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Abstract. Provenance of digital scientific data is an important piece of
the metadata of a data object. It can however grow voluminous quickly
because the granularity level of capture can be high. It can also be quite
feature rich. We propose a representation of the provenance data based
on logical time that reduces the feature space. Creating time and fre-
quency domain representations of the provenance, we apply clustering,
classification and association rule mining to the abstract representations
to determine the usefulness of the temporal representation. We evalu-
ate the temporal representation using an existing 10 GB database of
provenance captured from a range of scientific workflows.

1 Introduction

The provenance of a scientific data product or collection is a record of the factors
contributing to the product as it exists today. That is, it identifies the what,
where, when, how, and who of an object. What type of actions were applied
that yielded a particular result? How and where were those actions applied?
And by whom? To the extent that a data product results from raw data that
itself has simple lineage, the lineage record of a data product is the latest set of
activities (or ”workflow”) applied.

Provenance of digital scientific data is an important piece of the metadata of
a data object. It can be used to determine attribution, to identify relationships
between objects[3], to trace back differences in similar results, and in a more far
reaching goal, to aid a researcher who is trying to determine whether or not an
acquired data set can be reused in his or her work, by providing lineage informa-
tion to support their trust in the quality of the data set. However, provenance
can be highly voluminous, as capture can be carried out at a high level of gran-
ularity. This can occur for instance with a workflow system that encourages fine
grained nodes (i. e., at the level of a mathematical operation) instead of coarse-
grained (i.e., at the level of a large MPI job.) The sheer volume of data has been
dealt with in different ways, by developing views on the provenance[26], or by
caching select content[9]. Visualization techniques are effective in making sense



of large data[21]. One could throttle provenance capture to control the volume[5]
of provenance generated at the source.

We take a different approach to dealing with the large volumes of provenance,
and that is to assume volumes will be large, then selectively reduce the feature
space while simultaneously preserving interesting features so that data mining
on the reduced space yields provenance-useful information. The mining tasks
include generating patterns that describe and distinguish the general properties
of the datasets in provenance repositories (by training classifier and mining asso-
ciation rule set), detecting faulty provenance data (by checking cluster centroids
in the case where correct and faulty provenance are naturally separated into
different clusters) and finding more descriptive knowledge of provenance clusters
(by mining association rules that reflects workflow variants).

Provenance can be represented as a directed graph of entities related by
causal dependencies. An accepted model for representing provenance entities
and relationships is the Open Provenance Model (OPM)[18]. OPM defines a
historical record of dependencies between entities, hence OPM compliant graphs
have implicit temporal ordering which we exploit in our proposed representation.

In this paper, we propose the temporal provenance representation as an effi-
cient and useful representation of provenance. In order to establish the usefulness
of the temporal representation, we apply classification and clustering algorithms
to the representation. We also derive data mining association rules for each clus-
ter of the provenance graphs. The goal of this study is to evaluate our proposed
temporal provenance representation for temporal data mining kinds of tasks.
The contributions of the paper are Logical Clock-P, an algorithm partitioning
provenance graphs, and an assessment of the representation using temporal data
mining techniques on the generated temporal representation. Evaluation is car-
ried out against a large 10 GB database[6] of provenance traces generated from
six real-life workflows.

The remainder of the paper is organized as follows: Section 2 reviews re-
lated work. Section 3 introduces the causal graph partitioning approach, while
Section 4 describes the temporal representation. The experimental evaluation
against a large database of provenance is presented in Section 6.2. Section 7
concludes the paper and discusses future work.

2 Related Work

The value that provenance brings to e-Science applications is first suggested in a
2005 survey of provenance[22]. Davidson, S.B. and Freire[8] provide an additional
survey view of provenance. Davidson et al.[7] first introduce the problem of
mining and extracting knowledge from provenance.

Margo and Smogor[17] use data mining and machine learning techniques to
extract semantic information from I/O provenance gathered through the file
system interface of a computer. The mining step reduces the large, singular
provenance graph to a small number of per-file features. Our research is comple-
mentary in that we examine a collection of provenance graphs and treat a whole



provenance graph as an entity. Like Margo’s work, we also reduce the size and
dimensionality of provenance by partitioning the graph and applying statistical
post-processing. Phala[16] uses provenance information as a new experience-
based knowledge source, and utilizes the information to suggest possible com-
pletion scenarios to workflow graphs. It does not, however, provide descriptive
knowledge for a large provenance dataset.

Simmhan and Plale [23] uses a decision tree inductive machine learning tech-
nique to classify discrete and continuous valued attributes into quality scores,
thus to automatically determine the quality of provenance. However, the qual-
ity attributes that are identified are too specific for general purpose machine
learning and data mining.

