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Abstract
The purpose of this note is to specify a uniform ter-
minology for the design and implementation of con-
cepts for C++, based on influential literature on generic
programming with concepts. The terminology results
from an ongoing work in specifying an infrastructure
for implementing C++ concepts, called ConceptClang.
We solicit feedback and hope that the terminology will
facilitate conversations about C++ concepts as efforts in
language support for the feature in question evolve.

In this specification, we define each term with an ex-
planation of the rationale behind it, especially when it
may conflict with existing terminology, and relate it to
ongoing design and implementation efforts. The pro-
cess highlights key components of the concepts feature
and their diverse relationships with either structural or
named conformances for matching types to concepts.

1. Introduction
While the concepts feature has been part of C++ li-
brary developments since at least the development of
the Standard Template Library (STL) [2, 17, 24], its
support as a language feature has been under develop-
ment and anticipated over the last decade [3, 11, 14, 26,
28]. Various design and implementation philosophies
for concepts, as either library or language features,
have been and continue to be explored. For example,
in terms of implementation, there are: a library-based
implementation of concepts (BCCL) [21, 22] (and its
related extensions [5, 8]), a context-free ConceptC++ to
pure C++ transformation tool [7], a GCC-based proto-
type implementation of concepts called ConceptGCC
[12, 13], a G to C++ translation [23], an ongoing proto-
type implementation dubbed Concepts-Light [27], and
an ongoing design-independent implementation called
ConceptClang [29, 30].

In terms of designs, we mainly have the C++ stan-
dard documents N2914[3] and N3351[26], respectively
dubbed pre-Frankfurt and Palo Alto designs. There
are several proposed extensions of these designs (e.g.
[14, 28]) that can be found in archived C++ standard
committee papers [6] and resources linked from the
ConceptClang website [29].

While the above listing is not exhaustive, its vastness
already indicates the complexity of the task of design-
ing concepts for C++, as well as the potential confu-
sion in terminology between differing design philoso-
phies. In anticipation of these problems, in this note, we
propose a uniform terminology for C++ concepts that
we hope will facilitate ongoing and future discussions
about the design and implementation of the feature.
The terminology combines ideas from influential liter-
ature on generic programming with concepts [2, 25],
related efforts in formalization [31], and the alternative
philosophies listed above.

For each term we introduce, we explain the ratio-
nale behind it and relate it to ongoing implementation
efforts. For clarity and conciseness, our arguments are
primarily based on the “Elements of Programming”
(EOP) book [25] and the three compiler implemen-
tations ConceptGCC, ConceptClang, and Concepts-
Light; since we find the book and compilers to fairly
represent all alternative philosophies of primary inter-
est. To explain, we first note that most approaches at
designing concepts for C++ stem from the design of
the STL, which shares foundational roots with EOP.
Afterall, the origin of concepts can be traced back to
the algebraic specification language called Tecton [15].
Thus, we consider alternative design philosophies re-
latable to ideas from EOP. As a result, those ideas form
the primary basis for the rationale behind our terminol-
ogy.

Further, we also note that all but two alternative
implementations (listed above) are exclusively based



on the pre-Frankfurt design: Concepts-Light and Con-
ceptClang. While Concepts-Light is exclusively based
on the Palo Alto design and primarily focused on ex-
pressing template requirements in a concise and nat-
ural manner, ConceptClang is both independent from
and extensible to both alternatives. In fact, Concept-
Clang supports design-specific extensions of its infras-
tructure for both designs. Another primary difference
between the implementation philosophies of Concept-
Clang from that of other compilers is that Concept-
Clang treats components of concepts as first class enti-
ties, rather than syntactic sugar versions of existing en-
tities. For instance, while ConceptGCC, like all other
implementations that are exclusively based on the pre-
Frankfurt design, go from the perspective of treating
concepts as class templates, Concepts-Light goes from
the perspective of treating concepts as boolean constant
expressions. We hope to clarify the above distinctions
as we introduce the terms in our proposed terminology
in the next sections of this note.

