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Abstract
Managing modern heterogeneous network technologies in
a simple, uniform manner has become an increasingly dif-
ficult challenge. To help address this issue, we propose a
session layer protocol called the eXtensible Session Pro-
tocol (XSP) designed to integrate existing network sys-
tems, providing the ability to easily introduce additional
protocol functionality as needed, including application-
driven network allocation and integration with network
“middleboxes.” The XSP implementation is currently tar-
geted at network middleware architectures where it allows
for the transparent integration and configuration of new
and existing network components and services

1 Introduction
This paper presents the eXtensible Session Protocol, XSP.
The goal of XSP is to provide a general and extensible
protocol to manage the interaction between applications
and network-based services, and among the devices that
provide those services. A session, in our model, is generi-
cally “a period of a particular activity.” A survey of exist-
ing technologies for managing data movement over cur-
rent and emerging network infrastructures shows that a
unified or generic solution for interacting with network
services has not emerged. The challenge increases when
we consider the heterogeneity of network architectures,
transport layer services and application interfaces in the
network ecosystem.

While there is no unified approach to session layer
functionality in the current Internet, there are many in-
stances of functionality that is consistent with a session
layer. XSP is conceptually related to the ITU-T Rec-
ommendation X.225 connection-oriented session protocol
specification [22], which defined “ a single protocol for
the transfer of data and control information from one ses-
sion entity to a peer session entity...between systems which
support the session layer of the OSI reference model.”

The essence of this approach is simply that the session

layer lives above the transport layer, and provides proto-
col encapsulation for both control and data protocol units.
This model then subsumes cases like SIP, where the pro-
tocol control information is exchanged out of band, with
the data encapsulation being essentially null at the session
layer and using e.g. RDP at the transport layer. It also ex-
presses the DTN “bundling” approach by including both
control and data parts in the PDU.

The focus of this paper is on two additional use models.
The first is on the use of performance oriented “middle-
boxes”, which in the session paradigm are simply gate-
ways. These middleboxes and can act as “accelerators”
and mitigate performance problems over long distance,
high speed networks. The second use of XSP manages
dynamic allocation of network resources including, e.g.
session driven creation of LSPs through MPLS networks,
VLANs transported over Ethernet, SONET, etc., or paths
constructed with explicit rules being inserted in Open-
Flow [9] enabled switches.

Lastly, we assert that XSP enables many of the capabil-
ities that are emerging as desirable for future Internet ar-
chitectures. Initiating a connection to a session entity, and
abstracting a direct transport layer connection away from
applications, makes it straightforward to connect two ses-
sion endpoints based on an “identifier”, which is distinct
from a network “location.” This has clear benefits, not
the least of which is mobility. The potential to exchange
protocol control information with an intermediate point as
part of a session connection to an endpoint, changes the
security model as well. We have developed a framework
that allows a host to authenticate with an X.509 certificate
and effectively install firewall rules that allow particular
transport layer connections to flow through for the life of
the session.

The outline of this paper is as follows. Sections 2 and 3
discusss background, motivation, and related work for our
XSP approach. We present details about the XSP session
layer and protocol implementation in Section 4. In Sec-
tion 5 we present current XSP use models and we discuss
the current and future state of XSP in Section 6. We con-
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clude the paper in Section 7.

2 Background

Historically, the role, architecture, and necessity of the
session layer have been questioned. The upper layers of
the OSI reference model [18] were conceived in the late
1970s in an attempt to quickly standardize a reasonable
working model for emerging protocol designs [17]. This
process was mired with disagreement and pitted the es-
tablished telecom service providers against the fledgling
computer industry, leading to a murky collection of func-
tionality defining the Session, Presentation, and Appli-
cation layers. What arose from this debate were ses-
sion layer capabilities that dealt with various dialog con-
trol and synchronization primitives, which were strongly
opposed by those in the ARPANET camp. These prim-
itives served to establish a specific set of protocol de-
sign patterns in various telecommunication arenas but this
strict layering of functionality was charged with compli-
cating, and at worst, stymying the development of future
applications within emerging computer networks. In the
end, a consensus emerged that acknowledged that even if
these functions were not in the best place, they were close
enough for practical, engineering purposes and could be
sorted out as the upper layers became better understood.
This debate, of course, was never fully resolved. In many
ways, this lack of resolution has led to some of the chal-
lenges facing the Internet today, while upper layer proto-
col considerations as originally defined in the OSI model
have received little attention in most network application
designs.

