distance sort are also used to cover more normal use cases.
The first uses Jarvis’ algorithm [2] to calculate the convex
envelope of a set of points in a plane. The others uses selec-
tion and quick sort to sort a set of points by distance from the
origin. We use a naive sorting algorithm to have somewhat
of a worst case with regard to the ratio of accesses to alloca-
tions since this sorts a relatively small set of points. We also
ran quicksort and convex-envelope using (declare (safe)) in-
stead to evaluate the performance hit caused by the runtime
type checks.

4.2 Results
The results presented in Table 1 correspond to the imple-
mentation using normal vectors (baseline), the results for
structure vectors and the ratio of structure vector/baseline
(ratio). The implementation using normal vectors with each
fields written directly are under the column vector. The sub-
column 32 and refers to 32 bits and 64 bits results respec-
tively.

Allocating large numbers of structures by using structure
vectors is quite fast. It takes roughly 2% of the time taken by
the baseline version. The time taken to allocate larger struc-
tures shows improvement for the baseline because allocating
fewer larger chunks puts less pressure on the garbage col-

(define-type point id: point macros: x y)

(define count 4000000)

(define (run)
(let ((v (make-vector count #f)))
(let loop ((i (- count 1)) (result #f))
(if (>= i 0)

(begin
(vector-set! v i (make-point 11 22))
(loop (- i 1) v))

v))))

(define s (##exec-stats run))

Figure 10: Baseline structure alloc

lector. The contained version still takes only approximately
12% of the time the baseline takes. We notice that, in the
baseline program, the majority of the time is spent in garbage
collection whereas the structure vector version spends al-
most all of its time mutating the container along with a sub-
stantial time spent initializing the container tree in 64 bits.
Using vectors containing the fields directly instead of struc-
tures yields similar performance to structure vector albeit
slightly worse due to separate calls to vector-set! for every
fields and the arithmetic required to compute the offset.

Accesses to contained structures and their fields takes be-
tween 1.23x (32 bits) and 1.48x (64 bits) as long as the base-
line versions while mutating all the fields in contained struc-
tures takes less than a third of the time taken for normal
structures. Accessing the type descriptor of internal struc-
tures is, as expected, much slower (3.59x and 4.51x). This
requires traversing the container tree, thus doing several in-
direction versus a simple field reference made directly on the
structure. For the normal vector alternative, we obviously
cannot access the type descriptor since it is not stored, but
access to fields is faster then both the baseline and structure-
vector implementations.

The convex envelope benchmark is slightly faster using
a structure vector as large amounts of allocations are per-
formed and balance the actual computation which use many
references. In safe mode, the cost of these references is larger
because of the extra cost associated with type checks and
make the version using a structure vector slightly slower then
the baseline.

On the other hand, we have minimal gains (ratios of
.87 and .85 for 32 bits and 64 bits) on the distance sort
benchmark since we allocate only a few thousand points.
The slight overhead on accesses probably compensates for
most of the gains made in allocation. For the more efficient
quicksort, with its much larger set of points, the ratios vary
from close to one in unsafe mode to around two in safe
mode.

The differences in performance between the baseline and
structure vector versions follow roughly the same trends



baseline structure vector vector
32 64 32 64 32 64

structure alloc 78.47 72.01 1.26 (.02) 1.42 (.02) 1.10 (.01) 3.07 (.04)
structure20 alloc 5.00 5.17 .35 (.07) .65 (.12) 1.46 (.29) 1.40 (.27)
structure20 alloc gc 4.45 4.55 .00 (.00) .00 (.00) .00 (.00) .00 (.00)
structure20 alloc no-init 4.85 5.23 .34 (.07) .57 (.11) 1.46 (.30) 1.40 (.27)
structure access 1.32 1.24 1.63 (1.23) 1.84 (1.48) .95 (.72) .63 (.51)
structure set! 4.64 4.19 1.24 (.27) 1.24 (.30) 1.13 (.24) 2.14 (.51)
type access 2.07 1.85 7.42 (3.59) 8.35 (4.51)
prop-access 1.33 .93 1.19 (.90) .94 (1.01) .95 (.71) .63 (.68)
convex envelope .87 .62 .82 (.93) .55 (.89)
distance sort 3.42 3.52 2.96 (.87) 3.00 (.85)
quicksort 1.36 .81 1.20 (.89) .85 (1.05)
convex envelope safe 6.91 5.50 7.66 (1.11) 5.95 (1.08)
quicksort safe 2.10 1.71 3.67 (1.75) 3.58 (2.09)

Table 1: Benchmark results

in 32 bits but are somewhat more pronounced on both ex-
tremes. With the much reduced costs of initializing and
maintaining the container tree, allocations observe over 60x
speedup for small structures compared to the baseline bench-
mark and a 10x speedup for larger structures. Overall muta-
tions, allocation, field access, type access and distance sort
observe speedups from 64 bits while structure access and
convex envelope are more expensive. Type accesses’ over-
head (ratios of 3.59 vs. 4.51) is slightly reduced by the shal-
lower container tree despite the much smaller amount of
work needed.

We also compared Gambit with structure vectors against
the implementation without on the normal benchmark suit
to measure the impact of the multiple structure type tags on
generic use cases. We found that the average running time
increased by 4% in 32 bits and 9% in 64 bits.

5. Related Works
The idea of compacting data representation by grouping
similar objects together is not new. Region allocation[4–7]
is somewhat commonly done in statically typed languages,
whether manually or automatically. Other approaches to-
ward reducing individual structures’ size have been tried in
Scheme like Chez Scheme’s ftypes [3] that use structures of
foreign data (like smaller integers for instance) similar to
C structs. A similar system allowing statically typed fields
in structures has also been implemented in Gambit Scheme
and is orthogonal to structure vectors. The container tree al-
gorithm is also largely based on the Multics multilevel pag-
ing system introduced in 1975 [1, 8] and frequently used in
operating systems.

5.1 Multilevel Paging System
Paging systems split the whole memory in discrete chunks
(pages) and use an indexing scheme to recover the appropri-
ate page when a reference is made to its content. Multilevel
tables separate the reference into groups of bits and use those

groups to index the various levels in a tree of tables. This is
also essentially what is done by our type tree algorithm with
the reservation that we do not need (nor want) to index the
whole memory and that our pages won’t all be of the same
size. This implies that we need a mechanism to dynamically
add or remove subtrees when necessary in order to preserve
memory.

5.2 Allocation by Regions
Allocating objects of the same type together in memory is
a common strategy to facilitate memory reuse and data lo-
cality. Several approaches are used ranging from manually
managed object pools [6] to statically managed regions per-
forming automatic memory management through a variant
of typed lambda calculus [5]. Those approaches are used in
statically typed languages and make use of type erasure for
efficient representation. They don’t need to bother with run
time type checking so objects don’t have to include typing
information and allocation by regions doesn’t alter the rep-
resentation of objects.

5.3 Chez Scheme’s Ftypes
Keep and Dybvig have introduced C struct analogs in Chez
Scheme to allow interoperability with C functions. These are
used as part of the FFI to specify data structures with stati-
cally typed fields. These fields permit more compact repre-
sentation of structures by possibly using only the required
number of bits and discarding tagging. These structures still
require a header and typing information to allow garbage
collection and must be allocated individually.

6. Conclusion
The implementation of structure vectors in Gambit Scheme
provides programmers with a way to significantly reduce
the memory footprint of large sets of small structures and
group them for better locality. This is done by allocating
the structures in one go in a vector and adding the header



and type descriptor only to the vector instead of keeping
this information on every single instance of the structure.
This more compact representation allow the allocation of n
structures of size f to take up only 2 + fn words instead of
the n(2 + f) words taken by the normal allocation method.

We introduce a multilevel container tree indexed using
the bits in references to unconditionally recover the type de-
scriptors in constant time. This container tree is kept updated
on the allocation and freeing of structure vectors by hooks
added to the runtime and is exposed to the Scheme program
through primitives that are used during dynamic type checks
and accesses. This allows the contained structures to be used
transparently with the existing structure primitives dealing
with the type descriptor.

To make the structure vectors available to the program-
mer, we have introduced a set of new primitives and mod-
ified the define-type macro to generate functions or macros
that use them. These primitives include a constructor and
getter and setter for contained structures. We also ensured
that every method dealing with structures could take an in-
ternal reference without modifications.

Our performance evaluation demonstrate that gains can
be had using structure vectors. On a 64 bits platform, we
observe significant speedups in allocation time and struc-
ture mutation using structure vectors and limited overhead
for most other operations. Predictably, there is a slowdown
(4.51x) on accesses to the type descriptor of internal struc-
tures and to contained structures (1.48x). In 32 bits, the trend
is similar but more pronounced, with large speedups on al-
location and mutations and minor gains to slight overhead
for most other operations except type accesses with a 3.59x
slowdown.
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Abstract
We describe a linear-algebraic encoding for pushdown control-
flow analysis of higher-order programs. Pushdown control-
flow analyses obtain a greater precision in matching calls
with returns by encoding stack-actions on the edges of a
Dyck state graph. This kind of analysis requires a number of
distinct transitions and was not amenable to parallelization
using the approach of EigenCFA. Recent work has extended
EigenCFA, making it possible to encode more complex anal-
yses as linear-algebra for efficient implementation on SIMD
architectures. We apply this approach to an encoding of a
monovariant pushdown control-flow analysis and present a
prototype implementation of our encoding written in Octave.
Our prototype has been used to test our encoding against a
traditional worklist implementation of a pushdown control-
flow analysis.

Keywords abstract interpretation, program analysis, flow
analysis, GPU

1. Introduction
The goal of static analysis is to produce a bound for pro-
gram behavior before run-time. This is desirable for proving
the soundness of code transformations, the absence or pro-
gramming errors, or the absence of malware.

However, static analysis of higher-order languages such
as Scheme is nontrivial. Due to the nature of first-class
functions, data-flow affects control-flow and control-flow
affects data-flow, resulting in the higher-order control-flow
problem. This vicious cycle has resulted in even the simplest
of formulations being nearly cubic [6, 7]. However, a trade-
off exists in any analysis between precision and scalability,
and finding the right balance for a particular application
requires special attention and effort [8].

One way to increase the scalability of an analysis is to
parallelize its execution. To this end we provide a linear en-
coding of a pushdown control-flow analysis, giving potential
speedups on many-core or SIMD architectures such as the
GPU.

Prabhu et al. demonstrated the possibility of running a
higher-order control flow analysis on the GPU [9]. However,
their encoding has the major drawback that it only supports
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binary continuation-passing-style (CPS). It was restricted to
a simple language which could be implemented as a sin-
gle transition rule as not to introduce thread-divergence in
SIMD implementations. Currying all function calls and be-
ing forced to encode all language forms and program values
in the lambda calculus is not ideal for real applications be-
cause it distorts the code under analysis.

Gilray et al. addressed this issue with a demonstration
that richer language forms and values can be used within
this style of encoding by partitioning transfer functions and
more precisely encoding analysis components [5]. We build
on this work, demonstrating that it is not only possible to en-
code richer language forms, but a fundamentally richer anal-
ysis. Specifically, we demonstrate that a pushdown analysis
may also be encoded using this transfer-function partition-
ing. A pushdown analysis has the benefit that it precisely
matches function calls with function returns [10].

In this paper, we review the concrete semantics of ANF
λ-calculus within a CESK machine. We then provide a di-
rect abstraction of the pushdown-machine semantics to a
monovariant pushdown control-flow analysis (0-PDCFA).
We then partition the transfer function and show a linear en-
coding of that analysis which is faithful to its original preci-
sion.

We have also implemented an Octave prototype of our
encoding. Octave allowed us to quickly implement all the
matrix operations from the encoding and compare the out-
put of this implementation with an implementation of the
traditional worklist algorithm for 0-PDCFA. We were able
to verify that on a range of examples their precision was
identical. Our hope is that this linear encoding can be used
for a GPU implementation and attain similar speedups as
EigenCFA [9].

2. Concrete Semantics
We give semantics for a pure λ-calculus in Administrative
Normal Form (ANF). ANF is a core direct-style language
which strictly let-binds all intermediate-expressions [1].
This structurally enforces an order of evaluation and greatly
simplifies a formal semantics. ANF is at the heart of com-
mon intermediate-representations for Scheme and other
higher-order programming languages.



For simplicity we permit only call-sites, let-forms, and
atomic-expressions (variables and λ-abstractions):

e ∈ E ::= (let (x e) e)l

| (ae ae . . . )l

| ael

ae ∈ AE ::= x | lam
lam ∈ Lam ::= (λ (x . . . ) e)

x ∈ Var ::= 〈set of program variables〉
l ∈ Label ::= 〈set of unique labels〉

The concrete semantics for this machine will be given
using a CESK machine [4], which has the following state
space:

ς ∈ Σ = E× Env × Store× Time×Kont
ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ V alue

t ∈ Time = Label∗

κ ∈ Kont = Frame∗

φ ∈ Frame = E× Env × Var

a ∈ Addr = Var × Time
v ∈ V alue = Lam× Env

Each state in the abstract-machine represents control at a
particular expression-context e, with a binding environment
ρ encoding visible bindings of variables to addresses and
a value-store (a model of the heap) mapping addresses to
values. Each state is also specific to a timestamp t encoding a
perfect program-trace and a current continuation κ encoding
a stack of continuation frames.

The only values for this language are closures. To gen-
erate values given an atomic-expression, we will use an
atomic-evaluator. Given a variable, it looks up the address of
the value in the environment and then the value in the store.
Given a λ-abstraction, we simply close it over the current
environment.

A : AE× Σ ⇀ V alue

A(x, (e, ρ, σ, t, κ)) = σ(ρ(x))

A(lam, (e, ρ, σ, t, κ)) = (lam, ρ)

Looking at the grammar for our language, we can see that
there are three expression forms: let bindings, applications,
and atomic expressions. To fully present the semantics, we
will provide a transition relation that has a rule for each form.

The first form we will describe is for let bindings. A let
expression pushes a frame on the stack that captures the
expression to evaluate when we return, the environment to
be used, what variable we will bind, along with the stack as
it exists when we push the new frame.

((let (x e) eκ)
l, ρ, σ, t, κ)︸ ︷︷ ︸

ς

⇒ (e, ρ, σ, t′, κ′)

where κ′ = (eκ, ρ, x) : κ

t′ = l : t

Function calls are a little bit more involved but not too
complicated. We evaluate the function we are applying, as
well as all the arguments. We create new address and set the
values in the store. Note that since these are tail calls the
stack is unchanged.

((λ (x1 . . . xj) e), ρλ) = A(aef , ς)

((aef ae1 . . . aej)
l, ρ, σ, t, κ)︸ ︷︷ ︸

ς

⇒ (e, ρ′, σ′, t′, κ)

where ρ′ = ρλ[xi 7→ (xi, t
′)]

σ′ = σ[(xi, t
′) 7→ A(aei, ς)]

t′ = l : t

Finally, when we come across an atomic expression, we
need to return. We do this by extracting the needed informa-
tion from the top frame, extend and update the environment
and return to using the previous stack.

κ = (e, ρκ, xκ) : κ′

(ael, ρ, σ, t, κ)︸ ︷︷ ︸
ς

⇒ (e, ρ′, σ′, t′, κ′)

where ρ′ = ρκ[xκ 7→ (xκ, t
′)]

σ′ = σ[(xκ, t
′) 7→ A(ae, ς)]

t′ = l : t

These semantics may be used to evaluate a program e by
producing an initial state ς0 = (e, ∅,⊥, (), ()) and comput-
ing the transitive closure of (⇒) from this state. Naturally,
concrete executions may take an unbounded amount of time
to compute in the general case. This manifests itself in the
above semantices as an unbounded set of timestamps lead-
ing to an unbounded address-space, and as an unbounded
stack used to represent the current continuation.

3. Abstract Semantics
We will now provide the abstract semantics of the analysis.
Because our analysis is monovariant and only maintains one
approximation for each variable, there is only one environ-
ment for a given expression-context. Thus it is elided from



the state space. The stack is now the only source of unbound-
edness in these semantics:

ς̂ ∈ Σ̂ = E× Ŝtore× K̂ont

σ̂ ∈ Ŝtore = V̂ ar → V̂ alues

κ̂ ∈ K̂ont = F̂ rame
∗

φ̂ ∈ F̂ rame = E× Var

v̂ ∈ V̂ alues = P(V̂ alue)

d̂ ∈ V̂ alue = Lam

In providing the abstract semantics, we will once again
need a way to evaluate atomic expressions. The atomic eval-
uator is very similar to its concrete counterpart. However,
since there is only one environment, we look up the value
of a variable using it directly. Also, we don’t need to close
lambdas over an environment as their expression-body is al-
ready specific to a particular monovariant environment.