The rest of this note is structured as follows. In the
next section, we list the essential components of any
design or implementation for concepts and briefly re-
late them to the different notions of conformances for
matching types to concepts. In Sects. 2 thru 5, we de-
scribe each essential component and the description in-
troduces terms that we relate to alternative philosophies
as briefly and concisely as possible. Each of these sec-
tions ends with a listing of the terms it introduces, as a
reminder of what the reader is expected to understand
upon reading the section. A lack of familiarity for any
term listed is likely and indication of our omitting im-
portant information. So, we are open to any comment,
suggestion or question.1 Sect. 6 concludes the note with
a discussion on a key component of the concepts fea-
ture, namely concept model archetypes (cf. Sect. 4).

From now on, we assume the reader’s familiar-
ity with the alternative design and implementation
philosophies listed above.

1.1 The Components
Based on the elements of generic programming with
concepts [4, 10, 30, 31], we can abstract the following
main components of design or implementation:

• concept definitions, with

refinements (specification), and

1 Emails are provided in the title section.

requirements (specification),

• concept models, with

refinements satisfaction, and

requirements satisfaction,

• constrained template definitions, with

constraints specification, and

type-checking of the body with

− entity reference building, and

• constrained template uses, with

constraints satisfaction, and

instantiation of the body with

− entity reference rebuilding.

In Sects. 2 thru 5, we will define these components
in the above order, and the process will drive our termi-
nology specification.

Meanwhile, we note that different conformances for
matching types to concepts, whether structural or nom-
inal, can be applied at the points of satisfying either
constraints, for each constrained template use, or re-
finements and requirements, for each concept model.
We explain the different conformances in Sect. 3.

2. Concept Definitions
A concept definition specifies a grouping of require-
ments that generic components impose on their types.
In C++, generic components consist of template decla-
rations. A concept definition thus specifies constraints
that a template declaration can impose on its type pa-
rameters. For example, in the pre-Frankfurt design, one
can write

1 concept MyConcept<typename P> :
CopyConstructible<P> {

2 void foo(P);
3 }

to mean that declarations that the template definition
uses must match the type signature void foo(P); as
well as the type signatures in the CopyConstructible
concept.

We refer to the CopyConstructible concept as a re-
finement of the MyConcept concept, and the declaration
void foo(P); is a requirement of the MyConcept con-
cept. (We could be overloading the word “refinement”



in a weird way, but we would like to think of “refine-
ment” as “the state of being refined”.2)

In the Palo Alto design, one can rewrite the above as

1 concept MyConcept<typename P> =
CopyConstructible<P> &&

2 requires (P a) {
3 foo(a);
4 };

but, this time, to mean that uses of the name foo must
match the pattern foo(a), for every value a of type P.

EOP defines a concept as

“a description of requirements on one or more
types stated in terms of the existence and proper-
ties of procedures, type attributes, and type func-
tions defined on the types”.

For a specified concept, both the pre-Frankfurt and
Palo Alto designs may describe the same set of require-
ments, but only state them differently. For instance,
while the pre-Frankfurt design states the requirements
in terms of pseudo-signatures, with notions of associ-
ated functions, types, and requirements, the Palo Alto
design states the requirements in terms of use-patterns
extended with optional annotations for type sameness
and convertibility. In fact, the Palo Alto design ex-
plicitly states that one can effectively translate the no-
tions of associated types and requirements in the pre-
Frankfurt design into a notion of type functions (along
side appropriate use-patterns) in the Palo Alto design.

Therefore, for our purposes of uniformly communi-
cating about concepts, we propose to adopt the termi-
nology from the EoP book and refer to any declaration
or expression inside a concept definition, i.e., a pseudo-
signature, or use-pattern, or anything else, as require-
ment or requirement specification. Refinements are also
requirements, but since they tend to require a different
kind of reasoning, we will treat them separately from
other kinds of requirements (cf. Sect. 5).