It goes without saying that the TCP/IP, or “Internet”
model [11], is the dominant description framework for
computer network protocols. Given that protocols are
not rigidly designated into strict upper layers within this
model, what was originally defined as session layer func-
tionality is often explicitly implemented within appli-
cations themselves. In fact, it has been observed that
“the session functions are actually common modules for
building mechanisms used by applications that should
be considered, in essence, libraries for the application
layer” [17]. To complicate things, the OSI session layer
defines functionality that corresponds to features imple-
mented within the transport layer in the TCP/IP model,
e.g. port numbering and the associated management of
connections between services on well-known ports. This
conflating of functionality has left designers of emerg-
ing networks and protocols in a difficult position, one in
which exploring any significant funtional change within
the TCP/IP model has serious deployment consequences.

We are also not alone in realizing that the current In-
ternet model has a number of challenges to overcome.

As devices become more mobile, intermittent, and in-
creasingly heterogeneous, the well-established protocols
within the transport layer in particular have created a num-
ber of roadblocks in supporting emerging network archi-
tectures. Projects such as MobilityFirst [5] are develop-
ing collections of services for supporting the explosion
of mobile devices on the Internet, which taken together
hope to address new modes of routing, naming, and in-
network storage in future real-world and experimental ar-
chitectures. Others have proposed breaking up the trans-
port layer to better manage addressing, congestion, and
flow control through the introduction of additional Flow
Regulation and Endpoint layers [23]. Although these mo-
tivations are all sound, we believe that significant architec-
tural changes can be best realized through the establish-
ment of a dedicated session layer that encompasses con-
trol and data plane management functionality without se-
riously disrupting the operation of existing transport layer
features. Our work with XSP addresses both the control
and addressing of transport layer connections while pro-
viding a framework for incremental deployment with ex-
isting implementations.

The session layer itself has been experiencing renewed
interest in recent years. Particularly in the realm of mo-
bile and delay-tolerant networks, the session layer can en-
capsulate a number of capabilities for managing transport
re-binding, device naming, and connection recovery and
checkpointing [19, 31]. As initiatives such as FIND [7]
explore the future direction of the Internet, many consider
these features to be desirable. Indeed, as networks be-
come increasingly dynamic and network topologies, con-
nectivity models, and usage patterns become more varied,
they may be essential. Traditional end-to-end arguments
are also being re-evaluated as these architectural changes
drive new modes of operation [13]. We believe that XSP
is in a position to address not only the needs of the cur-
rent Internet, but those of evolving future internet archi-
tectures.

3 Related Work

While there has been relatively little published work in
protocol development at layer 5, there have been numer-
ous middlebox, overlay, and control plane protocols pro-
posed over the years that share common aspects with XSP.
We now briefly survey related work that has influenced
our own design criteria and choices.

Perhaps the most widely known protocol providing ses-
sion layer functionality is the Session Initiation Protocol
(SIP) [41]. Its primary use is in enabling state and signal-
ing for multimedia communication sessions, which may
utilize a number of underlying data stream protocols such
as RTP and RTSP. Even so, some approaches such as
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NUTTS [29] have adapted SIP to provide “name-routing”
in an end-middle-end middlebox architecture. A draw-
back of SIP from the perspective of our work is that it only
performs signaling out-of-band and does not provide an
integral data movement service, limiting its applicability
as a general purpose framework for end-to-end services.
On the other end of the spectrum, TESLA [43] provides
an end-to-end session architecture for the management of
data flows, routing, and migration without considering in-
dependent configuration and management of network de-
vices and path services.

In addition to SIP, a number of other protocols relate
directly to XSP. We have investigated integrating rele-
vant features of SCTP [44] such as multipathing and the
bundling of SCTP associations as potential elements for a
session-based signaling and data movement service. The
Delay Tolerant Networking Research Group (DTNRG)
[16] and its associated Bundle Protocol [49] attempts to
solve the problem of message delivery and routing in chal-
lenging network environments, including very large delay
transmission and frequently disconnected network paths.
Recently, a session layer for DTN [19] has been proposed
that will allow receiver-driven applications to manage re-
lationships between individual “bundles”. Mapping mul-
tiple transport streams as in SCTP, and the ordering and
timing of messages within a stream as in DTN, are di-
rectly addressed by XSP in a single framework.

