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ABSTRACT
Keyword search, due to its simplicity in expressing search
demands, has been the major means of search queries for
Internet search engines. More recently, the notion has been
explored in structured and semi-structured data, where new
search semantics were defined, and evaluation algorithms
proposed. What is yet to be explored thoroughly in key-
word search on those types of graph data is how optional
and negative keywords can be expressed, what the results
should be and how such search queries can be evaluated effi-
ciently. In this paper, we propose and formally define a new
type of keyword search query, ROU-query, which takes as
input keywords in three categories: required, optional and
unwanted, and returns as output sets of data entries (nodes
in the data graph) whose neighborhood satisfy the keyword
requirements. We define multiple semantics, including max-
imal coverage and minimal footprint, to ensure the mean-
ingfulness of the results. We propose a new data structure,
query induced partite graph (QuIP), that can capture the
constraints related to neighborhood size and unwanted key-
words, and propose a family of algorithms that take advan-
tage of the information in QuIP for efficient evaluation of
ROU-queries. We conducted extensive experimental evalua-
tions to analyze the performance of our proposed algorithms
and found that the size of QuIP is generally very small com-
pared to the data graph, and our algorithms are able to
effectively prune non-promising partial results and generate
results for ROU-queries efficiently.

1. INTRODUCTION
Keyword search has been proven as an effective method

for information retrieval, most notably used in search en-
gines such as Google and Bing. While traditionally keyword
search has been focusing on finding particular entities (docu-
ments, webpages, images, videos, etc.) [13], recently we wit-
nessed significant efforts towards applying keyword search
to structured and semi-structured data, including relational
data [1,9,12], XML data [3] or general graph [4,7,8], to find
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sets of data entries, in the form of Steiner trees [1, 4, 5, 7, 8]
and connected sub-graphs [10, 11, 14], that satisfy keyword
and connectivity constraints.

Some of the earlier works focused on returning (approx-
imate) minimum Group Steiner Trees (GST) that connect
keyword nodes [1, 4, 5, 7, 8], featuring different GST genera-
tion approaches and various scoring functions for ranking the
resultant GSTs. More recently, the focus has been shifted
from ranking results to finding clusters of GSTs that de-
liver richer and more cohesive information, rendering the re-
sults beyond trees, into sub-graphs, such as r-radius Steiner
graphs [11], keyword community [14] and r-cliques [10]. The
common themes of most of these works are: (1) one set of
keywords are given as input and the AND semantics is en-
forced, i.e. all of which are required to appear in each result;
and (2) scoring functions based on node and edge weights
are used to identify the top-k results that are considered
most relevant to the keyword set.
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Figure 1: Example Graph

[7] and [11], while still taking one keyword set as in-
put, employed the OR semantics, allowing results to con-
tain some (but not necessarily all) keywords. However, due
to this relaxation, they lost the ability to demand certain
keywords must appear in every result. Additional works on



such relaxed semantics including [9] and [12] on relational
databases and [3] on XML documents. However, they all
assumed the existence of schema information, which is not
applicable to general schema-free graph data.
Meanwhile, negative predicate, while a key component in

Boolean queries [13], has not been studied in the landscape
of keyword search queries on graphs.
The issues listed above strictly limit what a traditional

keyword search query can express. For example, consider the
example graph (with the graph structure shown in Figure 1
and the contents of the nodes shown in the table), which is a
fragment of the citation network. All the content words can
potentially be keywords for different queries but keywords
that appear in our example queries throughout the paper
are in Bold and the abbreviation of these keywords marked
in the figure. It is reasonable to ask questions such as :

Q.1 What correlated works of Molenaar and Jacobsen cover
at least two topics from intelligence, language and mind?

Q.2 How is the concept of artificial intelligence presented
in the context of language or mind, in current publica-
tions, without reference to articles about translation?

Existing works, even with a ranking function presented,
cannot easily specify in Q.1 that“Molenaar”or“Jacobsen” is
more important than “intelligence” or “language” or “mind”,
and only two out of the latter three is sufficient for a piece
of collaborative talk to be returned; also there is no easy
way to express the negative constraints in Q.2 concerning
keyword “translation”.
Moreover, frequently users would desire search results to

contain data instances that are highly related to the query
and at the same time bear just the right amount of informa-
tion that satisfies their search, which means:

RQ.1 the result should not include non-relevant informa-
tion;

RQ.2 the result should carry as rich information as possible;

RQ.3 the result should not include redundant information;

These requirements are not fully reflected by the ranking
functions as proposed in [10–12,14].
We take a different stand in this paper to address the open

problems in both query specification and result definition as
identified above. Rather than allowing users to give only
one set of keywords as input, we propose the ROU query,
which allows users to specify three different keyword sets:
Required, Optional, and Unwanted. To our knowledge, even
though the R and O concepts has been well exploited in
keyword search and the concept of negation well studied
in structured query language, we are the first in considering
the explicit combination of them in keyword search on graph
data. Our definition of the results of the the ROU queries
not only focuses on fulfilling the keywords requirements of
the three keyword sets, but also focuses on identifying results
that provide richer yet non-reductant information.
To efficiently answer ROU queries, we propose a novel

data structure, called query induced partite graph(QuIP),
to capture candidate data entries that may contribute to
query results, effectively transferring the problem of gener-
ating sub-graphs that fulfills the keyword constraints in the
large data graph into the problem of enumerating cliques in
QuIP. Then, inspired by the Bron-Kerbosch algorithm [2]
and its variants [6, 16], we propose two algorithms which

take advantage of the information captured in QuIP to effi-
ciently generate results that maximize the keyword coverage
and minimize the footprint.