In the same train of thought, let us call representa-
tions of concept definitions concept definition decla-
rations. concept definition declarations contain repre-
sentations of requirements and refinements. Depending
on the design or implementation, requirements can be
represented as declarations or expressions. However,
refinements can be represented uniformly as concept
model archetypes to be defined later in Sect. 4.
2 So, if MyConcept refines CopyConstructible, then
CopyConstructible is refined by MyConcept, and thus is
a refinement of MyConcept.

2.1 Implementation
ConceptClang: ConceptClang represents concept def-
initions as declarations which can hold other declara-
tions. Thus, requirements are represented as declara-
tions, and refinements are represented as concept model
archetypes.

ConceptGCC: In ConceptGCC, concept definition
declarations are simply class template declarations.
This approach stemmed from BCCL and has inspired
work on automatically generating concept model arche-
types [32] and a context-free ConceptC++ to C++
transformation [7]. That said, requirements are rep-
resented as declarations, and refinements as inherited
classes.

Concepts-Light: Concepts-Light represents concept
definition declarations as constant boolean expressions.
In general, such expressions are simply template decla-
rations such as a constexpr bool function templates,
class templates convertible to bool, or aliases to types
that are convertible to bool. That said, requirements are
represented as constant boolean expressions and refine-
ments as constraints to the expression templates.

2.2 Terminology Recap
Concept definition. Concept definition declaration. Re-
quirement (specification). Refinement (specification).

3. Concept Models
According to EOP, a type that satisfies the requirements
of a concept is called a model of the said concept.
In general, and particularly when using concepts for
generic programming, just knowing that a type satis-
fies the requirements of a concept is not enough. One
must also know how the type satisfies the said require-
ments. Thus, it is customary to think of a model of a
concept in terms of both the type that it is, and how it
models the said concept. In fact, a previous work on
formalizing concepts based on its origin as algebraic
specifications [31] defines the model of a concept as a
“structure” matching the said concept, both structurally
and semantically. Consequently, we call concept model
a statement of both

• what type models which concept and

• how the type satisfies the requirements of the said
concept.

In other words, a concept model is also a statement of
the modeling relationship between a type and a con-



1 concept_map MyConcept<int> {
2 void foo(int) { ... }
3 }

Figure 1: An explicitly specified concept model, in the
pre-Frankfurt design.

1 concept_map MyConcept<int> {
2 CopyConstructible<int>; //<-- link to
3 // the refinement’s model.
4

5 void foo(int) { ... }
6 }

(a) For the pre-Frankfurt design.

1 concept_map MyConcept<int> {
2 CopyConstructible<int>; //<-- link to
3 // the refinement’s model.
4

5 ... foo(...int...) { ... } //<--
6 // All viable candidates for call
7 // foo(a), where a is of type int.
8 }

(b) For the Palo Alto design.

Figure 2: An internal representation of a concept model

cept, which expresses the what and the how of the rela-
tionship.

We refer to how a type models a concept as require-
ment satisfaction and note that this term is currently
in use with a conflicting meaning. Indeed, its current
meaning is assigned to a different term in our terminol-
ogy, i.e., constraints satisfaction, that we will introduce
in Sect. 5. We find this change in terminology necessary
for maintaining consistency with respect to all compo-
nents of concepts as herein defined.

On the different notions of conformance: A con-
cept model can be provided either explicitly by a user
– a.k.a. via explicit modeling, or implicitly by a com-
piler – a.k.a. via implicit modeling. When provided by
a user, we say that types are matched to concepts nom-
inally—or via named conformance. Otherwise, we say
that they are matched structurally—or via structural
conformance. For example, the pre-Frankfurt design al-
lows explicit modeling via the concept_map construct,
as in Fig. 1. The pre-Frankfurt design also allows im-
plicit modeling under some special cases, e.g. the use
of auto concepts. On the other hand, the Palo Alto de-
sign allows only implicit modeling.