Clustering techniques have been applied to workflow graphs. A workflow
script or graph is either an abstract or implementation plan of execution. A
provenance graph, on the other hand, is a record of execution. A provenance
record may or may not have the benefit of an accompanying workflow script,
so a provenance graph is in some cases a coarse approximation of provenance
graph. Santos et al.[20] apply clustering techniques to organize large collections
of workflow graphs. They propose two different representations: the labeled work-
flow graph and the multidimensional vector. However, their representation using
labeled workflow graphs becomes too large if the workflow is big, and the struc-
tural information is completely lost if using a multidimensional vector.

Jung and Bae[12] propose the cluster process model represented as a weighted
complete dependency graph. Similarities among graph vectors are measured
based on relative frequency of each activity and transition. It has the same
issue as Santos et al. Our work addresses the problem of mining and discovering
knowledge from provenance graphs, while overcoming the scalability issue by re-
ducing the large provenance graph to a small temporal representation sequence,
and retaining structural information together with attribute information.

How to treat data with temporal dependencies is another problem in the
discovery process of hidden information. The ultimate goal of temporal data
mining is to discover hidden relations between sequences and subsequences of
events[2]. Provenance information stored in a form amenable to representation
as a graph has an implicit temporal ordering, which can be exploited for data
clustering and relationship discovery. To our best knowledge, there is no previous
study on discovering the hidden relations in provenance.

3 Provenance graph partitioning

The Open Provenance Model yields historically based directed graphs enriched
with annotations. Nodes represent provenance of objects (whether digital or not)
and the edges represent causal dependencies, between its source node, denoting
the effect, and its destination, denoting the cause. OPM defines three kinds
of nodes (artifact, process, and agent) and five base causal dependencies (used,
wasGeneratedBy, wasControlledBy, wasTriggeredBy, wasDerivedFrom). Figure 1
shows an example provenance graph reproduced from the OPM core specification



v1.1 [18]. Ovals represent artifacts, and rectangles represent processes. The two
kinds of edges shown, that is, Used and Was Generated By, are that a process
used an artifact and that artifact was generated by a process respectively.

Fig. 1. Example of provenance graph from the OPM core specification v1.1

A directed, annotated provenance graph is not ideally suited to data min-
ing for two reasons: 1) provenance graphs can have thousands of nodes and
attributes. Clustering in such a high dimensional space presents tremendous
difficulty[4], and 2) it is difficult to place both structural and non-structural
information in a single uniform attribute space. Hence, we propose a graph par-
titioning algorithm that uses Lamport’s logical clocks[15] as the basis for an
abstract representation of provenance. Our approach has the assumption that
the provenance graphs to which the representation is applied are compliant with
the Open Provenance Model[18].

3.1 Partial ordering

Lamport determines a total ordering of events in a distributed computer system
based on logical time order. Since the OPM reference specification[18] defines
edges as causal relationships, we define the “happened before” relation in a
provenance graph based on its causal relationships.



Definition 1. The “happened before” relation, denoted by “→”, on the set of
nodes in a provenance graph is the smallest relation satisfying the following two
conditions:

1. If a and b are nodes that have an edge between them, and a is the cause,
then a→ b

2. If a→ b and b→ c then a→ c

We assume that a /→ a for any node, which implies that → is an irreflexible
partial ordering on the set of all nodes in the provenance graph. We define node
a and b to be concurrent nodes if a /→ b and b /→ a. For example, in Figure2(c):
Node “6” → Node “multiplier”, and Node “multiplier’ → Node “54” so that
Node “6” → Node “54”; Node “6” and Node “9” are concurrent nodes.

While the current OPM reference document forbids cycles, a new defini-
tion[14] allows the presence of derived-from cycles (simple cycles composed of
derived-from edges) after a merge operation. However, an OPM graph resulting
from a typical experimental provenance collection procedure, which is the target
of this study, does not contain such cycles. In addition, new definitions (e.g., [14])
avoid using the term causal relationship, but the constraints in their temporal
theory are more similar to Lamport’s ordering, and they are still using “cause”
to represent an edge source and “effect” to represent an edge destination. Thus
our definition above also works in this case.

3.2 Logical Clock-P

We propose the Logical Clock-P, a function C that takes a node as input and
produces an integer as output. This function maps an integer to each node of
a given provenance graph. The correct logical clocks must satisfy the condition
that if a node a occurs before another node b, then a should happened at an
earlier time than b. We state this condition more formally as follows.

Definition 2. Clock Condition: The Clock condition satisfies the following con-
dition: For any node a and b, if a→ b then C(a) < C(b).