Our contributions can be summarized as follows:

1. We propose the ROU query, a new keyword search
problem on graph data, which integrates AND, OR
and NOT semantics.

2. We propose the maximal-coverage and minimal-footprint
semantics for ROU queries, which are well suited to be
applied to other keyword search queries on graph data.

3. We propose a novel data structure, called query in-
duced partite graph, and two algorithms utilizing query
induced partite graphfor efficient ROU query evalua-
tion.

2. PROBLEM DEFINITION
The data graphs we study in this paper are node-labeled

undirected graphs G = (VG, EG, λG), where VG is the set of
nodes, EG⊆ VG× VG is the set of edges, and λG : VG → 2L

is a labeling function that maps each node in VG to a set of
keyword terms in L. We say a node v contains a keyword
k if k ∈ λG(v). We overload the mapping function λG()
such that when it is applied to a set of nodes V ⊆ VG, it
returns the union of the keyword sets of the nodes in V , i.e.
λG(V ) =

∪
v∈V

λG(v).

Our keyword search query allows users to specify both
positive and negative keyword constraints, as well as size
constraints. The results of our search queries are node sets
satisfying such constraints and the requirements RQ. 1-3.
We define the relationship between a set of nodes and keyword-
based constraints, both positive and negative, as follows.

2.1 Size and Negative Keyword Constraints
Given a set of nodes V , when we consider it in the context

of a data graph G, we measure the size of V by the distance
among these nodes in G.

Definition 2.1. [Distance & Diameter] Given a set
of nodes V ⊆ VG, for any two nodes u, v ∈ V , the distance
between u and v, dis(u, v), is the length of the shortest path
between u and v in G. The diameter of V is

d(V ) = max
u,v∈V

dis(u, v)

Definition 2.2. [Bypass Distance & Diameter] Given
a set of nodes V ⊆ VG and a keyword set K, for any two

nodes u, v ∈ V , the K-bypass distance of u and v, dis
K
(u, v),

is the length of the shortest path between u and v that does
not pass through any node that contains a keyword in K.
The K-bypass diameter of V is

d
K
(V ) = max

u,v∈V
dis

K
(u, v)

Please note that dis
K
(u, v) = ∞ if at least one keyword

in K appears on each path between u and v 1. Also observe

that dis
{}
(u, v) = dis(u, v).

Example 2.1. Consider the sample data graph as shown
in Figure 1. We have dis(v1, v5) = 2. However, given a

keyword set K = {T}, disK(v1, v5) = 3.

1This includes the case in which (λG(u) ∪ λG(v)) ∩K ̸= ∅.



2.2 Positive Keyword Constraints
Consider a set of nodes that are close to each other and

do not involve the unwanted keyword terms, we now move
on to consider how to identify whether the set provides just
the right amount of information desired by the user, given
positive keyword constraints.

Definition 2.3. [Cover] Given a set of nodes V ⊆ VG

and a set of keyword terms K (K ̸= ∅), we say V cover
K (denoted V ≻ K), if K ⊆ λG(V ) and for every v ∈ V ,
λG(v) ∩K ̸= ∅.

Definition 2.4. [h-cover] Given a set of nodes V ⊆ VG,
a set of keyword terms K (K ̸= ∅), and a threshold h,
0 ≤ h ≤ 1, we say V h-cover K (denoted V ≻h K), if
|K∩λG(V )|

|K| ≥ h and for every v ∈ V , λG(v) ∩K ̸= ∅.

Example 2.2. Consider the sample data graph as shown
in Figure 1 and a keyword set K={A, I, L,M}, then, {v3, v4,
v5} ≻ K, {v3, v5} � K, and {v1, v5} ≻

3
4 K, {v1, v3} �

3
4 K.

The “for every v ∈ V , λG(v) ∩ K ̸= ∅” clause in both
Def. 2.3 and Def. 2.4 ensures the satisfaction of RQ. 1.
RQ. 3 is fulfilled automatically when |λG(v)| = 1 holds

for all nodes in G. However, when the label of a node con-
tains multiple keyword terms, the situation becomes much
more delicate. Existing works on keyword search in graph
data [10,14], under such circumstances, chose to take a vague
stand on how each node in the result represents the key-
words, one or many, or as many as possible. Here, we will
define the search results of the ROU problem in a more pre-
cise manner.

Symbol Description
Kr,Ko,Ku required, optional and unwanted keyword set

h coverage threshold associated with Ko

disMAX diameter constraint

dis
K
(u, v) K-bypass distance between u and v

V ≻ K node set V cover keyword set K

V ≻h K node set V h-cover keyword set K

V1 <K
cv V2 V1’s coverage of K is consumed by V2’s

V1 <K
fp V2 V1’s footprint in covering K is smaller than V2’s︷ ︸︸ ︷

q(G) q(G) under the Maximal Coverage semantics
q(G)︸ ︷︷ ︸ q(G) under the Minimal Footprint semantics

q̂(G) q(G) under the Condensed semantics
GT qG Query Induced Partite Graph (QuIP) of q on G

vk node in QuIP whose base is v in G and label is k

V k
T k-cluster in GT qG

2.3 ROU Keyword Search Query
In the ROU problem we introduce, users can specify key-

word constraints in three different categories: the set of key-
words which they want to all appear in each result; the set of
keywords which they want to at least partially appear in each
result; and the set of keywords which should not be associ-
ated with the results. We call them Required keyword set,
Optional keyword set and Unwanted keyword set, and use
Kr, Ko and Ku to represent them, respectively. In addi-
tion, associated with the optional keyword set is a threshold
h, which is a real number between 0 and 1. And a con-
straint disMAX needs to be specified to regulate the size of
each result measured in terms of node set diameter.
The syntax and semantics of the ROU problem is defined

as follows:

Definition 2.5. [ROU Keyword Search Query] Given
a data graph G = (VG, EG, λG), an ROU query is specified
in the form of q = (Kr,Ko,Ku, h, disMAX), in which 2

• either Kr, Ko or Ku can be ∅;
• Kr ∪Ko ̸= ∅;
• 0 ≤ h ≤ 1 when Ko ̸= ∅;
• disMAX ≥ 0.

The result of evaluating q on G is a set of node sets, i.e.
q(G) ∈ 2VG . Each V ∈ q(G) must satisfy:

1. if Kr ̸= ∅, then there exists Vr ⊆ V , such that Vr ≻Kr;
otherwise, Vr = ∅;

2. if Ko ̸= ∅, then there exists Vo ⊆ V , such that Vo ≻h

Ko; otherwise, Vo = ∅;
3. V = Vr ∪ Vo;

4. d
Ku

(V ) ≤ disMAX .

Example 2.3. Consider Q1-2 presented in the introduc-
tion, they can be specified as ROU Keyword Search queries:

Q.1: q1 = ({Mo, Ja}, {I, L,M}, {}, 2
3
, 3)

Q.2: q2 = ({A, I}, {L,M}, {T}, 1
2
, 2)

Applying q2 to the data graph shown in Figure 1, we have

q2(G) = {{v1, v2, v4}, {v1, v2}, {v2, v4}, {v3, v5}, {v2}}.

We would like to bring reader’s attention to two types of
subset relationships among node sets in q2(G):
Case 1. {v1, v2} ⊂ {v1, v2, v4}, {v1, v2} ≻ {A, I, L}, and
{v1, v2, v4} ≻ {A, I, L,M}.
Case 2. {v2, v4} ⊂ {v1, v2, v4}, {v1, v2, v4} ≻ {A, I, L,M},
and {v2, v4} ≻ {A, I, L,M}.

As can be seen from the example above, some resultant
node sets are consumed by others, hence: (1) a node set
is by itself not rich enough, as {v1, v2} in Case 1, violating
RQ. 2; or (2) a node set contains redundant information, as
{v1, v2, v4} in Case 2, violating RQ. 3.

Intuitively, when a set of keywords are partially covered
(h-cover), the result that covers more keywords is considered
to carry richer information comparing to the one that covers
less, hence should be favored over the latter.

Definition 2.6. [Coverage Comparison] Given a set
of keywords K, consider two node sets V, V ′ ⊆ VG. We say
that V’s coverage of K is consumed by V ′’s coverage of K,
denoted V <K

cv V ′, if V ⊂ V ′ and λG(V )∩K ⊂ λG(V
′)∩K.

With the help of Def. 2.6, we can define the maximal cov-
erage semantics as follows.

Definition 2.7. [Maximal Coverage Semantics] Given
a data graph G = (VG, EG, λG), an ROU query
q = (Kr,Ko,Ku, h, disMAX), the maximal coverage of the
query result q(G) is a subset of q(G), defined as︷ ︸︸ ︷

q(G) = q(G)− {V |∃V ′ ∈ q(G)(V <Kr∪Ko
cv V ′)}.

2We omit the condition Kr ∩Ko = ∅ as any query in which
Kr ∩Ko ̸= ∅ can be written into a query q′ = (Kr,K

′
o,Ku,

h′, disMAX), where K′
o = Ko − Kr, and h′ is an adjusted

threshold. We omit conditionKr∩Ku = ∅, as any query that
does not satisfy this condition has empty result. Another
condition we omit is Ko ∩ Ku = ∅, as a query that fails
this condition can be rewritten into q′ = (Kr,Ko − Ku,
Ku, h

′, disMAX) with an adjusted threshold.



The maximal coverage semantics introduced above does
not guarantee that each resultant node set is the minimal
needed to cover the positive keywords (Kr ∪Ko) required in
query q. As a remedy, we introduce the minimal footprint
semantics, which ensures smallest resultant node set by fa-
voring a smaller node set over a bigger one, when the two
sets cover exactly the same sets of positive keyword terms.
Formally,

Definition 2.8. [Footprint Comparison] Given a set
of keywords K, consider two node sets V, V ′ ⊆ VG which
cover the same subset of K, i.e. λG(V

′) ∩K = λG(V ) ∩K.
If V ⊂ V ′, we say that V has a smaller footprint than V ′ in
covering K, denoted V <K

fp V ′.

With the help of Def. 2.8, we can define the minimal foot-
print semantics as follows.

Definition 2.9. [Minimal Footprint Semantics] Given
a data graph G = (VG, EG, λG), an ROU query
q = (Kr,Ko,Ku, h, disMAX), the minimal footprint of the
query result q(G) is a subset of q(G), defined as

q(G)︸ ︷︷ ︸ = q(G)− {V |∃V ′ ∈ q(G)(V ′ <Kr∪Ko
fp V )}.