Â : AE× Σ̂ ⇀ V̂ alues

Â(x, (e, σ̂, κ̂)) = σ̂(x)

Â(lam, (e, σ̂, κ̂)) = {lam}

The abstract transition relation is also very similar to its
concrete counterpart. Note that the frames no longer store
environments.

((let (x e) eκ)
l, σ̂, κ̂)︸ ︷︷ ︸

ς̂

≈> (e, σ̂, κ̂′)

where κ̂′ = (eκ, x) : κ̂

Also note that when updating the store we use the least-
upper-bound to remain sound. This permits values to merge
within flow-sets: (σ1 t σ2)(â) = σ1(â) ∪ σ2(â).

(λ (x1 . . . xj) e) ∈ Â(aef , ς̂)

((aef ae1 . . . aej), σ̂, κ̂)︸ ︷︷ ︸
ς̂

≈> (e, σ̂′, κ̂)

where σ̂′ = σ̂ t [xi 7→ Â(aei, ς̂)]

Finally, when we return, we update the variable found in
a stack-frame.

κ̂ = (e, x) : κ̂′

(ae, σ̂, κ̂)︸ ︷︷ ︸
ς̂

≈> (e, σ̂′, κ̂′)

where σ̂′ = σ̂ t [x 7→ Â(ae, ς̂)]

Simply enumerating all the states possible given this ab-
stract transition relation is not guaranteed to terminate. How-
ever, there is a finite representation of the infinite state space
of the stacks. If we use this transition relation to generate a
Dyck state graph, our analysis will terminate. This is accom-
plished by taking the infinite stacks and encoding them into
a finite graph, where the stack frames are labels on edges of
that graph. Intuitively, we are making the explicit result of
cycles in control-flow (unbounded stacks) implicit as cycles
in a control-flow graph.

A Dyck state graph is a set of edges.

G ∈ P(Q× Γ×Q)

The nodes in the graph Q are the parts of an abstract state
ς̂ ∈ Σ̂ sans the stack κ̂ ∈ K̂ont.

q ∈ Q = E× Ŝtore

The edges describe transition between nodes and contain
the stack-action that exists between these nodes. There are
three different stack actions: pushing a frame φ̂+, leaving
the stack unchanged ε, and popping a frame φ̂−.

γ ∈ Γ = φ̂+ | ε | φ̂−

Whether an edge exists in the graph can be taken directly
from the abstract transition relation. We introduce the rela-
tion (

γ−→) ⊆ Q × Γ × Q for edges in the Dyck state graph,
defined in terms of the abstract transition relation.

q
φ̂+

−−→ q′ ⇐⇒ (q, κ̂) ≈> (q′, φ̂ : κ̂)

q
ε−−→ q′ ⇐⇒ (q, κ̂) ≈> (q′, κ)

q
φ̂−

−−→ q′ ⇐⇒ (q, φ̂ : κ̂) ≈> (q′, κ̂)

To efficiently compute the Dyck state graph, an epsilon
closure graph is needed. An epsilon closure graph has edges
between all nodes that have no net stack change between
them. For instance, if we push a frame and then pop a frame,
there should be an epsilon edge between the source node of
the push edge and the target node of the pop edge. This is
the epsilon edge between q1 and q3 below.

q0

γ+
0 // q1

γ+

//

ε

��
q2

γ−
// q3

This allows us to immediately see that γ0 is a possible top
frame for q3 when generating successor edges and nodes for
q3.

3.1 Transfer Function
When computing the analysis, we use a transfer function
f̂ : (Q × Γ × Q) → (Q × Γ × Q) that takes a Dyck state



graph and computes new edges at the frontier of the graph,
generating a new Dyck state graph. We continually apply
this transfer function until a fix-point is reached.

f̂(G) = G ∪
{

(q, γ, q′) : q ∈ Q, q γ−→ q′
}

, where

Q = {q′ : (q, γ, q′) ∈ G} ∪ {q0}

3.2 Global Store Widening
In the given abstract semantics, each state had its own store.
However, to ensure the analysis will converge more quickly,
global store-widening is usually employed. This form of
widening is equivalent to using a global-store for all states
which is computed as the least-upper-bound of all stores
visited at any individual state. To accomplish this we will
remove the store from the nodes of the Dyck state graph and
define the store-widened Dyck state graph as follows:

GO ∈ P(E× Γ× E)

The globally store-widened transfer function then individu-
ally computes a new graph of expressions and stack actions,
and a new global store.

f̂O(GO, σ̂) = (G′O, σ̂
′), where

G′O = GO ∪
{

(e, γ, e′) : e ∈ Qe, (e, σ̂)
γ−→ (e′, )

}
σ̂′ =

⊔{
σ̂′ : e ∈ Qe, (e, σ̂)

γ−→ ( , σ̂′)
}

Qe = {e : ( , , e) ∈ GO} ∪ {e0}

An underscore represents a wildcard, i.e. any value.

3.3 Partitioning the Transfer Function
We can partition this monolithic transfer function, defining
an individualized transfer function for each expression form
in our language: f̂let , f̂calli and f̂ae . These function are de-
fined in precisely the same manner, but only use the rule
applying to their specific language form. After each itera-
tion, we merge the resulting Dyck state graphs and stores,
taking their least-upper-bound. It has been shown that parti-
tioning a system-space transfer function by rule in this man-
ner is sound as the least-upper-bound of the system-spaces
resulting from an application of each, is always equal to the
system-space resulting from a single application of the com-
bined f̂O [5].

4. Linear Encoding
We will construct a transfer function for each abstract transi-
tion relation. This transfer function will update the store and
will also be responsible for creating a Dyck state graph. We
will define these functions using matrix multiplication (×),
outer product (⊗), and boolean or (+). The style of encod-
ing we use is taken directly from the original approach of
EigenCFA [9].

The abstract state space, because it is finite, is easy to
represent in vector and matrix form. If the elements in the
domain are given a canonical order, we can represent a set
of those elements using a bit vector. If an element from the
domain is present in the set, the vector representing that
set should have its bit set at the index corresponding to the
offset of that element in the ordering. In our encoding we
will represent the set of states using a vector ~s ∈ ~S. We
will represent atomic expressions, either variables or values,
with ~a ∈ ~A. And we will use ~v ∈ ~V to represent flow sets of
abstract values.

~s ∈ ~S = {0, 1}|E|

~a ∈ ~A = {0, 1}|V̂ ar|+|V̂ alue|

~v ∈ ~V = {0, 1}|V̂ alue|

We can also encode the abstract syntax tree as matrices.
We can extract the body of a closure using Body or the
variables it binds using Vari. We can also deconstruct the
components of a let expression using Arg1, LetCall and
LetBody.

Body : ~V → ~S

Fun : ~S → ~A

Vari : ~V → ~A

Argi : ~S → ~A

LetCall : ~S → ~S

LetBody : ~S → ~S

The store is a matrix that maps atomic expressions to
abstract values.

σ : ~A→ ~V

We also represent the Dyck state graph using three matri-
ces. These three matrices map states to states, which in the
case of our linear encoding, are expressions in our program.
We use three different matrices to represent the three types
of edges that can be found in the Dyck state graph.

γ+ : ~S → ~S

γε : ~S → ~S

γ− : ~S → ~S

We also use a matrix to represent the epsilon closure
graph which aids in the construction of the matrices encod-
ing the Dyck state graph.

ε : ~S → ~S

We now define the transfer function for the three types of
expressions our language supports, let bindings, applications
and atomic expressions.

For let expressions, we first extract the sub-expression
whose value will be bound to the variable of the let expres-
sion, ~slet × LetCall. We then record the push edge in the
Dyck state graph, γ+ + (~slet ⊗ ~snext).

f~slet (γ+) = (γ+
′)

where ~snext = ~slet × LetCall

γ+
′ = γ+ + (~slet ⊗ ~snext)



Applications are somewhat more involved. We first pull
out of the store the abstract values that we are applying
for the given call site. We then extract the values of the
arguments. We then get variables that we are binding from
the closures we are applying. We then record the updated
values in the store. We must also record that we made a tail-
call in the Dyck state graph. We do this by updating γε. We
then must also update any epsilon edges.

f~scallj
(σ,γε, ε) = (σ′,γε

′, ε′)

where ~vf = ~scallj × Fun× σ

~vi = ~scallj ×Argi × σ

~ai = ~vf ×Vari

σ′ = σ + (~a1 ⊗ ~v1) + . . .+ (~aj ⊗ ~vj)
~snext = ~vf ×Body

γε
′ = γε + (~scallj ⊗ ~snext)

ε′ = fε(ε, ~scallj , ~snext)

Finally, we come to the last case where we have an atomic
expression and must return. We first must compute the flow
set of the atomic expression. We then look up the top frames
of our stack. We then update the environment by binding
the variable found at the top stack frame. We also extract
the expression that we will be executing next. Finally, we
record the pop edge and update the epsilon closure graph
accordingly.

f~sæ(σ, γ+, γ−, ε) = (σ′, γ+
′, γ−

′, ε′)

where ~v = ~sæ ×Arg1 × σ

~spush = ~sæ × ε> × γ+
>

~a = ~spush ×Arg1

σ′ = σ + (~a⊗ ~v)

~snext = ~spush × LetBody

γ−
′ = γ− + (~sæ ⊗ ~snext)

ε′ = fε(ε, ~sæ, ~spush)

The epsilon closure graph aids in the construction of the
Dyck state graph. It contains edges between states that have
no net stack change. This allows us to quickly find the top
frames when we need to return. When updating the epsilon
closure graph, we not only need to record the new edges, but
take all existing predecessors and successors into account.

fε(ε, ~ss, ~st) = ε′

where ~sn = ~st × ε

~sp = ~ss × ε>

ε′ = ε + (~ss ⊗ ~st)
+ (~ss ⊗ ~sn)

+ (~sp ⊗ ~st)
+ (~sp ⊗ ~sn)

5. Example
To help give a better understanding of how the encoding
works, we provide a short example.

(let (idx0 (lambda (vx1) vl2)l1 d̂0)

(id (lambda (wx2)

(let (ax3 (w id)l5)

(a a)l6)l4)d̂1)l3)l0

For this program there are only two denotable values, the
two lambda terms. There are two let expressions, three call
sites, and one atomic reference as the body of a lambda.
There are also four variables in this program.

We will first discuss how you would encode the abstract
syntax tree using matrices. Recall that there are six matrices
that are needed.

First, given a flow set, we want to be able to extract which
expressions are the body of a lambda term. Below we can see
that l2 is the body of the first lambda and l4 is the body of
the second lambda.

Body =

[ l0 l1 l2 l3 l4 l5 l6

d0 0 0 1 0 0 0 0
d1 0 0 0 0 1 0 0

]
We also need a way to extract the function being applied

at a call site, whether it be a lambda term or a variable refer-
ence. Because there are only three call sites in the program,
only three rows in the matrix have entries with non-zero val-
ues. In our example, every call site has a variable reference
in function position.

Fun =



x0 x1 x2 x3 d̂0 d̂1

l0 0 0 0 0 0 0
l1 0 0 0 0 0 0
l2 0 0 0 0 0 0
l3 1 0 0 0 0 0
l4 0 0 0 0 0 0
l5 0 0 1 0 0 0
l6 0 0 0 1 0 0


There must also be a way to extract the arguments of a call

site. This matrix can also be used to determine what atomic
expression we are evaluating when our control state is at an
atomic expression.

Arg1 =



x0 x1 x2 x3 d̂0 d̂1

l0 1 0 0 0 0 0
l1 0 0 0 0 0 0
l2 0 1 0 0 0 0
l3 0 0 0 0 0 1
l4 0 0 0 1 0 0
l5 1 0 0 0 0 0
l6 0 0 0 1 0 0


Once we have a flow set, we want to be able to extract the

variable that we are binding when we apply the functions in



our flow set.

Var1 =

[ x0 x1 x2 x3 d̂0 d̂1

d̂0 1 0 0 0 0 0
d̂1 0 0 1 0 0 0

]
We also need to be able to know what the expression is

whose value we will bind to a variable when we have a let
expression. This lets us know what our successor state will
be. This is used when we push a frame onto our stack.

LetCall =



l0 l1 l2 l3 l4 l5 l6

l0 1 0 0 0 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 1 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0


Given a let expression, we also need to know where

we should return to once we have evaluated the expression
which will provide the value we are binding.

LetBody =



l0 l1 l2 l3 l4 l5 l6

l0 0 0 0 1 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 0 1
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0


The store for this program is actually rather small. We are

interested in finding out which lambda terms flow to which
variables. With four variables and two lambda terms there
are only eight entries that can be set. Note that we have an
identity matrix at the bottom of the store.

σ =



d̂0 d̂1

x0 0 0
x1 0 0
x2 0 0
x3 0 0

d̂0 1 0
d̂1 0 1


To encode a Dyck state graph we actually need three

separate matrices. A value of one represents that there exists
an edge between two states. The contents of the frame (the
variable to bind and the expression to execute next) are
both available using Arg1 and LetBody. After running
the analysis on the above program, the results of the three

matrices would be as follows.

γ+ =



l0 l1 l2 l3 l4 l5 l6

l0 0 1 0 0 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 0 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0



γ− =



l0 l1 l2 l3 l4 l5 l6

l0 0 0 0 0 0 0 0
l1 0 0 0 1 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 0
l4 0 0 0 0 0 0 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0



γε =



l0 l1 l2 l3 l4 l5 l6

l0 0 0 0 0 0 0 0
l1 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0
l3 0 0 0 0 1 0 0
l4 0 0 0 0 0 0 0
l5 0 0 0 0 0 0 0
l6 0 0 0 0 0 0 0


We also need the epsilon closure graph. Initially it is an

identity matrix because every state has an implicit epsilon
edge to itself.

ε =



l0 l1 l2 l3 l4 l5 l6

l0 1 0 1 1 0 0 0
l1 0 1 0 0 0 0 0
l2 0 0 1 0 0 0 0
l3 0 0 1 1 0 0 0
l4 0 0 0 0 1 0 0
l5 0 0 0 0 0 1 0
l6 0 0 0 0 0 0 1


6. Prototype Implementation
To help verify our encodings we produced a prototype im-
plementation in Octave. Octave allowed us to quickly im-
plement the encoding as a sanity check, without having to
worry about all the intricacies of coding for the GPU. Oc-
tave is a programming language for numerical analysis and
as such has strong support for various matrix operations.

We wrote a Scheme front end that would parse the pro-
grams and write the abstract syntax tree in matrix form to
be consumed by our Octave implementation. We also wrote
utility code that would consume the output of our Octave
implementation and produce output in a more human con-
sumable format. This allowed us to easily view the store and
Dyck state graph generated from the analysis.

We ran our prototype implementation on a small suite of
simple benchmarks. We then compared the results of our



Octave implementation to the output of a traditional work
list based pushdown control-flow analysis implementation.
We took the implementation of Sergey [3] and modified it to
use a single store so it would perform the same analysis as
the analysis using our linear encoding. The output from both
implementations were identical.

7. Conclusion
We have described a linear encoding for a pushdown control-
flow analysis as originally formulated by Earl et al. [3]
building upon the general framework of abstract interpreta-
tion [2]. By precisely matching calls and returns a pushdown
control-flow analysis gives even more precision than a tradi-
tional finite state control-flow analysis. By demonstrating the
feasibility of a linear encoding, we have demonstrated that it
is at least possible to run a pushdown control-flow analysis
on a SIMD architecture. Though a direct translation would
likely be inefficient as the matrices are very sparse. Novel
techniques such as those used in EigenCFA would need to
be employed [9]. In the future we hope to demonstrate that
this encoding is not only feasible, but practical and useful as
well.
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Abstract
Recent work in abstracting abstract machines provides a
methodology for deriving sound static analyzers from a con-
crete semantics by way of abstract interpretation. Conse-
quently, the concrete and abstract semantics are closely re-
lated by design. We apply Galois-unions as a framework for
combining both concrete and abstract semantics, and explore
the benefits of being able to express both in a single seman-
tics. We present a methodology for creating such a unified
representation using operational semantics and implement
our approach with and A-normal form (ANF) λ-calculus for
a CESK style machine in PLT Redex.