3.3 Strict totally ordered partition

With Logical Clock-P defined, we define a strict totally ordered partition that
divides a provenance graph into a list of non-empty subsets. A typical provenance
graph has three kinds of nodes: artifacts, processes, and agents. A partitioning of
a provenance graph is a set of non-overlapping and non-empty subsets of nodes
based on the logical clocks. More precisely, a partition of provenance graph
G = (V,E), where V denotes the set of all nodes and E denotes the set of all
edges, is defined as follows:

Definition 3. For a provenance graph G = (V,E), partition V into k subsets
V1, V2, . . . , Vk such that:



1. V1,V2, . . . ,Vk ∈ V and
k⋃
1

Vi = U

2. ∀ i 6= j and 1 ≤ i , j ≤ k, Vi ∩Vj = φ
3. ∀ a , b ∈ Vi, we must have C(a) = C(b), and the node type of a is the same

as the node type of b

Furthermore, to place all the subsets {V1, V2, . . . , Vk} into an ordered list, we
define a “appears before” relation to give the total order on the set of all these
subsets. Naturally, node with smaller Logical Clock-P comes before node with
larger Logical Clock-P. Furthermore, for nodes with the same Logical Clock-P,
we put agent before process and process before artifact. This is because of the
implicit order in node definition[18]: agent is defined as an entity enabling process
execution, process is defined as action resulting an articaft, and artifact is defined
as a state in a physical object. Though this implicit order can be different from
the real time order, it is still meaningful for us when putting concurrent nodes
into a sequential representation.

Definition 4. The “appears before” relation “⇒” on the set {V1, V2, . . . , Vk} in
a provenance graph needs to satisfy the following condition that:

1. ∀a ∈ Vi , ∀b ∈ Vj, if C (a) < C (b) , then Vi ⇒ Vj
2. ∀a ∈ Vi , ∀b ∈ Vj , if C (a) = C (b) , and node type of a is agent, and node

type of b is process, then Vi ⇒ Vj
3. ∀a ∈ Vi , ∀b ∈ Vj, if C (a) = C (b) , and node type of a is agent, and node

type of b is artifact, then Vi ⇒ Vj
4. ∀a ∈ Vi , ∀b ∈ Vj , if C (a) = C (b) , and node type of a is process, and

node type of b is artifact, then Vi ⇒ Vj

A partition of a provenance graph with the “appears before” relation on the
set {V1, V2, . . . , Vk} is asymmetric, transitive and also totally ordered, but not
unique. We show an example partitioning generated by our Logical-P algorithm
in Figure 2, where the subset with the smaller number (e.g., Subset 1) “appears
before” the subset with larger number (e.g., Subset 2, Subset 3).

3.4 Provenance graph partitioning algorithm (Logical-P algorithm)

Given any provenance graph (we are using the XML representation[10]), we
generate an unique strict totally ordered partition with the following algorithm:

1: S ← Set of all nodes with no incoming edges
2: for all nodes k in S do
3: assign 0 to C(k)
4: end for
5: while S is non-empty do
6: remove node n from S
7: for all node m with edge e from n to m do
8: remove edge e from graph
9: if C(n) + 1 > C(m) then



Fig. 2. Temporal partition: (a) is example provenance graph from[18]; (b) is from same
experiment as (a) with different input data; (c) has similar graph structure to (a) and
(b) but with different nodes; (c) has different graph structure to (a) and (b).

10: assign C(n) + 1 to C(m)
11: end if
12: if m has no other incoming edges then
13: insert m into S
14: end if
15: end for
16: end while
17: Group nodes with same Logical Clock-P value and node type into one subset
18: Sort subsets according to “appears before”

Steps 1–16 are derived from the topological sorting algorithms of Kahn[13],
which has linear time in the number of nodes plus the number of edges O(|V |+
|E|). The time complexity of step 18 depends on the sorting algorithm that is
used. For heapsort, the complexity is O(n + klogk), where k is the number of
subsets in the partition. Note that steps 9–11 gives nodes with multiple causes
the maximum possible Logical Clock-P value.



4 Temporal provenance representation

With a provenance graph partitioned into an ordered list of subsets (subgraphs),
the next step is to organize the representations of each subset into a sequence to
form the representation of the whole graph. However, a typical provenance graph
is a fully-labeled graph with annotations (both nodes and edges have labels and
annotations), so direct representations such as feature vector space will result in
a high dimensional dataset which is not suitable for large scale mining tasks. We
address this issue by using attribute transformation[4] such as roll-ups (sums or
average over time intervals), and we define a new statistical feature space.

4.1 Statistical Feature Space

We first give the definition of a feature space of node subset, and then extend
this definition to a statistical feature space by introducing a statistical feature
function.

Definition 5. For a feature vector subset N = (V, F,D), V = {v1, ..., vn} de-
notes the node subset, the function F : V → D1 × D2 × ... × Dd is a fea-
ture function that assigns a feature vector to any node v ∈ V , and the set
D = {D1,D2,D3, . . . ,Dd} is called the feature space of N .

Definition 6. For a statistical feature vector subset N ′ = (V, F,G,D, S), a
statistical function G : Di ×Di × ...×Di → Si applies statistical operators such
as max, min, avg, std.dev, std.err, sum and variance to feature Di ∈ D of all
nodes in V , and the set S = {S1,S2,S3, . . . , Sd} is called the statistical feature
space of N .