Under named conformance, a compiler has no knowl-
edge of the modeling relationships between types and

concepts, except for those indicated by each explicit,
e.g. concept_map, declaration it encounters. For each
such explicit declaration, it generates an internal repre-
sentation similarly to that in Fig. 2a that it uses when
needed. Under structural conformance, the compiler
knows about as many modeling relationships as it can
generate based on existing types and concepts. Es-
sentially, it generates an internal representation when
needed, either as in Fig. 2a (or equivalent) for the pre-
Frankfurt design, or as in Fig. 2b (or equivalent) for the
Palo Alto design. In essence, while the pre-Frankfurt
design brings all matching implementations that it finds
within the surrounding scope into the internal represen-
tation, the Palo Alto design brings in all viable candi-
dates for the call foo(a), with a of type int.

The notion of conformance resurfaces when gener-
ating internal representations, since requirements can
be satisfied either explicitly by a user, or implicitly by
a compiler. We say that

the use of named conformance for matching
types to concepts does not preclude the use of
structural conformance for specifying how types
match concepts. In contrast, the use of structural
conformance for matching types to concepts im-
plies the use of structural conformance for spec-
ifying how types match concepts.

For example, with the explicit modeling in Fig. 1, the
user explicitly stated how each requirement of the con-
cept is satisfied, by providing an implementation for the
specified void foo(P); in Line 2. However, the pre-
Frankfurt design allows one to implicitly satisfy each
requirement, by simply not providing an implementa-
tion, e.g. omitting Line 2, and thus leaving it up to the
compiler to derive the appropriate implementation, e.g.
to cover Line 5 in Fig. 2a. With implicit modeling, one
has no choice but to leave all requirements satisfaction
up to the compiler.

To sum up, while the pre-Frankfurt design supports
both structural and named conformances for both lev-
els of matching types to concepts, i.e., the what and
the how, the Palo Alto design supports only structural
conformance at both levels. Of the two levels, the what
makes a particular difference in the checking of con-
strained template uses, as we will see in Sect. 5. �

Concept model declarations, templates and arche-
types: Analogously to concept definitions, let us call
representations of concept models concept model dec-



larations. Further, since concept models can match ei-
ther concrete types, as in Figs. 1, 2a, and 2b, or generic
types, via template forms of concept model declara-
tions, let us respectively emphasize the distinction in
the matched types with the notions of concrete con-
cept model and concept model template. Likewise, let
us call their distinctive representations concrete con-
cept model declarations and concept model template
declarations.

The distinction in matched types helps highlight
more areas of differences between alternative designs.
For example, we notice that concept model templates
are only a concern when explicit modeling is supported.
Therefore, while the Palo Alto design only needs to
generate concrete concept models, the pre-Frankfurt
design generates concept model template declarations
every time a template form of the concept_map con-
struct is used.

Let us make another distinction between concept
models, only this time, the emphasis is on the how
level. At times, as we will see in Sect. 4, one may
lack complete information about the matched type and
it may be necessary to generate a temporary concept
model to use as placeholder for when one has com-
plete information about the said type. Let us call such
a temporary concept model concept model archetype,
and emphasize that concrete concept models cannot
be concept model archetypes, nor concept model tem-
plates. Also, concept model templates cannot be con-
cept model archetypes either. This is a direct conse-
quence of the way in which each kind of concept model
is used. Sect. 4 will provide further details about con-
cept model archetypes.

By now, it should be clear that

while modeling mechanisms may differ, by whether
and how structural or named conformance is
supported, the notion of concept model is still es-
sential to the design and implementation of con-
cepts.

In fact, the notion of model is inherent to concepts-
based reasoning in that, one cannot (should not) speak
of a concept without a notion of an existing model for
that concept. Indeed, the Palo Alto design is developed
based on this rationale, among others.

To close our description of concept models, note
that the notion of concept model replaces the ongoing
notion of concept map, which can easily be confused

with the use of the concept_map construct. Thus, the
new notion effectively decouples the statement of a
modeling relationship from the modeling mechanism
in place.

3.1 Implementation
ConceptClang: Similarly to concept definitions, con-
cept models are represented as declarations holding
other declarations. The only difference is that the dec-
larations concept model declarations hold are represent
statements of requirements satisfaction.