1. Introduction
Static analyses aim to reason about the behavior of programs
before run-time and have numerous applications including
compiler optimization, malware detection, and program ver-
ification. Abstract interpretation is a highly general approach
to static analysis which produces interpreters which use an
approximate abstract semantics for evaluation, instead of a
fully precise semantics. Accepting imprecision allows anal-
ysis designers to ensure termination, and indeed a reason-
able bound on the complexity of their analyses. Current tech-
niques in this form of static analyses requires the implemen-
tation of two separate interpreters. As we will show concrete
semantics and abstract semantics frustratingly resemble one
another, leading to large tracts of almost duplicated code in
the implementations.

In the Cousots’ foundational work on abstract interpre-
tation, they note that the concrete semantics of a language
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is also a static analysis of that language, albeit an incom-
putable one [3][4]. We exploit this fact to produce a unified
representation of concrete and abstract interpreters we call
a Galois union. We will show that it is possible to system-
atically enhance an abstract interpretation calculated from a
Galois connection (a formal relationship between concrete
and abstract semantics) to form this union. For the cost of a
static analyzer, one gets an interpreter for free.

We further show how to apply this unified framework for
switching between the concrete and abstract semantics mid-
analysis. This allows an analysis to use concrete evaluation
during the initialiation phase of a program so that top-level
definitions are evaluated precisely before switching to an
approximate semantics which ensures termination.

We elucidate a number of additional benefits of our uni-
fied representation of concrete and abstract semantics:

• It saves engineering time and code by removing the ne-
cessity of building a separate interpreter.
• This in-turn promotes maintainability of the code base

and improves robustness because testing the interpreter
simultaneously tests the analyzer and vice versa.
• It provides a unified framework for combining static and

dynamic analysis.

1.1 Contributions
We make the following contributions:

1. Galois unions: A theory for unifying analyses and inter-
preters.

2. The extraction of a CPS interpreter from k-CFA [11, 12].

In the following section we examine the similarity between
a concrete and abstract semantics for the λ-calculus in
continuation-passing-style (CPS). Section 3 presents a re-
view of the theory for producing sound static analyses using
Galois connections and in section 4 we present a unified
theory of Galois unions and how they may be derived auto-
matically from a Galois connection. In section 5 we provide
a case study of the CPS-λ-calculus , in section 6 we dis-



cuss the implementation, and in section 7 we discuss related
work.

2. Semantics of CPS
To demonstrate the similarity of concrete and abstract se-
mantics it is instructive to define a language, show the cor-
responding machine that interprets it, and show the abstract
machine that analyzes it. We do this for the pure λ-calculus
in continuation-passing-style (CPS). This language only per-
mits call-sites in tail-position, so continuations must be rei-
fied as a call-back function to be invoked on the result.[1]

e ∈ Exp = Lam + Var [expressions]
v ∈ Var = 〈variables〉 [variables]

lam ∈ Lam ::= λv1 . . . vn.call [λ-terms]
call ∈ Call ::= e0 e1 . . . en [function application]

2.1 Concrete and Abstract State Space
Below is the concrete machine. We define a concrete state-
space for CPS λ-calculus:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr ⇀ D
d ∈ D = Clo

clo ∈ Clo = Lam× Env
a ∈ Addr = 〈an infinite set of addresses〉,

and an abstract state-space:

ς̂ ∈ Σ̂ = Call>⊥ × Ênv × Ŝtore

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr → D̂

d̂ ∈ D̂ = Ĉlo

ĉlo ∈ Ĉlo = Lam>⊥ × Ênv

â ∈ Âddr = 〈a finite set of addresses〉.
The concrete and abstract state-spaces look very similar.
They differ slightly in their stores. The concrete semantics
has an infinite set of addresses and it maps an address to a
closure. The abstract semantics obtains a finite state-space
by bounding the number of addresses in the store. For this
reason, multiple closures may share an address, so flow-sets
of possible closures are indicated by each address.

2.2 Concrete and Abstract Semantics
The transfer function f : Σ → Σ describes the concrete
semantics:

([[(f æ1 . . . æn)]], ρ, σ)⇒ (ce, ρ′′, σ′)

where ([[(λ (v1 . . . vn) ce)]], ρ′) = A(f, ρ, σ)

di = A(æi, ρ, σ)

ai = alloc(xi, ς)

ρ′′ = ρ′[vi 7→ ai]

σ′ = σ[ai 7→ di]

where the function A : Exp × Env × Store → D is the
argument evaluator:

A(v, ρ, σ) = σ(ρ(v))

A(lam, ρ, σ) = (lam, ρ),

and the allocator alloc : Var × Σ → Addr allocates a fresh
address.

A series of calculations (Appendix A.1) then finds a com-
putable static analysis:

([[(f æ1 . . . æn)]], ρ̂, σ̂) ; (ce, ρ̂′′, σ̂′)

where ([[(λ (v1 . . . vn) ce)]], ρ̂′) = Â(f, ρ̂, σ̂)

d̂i = A(æi, ρ̂, σ̂)

âi = âlloc(xi, )

ρ̂′′ = ρ′[v̂i 7→ âi]

σ̂′ = σ̂ t [ai 7→ di]

where the function Â : Exp × Ênv × Ŝtore → D̂ is the
abstract evaluator:

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Â(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

Importantly, the abstract allocator produces a finite num-
ber of addresses: âlloc : Var × Σ̂→ ˆAddr.

2.3 Abstracting abstract-machines
The approach of abstracting a small-step abstract-machine
semantics produces a clean correspondence between the in-
terpreters because all unboundedness may be focused on
a single machine component and then removed upon ab-
straction. [9] In the above example, this is done by limit-
ing the address-space. For more complex abstract-machines
with other sources of recursion, threading them through the
address-space yields an approximation of these components
automatically. Take for example an explicit stack of con-
tinuations; in an concrete-semantics an unbounded stack is
required to ensure perfect precision. In an approximate se-
mantics however, we may obtain a bounded stack by store-
allocating continuation-frames as would be done implic-
itly in our CPS language. [8] In this way, the recursion of
this stack is explicitly cut and made finite. With this style
of abstraction, it is the only step necessary for introduc-
ing non-determinism into the semantics and for bounding
the machine’s state-space, leading to a computable over-
approximation.

Comparing the two semantics it is evident the abstract
semantics are isomorphic to the concrete semantics. It would
be convenient to be able to unify the semantics and build one
interpreter. Galois connections are the starting point of our
unification through galois unions.



3. Galois Connections
For the purpose of self-containment, we review Galois con-
nections and adjunctions as used in abstract interpretation.
Readers already versed in Galois theory and adjunctions may
wish to skim or skip this section. Informally, Galois connec-
tions and adjunctions are a generalization of isomorphism to
partially ordered sets. That is, in a Galois connection, the
two sets need not be locked into a one-to-one, structure-
preserving correspondence; rather, a Galois connection en-
sures the existence of order-preserving maps between the
sets.
Static analyses use Galois connections because a Galois con-
nection determines the tightest projection of a function over
one set, e.g., the concrete transfer function, into another set.
This projection is frequently interpretable as the optimal
static analysis.[10]

3.1 Conventions
A function f : X → X is order-preserving or monotonic
on poset (X,v) iff x v x′ implies f(x) v f(x′). The
natural ordering of a function over posets is compared range-
wise; that is:

f v g iff f(x) v g(x) for all x ∈ dom(X).

3.2 Review of Galois Connections
There are two kinds of Galois connections: monotone Ga-
lois connections and antitone Galois connections. Our work
focuses on monotone Galois connections, since antitone Ga-
lois connections are rarely used in static analysis.1 From this
point forward, Galois connection refers to monotone Galois
connection.

Definition 3.1. The 4-tuple (X,α, γ, X̂) is a Galois con-
nection where:

• (X,vX) is a partially ordered set;
• (X̂,vX̂) is a partially ordered set;
• α : X → X̂ is a monotonic function; and
• γ : X̂ → X is a monotonic function;

such that:

γ ◦ α w λx.x and α ◦ γ v λx̂.x̂. (3.1)

The proposition, “(X,α, γ, X̂) is a Galois connection,” is
denoted X −−→←−−α

γ
X̂ .

In static analysis, the set X is the concrete space and the
set X̂ is the abstract space, while the functions α and γ are
the abstraction and concretization maps.

The precise formulation of the Galois constraint on maps
(3.1) is useful in proofs, but an equivalent (if less terse)
formulation of it is more intelligible:

γ(α(x)) w x for all x ∈ X and α(γ(x̂)) v x̂ for all x̂ ∈ X̂ .

1 In fact, we cannot find a paper in static analysis outside of the Cousots’
original 1979 paper [4] that makes use of antitone Galois connections.

Informally, γ(α(x)) w x means that abstraction fol-
lowed by concretization will not discard information, while
α(γ(x̂)) v x̂means that concretization followed by abstrac-
tion may choose a more precise representative. Ordinarily,
the second constraint is strengthened to equality, so that:

α(γ(x̂)) = x̂,

in which case, we are dealing with a Galois insertion. In a
Galois insertion, there is only one abstract representative for
each concrete element, however any given abstract element
may have one or more concrete representatives. In most
abstract interpretations, the Galois connection is a Galois
insertion.

3.3 Adjunctions
It is often useful to cast a Galois connection as its equivalent
adjunction.

Definition 3.2. An adjunction is a 4-tuple (X,α, γ, X̂)
where:

• (X,vX) is a partially ordered set;
• (X̂,vX̂) is a partially ordered set;
• α : X → X̂ is a monotonic function; and
• γ : X̂ → X is a monotonic function;

such that:
α(x) v x̂ iff x v γ(x̂).

Theorem 3.1. (X,α, γ, X̂) is a Galois connection iff it is
an adjunction[10].

3.4 Calculating the optimal analysis from a Galois
connection

Galois connections allow the optimal static analysis to be
calculated from a concrete semantics. If X −−→←−−α

γ
X̂ and the

function f : X → X is monotonic, then the projection of
the function f into the poset X̂ is the function f̂ = α ◦
f ◦ γ. In effect, the function f̂ concretizes its input, runs
the concrete function, and then re-abstracts the output. If the
function f is a concrete semantics, then the projection f̂ is
its optimal static analysis (or the abstract semantics).

It is not necessary to prove a calculated analysis correct,
because all calculated analyses obeys the expected simula-
tion theorem:

Theorem 3.2. If X −−→←−−α
γ

X̂ and the function f : X → X

is monotonic, then the function f̂ = α ◦ f ◦ γ simulates the
function f ; that is, if:

α(x) v x̂,

then:
α(f(x)) v f̂(x̂).



Proof. Assume α(x) v x̂.

f̂(x̂) = (α ◦ f ◦ γ)(x̂)

= (α ◦ f)(γ(x̂))

w (α ◦ f)(x) by monotonicity of (α ◦ f)

and γ(x̂) w x
= α(f(x)).

2

In fact, given an optimal analysis f̂ , any function f̂ ′ such that
f̂ ′ w f̂ is also a sound simulation of the concrete function f .

4. Galois unions
The Galois union of a Galois connection provides a common
space in which to express both the concrete and abstract
semantics. Given a Galois connection X −−→←−−α

γ
X̂ , a Galois

union consists of a third poset X̃—the union space—and
two more Galois connections: a concrete-union connection,
X −−→←−−µ

ν
X̃ , and an abstract-union connection, X̂ −−→←−−κ

η
X̃:

X̃

ν
��

η

��
X

µ

??

α // X̂
γ

oo

κ

__

The newly introduced Galois connections are constrained so
that the projection of the concrete semantics into the union
space remains equivalent to the concrete semantics, while
the projection of the optimal analysis remains equivalent to
the optimal analysis:

Definition 4.1. The structure (X̃, µ, ν, κ, η) is a Galois
union with respect to the Galois connection X −−→←−−α

γ
X̂

iff X −−→←−−µ
ν

X̂ and X̃ −−→←−−η
κ

X̂ , and:

µ ◦ ν = λx̃.x̃ (4.1)

ν ◦ µ = λx.x (4.2)

η ◦ κ = λx̂.x̂ (4.3)

η = α ◦ ν. (4.4)

Informally, constraints (4.1) and (4.2) indicate that the
union space X̃ is actually isomorphic to the concrete space;
we can move between them with absolutely no loss of pre-
cision or information. Constraint (4.3) means that we can
inject from the abstract space into the union space with no
loss of precision, while constraint (4.4) indicates that the ab-
straction map from the union space to the abstract space is
isomorphic to the abstraction map from the concrete space
to the abstract space.

It is irrelevant how one decides to construct the Galois
union of a Galois connection, because all such unions are
structurally identical to one another:

Theorem 4.1. All Galois unions of a Galois connection
X −−→←−−α

γ
X̂ are equivalent up to an order-preserving iso-

morphism.

Proof. Let X −−→←−−α
γ

X̂ be a Galois insertion. Let
(X̃, µ, ν, κ, η) and (X̃ ′, µ′, ν′, κ′, η′) be two Galois unions.
We shall construct order-preserving maps, f and f ′, be-
tween these two unions, and then show that these maps are
inverses to each other. Define the functions f : X̃ → X̃ ′ and
f ′ : X̃ ′ → X̃ so that:

f = µ′ ◦ ν
f ′ = µ ◦ ν′.

Then, observe:

f ◦ f ′ = (µ′ ◦ ν) ◦ (µ ◦ ν′)
= µ′ ◦ (ν ◦ µ) ◦ ν′

= µ′ ◦ ν′

= λx̃′.x̃′.

An identical argument shows that f ′ ◦ f = λx̃.x̃. 2

4.1 The natural Galois union
Given a Galois connection, we can construct a “natural”
Galois union from its abstraction and concretization maps.
Given a Galois connection X −−→←−−α

γ
X̂ , find the set of con-

crete elements precisely represented in the abstract, P :

P = {x : γ(α(x)) = x} .

The natural union space is then X̃ = X̂ + (X − P ) with
ordering (vX̃):

x vX̃ x′ iff x vX x′

x vX̃ x̂′ iff x vX γ(x̂′)

x̂ vX̃ x′ iff γ(x̂) vX x′

x̂ vX̃ x̂′ iff γ(x̂) vX γ(x̂′).

The definition of the natural Galois union (X̃, µ, ν, κ, η) is:

µ(x) =

{
x x 6∈ P
α(x) x ∈ P

ν(x̃) =

{
x x ∈ X
γ(x) x ∈ X̂

κ(x̂) = x̂

η(x̃) =

{
x̃ x̃ ∈ X̂
α(x̃) x̃ ∈ X .

4.2 Projecting into the Galois union
We can use the two additional Galois connections provided
by the Galois union to project both the concrete and the



abstract semantics into the shared union space. According
to the Galois connection X −−→←−−µ

ν
X̃ , the projection of the

monotonic concrete semantics function f : X → X into the
union space can be calculated, f̃ : X̃ → X̃:

f̃ = µ ◦ f ◦ ν.

The projection of the optimal analysis f̂ : X̂ → X̂ into the
union space may be similarly calculated:

˜̂
f = κ ◦ f̂ ◦ η

= κ ◦ α ◦ f ◦ γ ◦ η.

4.3 The lattice of semantics
At this point, we are close to our goal of a unified im-
plementation. We have two separate functions—a concrete
semantics for interpretation and an abstract semantics for
analysis—that inhabit a common state-space. Our next task
is to relate these two functions to one another in order to
guide a unified implementation. To do so, we will show that
these two functions actually form the top and bottom of an
entire lattice of hybrid semantics. That is, the bottom of this
lattice is the concrete semantics, and the top of this lattice is
the optimal analysis.

To construct the lattice, we first show that the concrete
semantics (f̃ ) are weaker than the optimal analysis ( ˜̂

f ) ac-
cording to the natural ordering on functions:

Theorem 4.2. Given a Galois connection X −−→←−−α
γ

X̂ , a
Galois union thereof (X̃, µ, ν, κ, η), and a monotonic func-
tion f : X → X , the projection of f into the union space,
f̃ : X̃ → X̃ is weaker than the projection of the projection
of f into X̂ into X̃ , ˜̂

f ; that is:

f̃ v ˜̂
f ,

or equivalently:

f̃(x̃) v ˜̂
f(x̃) for all x̃ ∈ X̃ .

Proof. Pick any x̃ ∈ X̃ . We must show that f̃(x̃) v ˜̂
f(x̃). We

proceed by cases.
• Case x̃ ∈ X: Observe that:

f̃(x̃) = (µ ◦ f ◦ ν)(x̃)
= f(x̃) when f(x̃) 6∈ P or α(f(x̃)) when f(x̃) ∈ P ,

and that:

˜̂
f(x̃) = (κ ◦ f̂ ◦ η)(x̃)

= (κ ◦ α ◦ f ◦ γ ◦ η)(x̃)
= (κ ◦ α ◦ f ◦ γ ◦ (α ◦ ν))(x̃)
= (κ ◦ α ◦ f ◦ γ ◦ α)(x̃)
w (κ ◦ α ◦ f)(x̃)
= α(f(x̃)).