The features of a provenance graph node include its attribute feature such
as its labels and annotations, and its structural feature such as the attributes of
its incoming/outgoing edges.

For example, a simple node attribute feature can be the number of characters
in node label, and a simple node structural feature can be the number of in-degree
or out-degree. So the feature space for subset 2 in Figure 2(a) can be D = {
number of characters in node label, number of in-degree, number of out-degree
} = {(1, 1), (1, 1), (1, 1)}, and its statistical feature space can be D = { average
number of characters in node label, average number of in-degree, average number
of out-degree } = {1, 1, 1}.

4.2 Feature Selection from Statistical Feature Space

The selection of an optimal feature set depends upon both the mining targets
and the nature of the provenance, which is beyond our current research. How-
ever, since one of our targets in unsupervised clustering is to group provenance
instances based on their original experiment, we want to select a feature set that
can discriminate between provenance instances of different experiments. In other



words, the distance between two representations of provenance derived from the
same experiment should be smaller than the distance between two representa-
tions of provenance derived from different experiments.

We assume provenance graphs have similar structure and similar attribute
information are from related experiments (Figure 2(a) and Figure 2(b)); while
provenance graphs from different experiments are either different in attribute
information (Figure 2(a) and Figure 2(c)), or different in structure information
(Figure 2(a) and Figure 2(d)).

Based on this assumption, we create a simple attribute feature set that in-
cludes “average number of characters in label” to discriminate between Fig-
ure 2(a) and Figure 2(c), and a simple structural feature set that includes “av-
erage number of in-degree/out-degree” to discriminate between Figure 2(a) and
Figure 2(d). While using either feature set, Figure 2(a) and Figure 2(b) should
be clustered together.

Specifically, for the attribute feature set we capture: <Type of nodes in subset,
num nodes in subset, Avg num characters in node name> which for Figure 2(c),
gives:

(< 2, 1, 7 >,< 1, 1, 8 >,< 2, 3, 1 >,< 1, 1, 10 >,< 2, 1, 2 >,< 1, 1, 3 >,<
2, 1, 2 >)

For structural feature set we capture the following features: <Type of nodes
in subset, Number nodes in subset, Avg number of in-degree of nodes in subset,
Avg number of out-degree of nodes in subset > from each subset Vi. We map
the type of nodes from their textual values “Agent”, “Process”, “Artifact” into
numerical values 0, 1, 2. The resulting provenance partition of Figure 2(c) is
represented as:

(< 2, 1, 1, 0 >,< 1, 1, 3, 1 >,< 2, 3, 1, 1 >,< 1, 1, 1, 2 >,< 2, 1, 1, 1 >,<
1, 1, 1, 2 >,< 2, 1, 0, 1 >)

Furthermore, we apply Discrete Fourier Transform (DFT)[25] to transform
the above sequence from the time domain to a point in the frequency domain,
by choosing the k first (we use k=3) frequencies, and representing each sequence
as a point in the k-dimensional space. The same example of statistical feature
in frequency domain yields the following where each value pair represents a
frequency in the form of < realpart, imaginarypart >:

(<1.125, 0>, <-0.1706, 0.1635>, <-0.1547, 0.1077>)

Table 1 gives the Euclidean distance for the attribute feature set and the
structural feature set. As discussed earlier,graph 1(a) from Figure 2 is very sim-
ilar to 1(b). Their distance is close for both attribute and structural feature
sets as shown in Table 1. 1(a) – 1(c) is different from an attribute perspective
but similar structurally. The attribute difference is illustrated in the second and
third rows of Table 1. Finally, the graph in Figure 7(b) is distinct structurally
and this is quite evident in its Euclidean distance from 1(a) and 1(b). Besides,
though there is information loss while transforming representations from time
domain to frequency domain, the distinction in frequency domain is comparable
to that in time domain.



Table 1. Euclidean distance for attribute and structural feature sets

Figure Distance in
time domain

Distance in
frequency
domain

Attribute Feature Set

2(a) - 2(b) 3.7417 0.2678

2(a) - 2(c) 12.0 0.6183

2(b) - 2(c) 12.7279 0.6764

Structural Feature Set

2(a) - 2(b) 2.2361 0.1755

2(a) - 2(d) 10.1281 0.7096

2(b) - 2(d) 10.1113 0.5835

5 Temporal data mining methods

In sequence classification, each sequence (provenance representation) presented
to the system is assumed to fall into one of finitely many (predefined) categories
(workflow type) and the goal is to automatically determine the corresponding
category for the given input sequence. To demonstrate that our provenance rep-
resentation is sufficient for classification tasks, we test the performance of the
Bayes Network Classifier implemented in Weka [11] with 10-fold-cross-validation
on our temporal representation of a 10 GB provenance dataset.