For the pre-Frankfurt design, the satisfaction of a re-
quirement is essentially a three-stage name lookup pro-
cess3, as described in the N2914 document[3]. For the
Palo Alto design, the requirement satisfaction follows
a different path. Essentially, ConceptClang internally
produces the program snippet illustrated in Fig. 2b via
appropriate type substitution and checking that the ex-
pression foo(a) is valid. In other words, during the
type-substitution, it gathers all valid function candi-
dates for the call foo(a) and adds the candidates to
the concept model declaration.

For both designs, refinements are satisfied as if they
were constraints on constrained template definitions
(cf. Sect. 4). In other words, the process of satisfying
refinements essentially reuses the procedure for satis-
fying the constraints on a constrained template, at its
point of use [30].

ConceptGCC: As with concept definitions, Concept-
GCC keeps things simple and expresses concept mod-
els as class template specializations of the class tem-
plates that represent the concepts that they model. Re-
quirements are still represented as declarations, and re-
finements are specializations of the inherited classes
that represent concept refinements.

Concepts-Light: Similarly to ConceptGCC, Concepts-
Light implicitly expresses concept models as constant
boolean expressions or expression template specializa-
tions, with appropriately updated refinements in the
requires clauses. Requirements are still represented as
constant boolean expressions, and refinements are the
updated refinements.

3 While the N2914 document itself does not use the terminology of
“three-stage name lookup”, we find it fitting since name lookup can
be repeated three times.



3.2 Terminology Recap
Concept model. Concrete concept model. Concept
model template. Concept model declaration. Concrete
concept model declaration. Concept model template
declaration. Requirement satisfaction. Refinement sat-
isfaction. Explicit modeling. Implicit modeling. Named
conformance. Structural conformance.

4. Constrained Template Definitions
When it comes to alternative design and implementa-
tion philosophies, this is where things start to get the
most interesting.

A constrained template definition is a template defi-
nition with constraints specified on its template param-
eters. For example, in either the pre-Frankfurt or Palo
Alto design, one may define a generic function as

1 template<MyConcept T1, typename T2>
2 void gen_func(T1 x) {
3 foo(x);
4 }

which is equivalent to

1 template<typename T1, typename T2>
2 requires MyConcept<T1>
3 void gen_func(T1 x) {
4 foo(x);
5 }

This template is constrained since the type T1 is
expected to satisfy the requirements of the MyConcept
concept, when the template is used.

We refer to the constraints on the template parame-
ters as constraints specification to parallel the notion of
requirement specification in concept definitions.

A constraints specification is a list of constraints
which serve two purposes: they act as predicates and
they provide a scope for name resolution. Conceptually,
these constraints serve as placeholders for when con-
crete concept models are available, and indicate which
names are valid to use in the body of the constrained
template.

Names that are valid to use are either associated
to the concepts expressed by the constraints, or cor-
respond to other constrained template definitions. To
preserve certain optimizations (without hindering sep-
arate type-checking), ConceptC++ also allows uses of
names that do not depend on any constrained template
parameter, e.g. non-dependent call expressions.

To follow the terminology from the drafts of the
C++ standard, and for generality, we refer to uses of

names, e.g. foo(x), as entity references. Further, we
refer to the implementation process of checking their
validity, followed by building representations of them
when valid, as entity reference building. (In program-
ming languages, entity reference building is typically
referred to as name binding [1, 9, 16, 18–20].)

Entity reference building involves name lookup,
which depends on the scope provided by the con-
straints specification. We refer to the said scope as
restricted scope and note that the pre-Frankfurt design
currently refers to the same scope as requirement scope.
However, we find that adopting the pre-Frankfurt term
would add confusion with respect to the terms of re-
quirement (specification) and requirement satisfaction
in Sects. 2 and 3. We also do not find a term that specif-
ically refers to constraints, e.g. constraints scope, ap-
plicable enough because restricted scopes are also used
in concept definitions and models to check statements
of satisfaction (e.g. implementations) of requirements.