We must show that f(x̃) vX̃ α(f(x̃)) when γ(α(f(x̃))) =X

f(x̃), and this side condition directly satisfies the definition of
subsumption.

• Case x̃ ∈ X̂: Observe that:

f̃(x̃) = (µ ◦ f ◦ ν)(x̃)
= f(γ(x̃)) when f(γ(x̃)) 6∈ P or α(f(γ(x̃)))

when f(γ(x̃)) ∈ P ,

and that:
˜̂
f(x̃) = (κ ◦ f̂ ◦ η)(x̃)
˜̂
f(x̃) = (κ ◦ f̂)(x̃)

= (κ ◦ α ◦ f ◦ γ)(x̃)
= α(f(γ(x̃))),

which leads to a resolution identical to the prior case.

2

Knowing that the concrete semantics is weaker than the
abstract semantics under the partial order on the union space,
we know that the ordered interval [f̃ ,

˜̂
f ]2 will be nonempty.

Furthermore, if X̃ is a lattice (and it nearly always will be in
static analysis), then we can define the join of two semantics
function g, h ∈ [f̃ ,

˜̂
f ]:

g t h = λx̃.g(x̃) t h(x̃),

which means that the function space [f̃ ,
˜̂
f ] is itself a lattice.

4.4 Exploiting the lattice: Abstractable interpretation
Practically speaking, the lattice of semantics means that a
static analysis may choose to transition using any member
of that lattice. This, in turn, leads to a tactic for static analy-
sis that we term abstractable interpretation. Under this tac-
tic, analysis begins execution with the concrete semantics.
The analysis continues execution with the concrete seman-
tics until it encounters non-determinism (I/O) or until a con-
servative heuristic detects non-terminating behavior.3 At this
point, the analysis then widens the semantics itself (rather
than widening the state of the analysis) to a point higher up
the lattice of semantics.

This simple tactic offers practical benefits for at least one
common static analysis problem: the global data initializa-
tion problem [2]. Consider all of the data that is written once
during or shortly after a program’s initialization, e.g., vir-
tual function tables in a C++ executable and top-level defines
in a Scheme program. In an ordinary abstract interpretation,
global data is seen as having two possible values simultane-
ously: the uninitialized value and then the value it holds for

2 This is the interval construction from Tarski’s proof of his lattice-theoretic
fixed point theorem [13], whereby [a, b] = {c : a v c v b}.
3 For example, a suitable conservative heuristic is “the program may be non-
terminating if it has taken more than n transitions.”



the program’s lifetime. Initializing a static analysis by first
executing the concrete semantics for as long as possible al-
lows all of this uninitialized data to be set to its final value
with strong updates before the true static analysis phase.

5. Case Study: CPS λ-calculus/k-CFA
To demonstrate the applicability of Galois unions, we will
construct a structural Galois-connection-based abstract in-
terpretation of continuation-passing style (CPS) λ-calculus
that was examined in section 2, which yields k-CFA. We
will then construct a Galois union for a single substructure
within this abstract interpretation: abstract addresses. Me-
chanically, this change is small, yet it allows the allocation
function parameter to promote the abstract semantics back
into a concrete semantics, in addition to determining the
context-sensitivity of k-CFA.

We use a CPS λ-calculus:

e ∈ Exp = Lam + Var [expressions]
v ∈ Var = 〈variables〉 [variables]

lam ∈ Lam ::= λv1 . . . vn.call [λ-terms]
call ∈ Call ::= e0 e1 . . . en [function application].

5.1 Constructing the Galois connection
We define a concrete state-space for continuation-passing
style λ-calculus:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var→ Addr
σ ∈ Store = Addr → D
d ∈ D = Clo

clo ∈ Clo = Lam× Env
a ∈ Addr is an infinite set of addresses,

and an abstract state-space:

ς̂ ∈ Σ̂ = Call>⊥ × Ênv × Ŝtore

ρ̂ ∈ Ênv = Var→ Âddr

σ̂ ∈ Ŝtore = Âddr → P
(
D̂
)

d̂ ∈ D̂ = Ĉlo

ĉlo ∈ Ĉlo = Lam>⊥ × Ênv

â ∈ Âddr is a finite set of addresses.

The Galois connection process begins by examining the
leaves of the state-space. In this case, the key leaf is the
set of addresses: Addr . We assume some address-abstractor
β : Addr → Âddr , β maps infinite address spaces to the
finite set of abstract spaces. We then use it to define a Galois
connection:

(P (Addr), α, γ, Âddr).

This is the particular Galois connection that we will revisit
when constructing the Galois union. We can lift this Galois
connection to a function space:

(P (Var→ Addr), α1, γ1,Var→ Âddr)

= (P (Env), α1, γ1, Ênv).

λ-terms lift into a flat Galois connection:

(P (Lam), α2, γ2, Lam
>
⊥),

which makes it easy to construct a Galois connection over
closures:

(P (Lam× Env), α3, γ3, Lam
>
⊥ × Ênv)

= (P (Clo), α3, γ3, Ĉlo).

By promoting closures to a fully relational Galois connec-
tion, we have a Galois connection for values:

(P (Clo), α4, γ4,P(Ĉlo)) = (P (D), α4, γ4, D̂).

Lifting once again yields a Galois connection over stores:

(P (Addr → D), α5, γ5, Âddr → D̂)

= (P (Store), α5, γ5, Ŝtore).

The Galois connection for call sites is flat:

(P (Call), α6, γ6,Call
>
⊥).

Combining all of the above yields a Galois connection on
states:

(P (Call× Env × Store), α7, γ7,Call
>
⊥ × Ênv × Ŝtore)

= (P (State), α7, γ7, Ŝtate),

which can be lifted into a more precise abstraction:

(P (State), α8, γ8,P(Ŝtate)).

5.2 Calculating an abstract semantics
The transfer function f : Σ → Σ describes the concrete
semantics:

f

ς︷ ︸︸ ︷
([[e0 e1 . . . en]], ρ, σ) = (call , ρ′′, σ′), where:

([[λv1 . . . vn.call ]], ρ
′) = A(e0, ρ, σ)

ai = alloc(vi, ς)

ρ′′ = ρ′[vi 7→ ai]

σ′ = σ[ai 7→ di]

di = A(ei, ρ, σ),

where the function A : Exp × Env × Store → D is the
argument evaluator:

A(v, ρ, σ) = σ(ρ(v))

A(lam, ρ, σ) = (lam, ρ),



Figure 1. Injection Into the Start State

and the allocator alloc : Var × Σ → Addr allocates a fresh
address.

Promoting the transfer function to sets gives the function
F : P (Σ)→ P (Σ):

F (S) = f.S = {f(ς) : ς ∈ S} ,

which allows us to calculate the optimal analysis, F̂ = α8 ◦
F ◦ γ8.

A series of calculations (Appendix A.1) then finds a com-
putable static analysis:

F̂{

ς̂︷ ︸︸ ︷
(call , ρ̂, σ̂)} v


(call ′, ρ̂′′, σ̂′) :



âi = âlloc(vi, ς̂)
([[λv1 . . . vn.call ]], ρ̂′)

∈ Â(e0, ρ̂, σ̂)
ρ̂′′ = ρ̂′[vi 7→ âi]

σ̂′ = σ̂ t [âi 7→ d̂i]

d̂i = Â(ei, ρ̂, σ̂)




,

where the function Â : Exp × Ênv × Ŝtore → D̂ is the
abstract evaluator:

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Â(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

And, we have the constraint whereby any function âlloc such
that:

α7 {ς} v ς̂ implies α {alloc(v, ς)} = âlloc(v, ς̂),

leads to a sound analysis.

5.3 Constructing the Galois union
As it turns out, constructing the Galois union for the entire
Galois connection over state-spaces P (Σ) −−−→←−−−α8

γ8 P(Σ̂),
while sufficient, is not necessary. Rather, as is often the case
in practice, it is sufficient (and easier) to construct the Galois
union for only the leaves of the state-spaces. And, in this
case, the only leaf of consequence is the Galois connection
over addresses: P (Addr) −−→←−−α

γ
Âddr .4 The natural Galois

union-space for addresses is the set Ãddr ⊂ P (Addr) +

Âddr , which then percolates up to create a union-space for

4 Constructing the Galois unions of the other leaves—Var and Call—yields
exactly the abstract space again.

states:

ς̃ ∈ Σ̃ = Call>⊥ × Ẽnv × S̃tore

ρ̃ ∈ Ẽnv = Var→ Ãddr

σ̃ ∈ S̃tore = Ãddr → D̃

d̃ ∈ D̃ = P(C̃lo)
˜clo ∈ C̃lo = Lam>⊥ × Ẽnv .

5.4 Calculating a unified implementation
To extract the unified implementation, we replace the set of
abstract addresses with the set of unioned addresses, and
repeat the prior projection process exactly. This results in
a “new” unified transfer function:

F̃{

ς̃︷ ︸︸ ︷
(call , ρ̃, σ̃)} v


(call ′, ρ̃′′, σ̃′) :



ãi = ãlloc(vi, ς̃)
([[λv1 . . . vn.call ]], ρ̃′)
∈ Ã(e0, ρ̃, σ̃)

ρ̃′′ = ρ̃′[vi 7→ ãi]

σ̃′ = σ̃ t [ãi 7→ d̃i]

d̃i = Ã(ei, ρ̃, σ̃)




.

Of course, these transfer functions looks identical (modulo
t̃ildes and ĥats) to the previously derived transfer function.
The difference comes in that the allocation function, ãlloc :
Var × Σ̃ → Ãddr—which allocates addresses—is now
free to allocate sets of concrete addresses alongside abstract
addresses. If this allocation function mimics the behavior
of the original concrete allocator (by allocating singletons),
then the result is a sound and complete simulation of the
concrete semantics; but if this allocation function mimics
the behavior of the abstract allocator, the result is k-CFA. In
practice, the implementations of either allocator takes about
one line of code, which means that for the cost of the static
analysis plus one line of code, we also obtain the concrete
semantics.

6. Implementation: CESK
To show how the unified representation works in practice
we developed an implementation5 of ANF λ-Calculus based
on the CESK machine [6]modified to use galois unions. To
implement it we used the domain specific language PLT
Redex[7]. The implementation will use the concrete seman-
tics for an arbitrarily large yet finite amount of states and

5 http://github.com/LeifAndersen/CESKRedex/



Figure 2. Branching to Multiple States

conclude with the abstract semantics. The user may spec-
ify the threshold at which it switches from the concrete to
the abstract machine. The machine can also run completely
concretely or completely abstractly.

(define-metafunction CESK~

alloc~ : store~ x -> addr~

[(alloc~ store~ x)

,(if

((length (flatten (term store~))) . < . 100)

(variable-not-in (term store~) (term x))

(term x))])

Figure 3. Allocation Metafunction

The abstract semantics and the unified semantics differ
in the allocation function. The abstract semantics allocates
abstract addresses and abstract values. The unified semantics
generates concrete values in addition to abstract values but
limits the allocation such that it still contains a finite amount
of space. This small change allows the allocation function
parameter to promote the abstract semantics back into a
concrete semantics.

An example makes it clear to see the machine abstract
itself and allocate concretely and abstractly.

6.1 Example: Factorial
The code under analysis in Figure 2 is Factorial of four.
To demonstrate the effectiveness of the CESK machine, as
shown in Figure 1, the program is injected into a start state
with an empty environment, an empty store, and the halt con-
tinuation. The program continues in the concrete semantics
for a finite amount of states.

Eventually the code will reach Figure 3 in which it will
switch to the abstract semantics and branch into multiple
states until the analysis terminates.The ability to switch from
concrete to abstract and visualize the states gives analysts
using this tool a clearer picture of their analyses.

(letrec

((f (lambda (x)

(if (= x 0)

1

(let ((x-1 (- x 1)))

(let ((y (f x-1)))

(* x y)))))))

(f 4))

Figure 4. Factorial

In our implementation we built the concrete interpreter,
an abstract interpreter and a unified interpreter to compare
the amount of engineering effort that was needed. In terms of
lines of code the abstract machine was 14 more lines of code
than the concrete machine. The unified machine was the
same number of lines of code as the abstract machine. For
14 extra lines of code we get a static analyzer that doubles
as a concrete interpreter.

7. Related Work
The idea that a concrete interpreter is also an incomputable
static analysis is at least as old the Cousots’ original work [3]
on abstract interpretation. The inverse of that idea—that a
static analysis can be systematically engineered to also serve
as a concrete interpreter in addition to its regular duties—is,
to the best of our knowledge, novel. Our definition of Galois
Union, a property of a Galois connection, is novel as well.

The Cousots’ early work details using Galois connections
to systematically design static analyses [4]. The Cousots’
later work on higher-order abstract interpretation [5] and
Nielson, Nielson and Hankin’s work [10] provide a com-
plete treatement of both abstract interpretation and Galois



connections. k-CFA, in the form that we derive it here, is
closely related to Shivers’s original formualtion [12].

8. Conclusion
Our goal was to use Galois unions to guide an implementa-
tion of a static analyzer that doubles as a concrete interpreter.
We provided a framework to systematically enhance an ab-
stract interpretation to also behave as a concrete interpreter.

This material is partially based on research sponsored by
DARPA under agreement number FA8750-12- 2-0106 and
by NSF under CAREER grant 1350344. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright no-
tation thereon.
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A. Appendix
A.1 Calculation of k-CFA
We include the remainder of the calculation of k-CFA here:

F̂ {(call , ρ̂, σ̂)} = (α8 ◦ F ◦ γ8) {(call , ρ̂, σ̂)}
= (α8 ◦ F )(γ8 {(call , ρ̂, σ̂)})
= (α8 ◦ F ) {(call , ρ, σ) : α1 {ρ} v ρ̂ and α5 {σ} v σ̂}
= (α8) {f(call , ρ, σ) : α1 {ρ} v ρ̂ and α5 {σ} v σ̂}
=

⊔
{{α7 {f(call , ρ, σ)}} : α1 {ρ} v ρ̂ and α5 {σ} v σ̂} .

An inconsequential weakening makes the last line easier to
understand:

F̂ {(call , ρ̂, σ̂)} v
{α7 {f(call , ρ, σ)} : α1 {ρ} v ρ̂ and α5 {σ} v σ̂} .

To proceed, we can expand the transfer function and the
abstraction function:

F̂{(call, ρ̂, σ̂)} v
(call ′, α1

{
ρ′′
}
, α5

{
σ′}) :



α1 {ρ} v ρ̂
α5 {σ} v σ̂
([[λv1 . . . vn.call ]], ρ

′)
= A(e0, ρ, σ)

ai = alloc(vi, ς)
ρ′′ = ρ′[vi 7→ ai]
σ′ = σ[ai 7→ di]
di = A(ei, ρ, σ)




.

(A.1)
We make a series of observations. Suppose that α1 {ρ} v ρ̂
and α5 {σ} v σ̂. Then let clo = ([[λv1 . . . vn.call ]], ρ

′) =
A(e0, ρ, σ). By cases, we can show that for any expression
e:

α3 {A(e, ρ, σ)} v Â(e, ρ̂, σ̂).

There must exist a closure ĉlo = (lam, ρ̂) ∈ Â(exp0, ρ̂, σ̂)
such that:

α3 {clo} v ĉlo.

So, we may further weaken the function F̂
F̂{(call, ρ̂, σ̂)} v

(call ′, α1

{
ρ′′
}
, α5

{
σ′}) :



α1 {ρ} v ρ̂
α5 {σ} v σ̂
([[λv1 . . . vn.call ]], ρ̂

′)

∈ Â(e0, ρ̂, σ̂)
α1 {ρ′} v ρ̂′
ai = alloc(vi, ς)
ρ′′ = ρ′[vi 7→ ai]
σ′ = σ[ai 7→ di]
di = A(ei, ρ, σ)




.

Thus, assuming α1 {env′} v ρ̂′ and α {ai} = âi:

α1 {ρ′′} v ρ̂′′ = ρ̂′[vi 7→ ai].



Then, we have:

α3 {di} v d̂i = Â(ei, ρ̂i, σ̂i)

α5 {σ′} v σ̂′ = σ̂ t [âi 7→ d̂i].