Taking the concepts defined above all into consideration,
we define the condensed semantics of ROU query, which
satisfy RQ. 1, RQ. 2 and RQ. 3, as follows:

Definition 2.10. [Condensed Semantics] Given a data
graph G = (VG, EG, λG), an ROU query
q = (Kr,Ko,Ku, h, disMAX), the condensed semantics com-
putes

q̂(G) =
︷ ︸︸ ︷
q(G)∩ q(G)︸ ︷︷ ︸ .

Example 2.4. Consider again our example data graph
and the search query q2, we have︷ ︸︸ ︷

q2(G) = {{v1, v2, v4}, {v2, v4}, {v3, v5}}
q2(G)︸ ︷︷ ︸ = {{v2, v4}, {v3, v5}, {v2}}

q̂2(G) = {{v2, v4}, {v3, v5}}

Note that a node set does not have to cover all the key-

words in Kr

∪
Ko to qualify for

︷ ︸︸ ︷
q(G). {v3, v5} is one such

example.

Problem Definition: Given a data graph G and an ROU

query q, find q̂(G) efficiently.

3. QUERY INDUCED PARTITE GRAPH
From the definition of our ROU problem, a näıve approach

for answering such queries, is to (1) identify keyword nodes,
i.e. nodes that contain keyword terms; (2) identify node
pairs among the keyword nodes that are within disMAX from
each other; (3) construct a connectivity graph that contains
nodes and edges that are resultant of step (2); (4) enumerate
cliques on the connectivity graph. However, this approach
is not applicable ro ROU queries.
The connectivity graph of query q2 = ({A, I}, {L,M}, {T},

1
2
, 2), when applied on to our sample graph G, is shown in

Fig. 2.
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Figure 2: Connectivity
Graph of q2(G)

As shown in Ex-
ample. 2.4, q̂2(G) =
{{v2, v4}, {v3, v5}}.
While {v3, v5} corre-
sponds to a maximal
clique in the connec-
tivity graph, {v2, v4}
does not. That poses
substantial difficulty
to form a system-
atic enumeration al-
gorithm. The con-
nectivity graph as
shown in Fig. 2 is not
capable of capturing
both the required and

optional keyword requirements and our query semantics at
the same time.

3.1 Introducing QuIP
We propose Query Induced Partite Graph (QuIP) as an

intermediate data structure for efficient answering of ROU
queries.

One key notion introduced in the QuIP is shadowing.
Given a data graph G = (VG, EG, λG) and a query q =
(Kr,Ko,Ku, h, disMAX), for each node that covers a posi-
tive keyword in q, we create a copy of it for each positive
keyword it covers, and label the copy with the keyword.
These copies are the nodes in the QuIP. (We refer to the
nodes and edges in QuIP as t-nodes and t-edges.) Two t-
nodes are adjacent if their labels are different and (1) they
are copies of the same original data node; or (2) the Ku-
bypass distance between the two original data nodes they
represent are within the size constraint (i.e. disMAX) in G.
Formally,

Definition 3.1. [Query Induced Partite Graph] Given
a data graph G = (VG, EG, λG) and an ROU query q =
(Kr,Ko,Ku, h, disMAX), a Query Induced Partite Graph of
q on G, denoted GT (q,G) = (VT , ET , λT ) is constructed as
follows:

• VT = {vk|v ∈ VG ∧ k ∈ (Kr ∪Ko) ∩ λG(v)};
• λT (v

k) = k, for all vk ∈ VT ;

• (vk, ul) ∈ ET if k ̸= l and (1) v = u; or (2) v ̸=
u ∧ dis

Ku
(v, u) ≤ disMAX .

Given a node v in data graph G, we call all t-nodes vk ∈
VT the shadows of v. And for each such vk ∈ VT , we say that
v is its base. We define the base() and shadow() functions
to represent the mapping:

shadow(v) = {vk|k ∈ (Kr ∪Ko) ∩ λG(v)}
base(vk) = v

base(V ′
T ) =

∪
vk∈V ′

T

base(vk)

base(G′
T ) = base(V ′

T ) where G′
T = (V ′

T , E
′
T , λT )

is a subgraph of GT

base(S) = {base(G′
T )|G′

T ∈ S}
where S is a set of subgraphs of GT

In a QuIP, given a keyword k, we call the set of all t-nodes
labeled k the k-cluster, denoted V k

T = {vk|vk ∈ VT }.



Example 3.1. Again consider query q2 and sample graph
G. GT (q2, G) is shown in Figure 3. There are two shadow
nodes of v3: v3

A and v3
I , i.e. shadow(v3)= {v3A, v3I}.

There are four k-clusters, shown in dotted circles.

 

A M 

I L 

Figure 3: QuIP Graph of q2(G)

The idea of group-
ing nodes based on
the keywords they
covered for enumer-
ation purpose is used
in some of the ear-
lier works [10, 14],
but their approaches
did not explicitly
create multiple copies
for the same node
because they only
needed approximate
solutions and did
not pose precise se-
mantics requirement.
The concept of shad-
owing is essential

for solving our problem as it adds both flexibility and con-
straints to enforce our query semantics.
The following properties of query induced partite graph

can be established naturally from its definition.

Observation 3.1. Given a QuIP GT (q,G) = (VT , ET , λT )
of ROU query q on G, the following statements hold:

• VT =
∪

k∈Kr∪Ko

V k
T ;

• V k
T ∩ V k′

T = ∅ if k ̸= k′;

• for any uk, vk ∈ V k
T , (uk, vk) /∈ ET .