On the notion of archetype: A restricted scope keeps
track of each specified constraint, and name lookup in
a restricted scope searches through all the constraints
that the scope keeps track of. How the constraints are
represented or kept track of may be implementation-
dependent. But, due to syntactic and semantic similari-
ties between constraints and concept models, one may
think of a constraint as a special kind of concept model
that lacks concrete type information—information that
is available at the point of use of a template. There-
fore, we treat constraints as temporary concept models,
with minimal statements of requirement satisfaction,
that serve as placeholders for concrete concept models;
And call representations of these special concept mod-
els concept model archetypes. For instance, one may
represent the constraint MyConcept<T1> as in Fig. 3.
It is importaant to note that no concrete statement of
satisfaction for the requirements is provided. Instead,
type-substituted versions of the requirements are pro-
vided.

The notion of concept model archetype (CMA) we
herein introduce is simply an application of that of
archetype as used in ConceptGCC and BCCL. Con-
ceptGCC generates archetypes to temporarily represent
two different kinds of entities: types or concept models.
We clarify the distinction between the two kinds with
the notions of type archetype and CMA. It is important
to note that CMAs can not be considered concrete since
concrete concept models are fully satisfied, e.g. imple-



1 concept_map MyConcept<T1> {
2 CopyConstructible<T1>; //<-- link to
3 // the refinement’s model archetype.
4

5 void foo(T1);
6 }

(a) For the pre-Frankfurt design

1 concept_map MyConcept<T1> {
2 CopyConstructible<T1>; //<-- link to
3 // the refinement’s model archetype.
4

5 requires (T1 a) {
6 foo(a);
7 };
8 }

(b) For the Palo Alto design

Figure 3: A concept model archetype

mented. CMAs end up playing a key role in relating all
components of concepts. We document this role in the
conclusion (Sect. 6). �

Entity reference building involves a bit more than
name lookup in the Palo Alto design. Essentially, en-
tity references must be checked against the use-patterns
in CMAs constructed based on the constraints specifi-
cation. For example, one must check that the function
call foo(x), in the definition of the constrained tem-
plate gen_func above, indeed matches the use-pattern
foo(a) where a has type T1. We refer to this stage
of entity reference rebuilding as expression validation,
since expressions are validated against use-patterns.

Expression validation can be executed at any point
during entity reference building, based on the imple-
mentation. Of all the implementations herein surveyed,
only ConceptClang currently implements it.

4.1 Implementation
Perhaps arguably, this section highlights the broad
adaptability and flexibility provided by the Concept-
Clang implementation model, especially when it comes
to the treatment of CMAs.

ConceptClang: ConceptClang respectively extends
the representations of templates and template param-
eter scopes with constraints specifications. Likewise,
name lookup is extended accordingly, searching for
names in CMAs representing specified constraints.
CMAs are constructed as concept model declarations,
except that instead of satisfying each requirement as
in Sect. 3, representations of requirements are type-

substituted over instead. The result for both the pre-
Frankfurt and Palo Alto design are illustrated in Fig. 3.

The behavior of name lookup in restricted scope
slightly differs in both designs. For the pre-Frankfurt
design, it is straightforward since substituted repre-
sentations of requirements are visible named declara-
tions. For the Palo Alto design, it helps to note that
ConceptClang introduces dummy declarations to rep-
resent each name used in each use-pattern. For exam-
ple, for the use-pattern foo(a) in the MyConcept con-
cept definition, ConceptClang introduces a declaration
like void foo(P); in the representation of definition
and links the use-pattern to that declaration. The same
declaration is type-substituted into the constructed
MyConcept<T1> CMA and accordingly linked from the
substituted use-pattern. Thus, the type-substituted dec-
laration is also named and visible by name lookup.

When building the entity reference foo(x), name
lookup finds the substituted declaration void foo(T1);,
dummy or not, in the MyConcept<T1> CMA; and
treats the template parameter T1 as a concrete, non-
dependent, type when checking the entity reference.

Essentially, this constitutes the end of the checking
of a template definition for the pre-Frankfurt design,
but not for the Palo Alto design. For the Palo Alto de-
sign, ConceptClang proceeds with expression valida-
tion. Expression validation turns out to be somewhat
of a complex mechanism that is best triggered at the
end of parsing a top level expression, and requires that
some entity references be marked for validation upon
their checking. The details on this fall outside the scope
of this note.

