
Manual for EAR4 and CAAR Weka Plugins

Case-Based Regression with Ensembles of Adaptations

Version 1.0

Vahid Jalali and David Leake

vjalalib@umail.indiana.edu, leake@indiana.edu

Technical Report 717
School of Informatics and Computing

Indiana University

April 25, 2015

Abstract

EAR4 and CAAR are lazy learners applying the case-based reasoning
(CBR) paradigm to numerical prediction tasks. Both augment standard
instance-based learning methods by applying automatically generated case
adaptation rules to adjust solutions of prior cases, and both apply ensem-
bles of the generated rules. CAAR augments the EAR approach with a
richer treatment of case context, more context-aware rule generation, and
context-sensitive ranking of the generated adaptation rules. This manual
describes installation and use of plugins enabling use of EAR4 and CAAR
within the Weka workbench for machine learning.

Copyright c©2015 by Vahid Jalali and David Leake.
This material may be distributed only subject to the terms and conditions
set forth in the Open Publication License, v1.0 or later (the latest version is
presently available at http://www.opencontent.org/openpub/). Distribution of
the work or derivative of the work in any standard (paper) book form is prohib-
ited unless prior permission is obtained from the copyright holder. Distribution
of substantively modified versions of this document is prohibited without the
explicit permission of the copyright holder.

1 Introduction

This document provides a brief overview of the lazy learning approaches EAR4
[1] and CAAR [2], and provides step by step instructions for using the plugins
based on these two methods for regression (numerical prediction) tasks within
the Weka workbench [3]. Both EAR4 and CAAR apply the case-based reasoning
(CBR) paradigm (e.g., [4, 5, 6, 7]) to regression, reusing and adapting previous
problems’ solutions for solving similar new problems. To clarify the concepts
underlying these learners, Section 2 provides an introduction to points that are
common between both learners. Section 3 describes EAR4, with instructions
for running its plugin in Section 4, and Sections 5 and 6 describe CAAR and
running its plugin.

2 Background

2.1 Case-Based Regression

Case-based regression computes the numerical solution of an input problem by
using the values of its nearest neighbors. In this regard case-based regression
is very similar to instance-based learning (e.g., IBk [8]). However, case-based
regression differs from instance-based learning in its emphasis on CBR’s case

adaptation step to revise prior solutions to new problems. Instance-based sys-
tems normally predict the value of an input query directly from the solutions of
the top k nearest neighbors, applying a combination function such as distance-
weighted averaging. In contrast, before combining the nearest neighbors’ values,
EAR4 and CAAR both first apply case adaptation rules to those values, to ad-
just them based on differences between the old and new problems. However,
their difference lies in their method of generating and retrieving adaptation rules.
While EAR4 relies on cases in the local neighborhood of the input query for
generating adaptation rules, CAAR generates adaptations from the individual
cases’ neighborhoods. Also, CAAR considers context in defining and retrieving
the adaptation rules, while the context of cases and rules is not considered in
EAR4’s method.

Fig. 1 illustrates the generic case-based regression process. Given a new
problem, case-based regression generates a solution by retrieving a set of cases
for similar problems, adjusting the solution values of the retrieved cases (which
we will call source cases), and then combining the adjusted values to generate
the final predicted value.

2.2 Case Difference Heuristic

EAR4 and CAAR generate adaptation rules automatically from the cases in its
case base, using a domain-independent method. This enables them to use case
adaptation without requiring costly manual rule acquisition. In addition, they
exploits the availability of multiple automatically-generated adaptation rules
by applying an ensemble-based adaptation method: They apply a set of adap-
tation rules to each adaptation problem. These methods use Case Difference

Heuristic [10] method to derive adaptation rules. The case difference heuristic
method compares pairs of cases in the case base, generating a rule for each
pair. Intuitively, it ascribes the observed difference in the solution values to the

1

= case i

= problem description of

= solution of

Q = query

A adapts the pair (case, query) to

adjust the case’s solution to the query

= Combination of adapted values,

function({A(,Q), A(,Q), A(,Q)})

A

A

A

Q

CombineVals

Figure 1: Illustration of the generic case-based regression process [9]

differences in the two problems. More specifically, the differences in the input
features of the pair of cases form the antecedent part of the adaptation rule and
the difference in their solutions forms the consequent. Fig. 2 depicts a simple
example of rule generation and application of the generated rule, for the sample
task of predicting automobile gasoline mileage (MPG, Miles Per Gallon). Part
a of Fig. 2 shows how an adaptation rule is generated based on a pair of cases
and part b shows the application of the generated rule to adjust the value of a
nearest neighbor case.