• given a t-node set V ′
T ⊆ VT , if the induced graph of V ′

T

is a clique, then,

– for any two t-nodes vk, ul ∈ V ′
T , vk, ul can not

belong to the same keyword cluster, i.e. k ̸= l;

– |V ′
T | ≤ |Kr ∪Ko|;

3.2 Answering ROU Queries Using QuIP
We now show how to take advantage of the information

represented in a QuIP to efficiently answer an ROU query.

Example 3.2. Let’s again consider query q2, whose QuIP
GT (q2, G) is shown in Figure 3.

The answer to q2, under the condensed semantics is q̂2(G) =
{{v2, v4}, {v3, v5}}. The two node sets are both bases of
maximal cliques in GT qG, with base({v2A, v2I , v2L, v4M}) =
{v2, v4}, and base({v5A, v3I , v5L}) = {v3, v5}.
Note that different sets of t-nodes can be mapped to the

same base. For example, consider V ′
T = {v5A, v3I , v5L}

and V ′′
T = {v3A, v3I , v5L}, while V ′

T ̸= V ′′
T , base(V ′

T ) =
base(V ′′

T ) = {v3, v5}.
However, not all the maximal cliques in GT qG correspond

to members of q̂(G). For instance, {v3A, v1I} is a maxi-
mal clique, but it does not contain enough keywords so its
base {v1, v3} does not even belong to q(G). Another example
is {v2A, v1I , v2L, v4M}. Its base is {v1, v2, v4} and satisfies
maximal coverage semantics, however it does not satisfy the
minimal footprint semantics as it covers no more keywords
than {v2, v4} does.

We summarize what we observed from Example 3.2 as
follows:

Observation 3.2. Given a QuIP GT (q,G) = (VT , ET , λT )
of query q on G, the following statements hold:

• If node set V ∈ q̂(G), then, there must exist a maximal
clique c in GT qG, such that base(c) = V .

• There may exist maximal clique c in GT qG, but base(c) /∈
q(G).

• There may exist maximal cliques c, c′ in GT qG, such
that base(c) <K

fp base(c′), where K = λT (base(c)) =
λT (base(c

′)).

Based on the above observations, finding all maximal cliques
in QuIP may not suffice as an efficient manner for answering
an ROU query. To address these issues, there is a special
type of cliques in QuIP that interests us the most, the h-
cover clique.

Definition 3.2. [h-cover clique] Given a QuIP GT qG,
G′

T = (V ′
T , E

′
T , λT ) is a subgraph of GT induced by t-node

set V ′
T . We say that G′

T is a h-cover clique of q if

• G′
T is a clique;

• There exists V ′
rT ⊆ V ′

T and V ′
rT ≻ Kr, if Kr ̸= ∅;

• There exists V ′
oT ⊆ V ′

T and V ′
oT ≻h Ko, if Ko ̸= ∅; and

• V ′
T = V ′

rT ∪ V ′
oT .

Given a QuIP GT qG, we use hcClq(GT qG) to represent
the set of all h-cover cliques in GT qG.

Theorem 3.1. Given GT qG, which is the QuIP of q on
G, for any G′

T that is a sub-graph of GT qG, the following
holds:

q̂(G) ⊆ base(hcClq(GT qG)) ⊆ q(G).

Theorem 3.1 establish the QuIP as a suitable vehicle for
answering ROU query. If we generate hcClq(GT qG), then,
the base of hcClq(GT qG) is guaranteed to satisfy the pos-
itive and negative keyword constraints, but not necessarily
satisfies the maximal coverage and minimal footprint seman-
tics.

Let’s consider two subsets of hcClq(GT qG):︷ ︸︸ ︷
hcClq(GT qG) is a subset of hcClq(GT qG) that guarantees
maximal coverage. Formally,︷ ︸︸ ︷

hcClq(GT qG) = hcClq(GT qG)
−{c|c ∈ hcClq(GT qG)
∧∃c′ ∈ hcClq(GT qG)(Vc ⊂ V ′

c

∧λT (Vc) ∩K ⊂ λT (V
′
c ) ∩K)}

̂hcClq(GT qG) is a subset of
︷ ︸︸ ︷
hcClq(GT qG) that guarantees

minimal footprint. Formally,

̂hcClq(GT qG) =
︷ ︸︸ ︷
hcClq(GT qG)

−{mc|mc ∈
︷ ︸︸ ︷
hcClq(GT qG)

∧∃c ∈ hcClq(GT qG)(base(c) ⊂ base(mc)
∧λT (c) ∩K = λT (mc) ∩K)}

Corollary 3.1. Given GT qG, which is the QuIP of q on
G, the following holds:

base(
︷ ︸︸ ︷
hcClq(GT qG)) =

︷ ︸︸ ︷
q(G)

base( ̂hcClq(GT qG)) = q̂(G).



Example 3.3. Again considering query q2, and GT (q2, G)
as shown in Figure 3. Consider four sets of t-nodes: VT1 =
{v3A, v1I}, VT2 = {v2A, v1I , v2L}, VT3 = {v2A, v1I , v2L, v4M},
and VT4 = {v2A, v2I , v2L, v4M}, each inducing a clique in
GT (q2, G), we call them c1 . . . c4, respectively.
c1 /∈ hcClq(GT (q2, G)) as VT1 does not cover adequate

keywords, and base(V ′
T ) = {v1, v3} /∈ q(G).

c2 ∈ hcClq(GT (q2, G)), however c2 /∈
︷ ︸︸ ︷
hcClq(GT (q2, G))

as c2 is a sub-graph of c3, which covers more keywords.

c3 ∈
︷ ︸︸ ︷
hcClq(GT (q2, G)), however, c3 /∈ ̂hcClq(GT (q2, G)),

as c3 and c4 covers the same set of keywords, and base(c4) ⊂
base(c3).

c4 ∈ ̂hcClq(GT (q2, G)), and base(c4) ∈ q̂(G).