All of this permits a further weakening:

F̂ {(call , ρ̂, σ̂)} v(call ′, ρ̂′′, σ̂′) :


([[λv1 . . . vn.call ]], ρ̂

′)

∈ Â(e0, ρ̂, σ̂)
ρ̂′′ = ρ̂′[vi 7→ âi]

σ̂′ = σ̂ t [âi 7→ d̂i]

d̂i = Â(ei, ρ̂, σ̂)



 .
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Abstract
The miniKanren relational programming language, though
designed and used as a language with which to teach re-
lational programming, can be immensely frustrating when
it comes to debugging programs, especially when the pro-
grammer is a novice. In order to address the varying levels
of programmer sophistication, we introduce a suite of dif-
ferent language levels. We introduce the first of these lan-
guages, and provide experimental results that demonstrate
its effectiveness in helping beginning programmers discover
and prevent mistakes. The source to these languages is found
at https://github.com/dabrady/LittleLogicLangs.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Applicative (functional) languages, Con-
straint and logic languages; D.2.5 [Testing and Debug-
ging]: Debugging aids

Keywords miniKanren, microKanren, Racket, Scheme, re-
lational programming, logic programming, macros

1. Introduction
miniKanren is a family of embedded domain-specific lan-
guage for relational (logic) programming with over 40 im-
plementations in at least 15 different languages, including
ones in Clojure, Haskell, Ruby, and C#. Much of the cur-
rent development, however, is carried out in Scheme, Clo-
jure, and Racket (see http://minikanren.org).

In addition to the industrial [3, 13, 18] and academic [1,
4, 17, 20] uses, miniKanren has also been used as a teaching
language. It has been successfully used to introduce students
to logic programming, both through the textbook The Rea-
soned Schemer [11] and as a part of the curriculum in In-
diana University Bloomington’s undergraduate and graduate
programming languages courses [10].

The relational programming paradigm differs signifi-
cantly from functional or imperative programming, and is
difficult for beginning students. With miniKanren program-
ming, this holds even for students already familiar with the
embedding language (e.g. Scheme, Racket).

Debugging miniKanren programs is frequently one of the
most frustrating aspects for new programmers. Debugging
is a difficult problem in programming generally, and can be

time consuming and tedious. Debugging miniKanren carries
additional challenges above those of many other languages.
miniKanren is implemented as a shallow embedding, and
historically its implementations have been designed to be
concise artifacts of study rather than featureful and well-
forged tools. As a result, implementers have given little at-
tention to providing useful and readable error messages to
the user at the level of their program. What error handling
there is, then, is that provided by default with the host lan-
guage. This has the negative impact of, in the reporting of
errors, communicating details of the miniKanren implemen-
tation with the user’s program. This is a problem common to
many shallow embedded DSLs [12].

This can leave the programmer truly perplexed. What
should be syntax errors in the embedded language are in-
stead presented as run-time errors in the embedding lan-
guage. This makes bugs more difficult to track down. Run-
time errors may manifest some distance from the actual
source of the error. A poor error message can cause a pro-
grammer to look for bugs far from the actual source of the
problem, and perhaps accidentally break correct code in a
misguided attempt to fix the problem. Moreover, the mixing
of miniKanren implementation and user program means that
often the user must have some knowledge of the miniKanren
implementation to understand the reported error.

The promise of domain-specific languages [2] is that we
can more quickly map a solution to code in a language
specifically tailored to the problem than in a more general-
purpose language. As it stands in miniKanren, the user is
forced back to thinking in a general-purpose language when
an error arises, precisely when a domain-specific language
would be most useful. miniKanren presents an additional
complication, though: miniKanren is designed specifically
to be a DSL in which the programmer does have access to
the entirety1 of the host language.

While a programmer will most often only use the prim-
itives defined in miniKanren itself, the language allows her
access to non-miniKanren code of the host language. This
is an intended feature of miniKanren, and does have its
uses on occasion (e.g. build-num from the relational arith-

1 Except vectors, which are used in the implementation and of necessity
should not be used by the programmer as miniKanren terms.

https://github.com/dabrady/LittleLogicLangs
http://minikanren.org/


metic suite). So syntactically restricting the programmer to
miniKanren primitives is not a sufficient solution.

It is, however, unfortunate to allow this specialized lan-
guage feature to make miniKanren programming across-the-
board so much more difficult, when programmers, especially
beginning ones, will often only use the primitives defined in
the miniKanren language in their programs. Our solution is
to abandon a one-size-fits-all approach, and instead embrace
a suite of different language levels [9] of increasing sophisti-
cation and freedom that come with additional burdens on the
programmer. We propose a small series of little languages
organized into a tiered system that provides the program-
mer with development environments of varying degrees of
restriction for writing miniKanren relations. Towards these
ends we have made significant progress, laying much of the
groundwork for the tasks to come (outlined in section 7).

Our paper makes the following contributions:

• We propose a series of languages meant to teach rela-
tional programming where each successive programming
language exposes more of the complexities of miniKan-
ren by allowing more of the embedding language.

• We present the first language in this series, a very re-
stricted miniKanren implementation with a suite of syn-
tax macros designed to give the programmer precise and
descriptive error messages when writing relational pro-
grams.

• We discuss design details for the second language in
this proposed series. It is a language that is meant to be
transitionary, extending the first language level in ways
that facilitate the acquisition of skills the programmer
may find useful when working in the increasingly freer
environments of the tiers above.

• We also present the last little languages of this series:
two implementations of the full miniKanren language,
one minimally restricted and the other completely free
of restrictions.

• We demonstrate the variety of errors these macros pre-
vent and provide experimental evidence showing how
they can be used to the advantage of beginning and sea-
soned logic programmers alike.

We begin by offering a brief refresher on the miniKanren
language. Then, we present a situation that is representative
of the kinds of debugging a miniKanren programmer of
any skill level is likely to encounter and that proves rather
unfriendly to new students.

2. The miniKanren language
Here, we briefly recapitulate the operators and operations
of miniKanren. We begin by describing the operators, and
conclude with an example of their usage. A more thorough
introduction to miniKanren can be found in The Reasoned
Schemer [11].

A miniKanren program is a goal. A goal is run in an
initial, empty state, and the result is formatted and presented
to the user. A goal is a function that takes a state and returns
a stream (a somewhat lazily-evaluated list) of answers. This
goal may be the combination of several subgoals, either their
conjunction or disjunction. In the pure subset of the original
miniKanren, we have one atomic goal constructor, ≡ . A
goal constructor such as ≡ takes arguments, in this instance
two terms u and v, and returns a goal. Applying that goal
to a given state returns a stream, possibly empty. The goal
constructed from ≡ succeeds when the two terms u and v
unify, that is, when they can be made syntactically equal
relative to a binding of free variables.

Our implementation of miniKanren also includes dise-
quality constraints, introduced with the miniKanren opera-
tor 6= . Disequality constraints are in some sense a converse
of goals constructed with ≡ . In a given state, a disequality
constraint between two terms u and v fails if, after making u
and v syntactically equal, the state has not changed. Other-
wise, the disequality constraint succeeds, but if another, later
goal causes them to become syntactically equal, failure will
result.

Individual goals constructed with ≡ and 6= are in and
of themselves only so useful. To write more interesting pro-
grams, we need a mechanism by which we can build the con-
junction and disjunction of goals. The operator that allows us
to build these more complex goals is conde. conde takes as
arguments a sequence of clauses. A clause is a sequence of
goal expressions, and for the execution of a conde clause to
succeed the conjunction of all of its goals must succeed. The
clauses of the conde are executed as a nondeterministic dis-
junction; for the conde to succeed, at least one of its clauses
must succeed. A conde expression evaluates to a goal that
can succeed or fail.

Often, when executing a miniKanren program, we need to
introduce auxiliary logic variables. The miniKanren opera-
tor fresh allows us to do this. fresh takes a list of variable
names, and a sequence of goal expressions; new variables
with those names are introduced and lexically scoped over
the conjunction of the goals. Like conde, a fresh expres-
sion evaluates to a goal that can succeed or fail.

Because miniKanren is an embedded DSL, we utilize the
host language’s ability to define and invoke (recursive) func-
tions to build goal constructors and invoke (recursive) goals.
Goals constructed from these user-defined goal construc-
tors can be used wherever goals created from the primitive
miniKanren operators can be used.

Finally, we use run to execute a miniKanren program.
run takes a maximal number n of desired answers, a variable
name, typically q, and a sequence of goal expressions. A new
variable is lexically scoped to the name q; this is the variable
with respect to which the final answers will be presented.
The program to be executed is taken as the goal that is the
conjunction of the goal expressions provided to run. The



run* operator is similar to run, except that instead of a
maximal number of answers, we request all of the answers.2

Consider the following miniKanren program and it’s ex-
ecution:
> (de�ne (no-tago tag l )

(conde
((≡ ' () l ))
((fresh (a d)

(≡ `(, a . , d) l )
( 6= a tag)
(no-tago tag d)))))

> (run 2 (q)
(fresh (x y)
(≡ `(, x , y) q)
(no-tago x `(a , y b))))

(((_.0 _.1) ( 6= ((_.0 _.1)) ((_.0 a)) ((_.0 b)))))

The Racket program no-tago is a user-defined goal con-
structor; it takes two arguments and returns a goal. This is a
conde with two clauses. The first clause consists of a single
goal, the requirement that l be '(). The second clause too
consists of a single goal. This goal is created from fresh; it
requires that two new variables a and d be introduced, and
that three things then be the case: that l decompose into two
parts a and d, that a not be equal to tag, and that no-tago
hold over tag and d.

In the invocation of this program we ask run for at most
two answers, with respect to some variable q. The program
itself is a single goal that is the result of a fresh. We freshen
two new variables x and y, and require two things be the
case: that q be the same as a list of x and y, and that no-tago
hold of x and the list `(a ,y b). There is in fact only
one result to this query. The result is a list containing both
the final answer, and a list of the disequality constraints on
the answer. The answer itself is a representation of the list
(x y); since x and y remain fresh in the final answer, they
are printed in miniKanren’s representation of fresh variables.
Fresh variables in miniKanren are represented as _.n, for
a zero-based integer index n. The list of disequality con-
straints ensures that variable x be distinct from variable y,
and from symbols 'a and 'b.

With these operators, we are equipped to implement rela-
tively complicated miniKanren programs. The canonical im-
plementation adds impure operators for committed-choice
and “if-then-else” behavior, as well as debugging printing
operators. Other implementations add more sophisticated
run primitives and additional constraints.

3. The problem at present
Suppose one is writing a relation to generate the infinite
set of natural numbers as defined by the Peano axioms.
Peano numbers are a simple way of representing the natural
numbers using only a zero value and a successor function;

2 In the case of an infinite stream of answers, the execution will appear to
hang, and must be aborted. But here’s the rub: how does one determine if a
program has produced an infinite stream of answers, or merely an obscenely
large one?

here, 'z represents the number zero, '(s . z) the number
one, '(s s . z) the number two, and so on. We would
hope that when running peano for 9 answers, we would get
an output similar to that below.

> (run 9 (q) (peano q))
' (z
(s . z)
(s s . z)
(s s s . z)
(s s s s . z)
(s s s s s . z)
(s s s s s s . z)
(s s s s s s s . z)
(s s s s s s s s . z))

Upon opening up a Racket REPL and loading up miniKan-
ren, we flesh out our definition of peano:

> (de�ne peano
(λ (n)
(cond
(≡ ' z n)
((fresh (n-)

(= `(s . , n-) n)
(peano n-))))))

Since Racket accepts this definition, we can use it to try
and execute the program.

> (run 9 (q) (peano q))
ERROR ⇒
. . . lang/mk.scm:596:24: application: not a procedure;
expected a procedure that can be applied to arguments
given: ' z
arguments. . . :
' (((#(q) #(q))) () () () () ())

This error message is not very helpful. Intriguing, though,
is its reported source: mk.scm. This error is not reported
as coming directly from any code we’ve written, but rather
from the implementation of miniKanren itself: it is a Racket-
level exception, though caused by miniKanren code. Since
it is unlikely that the code we just wrote somehow broke
our miniKanren implementation, we can assume that the
real source of the bug is in our definition of peano. Taking
another look at our implementation, we discover what we
believe to be the ‘true’ source of the error:

(de�ne peano
(λ (n)
(cond
(≡ ' z n)
((fresh (n-)

(= `(s . , n-) n)
(peano n-))))))

We were erroneously using Racket’s equality operator =
instead of the miniKanren unification operator ≡ ; this typo
is a common mistake. Correcting the issue should give us a
working definition of peano:



> (de�ne peano
(λ (n)
(cond
(≡ ' z n)
((fresh (n-)

(≡ `(s . , n-) n)
(peano n-))))))

> (run 9 (q) (peano q))
ERROR ⇒
. . . lang/mk.scm:596:24: application: not a procedure;
expected a procedure that can be applied to arguments
given: ' z
arguments. . . :
' (((#(q) #(q))) () () () () ())

. . . but it doesn’t. That is the same error: did we not just
fix the problem? Apparently, the problem we fixed, while
certainly a bug, is not the root of this particular error. So,
since the error message certainly doesn’t help us, we need to
scrutinize our code a bit more. Where is the issue, here?
(de�ne peano
(λ (n)
(cond
(≡ ' z n)
((fresh (n-)

(≡ `(s . , n-) n)
(peano n-))))))

Aha! In the definition of our relation we used cond, not
the miniKanren primitive conde. This is another common
error, but hopefully now our debugging is complete.
> (de�ne peano

(λ (n)
(conde
(≡ ' z n)
((fresh (n-)

(≡ `(s . , n-) n)
(peano n-))))))

> (run 9 (q) (peano q))
ERROR ⇒
. . . lang/mk.scm:653:18: ≡: arity mismatch;
the expected number of arguments does not match the given
number
expected: 2
given: 1
arguments. . . :
' (((#(q) #(q))) () () () () ())

This time, we at least get a different error message. Not a
particularly helpful one, we admit: we’re still seeing Racket-
level exceptions filtering up through the DSL. This is a frus-
trating and tiring experience for the uninitiated, and irksome,
at the very least, to a relational programming expert. We
push forward, and unmask what will turn out to be the fi-
nal bug in this bit of code:
(de�ne peano
(λ (n)
(conde
(≡ ' z n)
((fresh (n-)

(≡ `(s . , n-) n)
(peano n-))))))

The conde form takes a sequence of goal sequences, but
what was intended to be the first sequence is merely a single

goal expression: it is missing a set of parentheses. Paren-
thesis mistakes such as these are also a frequent source of
errors in miniKanren programming, as in Racket program-
ming generally. These are especially troublesome when they
pass compilation and manifest only at run-time. After cor-
recting this, our relation can now, at last, generate results.
> (de�ne peano

(λ (n)
(conde
((≡ ' z n))
((fresh (n-)

(≡ `(s . , n-) n)
(peano n-))))))

> (run 9 (q) (peano q))
' (z
(s . z)
(s s . z)
(s s s . z)
(s s s s . z)
(s s s s s . z)
(s s s s s s . z)
(s s s s s s s . z)
(s s s s s s s s . z))

The exceptions we have seen thus far have been thrown
by Racket from the code that the miniKanren DSL is gen-
erating, not by any code expressly written by the user.
Racket is left to interpret both our miniKanren code and
the miniKanren implementation as a single Racket program.
This, to a certain extent, undermines the purpose of a DSL.

Ideally, our miniKanren implementation will check for
syntax mistakes like the foregoing when a program is de-
fined. miniKanren users should not be confronted with host-
level exceptions when writing or executing their relations.
As it stands, miniKanren implementations do not check for
such things, and there is nothing syntactically wrong as far as
Racket, the host language, is concerned. Therefore, the code
generated by miniKanren compiles, and mistakes such as
these slip through to run-time, where our program’s source
and the miniKanren implementation are blended together in
Racket.

4. Our approach
We see great potential in a system that provides the user with
control over how much non-relational code their programs
can contain. The purest of miniKanren environments would
completely disallow non-relational pieces of code, while at
the other end of the spectrum a boundless miniKanren would
embrace the blending of functional and relational constructs.

Such a safety system would have other benefits, as well:
a strict programming environment would not only help the
user in the creation of valid relational programs, but could
also be used to aid the mechanical transformation process
of Racket code to miniKanren relations. As the user grows
more comfortable with the relational style of programming,
she may choose to give herself more non-relational freedom
by removing the training wheels, so to speak, and switching
to a less restricted environment.



We envision this safety system as a series of language lev-
els having four tiers. The first three tiers are packaged with
a standard library of miniKanren relations that is expanded
and restricted at various levels.