Rule 1

If Δ weight= +300 then Δ MPG= - 3

Case 1

MPG: 30

weight: 3504

cylinders: 6

year: 2013

Case 2

MPG: 33

weight: 3204

cylinders: 6

year: 2013

Input Problem

MPG: ?

weight: 3800

cylinders : 4

year: 2009

Case 3

MPG: 28

weight: 4100

cylinders : 4

year: 2009

nearest

neighbor

estimated

MPG = 31
retrieved rule adapts

Rule Generation Rule Application

Rule 1

If Δ weight= +300 then Δ MPG= - 3

Figure 2: Illustration of using the case difference heuristic to generate an adap-
tation rule and to generate an MPG estimate.

Different pairs of cases may differ in the similar ways, so multiple adaptation
rules could be generated to address any given difference. Adaptation rules can

2

be generated from pairs of cases from different parts of the domain, potentially
resulting in different rules depending on the regions from which the pairs are
drawn, or even the specific pairs chosen.

3 A Quick Sketch of EAR4’s Approach

EAR4 is a lazy learner introduced by Jalali and Leake [1]. EAR4 generates
adaptation rules by applying the case difference heuristic to local information,
comparing the top nearest neighbors of the input query when that query is
presented to the system, for lazy adaptation rule generation. To take advantage
of multiple adaptation rules, it adjusts solution values of source cases using an
ensemble of rules.

For full details about EAR4’s underlying process, a discussion of related
work, and comparative evaluations of EAR4’s performance, we refer the reader
to research publications on EAR4 (e.g., [1, 9]).

4 How to Use EAR4 in Weka

4.1 Downloading EAR4 for Weka

EAR4’s Weka plugin currently works for domains with numeric input features
and target values and can be downloaded in any of the following ways:

• Install using Weka plug-in manager: EAR4 is part of Weka’s official repos-
itory. If your Weka version is greater than 3.7.2, under “Tools” menu you
can find and select “Package Manager”. In the dialog page that opens,
you will see the list of packages in Weka’s repository. Look for the entry
for EAR4 and install it. You may need to relaunch Weka after installing
the package.

• Install from file: You can also download EAR4’s plug-in directly from
the EAR4 project’s home page1 to your local machine. Launch “Pack-
age Manager”, choose the “File/URL” button, and select the downloaded
archive file (it should be titled EAR4.zip) from your local machine. After
installing the package you may need to relaunch Weka.

• Binaries: We have also compiled two versions (3.6.11 and 3.7.11) of
Weka binary files with EAR4 learner embedded in them. You can di-
rectly download and use EAR4 in binary files for version 3.6.112 and
for version 3.7.113.

The source code of EAR4 can also be found in the plugin’s archive4. The
source is located in the source folder inside the archive. For those who wish
to modify the source code or compile it, Weka instructions are provided at
How to compile Weka5.

1http://sourceforge.net/projects/ear4/files/EAR4.zip/download
2http://sourceforge.net/projects/ear4/files/weka3611.jar/download
3http://sourceforge.net/projects/ear4/files/weka3711.jar/download
4http://sourceforge.net/projects/ear4/files/EAR4.zip/download
5http://weka.wikispaces.com/How+do+I+compile+WEKA%3F

3

http://sourceforge.net/projects/ear4/files/EAR4.zip/download
http://sourceforge.net/projects/ear4/files/weka3611.jar/download
http://sourceforge.net/projects/ear4/files/weka3711.jar/download
http://sourceforge.net/projects/ear4/files/EAR4.zip/download
http://weka.wikispaces.com/How+do+I+compile+WEKA%3F

4.2 Running EAR4 in Weka

After installing EAR4 and launching Weka (or launching Weka binary with
EAR4 embedded), you will see Weka GUI as shown in Fig. 3.

Figure 3: Weka GUI.

Select the Explorer button and Weka Explorer will be launched as shown in
Fig. 4. Select the open file button in Weka Explorer and choose the data set to
be tested. You can download a sample Weka data set6 from EAR4’s homepage.
The data set is a cleaned version of the MPG data set from the UCI Machine
Learning Repository [11].

Figure 4: Weka Explorer.

Next choose the Classify menu in Weka Explorer. Weka will display the

6http://sourceforge.net/projects/ear4/files/mpg.arff/download

4

http://sourceforge.net/projects/ear4/files/mpg.arff/download

available classifiers, as shown in Fig. 5. EAR4 will be listed in the “lazy”
classifiers category.

Figure 5: Weka Classifiers.