Having defined an effective simple structural feature set, we can cluster the
temporal sequences to discover a number of clusters, say K, to represent the
different sequences. To prove the sufficiency of our provenance representation
for clustering tasks, we will apply the simple k-means cluster provided by Weka
on a 10GB dataset, and evaluate its performance with within-cluster sum of
squares (WCSS) and Purity [27] in Section 6.4 and Section 6.5.

The discovery of relevant association rules is one of the most important meth-
ods used to perform data mining on transactional databases [2]. An effective
algorithm to discover association rules is the apriori algorithm [1]. Adapting this
method to better deal with temporal information is beyond our research; we
will only apply the original apriori method provided by Weka on our clusters of
representation sequences to get some descriptive knowledge of that cluster. We
will demonstrate the power of the association rules we mined from one cluster
in distinguishing itself with other clusters in Section 6.7.

6 Experimental Evaluation

6.1 10GB Provenance Database Dataset

To prove that the provenance representations using the graph partitioning ap-
proach can support scalable analysis techniques that are also resilient to errors in
provenance data, we conduct our experiment using a 10GB provenance database
with known failure patterns [6]. This 10GB database of provenance is populated
from a workload of roughly 48,000 workflow instances that are modeled based
on six real workflows as shown in Table 2



Table 2. Workflow type and the number of temporal subsets for its successful run

Workflow Type Number of
temporal
subsets

LEAD North American Mesoscale (NAM) initialized
weather forecast workflow

10

SCOOP ADCIRC Workflow 5

NCFS Workflow 10

Gene2Life Workflow 10

Animation Workflow 8

MotifNetwork Workflow 10

The LEAD NAM, SCOOP and NCFS are weather and ocean modeling work-
flows, Gene2Life and MOTIF are bioinformatics and biomedical workflows, and
the Animation workflow carries out computer animation rendering. Some of the
workflows are small, having few nodes and edges, while others like Motif have a
few hundred nodes and edges. The second column in Table 2 gives the number
of temporal subsets for a successful run of this type of workflow.

In the 10GB database, each of the six workflow types has 2000 instances per
failure mode, with the failure modes as following:

1. No failures and dropped notifications (success case)
2. 1% failure rate
3. 1% dropped notification rate
4. 1% failure rate and 1% dropped notification rate

6.2 Experiment steps

Experimental evaluations are carried out on the 10GB provenance dataset dis-
cussed in Section 6.1, and you can see all the steps in Figure 3. We use Karma
provenance system [24] to store the 10GB provenance dataset and to export
the provenance in the form of OPM graphs. From these provenance graphs,
we first create their partitions based on the Logical Clocks-P partitioning tech-
nique, and then generate provenance representations in both time and frequency
domain. We then evaluate the performance of the classification task on the
frequency-domain representation, the performance of unsupervised clustering on
both frequency-domain and time-domain provenance representations, and the
power of association rules mined on the clusters generated from time-domain
provenance representations.

6.3 Generating provenance representations

To generate a temporal representation for the 10GB provenance dataset, we
first apply partitioning to each provenance graph using the Logical Clock-P
algorithm. We then select a set of features to be extracted from each vertex subset



Fig. 3. Experiment Steps

to create time-domain provenance representations. The features we extract are
the same as the simple structural feature set discussed in Section 4.2, namely,

<Type of nodes in subset, Number of nodes in subset, Average number of
in-degree of nodes in subset, Average number of out-degree of nodes in subset >

This feature set only captures the structural information of each prove-
nance graph, which has the advantage of generating smaller representations from
graphs. The disadvantage is that if we have two provenance graphs with the same
structure but with different node information, then it would be impossible for us
to distinguish the two only by the graph structure. However, results show that
even though there is only structural information captured, it is still sufficient for
classification and unsupervised clustering.

For the 10GB provenance dataset, we create 47,914 time domain representa-
tion sequences having total size 10.01 MB, and store them as a CSV file. This
gives a compression ratio approximately 1014 : 1.

From the time-domain provenance representations, we further transfer them
into frequency-domain with first 3 frequencies. The resulting 47,914 representa-
tion sequences have a total size of 2.3MB, whose compression ratio is approxi-
mately 4348 : 1, and they are stored in a CSV file as well.



6.4 Unsupervised clustering, time-domain

Assume we know nothing except the structural information in our representation
of the 10GB provenance dataset. We want to create a high level view of the
dataset by clustering workflow instances. To do this, we apply k-means clustering
algorithm on their provenance representations, and we evaluate the performance
of clustering using WCSS and Purity.

We first evaluate the clustering on time-domain provenance representations.
These time-domain sequences consist of meaningful attributes that are then used
to generate association rules.