Based on Theorem 3.1 and Corollary 3.1, we are ready
to use the QuIP to answer an ROU query in two steps:
(1) constructing QuIP based on an incoming query; and (2)

identifying ̂hcClq(GT qG) whose base is member of q̂(G).
Both steps are very challenging, especially when the data

graph is massive, or many data nodes carry more than one
keyword terms, or many data nodes share the same keyword
term, or the query is complicated, e.g. one or more keyword
sets among Kr, Ko, and Ku are of decent size. In this paper,
we focus on solving the problem related to step (2). While
step (1) is not the focus of this document, we will first iden-
tify the challenges in QuIP construction, before presenting
algorithms for computing query results using the QuIP in
Section 4.

3.3 Challenges in QuIP Construction
The construction of QuIP involves identifying all the nodes

VT and edges ET in GT qG as defined in Def. 3.1.
An inverted index, which stores for each keyword term

k ∈ L the set of IDs of the data nodes whose label contains
k, can be used to assist the generation of VT . Given a query
q, a few index lookup will supply the sets of nodes that cover
keyword terms in Kr and Ko, from which shadows can be
constructed to form VT .
Establishing the edges in ET is much more challenging,

due to the demand on dis
Ku

(v, u) ≤ disMAX , in which, ac-

cording to the definition of dis
Ku

(v, u), all paths between
u and v whose length is ≤ disMAX have to be checked to
see if there exists at least one path that can bypass the key-
word terms in Ku. It is impractical to check during runtime
whether every path between a pair of nodes contains a cer-
tain keyword in Ku, especially when disMAX increases, not
to mention that there may be thousands to millions pairs of
nodes for each such conditions need to be checked.
Neighborhood index is often used to answer immediately

whether two nodes are connected within a distance thresh-
old [10]. It is possible to extend the neighborhood index to
include labels. Such extension may help deduce whether two
nodes are connected, bypassing a Ku of cardinality 1, how-
ever such extension is not sufficient for deducing whether
they are connected, bypassing larger Ku. Designing sum-
mary data structures and algorithms for constructing QuIP
efficiently is left as future work, and we consider cases where
|Ku| ≤ 1 in our experiments.

4. q̂(G) GENERATION

4.1 Base Algorithm
Enumerating maximal cliques in a graph is a well stud-

ied problem in discrete mathematics [2, 16]. We adapt
the Bron-Kerbosch algorithm [2] to find maximal cliques in
QuIP. The details of the recursive algorithm is shown in

Algo. 2. The process of generating the full set of q̂(G) starts
by triggering the cdsCliqueEnum() function, with P initial-
ized to be VT , and R and X empty set, is shown in Algo. 1.

Algorithm 1: q̂(G) Generation

Data: GT (q,G)

Result: q̂(G)
1 R← ∅ ; P ← VT ; X ← ∅ ;
2 cdsCliqueEnum (R, P , X) ;

cdsCliqueEnum(), whose details are presented in Algo. 2,
is amended with two pruning functions:

• satisfyQ() handles positive keyword constraints. Given
a set of t-nodes V ⊆ VT , satisfyQ(V)=TRUE if for some
Vr ⊆ V , Vr ≻ Kr (if Kr ̸= ∅) and for some Vo ⊆ V , Vo ≻h

Ko (if Ko ̸= ∅). It guarantees that all the maximal cliques
enumerated by the algorithms are h-cover cliques.

• notMnfp() checks if there exists a node v ∈ base(R) such
that λG(base(R))∩(Kr∪Ko) = λG((base(R)−{v}))∩(Kr∪
Ko). If so, the base of R cannot possibly be a subset of any
results that satisfy the minimal footprint requirement as we
can always remove v for a more “concise” result.

In Algo. 2, P is a set holding potential t-nodes that can
be added to the current partial clique R. In the recursion
process, t-nodes in P will always be neighbors to all the t-
nodes in R. Thus whenever P is not empty, we can always
pick a t-node from it to add to R to make a bigger clique.
A t-node v is added to X only after all the maximal cliques
containing R ∪ {v} are explored (line 12). Thus when P is
empty and X is not, it implies that a clique that contains
t-nodes in R ∪X has already been considered before. So a
clique that contains only t-nodes in R is not maximal, and
our algorithm needs to backtrack. When both P and X are
empty, a maximal clique in GT (q,G) has been formed; and

it belongs to ̂hcClq(GT ) because of notMnfp(). So we can

report its base, which belongs to q̂(G), as a query result. An
execution example of the algorithm can be found in Table 1.

4.2 Optimization
Though cdsCliqueEnum generates exactly q̂(G), it may

consider cliques that consist of different t-nodes but share
the same base, generating duplicated results. For example,
applying the algorithm to GT (q2, G), it will generate result
{v3, v5} twice, one from clique {v5A, v3I , v5L}, another from
{v3A, v3I , v5L}.