Choose EAR4 as the classifier. The parameters used by EAR4 can be tuned
by clicking on the text box next to the Choose button as shown in Fig 6.

Fig 6 shows the parameters that can be set for EAR4:

• kNN specifies the number k of nearest neighbors for k-NN to use in pre-
dicting the solution.

• r specifies the number of adaptation rules to be applied for adjusting the
value of each nearest neighbor (source case).

• o is a coefficient determining the number of cases used for generating adap-
tation rules. EAR4 generates adaptations based on the local neighborhood
of the input query. The number of nearest neighbors of the input query
from which adaptations are generated is kNN × o. The default value of
o is one, so that by default, adaptation rules are generated based on the
top kNN nearest neighbors of the input query.

• nearestNeighbourSearchAlgorithm enables selection of the
similarity measures used for retrieving the source cases and
ruleNearestNeighbourSearchAlgorithm is used to retrieve the adapta-
tions rules to apply.

Figure 6 shows sample values for EAR4 parameters. In this case, EAR4
estimates the input query’s value by combining the adjusted values of the five

5

Figure 6: Setting EAR4’s parameters.

nearest neighbors of the input query. The value of each of those nearest neigh-
bors is adjusted by applying five adaptation rules. Adaptation rules are built
from the top 50 (i.e., 5 × 10) cases of the input query.

Note that values of EAR4’s parameters can be tuned by hill climbing on the
training data using cross validation, as has been done in experimental evalua-
tions of EAR4. However, this process is not currently implemented in the Weka
version of EAR4, so it is up to the user to determine parameter tunings for a
particular data set.

5 A Quick Sketch of CAAR’s Approach

CAAR is a lazy learner, introduced by Jalali and Leake [2], that uses a context-
aware method for retrieving adaptations. CAAR’s underlying approach is very
similar to that of Ensemble of Adaptations for Regression (EAR) [1] in that EAR
also adjusts the instance-based solutions by applying an ensemble of adaptations
and combines the adjusted values for building the final solution. Like EAR,
CAAR generates adaptation rules by using the case difference heuristic.

CAAR builds adaptations by comparing each case in the case base with its
top l neighbors. It defines the context of a case as the rate of change of the target
value given changes in the input features. CAAR determines the context of a
case by training a linear regression model based on its top c nearest neighbors.
In order to assess the appropriateness of an adaptation rule to adapt a similar
retrieved case, CAAR computes and uses the context of the “composing cases”

6

of that adaptation (the cases from which the adaptation was generated), and
the context of the input query and the retrieved case. Therefore, the values of
the retrieved cases are adjusted by applying adaptations expected to address
the contextual differences between the input query and the retrieved case and
their effect on their solution differences. More details about calculating context
and the adaptation retrieval process can be found in [2].

CAAR retrieves the top k nearest neighbors of the input query and applies r

adaptation rules for adjusting the values of each of those nearest neighbors. The
final solution is built by averaging the adjusted values of the nearest neighbors.

6 How to Use CAAR in Weka

6.1 Downloading CAAR for Weka

CAAR’s Weka plugin currently works for domains with numeric input features
and target values. The plugin can be downloaded in any of the following ways:

• Install using Weka plug-in manager: CAAR is part of Weka’s official repos-
itory. If your Weka version is greater than 3.7.2, under “Tools” menu, find
and select “Package Manager”. In the dialog page that opens, you will see
the list of packages in Weka’s repository. Look for the entry for CAAR
and install it. You may need to relaunch Weka after installing the package.

• Install from file: You can also download CAAR’s plug-in directly from
the CAAR project’s home page7 to your local machine. Launch “Pack-
age Manager”, choose the “File/URL” button, and select the downloaded
archive file (it should be titled CAAR.zip) from your local machine. After
installing the package you may need to relaunch Weka.

The source code of CAAR can also be found in the plugin’s archive8. The
source is located in the source folder inside the archive. For those who wish
to modify the source code or compile it, Weka instructions are provided at
How to compile Weka9.

6.2 Running CAAR in Weka

After installing CAAR and launching Weka, you will see the Weka GUI as shown
in Fig. 3. Select the Explorer button and Weka Explorer will be launched as
shown in Fig. 4. Select the open file button in Weka Explorer and choose
the data set to be tested. You can download a sample Weka data set10 from
CAAR’s homepage.

Next choose the Classify menu in Weka Explorer. Weka will display the
available classifiers, as shown in Fig. 7. CAAR will be listed in the “lazy”
classifiers category.

Choose CAAR as the classifier. The parameters used by CAAR can be tuned
by clicking on the text box next to the Choose button as shown in Fig 8.