Using Euclidean distance as the similarity measurement limits the applica-
tion of k-means clustering to representation sequences of same length. Thus we
must first group together the provenance representations with the same length
and then apply k-means clustering algorithm within each group. This first or-
der breakdown by temporal subset length is shown in Figure 4. 46% of the
provenance representations have the largest number (10) of subsets, while only
a small portion (2%) have very small number of subsets (2, 3); the latter result
of workflows subject to early failures and dropped notifications.

Fig. 4. Grouping result based on temporal subset length

For clustering within a grouping, we apply the SimpleKMeans clustering
algorithm with euclidean distance measurement on the representation sequences
inside each group. While using k-means algorithm, it is very important to choose
the correct number k, and we address this problem by plotting the within-cluster
sum of squares (WCSS) and looking for the “elbow point”. Figure 5 shows the
plotting of WCSS as a function of the number of clusters (K). We choose K=2 for



the group of workflow instances having 2 subsets, because the WCSS becomes
stable after K reaches 2; we choose K=3 for the group of workflow instances
having 4 subsets, because WCSS decreases slowly after K reaches 3. We use the
same procedure to choose K for the rest groups, and finally we apply k-means
algorithm on each group creating an overview shown in Figure 6.

Fig. 5. WCSS as a function of number of clusters for different group of representation
sequences. Figure 5(a) corresponds to the group of workflow instances having 2 subsets,
and Figure 5(b) corresponds to the group of workflow instances having 4 subsets.

Fig. 6. A high level overview of 10GB provenance dataset created from its structural
information only.

Clustering with graphs of the same temporal representation length requires
different values of K, as shown in Figure 6. We found that the number K decided
in this way is slightly smaller than the number of actual classes within each
group. However, it still generates major clusters and has good clustering quality



(to be evaluated later). In fact, there is a tradeoff between the number K and
the value WCSS, since larger K always results in smaller WCSS but also has the
potential to split the natural cluster into smaller clusters.

To help understand how to identify clusters of incorrect workflow instances,
Figure 7 shows the provenance graphs of several centroids. We deliberately
choose provenance graphs from a weather forecast workflow,because it best il-
lustrates failures in provenance capture. It turns out that the NAM provenance
graph with 10 subsets is a complete graph, while difficult to discern, this is evi-
denced by an artifact (circle) at bottom of graph. The NAM provenance graphs
with less than 10 subsets partition the graph, all versions of which are incom-
plete and caused by dropped notifications. The NAM provenance graph with 2
subsets consists of some units of a complete provenance graph, which is very
likely the result of failures.

Fig. 7. Provenance graphs of several centroids. Square nodes represent processes, and
circles represent artifacts. The graph is read top to bottom, with earlier activity at the
top. Visualizations were done using a Karma plugin to Cytoscape visualization tool.



So far, we have created a high level view of the 10GB provenance dataset,
and are able to tell the failures instances (outliers), but we still need to evaluate
the quality of resulting clusters. To do this, we compute the purity as an exter-
nal evaluation criterion by counting the number of correctly assigned workflow
instances and dividing by total number of workflow instances – N. Formally:

purity (Ω) =
1

N

∑
k

max
j
|ωk ∩ cj |

in which Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C = {c1, c2, . . . , cJ}
is the set of classes(Here we use the workflow type as the class).

Fig. 8. Purity as external evaluation criterion for cluster quality by workflow instance
group

Figure 8 shows that the purity is not very high when we have small number of
subsets in the workflow representation. The reason is that most of the workflow
instances that have smaller sizes of graph are incomplete and are generated by
failures or dropped notifications (as shown in Figure 7), so that they are hard to
be clustered only by their structural information. But the purity increases as the
number of subsets in the provenance representation increases, and the workflow
provenance that has most provenance information (with number of subsets > 4)
can still support clustering well. This demonstrates that our representation of
workflow provenance provides high level of clustering efficiency and is also robust
in dealing with incomplete provenance.

6.5 Unsupervised clustering, frequency-domain

The second step is to evaluate clustering on frequency-domain provenance rep-
resentation. Compared with clustering time-domain provenance representations,



the advantage of clustering frequency-domain provenance representations is that
we do not need to pre-cluster the provenance representations into groups of the
same length.

We evaluate the application of SimpleKMeans clustering algorithm by plot-
ting the within-cluster sum of squares (WCSS) and computing the purity. Figure
9(a) shows that the WCSS decreases a lot with the increase in number of clus-
ters in k-means algorithm. After the number K reaches 20, the WCSS becomes
small enough and become very stable as K increases. Figure 9(b) shows that
the Purity increases a lot as the K increases. After the number K reaches 20,
the purity is high enough (0.88) and it also becomes stable afterwards. There is
also an interesting correlation between WCSS and Purity: the Purity increases
whenever the WCSS decreases, and if the WCSS becomes stable, so does Pu-
rity. Compared with the 42 clusters we created from time-domain provenance

Fig. 9. WCSS (a) and Purity (b) as a function of number of clusters in k-means algo-
rithm

representations, we generate only 20 clusters from frequency-domain provenance
representations, with a slightly lower Purity. This demonstrates that our prove-
nance representation in frequency domain can also support efficient unsupervised
clustering.