To address this issue, we introduce cdsCliqueEnumGreedy,

presented in Algo. 3, which can generate q̂(G) without con-
sidering duplicated cliques. The basic idea is that when a t-
node v is picked from P and put into R, we also put all shad-
ows of the base of v that are in P , i.e. P ∩shadow(base(v)),
into R (lines 9-11), and adjust P and X accordingly. When
the search is done on the current level, all these t-nodes
will be moved to X to prevent cliques with same base from
being considered in the future (lines 15-17). Thus if we
apply cdsCliqueEnumGreedy, assuming at the beginning in



Level R P X R’ P’ X’ Action

0 ∅ VT ∅ {v3
I} {v3

A, v5
A, v5

L} ∅ recursive call

1 {v3I} {v3
A, v5

A, v5
L} ∅ {v3

I , v5
A} {v5

L} ∅ recursive call

2 {v3I , v5
A} {v5

L} ∅ {v3
I , v5

A, v5
L} ∅ ∅ recursive call

3 {v3I , v5
A, v5

L} ∅ ∅ report result, backtrack

2 {v3I , v5
A} ∅ {v5L} backtrack

1 {v3I} {v3
A, v5

L} {v5A} {v3
I , v3

A} {v5
L} ∅ recursive call

2 {v3I , v3
A} {v5

L} ∅ . . . . . . . . . . . .

Table 1: Evaluating q2 Using Algo 2

Algorithm 2: cdsCliqueEnum(R,P,X)

Data: R,P,X
Result: bases of cliques that contain all t-nodes in R,

some t-nodes in P and no t-nodes from X,
satisfy condensed semantics

1 if notMnfp (R) then
2 return
3 end
4 if P is empty and X is empty then
5 output base(R) as a result; return
6 end
7 for each t-node v in P do
8 R′ ← R ∪ {v}; P ′ ← P ∩N(v); X ′ ← X ∩N(v);
9 if satisfyQ (R′ ∪ P ′) then

10 cdsCliqueEnum (R′, P ′, X ′)
11 end
12 P ← P − {v} ; X ← X ∪ {v} ;
13 end

Algorithm 3: cdsCliqueEnumGreedy(R,P,X)

// Lines 1-6 same as Lines 1-6 in cdsCliqueEnum

7 for each t-node v in P do
8 R′ ← R; P ′ ← P ; X ′ ← X;
9 for each t-node v′ in P∩ shadow(base(v)) do

10 R′ ← R′ ∪ {v′}; P ′ ← P ′ ∩N(v′);
X ′ ← X ′ ∩N(v′);

11 end
12 if satisfyQ (R′ ∪ P ′) then
13 cdsCliqueEnum (R′, P ′, X ′)
14 end
15 for each t-node v′ in P∩ shadow(base(v)) do
16 P ← P − {v′} ; X ← X ∪ {v′} ;
17 end

18 end

Table 1 that we pick v3
A from P at level 0, then both v3

A

and v3
I will be added to R. When the execution terminates,

only clique induced by {v3A, v3I , v5L} will be generated, and
{v5A, v3I , v5L} will be skipped.

4.3 Discussion
Theoretically the complexity of enumerating maximal cliques

in a graph with n nodes is O(3
n
3 ), as stated in [15]. How-

ever, the complexity of our algorithms is much lower. In the
worst case, the complexity is O(( max

k∈Kr
∪

Ko

|V k
T |)|Kr

∪
Ko|),

where |V k
T | ≪ |VG| and |Kr

∪
Ko| is small. Moreover, due

to the partite nature and sparsity of GT (q,G), it is often the
case that in GT (q,G) each node is adjacent to only a few
nodes. Under such circumstance, the recursion tree is shal-
low and subtrees are small below the first level of recursion.
Hence, the average complexity is very close to O(|VT |).

5. EXPERIMENTAL EVALUATIONS

5.1 Experimental Setup
We conduct our experimental evaluation on the Proxim-

ity DBLP database, in which nodes represents authors and
publications and edges represent cites and author-of rela-
tionship between corresponding node pairs. The Proximity
DBLP database is based on data from the DBLP Computer
Science Bibliography with additional preparation performed
by the Knowledge Discovery Laboratory, University of Mas-
sachusetts Amherst. As a proof-of-concept experiments, the
data contains 1.1M nodes and 1.8M edges, and the total
number of node pairs (u, v) that satisfies dis(u, v) ≤ 3 is
111M.

The keyword terms bear various single node frequency in
the dataset. For instance, more than 1% of nodes contain
the keywords“system”, “parallel”or“learning”, and less than
0.2% contains “robotics”, “sql” or “compiler”. Apriori knowl-
edge of the field of computer science helps interpret term
closeness, for instance, the terms ”database” and ”query”
are relatively close, while the relationship between ”cryp-
tography” and ”robotics” is much more distant. Based on
the term closeness, we organize terms in groups, then, when
keywords are selected to compose ROU queries, we are able
to form queries that are representative enough to better in-
terpret the impact of various of input parameters. We will
present results of ROU queries whose keywords are picked
from those in the table below.

Group Keywords
G1 bayesian, inference, statistical,

polynomial, propagation, belief, graphical
G2 artificial, intelligence, reasoning,

vision, learning, robotics
G3 compiler, type, programming, semantics, grammar
G4 database, query, optimization, sql, datalog
G5 operating, system, parallel, distributed, memory



Our algorithms are written in Java and our experiments
are run on a laptop runningWindows 7 with Intel(R) Core(TM)
i5-2450M CPU @ 2.50GHz and 8GB memory, in which a
maximum of 4GB memory are dedicated to the Java virtual
machine.