• At the lowest level sits the purest miniKanren environ-
ment (section 5.2): no non-relational code allowed, but
the library provides convenience functions (e.g. conso,
caro) to help the user prepare for short-hand notations
(e.g. quasiquote syntax) that are prohibited at this level.
All definitions must reduce to either literals, goals, or re-
lations.

• One tier higher (section 7.1), the environment is now
slightly tolerant of non-relational code, and adds a suite
of pure arithmetic relations [16] to the standard library,
allowing the user to work with numbers in a purely re-
lational manner for the first time. The programmer now
has the ability to use the more advanced, short-hand no-
tations for relations like conso; namely, those which re-
quire quasiquote.

• The next tier, described in section 5.1, allows the user to
intermingle Racket code with miniKanren code, at their
own risk. With non-relational code comes non-relational
definitions, increased complexity, and the potential for
insidious bugs due to a less-restrictive environment.

• The final tier (also in section 5.1), the highest and freest
level, holds bare-bones miniKanren: all code allowed ev-
erywhere and no miniKanren-specific syntax checking
enforced. Users must rely solely on host-level error han-
dling. (This is the current state of miniKanren.) The stan-
dard library is still available, and has grown to include a
variety of more sophisticated, powerful relations.

We have reimplemented miniKanren as a Racket lan-
guage, utilizing Racket’s excellent language definition facil-
ities. Using this implementation, we reduce the process of
working with this DSL to a single require statement:

Welcome to DrRacket, version 6.1 [3m].
Language: miniKanren; memory limit: 128 MB.

> (require miniKanren)
> (de�ne succeed (≡ #f #f))
> (run 1 (q) succeed)
' (_.0)

This version of miniKanren is completely bare-bones: no
syntax checking has been provided.

It is also possible to declare miniKanren as the chosen
language for a Racket file:

; ; in aFile.rkt
#lang miniKanren
(de�ne succeed (≡ #f #f))

Welcome to DrRacket, version 6.1 [3m].
Language: miniKanren; memory limit: 128 MB.

> (run 1 (q) succeed)
' (_.0)

In addition, we provide an implementation of miniKanren
with a microKanren core [14], located in the miniKanren/micro
collection. This language comes with a minimal amount
of syntax macros sitting between the user and the imple-
mentation, macros that take advantage of Racket’s powerful
syntax-parse macro system [6].

For example, the system catches the missing set of paren-
theses from the conde situation visited above, rejecting it as
invalid syntax:
> (require miniKanren/micro)
> (de�ne peano

(λ (n)
(conde
(≡ n ' z)
((fresh (n-)

(≡ n `(s . , n-))
(peano n-))))))

ERROR ⇒ conde: expected a goal expression
parsing context:
while parsing a sequence of goals in: ≡

In the following section, we provide details on the two
modular implementations of miniKanren and our implemen-
tation of the lowest language level, a little language dubbed
freshman.

These implementations are built as Racket language mod-
ules, meaning the user can simply type
#lang language-level

and begin programming in the specified language level. The
language can also be loaded into a Racket file using a stan-
dard require statement.

5. Implementation
Modularizing the miniKanren embedded DSL was facili-
tated by the design of Racket’s language model. In this
model, syntax parsing is divided into two discrete layers: the
reader layer, which turns a sequence of characters into lists,
symbols, and other constants; and the expander layer, which
processes those lists, symbols, and other constants to parse
them as an expression. In effect, this division of labor makes
defining a language at the expander layer of syntax parsing,
while simultaneously sharing the reader layer of Racket, a
relatively simple matter.

The modules we present are just such languages; they
utilize the Racket reader while providing additional rules
for parsing syntax at the expander layer. In this way, our
little languages take full advantage of the system created by
the developers of Racket, and with minimal effort provide
suitable extensions or restrictions to that system.

At the root of our macro system is a set of miniKanren-
specific syntax classes. These classes describe what it means
to be an artifact of the miniKanren language (e.g. a goal-
expr, a relation, etc.), and, along with the astonishing power



of syntax-parse, are directly responsible for the simplicity
and extensibility of our system. For more on syntax classes,
see "Fortifying Macros" by Culpepper and Felleisen. [6]

We provide the following syntax classes to be used to
enforce syntax-checking of miniKanren artifacts:

• goal-expr—A goal-expression is an expression that re-
duces to a goal.

• goal-cons—A goal-constructor is a function of one or
more arguments that returns a goal.

• goal-seq—A goal-sequence is a sequence of goals to
be evaluated.

• relation—A relation, for our purposes, is a function of
one or more arguments whose body reduces either to a
goal or another relation.

To demonstrate their use, take the following definition of
the fresh form from the microKanren kernel:

(de�ne- syntax fresh
(syntax- rules ()
((_ () g0 g* . . . ) (conj+ g0 g* . . . ))
((_ (x0 x* . . . ) g0 g* . . . )
(call/fresh
(λ (x0)
(fresh (x* . . . ) g0 g* . . . ))))))

Imposing the miniKanren syntax-checking on fresh is
as simple as converting it to syntax-parse notation and
utilizing the provided miniKanren syntax classes appropri-
ately:

(de�ne- syntax (fresh stx )
(syntax- parse stx
((_ () g0:goal- expr g*:goal- expr . . . ) #'(conj+ g0 g* . . . ))
((_ (x0:id x*:id . . . ) g0:goal- expr g*:goal- expr . . . )
#'(call/fresh

(λ (x0)
(fresh (x* . . . ) g0 g* . . . ))))))

The remainder of this section is dedicated to describing
in detail the various languages we currently provide in our
miniKanren relational development environment.

5.1 Collection: miniKanren
This collection provides a pair of top-level miniKanren im-
plementations: a module-based implementation of miniKan-
ren, as described by Friedman et. al. in The Reasoned
Schemer [11]; and a miniKanren with a minimal functional
core, described in full detail by Hemann and Friedman in
their 2013 Scheme Workshop paper [14].

The miniKanren collection is itself a language—it is the
first module-based implementation in the above list. In ad-
dition to the relational features of the canonical miniKan-
ren implementation, it also provides disequality constraints.
The inclusion of such constraints in our language levels is
currently being discussed and may change in future work.
This implementation has been designed to run in both Chez
Scheme and Racket; it is implemented as a thin layer of a

handful of Racket function aliases atop the Scheme imple-
mentation.

In this collection, the micro module provides a version
of miniKanren with a microKanren core. On top of the core
is a layer of usage macros that provides the familiar interface
and behavior of miniKanren. An end user could in principle
program directly in the language of the microKanren core,
however the language is too low-level to be practical for
many real programs.

This language has also been supplemented with a small
selection of syntax macros specifically designed for use with
the miniKanren DSL. These macros do not remove the pro-
grammer’s ability to intermingle functional and relational
code (e.g. cond is a valid construct), but they do, how-
ever, restrict the programmer’s ability to use functional code
within such relational constructs like conde and fresh. Be-
cause the syntax classes are attached to the miniKanren code
constructs themselves, the syntax-checking is only applied
to the bodies of those constructs.

5.2 Collection: mk
This collection houses our tiered set of language levels. Each
level is a restricted (and sometimes an extended) version of
a miniKanren with a microKanren kernel. The miniKanren
root implementation is functionally equivalent to the one
provided by the miniKanren/micro collection; however,
this one is written entirely in Racket and has no Scheme
dependencies.

Unlike with the miniKanren collection, this collection
does not double as a language module itself; one cannot
simply require mk or use mk as their #lang language as
they could with miniKanren: they must choose a language
module contained within this collection.

This collection houses the lowest little language in our
level system: freshman. Like the top-level miniKanren im-
plementations, it has been implemented as a Racket module
that can be used via #lang or require.

freshman is designed to be a purely relational miniKan-
ren, in which all user-defined functions must be relations,
and all definitions must reduce to either a relation or lit-
eral value (excluding a function); top-level goals are dis-
allowed. The standard define now introduces bindings
strictly for literals; freshman introduces a new special form,
define-relation, with which to define relations.

> (require mk/freshman)
> (de�ne non-relation ' literal )
> (de�ne-relation the- answer 42)
ERROR ⇒ de�ne-relation: expected a relation of one or more
arguments in: 42

> (de�ne-relation not-the- answer (λ (x) x))
ERROR ⇒ de�ne-relation: expected a goal- expression or
expected a relation of one or more arguments
parsing context:
while parsing a relation of one or more arguments in: X

> (de�ne-relation the- real - answer (λ (x) (≡ x 42)))
>



This relational purity only goes so deep: currently, no
method is in place for keeping functional code from being
used in the place of arguments to relations. For example, the
expression (conso (lambda (x) x) foo bar) is valid
in freshman. The reason for this is the pattern used for
parsing goals (defined in mk/lib/mk-stx.rkt):
(de�ne- syntax- class goal- expr
#:description "a goal- expression "
(pattern (p:goal - cons y:expr . . .+)))

Restrictions are currently placed only on the operator; the
arguments can be any valid Racket expression. In future
work we plan to further flesh out the faculties needed to fully
enforce a purely relational environment.

All relations must begin with either a fresh or a conde,
and we enforce the convention that the relation identifier
end in the letter ‘o’. If a relation is defined that does not
follow convention, an exception is thrown that suggests an
alternative identifier that does adhere to convention.
> (de�ne relation (≡ #f #t))
> (de�ne relation

(λ (x)
(fresh (y)
(≡ x y))))

ERROR ⇒ de�ne: relation identi�er must end in - o,
suggested change: relation - > relationo in:
(de�ne relation (λ (x) (fresh (y) (≡ x y))))

This identifier convention is enforced only on relations;
definitions that reduce merely to goals are exempt from
scrutiny.

freshman relations must also have at least one argument;
side-effects are not allowed at this level, and without them a
nullary relation would be utterly useless.

5.3 Analysis and Results
In an effort to measure the effectiveness of the current state
of our system, we took a semester’s worth of miniKanren
code written by Indiana University undergraduates last year
and ran it on the miniKanren/micro and mk/freshman

language levels of our system. There were 561 relations in
total that were fed to the system, divided among 84 stu-
dents. We collated the syntax errors generated at both the
minikanren/micro and mk/freshman levels, keeping a
count of the distinct exceptions caught, then analyzed the
data. The counts are shown in Table 1 below.

The left-column identifies the language level at which
the errors listed in the middle column occurred. The right-
most column contains a breakdown of the frequency of the
errors caught at each level. As you can see, freshman caught
the same types of errors as micro; however, it caught more
of them, and also caught a few new ones; these fall below
the horizontal line under the freshman section. In total,
the most restrictive language level caught nearly twice the
number of syntax errors as did the least restrictive language
level. The discrepancy in types of errors caught is due to
the variance in the restrictions placed on the user at each
language level.

Table 1. Error spread for the top-level miniKanren’s

Level Error Count

micro did you mean conde? 1
*X may not be a goal constructor 17

expected identifier 1
*expected a goal-expression 27

expected a goal-expression 4

Pure relation errors: 6
Blended relation errors: 44

Total errors: 50

freshman did you mean conde? 4
X may not be a goal constructor 23

*expected identifier 1
expected identifier 2

*expected a goal-expression 28
expected a goal-expression 4

define expected λ 18
relation id must end in -o 1

Pure relation errors: 10
Restricted relation errors: 71

Total errors: 81

We compared the errors reported by the syntax macros to
the reports generated by an autograder currently being used
to evaluate student miniKanren submissions at Indiana Uni-
versity. We found that the vast majority of the student code
that generated syntax errors also generated Racket-level ex-
ceptions when allowed to run in an unrestricted environment.
This suggests that many, if not all, such exceptions were
completely preventable given a proper programming envi-
ronment.

A few of the error categories highlight areas of the system
that need improvement. ‘X may not be a goal constructor’,
in particular, is thrown every place a goal-expr is expected
but a variable or other expression is given. The current algo-
rithm for determining if an expression evaluates to a goal is
very simple, and very dumb: if the operator identifier of the
expression does not end in -o, the goal-expr is rejected.
This check, of course, will always fail if there is no operator,
as in the case of a variable or some other value, regardless
of if it actually evaluates to a goal. Once a more intelligent
algorithm is developed, this error will only be reported when
a non-relational expression is given in place of an expected
goal-expr.

Relatedly, ’expected a goal-expression’ errors are thrown
when users attempt to use variables in the place of goal-exprs,
whether or not these variables actually refer to goals. The
reason, again, being goal-exprs lack of smarts: it has no
knowledge of which bindings in the current environment



point to goals (or, indeed, knowledge of any bindings at all);
and because there is currently no value difference between a
miniKanren goal and a standard Racket function (they both
evaluate to #<procedure>), it cannot perform any value
checking that would distinguish the two.

These issues are common to both miniKanren/micro

and freshman and are discussed at length in section 7.2.
Crunching the numbers a bit more, we find that 88 percent

of errors caught at the micro level were caused by ‘blended
relations’, that is, miniKanren relations that attempted to
utilize non-relational features of the host language. This
number is, however, severely bloated due to the issues with
how goal-expressions are identified, discussed above.

Attempted use of restricted features account for roughly
the same percentage of freshman errors; these restricted
features mainly include the usage of non-relational code (a
let statement, perhaps) and the ability to define top-level
goals. For example, if one were to try and define the canon-
ical succeed or fail relations, (define succeed (==

#f #f)) and (define fail (== #f #t)) respectively,
a ‘define expected λ’ exception would occur. Errors re-
sulting from the use of such restricted features are viewed
as evidence of the importance of proper programming en-
vironments and the benefits gained from using our fail-fast
system: miniKanren programmers are alerted of any syntax
mistakes or potential dangers as close to their source as pos-
sible.

Though no formal user study has been attempted to assess
what improvements our system make to the experience of
debugging miniKanren relations, in appendix A we provide
the output of a REPL session in which a severely broken and
blended miniKanren relation, member?o, is nursed back to
relational health by exclusively following the error messages
thrown by freshman.

6. Related Work
The microKanren kernel itself bears a strong relationship
to the kernel of Spivey and Seres’ “Embedding Prolog in
Haskell” [19], and to Oleg Kiselyov’s Sokuza Kanren [15].
Like microKanren, both of these works have a basic model
of conjunction, disjunction, introducing new logic variables,
and an operator to perform unification.

Our work here has been explicitly modeled on the Dr-
Racket model of teaching languages. We feel a strong anal-
ogy between the way the teaching languages of DrRacket aid
beginning students in writing functional programs and the
way these teaching languages aid the programmer in writing
relational programs [9]. It seems possible that their method
for introducing computer programming to students early in
their education might, with the appropriate languages, fea-
tures and guidance, help students learn relational program-
ming as well [8].

7. Conclusions and further work
Through the restrictions in this tiered series of little rela-
tional languages, we can provide to users of any skill level
more descriptive error messages to aid development. We
found that when programming at these levels, most run-time
errors encountered by novice programmers became instead
straightforward syntax errors.

From this experiment it is clear that many common mis-
takes made by miniKanren users are preventable, provided
they are made in an environment that can handle them. The
programmer can choose a language level that suits their re-
lational needs, depending on the types of functional free-
doms they wish to have in their programs. miniKanren ini-
tiates, who are presumably unfamiliar with either the rela-
tional programming paradigm or the syntax of miniKanren,
can make use of the tiered system in such a way that helps
them learn the language. Starting at the most restricted level,
freshman, they may choose to ‘level up’ as they become
more comfortable with writing miniKanren programs and
find themselves wanting to take advantage of the embedding
language features in order to write increasingly complex re-
lations.

The very act of writing this document brought to light
strengths, weaknesses, and potentialities that were hereto-
fore hidden from view, and many design decisions were
modified. This is a trend that will surely continue, as miniKan-
ren and its rapidly expanding community of relational pro-
grammers are still in their infancy. Below, we present our
vision for the ‘missing link‘, as it were, in our system of re-
lational language levels, as well as improvements and further
work to be done.

7.1 sophomore: Level up
Here we introduce the not-yet-implemented second little lan-
guage, sophomore. sophomore is intended to sit as a mid-
dle level between freshman and full miniKanren. We imag-
ine the sophomore DSL extending freshman in ways that
give the programmer more freedoms with the miniKanren
language, naturally increasing the range of legal relations
the programmer can write. The following design ideas rep-
resent our expectations as to what trade-offs sophomore

should make between safety and flexibility, though these
may change with discoveries as we implement and test our
designs.