6.6 Workflow type classification

To categorize the type of a new workflow instance based on its representation in
frequency domain, we train a classifier for workflow type from the 10GB dataset.
We utilize the Bayes Network Classifier implemented in Weka, and provide the
summary of its 10-fold-cross validation in Table 3. As shown in Table 3, 96.6461%
instances are correctly classified. This demonstrates that our provenance repre-
sentation in frequency domain is sufficient for classification tasks at a high level
of accuracy.



Table 3. 10-fold-cross-validation summary for Bayes Network Classifier

Weka Scheme 10-fold-cross-validation summary

weka. classifiers. bayes.
BayesNet -D -Q weka. clas-
sifiers. bayes. net. search.
local.K2 – -P 1 -S BAYES -E
weka. classifiers. bayes. net.
estimate. SimpleEstimator
– -A 0.5

1. Correctly Classified Instances 46307 96.6461 %
2. Incorrectly Classified Instances 1607 3.3539 %
3. Kappa statistic 0.9598 Mean absolute error 0.0113
4. Root mean squared error 0.089 Relative absolute er-

ror 4.053 %
5. Root relative squared error 23.872 %
6. Coverage of cases (0.95 level) 98.7811 %
7. Mean rel. region size (0.95 level) 17.4591 %
8. Total Number of Instances 47914

6.7 Association rules mining

As a final step, we utilize the apriori algorithm implemented in Weka to discover
the association rules on the resulting clusters of Section 6.2.4. We want to find
interesting association rules that are capable for runtime prediction, and we also
want to use the association rules as part of the descriptive knowledge of each
cluster.

The first issue with mining interesting association rules from 10GB prove-
nance dataset is: after a careful study of the dataset, we found that there are no
variants during the execution of all the different types of workflow instances in
that dataset. So we choose to manually introduce two variants of NAM weather
forecast workflow (See Figure 10(a) and Figure 10(b)). Figure 10(a) and Fig-
ure 10(b) are two different variants of the normal NAM weather forecast work-
flow (See Figure 7). Compared with the normal NAM workflow, Figure 10(a)
has two intermediate data generated for last processing step, which leads to two
final data outputs; Figure 10(b) has one of the two pre-requisite files missing,
which leads to the intermediate processes unable to continue, resulting in a fail-
ure execution. We generate time domain representation sequences for these two
provenance graphs and put them together with the provenance representation
of normal (complete) NAM workflow instances.

The second issue comes with the apriori algorithm: it is is less efficient when
dealing with long sequences (there are 40 attributes in a provenance representa-
tion for a workflow instance having 10 subsets). So we only select the attribute
“Number of nodes in the subset” from each subset, forming a new representation
sequence of length 10, and feed it into apriori algorithm. After applying apriori
algorithm (the representation sequences need to be discretized first), we look
into the resulting association rules and find some rules related to the two vari-
ants. Table 4 shows the Scheme of the weka method we applied and the resulting
association rules that can reflect the variants we introduced. Rule 1) says that if
the number of nodes in subset 8 (which are the data inputs for the last process-
ing step) is between 0.8 and 1 (including 1), then number of nodes in subset 10



Fig. 10. Figure 10(a): the provenance graph of a NAM weather forecast workflow
instance that have two data outputs. Figure 10(b): the provenance graph of a NAM
weather forecast workflow instance that have one input data missing.

(which are the final data outputs) will be between 0.8 and 1 (including 1). Rule
2) says that if the number of nodes in subset 8 is larger than 1.8, then number of
nodes in subset 10 will be larger than 1.8. Because the number of nodes can only
be integer, rule 1) and rule 2) means one intermediate data input for the final
processing step will lead to one final data output, while more data inputs lead to
more final data outputs, which reveals exactly the variant in Figure 10(a). Rule
3) says that if the number of nodes in subset 2 is equal to or less than 1.1, then
there will be no node in subset 8 (number of nodes is equal to or less than 0.2) ,
which reveals the variant in Figure 10(b). Notice that, if we have those variants
during the workflow execution, we can use these association rules for runtime
prediction. That is, following Rule 1) and Rule 2), if we have one data input for
the last process, we will have one data output; but if we have more data inputs,
we will have more data outputs. We can also predict the failure of execution by
checking the number of pre-required files using Rule 3).