7http://sourceforge.net/projects/caar/files/CAAR.zip/download
8http://sourceforge.net/projects/caar/files/CAAR.zip/download
9http://weka.wikispaces.com/How+do+I+compile+WEKA%3F

10http://sourceforge.net/projects/caar/files/mpg.arff/download

7

http://sourceforge.net/projects/caar/files/CAAR.zip/download
http://sourceforge.net/projects/caar/files/CAAR.zip/download
http://weka.wikispaces.com/How+do+I+compile+WEKA%3F
http://sourceforge.net/projects/caar/files/mpg.arff/download

Figure 7: Weka Classifiers.

Fig 8 shows the parameters that can be set for CAAR and sample values for
them:

• kNN specifies the number k of nearest neighbors for k-NN to use in pre-
dicting the solution.

• c, l and r respectively denote the number of nearest cases to define context
for a case, the number of nearest neighbors to generate adaptation rules,
and the number of adaptations to apply per base case.

• nearestNeighbourSearchAlgorithm enables selection of the
similarity measures used for retrieving the source cases and
ruleNearestNeighbourSearchAlgorithm is used to retrieve the adapta-
tions rules to apply.

Figure 8 shows sample values for CAAR parameters. In this case, CAAR
estimates the input query’s value by combining the adjusted values of the seven
nearest neighbors of the input query. The value of each of those nearest neigh-
bors is adjusted by applying seven adaptation rules. The adaptation rules are
built from the nearest 30 cases of each case in the case base, and the context
of a case is determined by training a linear regression model based on its 70
nearest cases.

Note that values of CAAR’s parameters can be tuned by hill climbing on the
training data using cross validation, as has been done in experimental evalua-
tions of EAR4. However, this process is not currently implemented in the Weka
version of CAAR, so it is up to the user to determine parameter tunings for a
particular data set.

8

Figure 8: Setting EAR4’s parameters.

References

[1] Jalali, V., Leake, D.: Extending case adaptation with automatically-
generated ensembles of adaptation rules. In: Case-Based Reasoning Re-
search and Development, ICCBR 2013, Berlin, Springer (2013) 188–202

[2] Jalali, V., Leake, D.: A context-aware approach to selecting adaptations
for case-based reasoning. In: Modeling and Using Context. Springer, Berlin
(2013) 101–114

[3] Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learn-
ing Tools and Techniques with Java Implementations. Third edn. Morgan
Kaufmann, San Francisco (2011)

[4] Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI Communications
7(1) (1994) 39–52 http://www.iiia.csic.es/People/enric/AICom.pdf.

[5] Kolodner, J., Leake, D.: A tutorial introduction to case-based reasoning. In
Leake, D., ed.: Case-Based Reasoning: Experiences, Lessons, and Future
Directions. AAAI Press, Menlo Park, CA (1996) 31–65

[6] Leake, D.: CBR in context: The present and future. In Leake, D., ed.:
Case-Based Reasoning: Experiences, Lessons, and Future Directions. AAAI

9

Press, Menlo Park, CA (1996) 3–30
http://www.cs.indiana.edu/˜leake/papers/a-96-01.html.

[7] López de Mántaras, R., McSherry, D., Bridge, D., Leake, D., Smyth,
B., Craw, S., Faltings, B., Maher, M., Cox, M., Forbus, K., Keane, M.,
Aamodt, A., Watson, I.: Retrieval, reuse, revision, and retention in CBR.
Knowledge Engineering Review 20(3) (2005)

[8] Aha, D.: Case-based learning algorithms. In: Proceedings of the 1991
DARPA Case-Based Reasoning Workshop. Volume 1. (1991) 147–158

[9] Jalali, V., Leake, D.: Enhancing case-based regression with automatically-
generated ensembles of adaptations. Journal of Intelligent Information Sys-
tems (2015) In press.

[10] Hanney, K., Keane, M.: The adaptation knowledge bottleneck: How to
ease it by learning from cases. In: Proceedings of the Second International
Conference on Case-Based Reasoning, Berlin, Springer Verlag (1997) 359–
370

[11] Blake, C., Merz, C.: UCI repository of machine learning databases (2000)
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

10

	Introduction
	Background
	Case-Based Regression
	Case Difference Heuristic

	A Quick Sketch of EAR4's Approach
	How to Use EAR4 in Weka
	Downloading EAR4 for Weka
	Running EAR4 in Weka

	A Quick Sketch of CAAR's Approach
	How to Use CAAR in Weka
	Downloading CAAR for Weka
	Running CAAR in Weka