5.2 QuIP Size
We first examine the size of the QuIP, which is the prime

vehicle in our proposed techniques for answering ROU queries.
The QuIP sizes of some example queries (with disMAX= 3)
are shown in the table below.

Query Kr ∪ Ko Ku Nodes Edges
|Kr ∪ Ko| groups |Ku| groups

Q1 6 G1 0 13743 61538
Q′

1 6 G1 1 G1 13498 58208
Q2 5 G2 0 13576 35713
Q′

2 5 G2 1 G2 13464 35362
Q3 5 G3 0 12037 132K
Q4 5 G4 0 13764 2.5M
Q′

4 5 G4 1 G4 12853 1.8M
Q5 5 G5 0 56976 1.2M
Q6 5 G1 to G5 0 8262 79K

Observations:

• In general, QuIP is significantly smaller than the data
graph, both in terms of node number and edge number,
considering the fact that the data graph has over 1M
nodes and over 111M node pairs whose distance is less
than 3.

• The presence of negative keyword constraint, even when
the size of the keyword set is 1, can reduce the size of
QuIP (and subsequently lead to decrease of enumera-
tion time).

Naturally, graph algorithms are very sensitive to the size
of the input data. In the following, we are presenting results
on a variety of graphs that are of different size, i.e. graphs
generated by Q1 to Q5.

5.3 Algorithm Performance Comparisons
We compare the performance of the two query answering

algorithms we proposed, i.e. one using recursive function
cdsCliqueEnum, another using cdsCliqueEnumGreedy, and
with the baseline algorithm, which use the Bron-Kerbosch
algorithm to generate all maximal cliques on the QuIP, then
applying filtering to verify the keyword constraints and the
condensed semantics. The performance comparison of a se-
lected set of queries is shown in Figure 4. Please note that
log-scale is used for y-axis. For Query 3-5, we cut off the
computation at 100K results as the potential result size can
be huge.Observations:

• The cdsCliqueEnumGreedy algorithm generally outper-
forms the baseline algorithm, cutting execution time
by half. In cases, such as Q4, where few among large
number of maximal cliques in the QuIP satisfy the key-
word constraints and condensed semantics, the prun-
ing is particularly effective and outperforms the base-
line algorithm by two orders of magnitude (more than
100 times faster).

• The cdsCliqueEnum algorithm has comparable perfor-
mance as the baseline. However, the pruning that is
pushed into the clique generation process can signifi-
cantly out-perform the baseline in worst-case scenario,
such as Q4.
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Figure 4: Algorithms Performance Comparisons

• Theoretically, cdsCliqueEnum algorithm may outper-
form cdsCliqueEnumGreedy when the overhead of the
additional pruning employed by the later overshadow
the benefit of such pruning, However, such cases are
extremely rare according to our experimental study.

5.4 Impact of Positive Keyword Constraints
Positive keyword constraints impact the result size, hence

the time spent to evaluate the query, from multiple angles.
As shown earlier when we discussed the size of QuIP, the
more positive keywords are in the query, the larger the QuIP;
and with the same number of positive keywords, the closer
the semantic relationship among the positive keywords, the
larger the QuIP.

Here, we study the impact of the distribution of the key-
words among Kr and Ko on result size and query perfor-
mance. To measure this impact, we introduce the notion
of valid keyword combinations count, which is a function of
Ko and h, i.e. Ct(Ko, h) =

∑
n=⌈|Ko|×h⌉...|Ko|

Cn
|Ko|. When

two queries have the same set of positive keywords, hence
the same QuIP, the larger the valid keyword combination
count, the larger the result size, the more maximal cliques
need to be exploit in answering the queries, hence the longer
the run time.

We randomly pick sets of keyword terms, and for each
set, vary the distribution of these keywords among Kr and
Ko, and the h value, then, compare the result sizes and
query evaluation time among the queries that shares the
same Kr ∪Ko. The heuristics stated above is proved in all
cases. Figure 5 shows the results on a set of 6 keywords
picked from group 2.

Please note that when the valid keyword combinations
count increases, the evaluation time increases at a much
slower pace than the result size. This is due to the fact that
the cliques exploited in the evaluation process share com-
mon sub-clique, and the recursive nature of our algorithms
are able to absorb the extra computational cost.

6. CONCLUSION AND FUTURE WORK
In this paper we introduced ROU, a new type of keyword

search queries on graph data, which allows user to specify
both positive (including required and optional) and negative
keyword constraints. We formally defined the semantics of
such query in terms of maximal coverage and minimal foot-
print. We proposed a data structure, called query induced
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Figure 5: Impact of Positive Keywords

partite graph (QuIP) for representing candidate data entries
and their relationships, and algorithms that take advantage
of information collected in QuIP to efficiently answer ROU
queries efficiently.
The problem of ROU is far from solved. Natural extension

to the work presented in this paper include: (1) inventing
new summary data structures and indexing techniques to
efficiently construct QuIP especially for negative keyword
conditions; (2) introducing ranking methods to identify re-
sults that are most interesting to users and develop approx-
imation semantics and algorithms for identifying top-k re-
sults efficiently; (3) exploring parallel implementations of
our algorithms to ensure that our solution scale well in terms
of both data size and query complexity; and (4) extend-
ing query semantics for other types of interesting keyword
queries.
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