Table 4. Sampling of association rules mined by Apriori method provide by Weka

Weka Scheme Sample of association rules found

weka. associations. Apriori -
N 10 -T 0 -C 0.9 -D 0.05 -U
0.4 -M 0.1 -S -1.0 -c -1

1.numberOfNodes 8 =′ (0.8− 1]′ ==>
numberOfNodes 10 =′ (0.8− 1]′

2.numberOfNodes 8 =′ (1.8− inf)′ ==>
numberOfNodes 10 =′ (1.8− inf)′

3.numberOfNodes 2 =′ (−inf − 1.1]′ ==>
numberOfNodes 8 =′ (−inf − 0.2]′

To demonstrate the power of the association rules in describing a cluster,
we choose 4 clusters of time-domain provenance representations (all have 10
subsets), mine 50 rules for each of them, and examine how well the rules can
distinguish between different clusters. That is, 4 set of associations rules are
mined from 4 cluster of provenance representations, and for each set of associ-
ation rules, we validate all the provenance representations against them, to see
whether it can distinguish the provenance representations from other clusters.

Table 5. Validation provenance representations against mined rules. The ratio repre-
sents how many representations passed the validation

Provenance
representa-
tions from
Cluster 0

Provenance
representa-
tions from
Cluster 1

Provenance
representa-
tions from
Cluster 2

Provenance
representa-
tions from
Cluster 3

Validating against
the rules from
Cluster 0

100% 0% 0.02% 100%

Validating against
the rules from
Cluster 1

100% 99.7% 0.02% 100%

Validating against
the rules from
Cluster 2

100% 100% 100% 100%

Validating against
the rules from
Cluster 3

100% 0% 0.02% 100%

Table 5 shows that when validating the provenance representations of other
clusters against one cluster’s association rules, there can be very low passing
ratios (marked in italic). For example, none of the provenance representations of
Cluster 1 can pass the validation of the association rule set mined from Cluster
0. Thus we can use this association rule set to distinguish provenance represen-
tations from Cluster 1 by validating the representation against it.



In conclusion, the time domain provenance representation with reduced num-
ber of features supports the apriori algorithm well: The association rules can
show us different variants during execution, based on what we can have runtime
prediction; They describe the cluster well so that they can be further used to
distinguish different clusters.

Table 6. Summary of temporal mining

Approach Evaluation

Unsupervised clus-
tering on time-
domain representa-
tions

Pros:
Representation is 3 orders of magnitude smaller than original
provenance (1014:1);
only 7.6% representations are incorrectly clustered.
Able to detect failed workflow instances (outliers)
Cons:
Need to group representations based on length; creates small
clusters inside representation group.

Unsupervised clus-
tering on frequency-
domain representa-
tions

Pros:
Representation has a compression ratio of 4348 : 1;
has good WCSS (50) and purity (0.88) as number of clusters
reach some number (20); generates smaller number of clusters
(20).
Cons:
Representations do not maintain meaningful information for
mining association rules.

Classification on
frequency-domain
representations

Pros:
Representation has compression ratio of 4348 : 1;
Distinct characteristic required to perform classification is still
maintained, thus model trained for classification provides;
Can predicate the workflow type of new workflow instances.

Association rules
mining on time-
domain representa-
tions

Pros:
Association rules capture some causal relationship between sub-
sets;
Some association rule sets can be used to distinguish different
clusters.
Can predict the result in runtimes.
Can describe/distinguish different clusters.
Cons:
Association rules built on time-domain representations only re-
flect patterns on statistic features;
Apriori algorithm favor small representation length (less number
of features).



6.8 Comparing results

As shown in Table 6, the provenance representation we propose is well suited to
temporal data mining tasks such as unsupervised clustering, classification and
mining association rules. However, because of the abstract provenance repre-
sentations have only statistic features from the original provenance graph, the
association rules discovered are limited to statistical patterns. This makes the
feature selection very important, and as long as we selected the right features
that can reveal the variants during the execution of workflow instances, the
resulting rules are sufficient to support runtime prediction well.

7 Conclusion and Future Work

The outcomes of this study are: we define a Logical Clock-P for provenance graph
with causal dependencies, and we use it to produce partitions that preserve tem-
poral orders between node subsets; based on the provenance graph partition, we
propose a method to create its temporal representation in time domain by ex-
tracting statistical feature from each subset. The temporal representations gen-
erated by our method in our experiments are 3 orders of magnitude smaller than
original provenance, and we can further reduce its size by transforming them into
frequency domain; by applying different techniques from temporal data mining
field against the generated provenance representations. We can 1) Create high
level overview of unknown provenance dataset, and detect failed workflow in-
stances (outliers) from the result of unsupervised clustering. 2) Predicate the
type of new workflow instances using the model trained from frequency-domain
representations. 3) Mine association rules capturing causal relationship between
subsets from each cluster of time-domain representations. The association rules
are able to perform runtime prediction and describe/distinguish different clus-
ters.

Future work is to check other temporal data mining techniques on our prove-
nance representations. Besides, the quality of provenance data is very important,
and we will try to apply our methodology in determining the quality of prove-
nance data. For example, we hypothesize that the smaller size the workflow
instance cluster has, the more stable workflow model that cluster has. However,
this needs to be tested.
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