ConceptClang introduces type archetypes into con-
cept definition declarations to represent member decla-
rations associated with concepts like
CopyConstructible. For example, say the concept
parameter for the definition of CopyConstructible
is named P. To represent the copy constructor for P,
a type archetype is introduced into the declaration
of CopyConstructible that contains a declaration of
the constructor. Like dummy declarations for the Palo
Alto design, these type archetypes are named, type-
substituted into CMAs and visible by name lookup.
The resulting effect is similar to what we get with
BCCL’s archetypes.

ConceptGCC: ConceptGCC constructs CMAs as class
template specializations (like concrete concept models)
and extends the representations of template parameter



scopes similarly to ConceptClang, but with a slight
difference: It explicitly generates type archetypes upon
parsing each template parameter and subsequently adds
them to the template parameter scope. For example, in
the gen_func example above, ConceptGCC generates
three archetypes: two type archetypes for both T1 and
T2, and a CMA for MyConcept<T1>.

The process can be adapted into ConceptClang as
generating CMAs for specified constraints and dummy
CMAs. For example, in our running example with
gen_func, ConceptClang would generate two CMAs:
one for MyConcept<T1>, containing the type archetype
for T1, and a dummy one containing an empty type
archetype for T2.

Clearly, this process is different from that currently
performed by ConceptClang, since it constructs CMAs
only for specified constraints. The addition or omis-
sion of the dummy CMAs may constitute the difference
between whether partially constrained template defini-
tions are completely checked or not. In other words,
the gen_func example is fully checked since T2 is not
used in the body, but what if T2 were used in the body?
Should uses of T2 be checked as if T2 is constrained or
not?

Using the ConceptClang implementation model, de-
cisions on topics like this can be separated from the im-
plementation details and, perhaps arguably, expressed
and adapted more clearly. Beyond CMAs, consider po-
tential extensions that allow names associated to con-
cepts to be qualified not just by type names, but also
namespaces and other scope qualifiers. When neces-
sary, such qualifiers can simply be processed in a man-
ner similar to type archetypes. Thus, the ConceptClang
implementation model offers more room for adaptabil-
ity, which is usually helpful in maintaining both back-
ward and future compatibility of C++ libraries, as they
transition from unconstrained templates to constrained
templates.

Concepts-Light: Concepts-Light is primarily con-
cerned with expressing constraints concisely and natu-
rally. Thus, it does not check the body of constrained
templates and simply expresses the requirements as a
conjunction of constant boolean expressions (like re-
finements on concept declarations). Here, CMAs are
simply constant boolean expression template special-
izations that, conceptually, provide no scope for name
resolution.

Extending Concepts-Light with this functionality is
conceivably a future extension and a next step towards
a complete implementation for concepts. Either way,
all alternatives can be implemented as an extension of
ConceptClang.

4.2 Terminology Recap
Constrained template. Constrained template definition.
Constraint. Constraints specification. Archetype. Type
archetype. Concept model archetype. Restricted scope.
Entity reference. Entity reference building. Expression
validation.

5. Constrained Template Uses
This is another area in which alternative design and
implementation philosophies make interesting differ-
ences.

In any case, the use of a constrained template, e.g
gen_func defined above in Sect. 4, can be as simple as
1 gen_func<int, char>(...);

Upon parsing such a function template call, a com-
piler first checks that the provided template arguments,
e.g. <int, char>, match the template parameters, e.g.
<typename T1, typename T2>. When the template
parameters are constrained, e.g. by MyConcept<T1>,
it also checks that the template arguments satisfy the
specified constraints by looking up appropriate con-
crete concept models, e.g. MyConcept<int>.

Depending on the design, when no such concept
model is found, the compiler may attempt to implicitly
generate them, based on available type information.
This is the case in the Palo Alto design, in general, and
in the pre-Frankfurt design, when either the specified
constraint is an implicit concept, or under special cases.