The user is now granted a very limited ability to blend
functional and relational code in their programs: the pro-
grammer will have the ability to write non-relational code,
but only in a non-relational context. That is to say, functional
and relational pieces of code can coexist in the same pro-
gram, interacting with each other, but the programmer may
not use a non-relational construct like (map pred '(1 2 3))

inside of a relational one, like fresh or conde.
The standard library packaged with this level has been

augmented to include the relational arithmetic library. This



library provides a variety of numeric predicates and rela-
tions that perform such functions as basic mathematical op-
erations like addition and subtraction, in addition to more
involved arithmetic like logarithms and inequalities. These
relations operate on an encoding of little-endian binary num-
bers, which facilitates relational arithmetic.

In order to facilitate programming with this suite, the
standard library at this level also provides build-num, a
function that translates decimal numbers to little-endian bi-
nary numbers.

> (build- num 11)
' (1 1 0 1)
> pluso
#<procedure:pluso>
> (run 1 (q) (pluso (build - num 2) (build- num 9) q))
' ((1 1 0 1))

7.2 Improvements
There is one issue that has been uncovered during the course
of this experiment. It affects both the miniKanren/micro

and mk/freshman language levels, and has to do with the
types of expressions valid at each level.

Prior to running this experiment, freshman users were
unable to define top- level goals, such as succeed or
fail. This was discussed, and we decided this was the
desired behavior: top-level goals should be unavailable to
freshman users, as their main concern is with writing well-
formed relations. The discussion surrounding this issue,
however, brought to light another: the ‘purity guards’, if
you will, placed upon the conde and fresh forms only al-
low goal-exprs in their bodies, and fail to recognize when
a top-level variable was defined with a goal-expr.

In other words, freshman users cannot use variables in
the place of goal-exprs. Future versions of freshman will
somehow need to keep track of bound goals as they are
defined such that they can be recognized by the syntax-
checker.

Future work must also be done in the area of not only re-
stricting the presence of host-language features in miniKan-
ren programs, but also the usage of the Racket standard li-
brary. If we are going to prevent the programmer from us-
ing a function, the simplest way would be to not provide the
function in the first place. Though a simple idea, actually
decoupling the standard library from the user may prove to
be quite a feat. An effective and perhaps more easily imple-
mented alternative might be to simply restrict user access to
the bindings of the Racket functions.

We mention the ‘miniKanren standard library’ multiple
times throughout this paper: this has not yet been designed
nor implemented, and so more needs to be done in this
area, as well. The relational arithmetic suite that will be
introduced into this library by sophomore exists, but needs
to be formally documented along with the rest of this project.

7.3 Dedicated miniKanren tools
We believe that a better-tailored programming environment
that supports proper development and maintenance tools
would help novice users prevent or eliminate many of their
most common errors. Even unsophisticated programming
environments, that offer a bare minimum of programmer
comfort (e.g. syntax highlighting), help programmers avoid
many bugs. [7]

DrRacket provides an excellent graphical environment
for developing programs using the Racket programming
languages, featuring a sophisticated debugger, an algebraic
stepper, and support for user-defined plug-ins, in addition to
source highlighting for syntax and run-time errors. Embed-
ded languages such as miniKanren, however, have syntax
that extends or otherwise differs from the host language, and
tools meant for the host language do not, and cannot, naïvely
map to such extensions.

As it stands, no tools exist that have been tailored to
developing in the miniKanren relational programming lan-
guage. By extending the development environment of miniKan-
ren to match the language extensions [5], we hope to change
this, providing the first steps toward a sophisticated develop-
ment environment for working in miniKanren.



A. Relational debugging with freshman

Welcome to DrRacket, version 6.1 [3m].
Language: mk/freshman; memory limit: 128 MB.

> (de�ne member?o
(λ (x ls out)
(conde
((≡ ' () ls ) (≡ #f out))
((fresh (a d)

(≡ `(, a . , d) ls )
(cond
((equal? x a) #t)
((not (equal? x a)) (member?o x d out))))))))

. fresh: did you mean "conde"?
parsing context:
while parsing a goal constructor
while parsing a goal- expression in: cond

> (de�ne member?o
(λ (x ls out)
(conde
((≡ ' () ls ) (≡ #f out))
((fresh (a d)

(≡ `(, a . , d) ls )
(conde
((equal? x a) #t)
((not (equal? x a)) (member?o x d out))))))))

. conde: equal? may not be a goal constructor
(identi�er doesn't end in - o)
parsing context:
while parsing a goal constructor
while parsing a goal- expression
while parsing a sequence of goals in: equal?

> (de�ne member?o
(λ (x ls out)
(conde
((≡ ' () ls ) (≡ #f out))
((fresh (a d)

(≡ `(, a . , d) ls )
(conde
((≡ x a) #t)
((not (equal? x a)) (member?o x d out))))))))

. conde: expected a goal- expression
parsing context:
while parsing a sequence of goals in: #t

> (de�ne member?o
(λ (x ls out)
(conde
((≡ ' () ls ) (≡ #f out))
((fresh (a d)

(≡ `(, a . , d) ls )
(conde
((≡ x a) (≡ #t out))
((not (equal? x a)) (member?o x d out))))))))

. conde: not may not be a goal constructor
(identi�er doesn't end in - o)
parsing context:
while parsing a goal constructor
while parsing a goal- expression
while parsing a sequence of goals in: not

> (de�ne member?o
(λ (x ls out)
(conde
((≡ ' () ls ) (≡ #f out))
((fresh (a d)

(≡ `(, a . , d) ls )
(conde
((≡ x a) (≡ #t out))
(( 6= x a) (member?o x d out))))))))

> (de�ne list - uniono
(λ (s1 s2 out)
(conde
((≡ ' () s1) (≡ s2 out))
((fresh (a d)

(≡ `(, a . , d) s1)
(fresh (b)
(member?o a s2 b)
(conde
((≡ b #t) (list - uniono d s2 out))
((≡ b #f)
(fresh (res )
(≡ `(, a . , res ) out)
(list - uniono d s2 res ))))))))))

> (run1 (q) (fresh (a b) (≡ q `(, a , b)) (list - uniono a b ' (1 2))))
' ((() (1 2)))
> (run3 (q) (fresh (a b) (≡ q `(, a , b)) (list - uniono a b ' (1 2))))
' ((() (1 2)) ((1 2) ()) ((1) (1 2)))
> (run9 (q) (fresh (a b) (≡ q `(, a , b)) (list - uniono a b ' (1 2))))
' ((() (1 2))
((1 2) ())
((1) (1 2))
((1) (2))
((1 1) (1 2))
((2) (1 2))
((2 1) (2))
((1 2) (2))
((1 1 1) (1 2)))
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Abstract
Domain specific languages embedded in C++ (EDSLs) often
use the techniques of template metaprogramming and ex-
pression templates. However, these techniques can require
verbose code and introduce maintenance and debugging
challenges. This paper presents a tool written in Racket for
generating C++ programs, paying particular attention to the
challenges of metaprogramming. The code generator uses
Racket’s macros to provide syntax for defining C++ meta-
functions that is more concise and offers more opportunity
for error checking than that of native C++.

1. Introduction
Embedded domain specific languages (EDSLs) in C++ have
proven to be an effective way to introduce new programming
abstractions to fields like scientific computing. implement-
ing C++ EDSLs with a popular technique known as expres-
sion templates [16] requires many similar function defini-
tions and operator overloads. The code below shows part of
the implementation for the operators + and * from one such
EDSL.

template<typename LHS, typename RHS>

typename BinExprRetType<SumOp, LHS, RHS>::result

operator+(const LHS & lhs, const RHS & rhs) {

return binExpr<SumOp>(lhs, rhs);

}

template<typename LHS, typename RHS>

typename BinExprRetType<MultOp, LHS, RHS>::result

operator*(const LHS & lhs, const RHS & rhs) {

return binExpr<MultOp>(lhs, rhs);

}

The details of these implementations are beyond the
scope of this paper, but we need to produce this kind of
function for each operator in our EDSL, and they’re all quite
similar. In this case, each differs only by the symbol for the
operator (+, *) and the name of the class that implements it
(SumOp, MultOp). Expression template EDSL implementa-
tions often use C preprocessor macros to reduce this dupli-
cation [9, 15]. However, as we discuss in Section 3.4, pre-

processor macros scale poorly as our code generation needs
become more complex.

For the implementation of Nebo, an EDSL we’ve pub-
lished on previously [4, 5], we instead chose to implement
a code generator for C++ in Racket. It allows us to describe
the implementation of the interface functions once and sub-
sequently generate the C++ code for many operators. For ex-
ample, we write the following to generate both the interface
functions and expression template objects for the operators
+, *, and others besides:

(build-binary-operator ’SumOp ’+

(add-spaces ’operator ’+))

(build-binary-operator ’ProdOp ’*

(add-spaces ’operator ’*))

(build-binary-logical-operator ’AndOp ’&&

(add-spaces ’operator ’&&))

(build-unary-logical-function ’NotOp ’!

(add-spaces ’operator ’!))

(build-extremum-function ’MaxFcn ’> ’max)

Note that our EDSL provides several types of operator, each
with different syntactic rules. Our code generator allows
these operators to cleanly share much of their implementa-
tion.

Given that we use our code generator to eliminate repetion
in interface functions, it would be natural to also generate
other components of our EDSL implementation for which
the C++ code is difficult to understand and maintain. For
example, to provide syntax checking for our EDSL we use
template metaprogramming [14] to compute functions from
types to types, known as metafunctions. The C++ imple-
mentation of one such metafunction is shown in Figure 1.
Racket’s metaprogramming abilities allow us to write the
same metafunction through the following code:

(define/meta (join-location l1 l2)

[(’SingleValue ’SingleValue) ’SingleValue]

[(’SingleValue l) l]

[(l ’SingleValue) l]

[(l l) l])

This paper discusses the design and implementation of
our code generator. Specifically, our contributions are:



template<typename L1, typename L2 >

struct JoinLocation;

template< >

struct JoinLocation<SingleValue, SingleValue > {

SingleValue typedef result;

};

template<typename L >

struct JoinLocation<SingleValue, L > {

L typedef result;

};

template<typename L >

struct JoinLocation<L, SingleValue > {

L typedef result;

};

template<typename L >

struct JoinLocation<L, L > {

L typedef result;

};

Figure 1. C++ metafunction

• A strategy for generating C++ EDSL implementations
with a Racket code generator (Section 3). Our code gen-
erator is publicly available at https://github.com/
michaelballantyne/fulmar. It allows EDSL devel-
opers to use Racket as an expressive metaprogramming
language while EDSL users continue to write in C++. We
show that this approach makes iterative development of
EDSLs easier (Section 3.3).

• A EDSL in Racket that corresponds to C++ metafunc-
tions, with concise syntax and integration with our code
generation approach (Section 4). Syntactic correctness of
the definition and use of the metafunctions is checked at
Racket runtime as the C++ implementation of the EDSL
is generated. (Section 4.5). The syntax of the EDSL in
Racket elucidates the relationship between Scheme-style
pattern matching and C++ template metaprogramming
(Section 4.3).

• Discussion of the tradeoffs of using the Racket-based
code generator as opposed to preprocessor macros in
the context of expression template based C++ EDSLs
(Section 3.4).

2. Expression Templates
C++ provides limited means to transform code at compile
time through preprocessor macros and the template system.
While the template system was originally designed as a
generic programming mechanism, C++ programmers have
devised ways to use the object system and compile-time spe-

rhs <<= divX( interpX(alpha) * gradX(phi) )

+ divY( interpY(alpha) * gradY(phi) );

phi <<= phi + deltaT * rhs;

phi <<= cond( left, 10.0 )

( right, 0.0 )

( top || bottom, 5.0 )

( phi );

Figure 2. Iteration of the solution to the 2D heat equation
with Nebo

cialization of generic code to achieve more general program
transformations. [16]. C++ objects can be used to implement
the abstract syntax tree of an embedded domain specific lan-
guage, while functions and overloaded operators that con-
struct those tree elements define its grammar and type sys-
tem. This technique is referred to as expression templates
(ET) for reasons we’ll see shortly.

2.1 Deforestation
As an example, consider pointwise addition of vectors:

std::vector<int> a, b, c, d;

d = a + b + c;

A straightforward way to implement such syntax in C++
would be to overload the + operator to loop over the vectors
it receives as arguments and construct a new vector with the
result. Given more than one instance of such an operator on
the right hand side of an assignment, however, this approach
allocates memory proportional to the size of the vectors for
each operator call.

Instead, each + operator call can construct an object with
an eval(int i) method that evaluates the operation at a
single index. The object is an instance of a templated class
parameterized by the types of its arguments, which may
be either std::vector or themselves represent parts of a
computation like the type of a + b above. The loop over
indices doesn’t happen until the = assignment operator is
invoked; it calls the eval method on the right hand side for
each index in turn and updates the vector on the left hand
side.

The templated classes for the objects representing a com-
putation are referred to as expression templates. This par-
ticular use of the delayed evaluation they offer corresponds
to the deforestation optimizations that Haskell compilers use
to remove temporaries from composed list functions [8]. Be-
cause the C++ compiler lacks such optimizations, C++ pro-
grammers pursuing high performance achieve the same ef-
fect with expression templates.

2.2 Accelerator Portability with Nebo
Another application of expression templates allows compi-
lation of a single code base for multiple architectures, in-



cluding accelerators like GPUs and Intel’s Xeon Phi [2]. Our
C++ EDSL, Nebo, is of this variety [4]. Figure 2 shows a
simple use of Nebo. Client code using Nebo is compiled with
variants for both CPU and GPU execution, with the decision
of which to use being delayed until runtime.

To implement accelerator portability, expression tem-
plate objects have parallel objects implementing the com-
putation on each device. For the deforestation example the
EDSL implementation might include SumOpEvalCPU and
SumOpEvalGPU classes. The initial expression template ob-
ject constructed by operators and representing the abstract
operator has methods that construct these parallel trees.
Once the assignment operation has selected a device on
which to execute the expression, it calls such a method to
obtain the appropriate code variant.

Expression templates for accelerator portability form an
extension of the technique used for deforestation. Use of an
EDSL handling deforestation might be limited to those com-
putations that most benefit from the optimization. When con-
sidering accelerator portability, however, the significant cost
of data transfer between accelerator devices and the CPU
means it is important to run every calculation on the acceler-
ator. Resultantly, the EDSL must be expressive enough to de-
scribe all the performance sensitive calculations in an appli-
cation. Such EDSLS need many syntactic objects and rules
to describe their combination. These rules are encoded in
the types of the interface functions or overloaded operators.
To extend the deforestation example to allow users to add
scalar values to vectors, we’d need to add additional over-
loads of the + operator for each ordering of types: int and
SumOp, SumOp and int, int and vector, and vector and
int. Combined with the variants we already had we’d need
as many as six implementations of the operator.

We also need many similar classes for the expression tem-
plate objects. Each different type of operator, like binary ex-
pressions of numbers, unary expressions of numbers, binary
expressions of booleans, or comparisons of numbers, re-
quires objects for the abstract operator that lacks knowledge
of its evaluation architecture, CPU evaluation, and GPU
evaluation, among others. The objects needed for each cate-
gory are similar but meaningfully different.

Implementing these variants becomes overwhelming in a
EDSL with many operators and many types of subexpres-
sions. Some elements of this repetitious code can be ab-
stracted away with C++ template metaprogramming, but for
a general solution we’ll turn to code generation in another
language with strong metaprogramming support: Racket.

3. Code Generation for C++ EDSLs
Generating code with Racket means we can use a full fea-
tured functional programming language for parts of our
metaprogramming, with first-class functions, pattern match-
ing, variadic functions, and a rich set of data structures we
missed when working with C preprocessor macros.

Code generation for our C++ EDSL presents a unique
set of requirements. The purpose of the EDSL is to offer
programmers new abstractions within C++ by transform-
ing the expressions they provide at C++ compile time, so
we can only use the code generator to produce the imple-
mentation of the language. Users of the language are deliv-
ered C++ header files containing the template metaprograms
that operate on expressions written the EDSL. Furthermore,
the EDSL integrates with runtime support code for mem-
ory management and threading maintained by C++ program-
mers. The C++ we generate needs to be human readable so
those programmers can understand and debug the interaction
of the EDSL with the code they maintain.

Because we’re generating C++ source code, we’re re-
sponsible for:

• Source code formatting for each C++ construct we gener-
ate. We need the resulting C++ to be readable, so we need
to carefully insert whitespace and line breaks to match
programmers’ expectations for what well-formatted code
looks like. We tried several C++ pretty-printers, but
found that when generating code from scratch it worked
best to implement this ourselves.

• A well-thought-out representation of each piece of C++
syntax we use. We’d like the code we write with our
tool to be high level and easy to understand, so we build
syntax constructors as a tower of little languages, with
specialized constructors for each complex pattern in our
C++ code.