We refer to the checking of template arguments
against the specified constraints as constraints satisfac-
tion and note that it corresponds to the procedure that
the checking of concept models uses to satisfy con-
cept refinements [30]. Essentially, one can effectively
express refinement satisfaction as constraints satisfac-
tion where concept definitions are treated as template
definitions, concept models as template uses, and re-
finement specifications as constraints specifications.

The term constraints satisfaction replaces what used
to be requirement satisfaction. We find this renaming
necessary for consistency in our terminology, unless
we find another generic term for concept requirement
(specification).



Once the concrete concept models, e.g.
MyConcept<int>, are found, the compiler proceeds
to instantiating the constrained template definition,
replacing dependent name uses with non-dependent
name uses. For all names used that are associated to
concepts, e.g. foo(x) in gen_func above (Sect. 4),
where

• foo() is a possibly undefined substituted declara-
tion in a CMA, i.e., void foo(T1); or a dummy
foo(), and

• x is of type T1,

the name uses must be replaced with uses of cor-
responding names in concrete concept models, e.g.
foo(x), where

• foo() is defined in a concrete concept model, as
void foo(int); or any other viable variation, and

• x is of type int.

We call this final compilation step entity reference
rebuilding, since it basically repeats entity reference
building with concrete type information (including
concrete concept models resulting from constraints sat-
isfaction).

5.1 Implementation
ConceptClang: ConceptClang extends type-checking
of templates, SFINAE, and overload resolution with
constraints satisfaction, and extends template instantia-
tion with entity reference rebuilding. No new construct
is particularly created, except for helpers to the SFI-
NAE extension and concepts-based overloading.

ConceptGCC: ConceptGCC implicitly covers con-
straints satisfaction and entity reference rebuilding for
free. Since all names that may need rebuilding were es-
sentially replaced by qualified forms of the same names
in which the qualifiers are class template specializa-
tions. The instantiation of these specializations implic-
itly performs all necessary concept model lookup, and
thus automatically rebuilds the entity references.

Concepts-Light: Concepts-Light does not consider
CMAs during entity reference building within con-
strained template definitions; which precludes a ne-
cessity for entity reference rebuilding. Nevertheless,
similarly to ConceptGCC, Concepts-Light implicitly
performs constraints satisfaction for free, by evaluating
the specialized constant expressions; which indicates
success (failure) with a result of true (false).

5.2 Terminology Recap
Constraints satisfaction. Entity reference rebuilding.

6. Conclusion
We have specified a uniform terminology for C++ con-
cepts, based on a review of influential literature on
generic programming with concepts and different ap-
proaches to designing, implementing and formalizing
concepts. Our specification was driven by a listing of
elements of generic programming with concepts and
their relationships with either structural and nominal
conformance in matching types to concepts. With re-
spect to the notion of conformance, we learned two
important things. First, there are two levels at which
the notion of conformance applies: constraints satisfac-
tion and requirements satisfaction. Second, we learned
that the notion of concept model is essential to the con-
cepts feature, independently of the details of the confor-
mance – or modeling mechanism – in place. However,
concept model templates are only as essential as named
conformance – or explicit modeling – is supported.

Overall, we learned three other important things.
First, the checking of concept models reuse constraints
satisfaction to satisfy concept refinements. Second, en-
tity reference rebuilding is not always necessary and
its need varies based on the design or implementation.
Third, and perhaps the most interesting observation:

Concept model archetypes are a particularly es-
sential component of implementing concepts, al-
lowing for greater reuse and modularity, since

1. they link the requirements specified in concept
definitions (requirement specification) with
their uses in constrained template definitions
(constraints specification), and

2. they tell constraints satisfaction which con-
cept model to look for or generate.

3. As placeholders, they are used to

• represent concept refinements,

• represent constraints specified on constrained
templates,

• satisfy uses of templates from within tem-
plate definitions, and

• satisfy refinements when checking concept
model templates.



At the very least, any complete implementation of
concepts should implement the above functionality of
concept model archetypes, or any equivalent function-
ality.
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