To fill these needs, our implementation builds applica-
tion and language specific constructs on top of a mostly
language-agnostic core for pretty printing based on specu-
lative string concatenation.

3.1 Pretty Printer
Our pretty printer transforms a tree of structures to a string.
We call the structures in the tree “chunks”. Our algorithm
is based on speculative concatenation: the speculative chunk
gives a default way of constructing a string from its sub-
elements along with an alternate that allows added line
breaks. If the string resulting from the default concatena-
tion doesn’t exceed the maximum line width, it’s accepted.
Otherwise the concatenator tries the alternate.

The pretty printer also needs to keep track of indention.
Because the pretty printer is composed of mutually recursive
functions, we use Racket’s parameterize to keep track of
the indention state in a particular subtree via dynamically
scoped variables. It is also slightly language specific in order
to handle block comments and indention within them, again
with dynamic scope tracking the state within a subtree of
chunks.

Our algorithm gets the job done, but it isn’t ideal. In some
cases a long series of default and alternate concatenations are
attempted to complete a single line. We’d like to investigate



(define (constructor name

params assigns . chunks)

(concat

name

(paren-list params)

(if-empty

assigns

(immediate space)

(surround

new-line

(constructor-assignment-list assigns)))

(apply body chunks)))

Figure 3. Implementation of constructor chunk

using the ideas of Wadler’s “A prettier printer” [17] in the
future.

3.2 Chunk Constructors
Chunk constructors construct trees of chunks for a particu-
lar textual or syntactic construct of the target language. For
example sur-paren surrounds its arguments in parenthe-
ses. Next, paren-list builds on top of sur-paren, comma
separating its arguments and placing them within parenthe-
ses. Finally constructor handles a constructor definition
inside a C++ class, and uses paren-list to handle the list
of constructor arguments. Figure 3 shows the implementa-
tion of constructor as an example. Each of the functions
called in the definition is a more basic chunk constructor.

3.3 Iterative Development
The C++ implementing Nebo is generated by the highest
level chunk constructors, and they abstract the patterns found
throughout the EDSL implementation to make sure we don’t
repeat ourselves. For example, each type of EDSL syntax
requires implementations of the parallel objects discussed
earlier: abstract operator, CPU execution, GPU execution,
etc. The set of objects required for each ET is centrally
defined in one chunk constructor. As a result, adding a new
architectural target for all ET objects has a limited impact on
the code base.

The impact of changes to the core C++ interfaces is sim-
ilarly limited. When the arguments to the eval methods
shared by every ET object need to change, the change can
be made once rather than once for each class. This frees us
to make larger changes to the structure of our EDSL imple-
mentation more quickly as requirements evolve.

3.4 Comparison with Preprocessor Macros
Most C++ EDSLs use function-like C preprocessor macros
to satisfy some of the same needs our code generator fills.
Each choice has tradeoffs.

One feature of our EDSL needed variants of an ET object
for each arity of function we support, and we were look-
ing at supporting functions of up to 10 arguments. Our so-

lution was initially implemented with preprocessor macros
and we had a function-like macro implementing the basic
ET interface that took 35 arguments, each being a code frag-
ment. Crucially, C preprocessor macros lack lambda expres-
sions and scope for macro names. The Boost Preprocessing
library [1] offers a more complete language by building an
interpreter inside the preprocessor language. However, our
requirements didn’t tie us to the preprocessor so we’re hap-
pier with Racket.

Our approach is also in some ways limiting. We’re adding
an unfamiliar language to learn and a new tool to run for
our EDSL developers, which has limited the accessibility
of Nebo’s codebase for programmers trained only in C++.
At the same time, generating well formatted C++ without
a maze of preprocessor directives has improved our imple-
mentation’s readability.

4. Embedding Metafunctions in Racket
When we switched from preprocessor macros to Racket
our use of the code generator mimicked the approach we’d
used with the preprocessor. By taking advantage of Racket’s
macros, we can do better. Other authors have noted that
partial specialization of C++ templates is a form of pattern
matching. In this section we introduce syntax for our code
generator that looks like pattern matching on structure types
but generates C++ metafunctions that use the pattern match-
ing provided by partial specialization.

4.1 Metafunctions and Partial Specialization in C++
C++ metafunctions are a use of C++ templates to per-
form compile-time computation on types [14]. For exam-
ple, the code in Figure 4 performs addition on Peano num-
bers embedded in the type system by struct Zero and
struct Succ.

The first definition of Add is called the base template.
Its template parameters define the number of parameters the
metafunction receives. The remaining definitions are partial
specializations of the base template, where the types given in
angle brackets following the name of the struct specify the
combination of template arguments for which this special-
ization should be used.

A similar form of computation can be implemented with
pattern matching on structures in Racket. Figure 5 shows
zero, successor, and addition constructs implemented in such
a way. When writing metafunctions in our code generator,
we’d like to write syntax similar to Racket’s structure pattern
matching but generate C++ code like that of Figure 4.

4.2 define/meta
We extended our code generator with a new syntactic form,
define/meta. Figure 6 shows Racket code written with
define/meta that generates the C++ shown in Figure 4.

define/meta can be used to define two types of entities:
meta-structs and meta-functions. Meta-structs correspond to



struct Zero {} ;

template <typename N>

struct Succ {} ;

template <typename N, typename M>

struct Add {} ;

template<typename NMinusOne, typename M>

struct Add<Succ<NMinusOne>, M> {

typename Add<NMinusOne,

Succ<M> >::result typedef result;

};

template <typename M>

struct Add<Zero, M> {

M typedef result;

};

Figure 4. Add metafunction in C++

(struct zero () #:transparent)

(struct succ (n) #:transparent)

(define/match (add m n)

[((succ n-minus-one) m) (add n-minus-one

(succ m))]

[((zero) m) m])

Figure 5. Add with Racket structure types

(definitions

(define/meta zero)

(define/meta succ (n))

(define/meta (add m n)

[((succ n-minus-one) m) (add n-minus-one

(succ m))]

[((zero) m) m]))

Figure 6. Add metafunction with define/meta

C++ structures with only a base template and no definitions
in the structure body. These are essentially compile-time
named tuples. Meta-functions correspond to C++ structures
that act as functions from types to types. Our convention is
that such structures indicate their return value by defining
the member result as a typedef, as Add does in Figure 4.

define/meta has three usages to produce these types of
entities:

• (define/meta name)

This form defines a meta-struct with no fields. The name
is converted to a generated identifier appropriate for a

C++ type by capitalizing the first letter of each hyphen-
separated word and removing hyphens.

• (define/meta name (fields ...))

Like the previous form, but for a structure with fields.
The names of the fields are transformed like the meta-
struct name for the generated C++ code.

• (define/meta (name args ...)

[(patterns ...) result-expression]

...)

This form defines a meta-function. Each clause includes
a set of patterns to match against the arguments, and
the result-expression describes the type that will be
given by the result field of the generated C++ struct.
Pattern variables defined as part of the patterns ... in
a clause are bound in the of the result-expression.
Otherwise, the result-expression is a normal expres-
sion context, so any functions or macros defined by our
code generator are available. The next section describes
the rules for pattern matching.

These forms don’t directly generate C++ code, but rather
bind the given name to a Racket struct with information
about the meta-struct or meta-function that can later be used
to generate C++ code for their declaration, definition, or
use. The struct is also directly callable using the procedure
property of Racket structs [6], producing chunks for a ref-
erence to the meta-struct or meta-function. Section 4.4 de-
scribes the definitions syntax used to generate the code
for declarations and definitions. Appendix A provides an im-
plementation of a lambda calculus interpreter in C++ tem-
plates via define/meta and definitions as an extended
usage example.

4.3 Pattern Matching
The format of the patterns used in meta-function definitions
is defined by the following grammar, where structname

is an identifier bound to a meta-struct definition, identifier
is any Racket identifier, symbol is any Racket symbol, and
string is any Racket string.

pattern := (structname pattern1 . . .)

| identifier

| symbol

| string

|

Symbols and strings indicate literal C++ types and match
only a symbol or string with the same string value. Meta-
struct patterns allow further matching in the arguments to
the meta-struct. Finally, identifiers bind pattern variables.
If an identifier appears more than once in the patterns for



a clause, each instance of the identifier refers to the same
pattern variable. The clause will only match for arguments
where the same C++ type would be bound to each use of the
identifier. An underscore indicates a pattern that will match
anything but that does not bind a pattern variable.

Unlike the semantics of match in Racket or other match
forms in Scheme dialects, the order of clauses in a meta-
function definition doesn’t matter. Rather than resolving sit-
uations where more than one pattern matches by selecting
the first, C++ and thus meta-functions choose the most spe-
cific. For the limited C++ we allow in our restricted meta-
functions, we can understand pattern A to be more specific
than pattern B with respect to a particular input if the pattern
for B has non-literal values wherever the pattern for A does,
but the pattern for A has literal values in at least one place B
has non-literal values.

This is only a partial ordering; as such, there may be cases
where there are multiple matching templates with no order
between them. Such a circumstance constitutes a user error
in the definition and use of the template. We don’t yet detect
that error in our code generator, but we expect to be able to
in the future.

4.4 Definitions Syntax
As mentioned before, define/meta doesn’t actually emit
C++ declarations and definitions for meta-structs and meta-
functions. Meta-functions can reference each other, so we
might not have all the information we need to generate
their code until a group of them have been defined. The
definitions syntactic form is responsible for ordering the
declarations and definitions of each meta-function and meta-
struct defined or referenced as a sub-form. Figure 6 includes
a simple example of its use.

definitions is implemented as a macro that uses
Racket’s local-expand to macro expand subforms before
processing [7]. This design choice allows for later syntactic
extension; if an even higher level syntactic form expands to
define/meta forms, it will work with definitions.

4.5 Catching Errors
Our meta-language allows us to catch some errors at code
generation time that we couldn’t previously. Specifically,
if we try to reference an invalid meta-struct in the pattern
match or result-expression, or an invalid meta-function in the
result-expression, we’ll receive an error at Racket runtime
indicating that the identifier is not bound. If we misspell
succ as suc in the pattern on line 5 of Figure 6, Racket will
produce the following error:

suc: unbound identifier in module

in: suc

Similarly, we’ll receive an error if we refer to a meta-
struct or meta-function with the wrong number of argu-
ments. If we replace (succ m) with simply (succ) on line
6 of the same example, we receive this error:

meta-struct Succ: arity mismatch;

the expected number of arguments does

not match the given number

expected: 1

given: 0

arguments:

If we didn’t catch these errors in our code generator
they’d be expressed as template expansion errors at C++
compile time.

5. Related Work
Template metaprogramming and expression templates are
now nearly two decades old, and there have been many
previous efforts to make them more useful and easier to work
with. The Boost MPL and Proto libraries are of particular
note. Boost MPL [10] offers a variety of algorithms and data
structures for template metaprogramming. Boost Proto [12]
builds on MPL to allow users to specify and use expression
template EDSLs based on a grammar, all at compile time.

Porkoláb and Sinkovics [13] developed a compiler for
a subset of Haskell that produces C++ template metapro-
grams. The compiler supports a functional core including
lazy evaluation, currying, recursion, and lambda expres-
sions. It also allows the functions written in Haskell to inter-
operate with metafunctions written directly in C++. While
their approach, like ours, substantially reduces the lines of
code required to implement metafunctions, their choice of
abstractions leads to increased template recursion depth and
compilation time compared to native implementations. In
contrast our code generator improves upon native template
code only in syntax and error checking and not in choice of
abstraction, but doesn’t damage the performance of metapro-
grams. It also integrates into the rest of our code generator
for expression templates.

There have also been a number of approaches to accel-
erator portability with expression templates. Wiemann et al.
[18] present an approach that uses expression templates but
where the ET tree is walked at runtime and the information
within is used to generate CUDA C source code that is then
compiled by runtime use of the compiler. Their use of run-
time code generation was motivated by the limited support
the CUDA C++ compiler offered for templates at that time.
Chen et al. [3] expanded upon this approach. To our knowl-
edge, Nebo is the first EDSL to use expression templates for
portability between accelerators and CPUs without requiring
runtime code generation.

6. Future Work
Much of Nebo is still generated by code written in the style
of the preprocessor macros from which it was ported. Future
work centers around further syntactic extension of our code
generator to improve Nebo’s maintainability and reduce the
cost of developing C++ EDSLs for other domains using the
same techniques.



Some of Nebo’s language features are implemented by
translation to simpler features. For example, Nebo includes
a pointwise cond implemented by transformation to expres-
sion template objects with the functionality of if. We’d like
to be able to express that transformation with syntax akin to
Scheme’s syntax-rules.

We’d also like to further take advantage of our syntax
for template metaprogramming to improve error checking
at C++ compile time. Boost MPL [10] includes metafunc-
tions to make compile-time assertions and ensure that fail-
ure messages, written as type names, are visible in the C++
compiler’s error output. It should be possible to automati-
cally add these static assertions to our metafunction imple-
mentations based on type annotations in the Racket syntax.
Users of our EDSL could receive better error messages when
they misuse syntax without adding an undue burden on us as
EDSL implementors.

More ambitiously, we’d like to generate template metapro-
gramming boilerplate for C++ EDSL implementations from
a high-level specification of the grammar and type rules of
the EDSL.

7. Conclusion
We’ve found that our code generator simplifies the task of
maintaining Nebo. The code generation approach avoids
the choice between twin pitfalls: swaths of repetitive code
or inscrutable preprocessor macros. Whereas preprocessor
macros limited our ability to introduce abstractions, Racket
allows us to create new syntax for frequently recurring pat-
terns. It also lets us produce well-formatted C++ that is (rela-
tively) easy to debug and that integrates well with supporting
library code.
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A. Lambda Calculus Interpreter with define/meta
As a usage example of our Racket EDSL, we adapt the lambda calculus interpreter implemented in C++ templates from Might
[11].

A.1 With define/meta
(definitions

; structs

(define/meta m-lambda (name body))

(define/meta app (fun arg))

(define/meta ref (name))

(define/meta lit (t))

(define/meta emptyenv)

(define/meta binding (name value env))

(define/meta closure (lam env))

; functions

(define/meta (env-lookup name env)

[(name (binding name value env)) value]

[(_ (binding name2 value env)) (env-lookup name env)])

(define/meta (m-eval exp env)

[((lit t) _) t]

[((ref name) _) (env-lookup name env)]

[((m-lambda name body) _) (closure (m-lambda name body) env)]

[((app fun arg) _) (m-apply (m-eval fun env)

(m-eval arg env))])

(define/meta (m-apply proc value)

[((closure (m-lambda name body) env) _)

(m-eval body (binding name value env))])

A.2 Generated C++
template<typename Name, typename Body >

struct MLambda {};

template<typename Fun, typename Arg >

struct App {};

template<typename Name >

struct Ref {};

template<typename T >

struct Lit {};

struct Emptyenv {};

template<typename Name, typename Value, typename Env >

struct Binding {};

template<typename Lam, typename Env >

struct Closure {};

template<typename Name, typename Env >

struct EnvLookup;

template<typename Exp, typename Env >

struct MEval;



template<typename Proc, typename Value >

struct MApply;

template<typename A, typename B >

struct MEqual;

template<typename Name, typename Value, typename Env >

struct EnvLookup<Name, Binding<Name, Value, Env > > { Value typedef result; };

template<typename Gensym7, typename Name2, typename Value, typename Env >

struct EnvLookup<Gensym7, Binding<Name2, Value, Env > > {

typename EnvLookup<Gensym7, Env >::result typedef result;

};

template<typename T, typename Gensym8 >

struct MEval<Lit<T >, Gensym8 > { T typedef result; };

template<typename Name, typename Gensym9 >

struct MEval<Ref<Name >, Gensym9 > {

typename EnvLookup<Name, Gensym9 >::result typedef result;

};

template<typename Name, typename Body, typename Gensym10 >

struct MEval<MLambda<Name, Body >, Gensym10 > {

Closure<MLambda<Name, Body >, Gensym10 > typedef result;

};

template<typename Fun, typename Arg, typename Gensym11 >

struct MEval<App<Fun, Arg >, Gensym11 > {

typename MApply<typename MEval<Fun, Gensym11 >::result,

typename MEval<Arg, Gensym11 >::result >::result typedef

result;

};

template<typename Name, typename Body, typename Env, typename Gensym12 >

struct MApply<Closure<MLambda<Name, Body >, Env >, Gensym12 > {

typename MEval<Body, Binding<Name, Gensym12, Env > >::result typedef result;

};