There have been a number of proposed middlebox
communication frameworks whose functionality may be
generalized with XSP. We share a common motivation
with the inter-middlebox architecure MIDCOM [46], de-
signed to embed application intelligence into a network
of MIDCOM agents. Using a standard inter-agent proto-
col, MIDCOM focused on firewall and NAT services as
well as the management of bundled session applications
like VoIP. Unfortunately, MIDCOM never saw deploy-
ment in the real world and has since developed in other
directions. More recently, ForCES [20] proposes to pro-
vide a framework for logically separating control and data
planes within network processor devices. It primarily fo-
cuses on integrated systems such routers and other net-
work appliances while defining the protocol for communi-
cation between distinct control and forwarding elements.
The scope of ForCES is tied to the interaction of closely
coupled network elements whereas XSP aims to provide
a more general approach to signaling across applications
and devices from an end-to-end perspective. We envision
that XSP may interface with a ForCES control element for
managing that particular class of network device.

The Next Steps in Signaling (NSIS) [8] working group
proposes a two-layer IP signaling standard focusing on
QoS signaling and a reuse of existing reservation proto-
cols such as RSVP. Similarly to FoRCES, NSIS is targeted
at a specific set of use cases involving network device con-

figuration that we believe fall under our XSP signaling
model.

In addition, our approach utilizes some guidelines from
BEEP [40], a framework for developing network applica-
tion protocols.

4 The XSP Session Layer

Figure 1: XSP stack architecture

A key insight in our work is that an articulated, session-
based network path can provide a number of benefits for
managing connections, in terms of control and data mes-
saging, as well as improving the performance of the con-
figured data channel when appropriate. In general, the
management a number of separate transport-specific fea-
tures allows XSP to take advantage of an end-to-end path
that requires the configuration and traversal of path seg-
ments that have unique characteristics. Thus, a primary
goal of XSP is to provide a core set of functionality and
associated signaling required for network services and ap-
plications to exchange and negotiate capabilities in a com-
mon and easily extensible framework.

The XSP session layer is designed as a collection of
modular session layer service handlers, or XSP-SH, that
are accessed through a common API. Providing a stan-
dard interface to the network, each XSP-SH uses the un-
derlying XSP protocol to communicate between session-
enabled endpoints. Any and all session functionality de-
fined by XSP resides above the transport layer, keeping
the existing lower layers of the Internet model intact. Our
XSP network architecture is illustrated in Figure 1, with
the XSP-SH layer indicated by dotted boxes.

Each XSP-SH provides a framework for implement-
ing a specific instance of that service for the applica-
tion. For example, the Security XSP-SH makes avail-
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able a number of different authentication methods that
can be requested, including anonymous, username/pass-
word, X.509/SSL, SSH, and so on. The XSP-SH layer is
implemented as a set of modular libraries that can be dy-
namically loaded when requested by the application. Ad-
ditional modules can be added by simply implementing
another handler within the desired XSP-SH framework.
We show a subset of the available framework compo-
nents in the XSP-SH layer. netPath provides a number
of modules for configuring network devices, services that
can dynamically provision network paths, and devices that
speak a common protocol such as OpenFlow [9] or NET-
CONF [21]. The use of various control and data chan-
nels is supported with the Protocol Channel XSP-SH, and
Naming/Addressing allows for the integration of external
endpoint location and identification systems.

One of the challenges for the XSP-SH abstraction is
defining the core set of features that the session layer
should provide. While the current XSP-SH layer enables
applications to use what we consider a common set of
built-in features (i.e. the current state of the art), the true
advantage is realized with the extensibility of the frame-
work for supporting additional capabilities as future net-
work architectures evolve and take shape, all within a con-
sistent interface. We take a closer look at how this applies
to the Protocol Channel and netPath XSP-SH frameworks
in our two XSP use models described in Section 5.

4.1 eXtensible Session Protocol

To support the architecture described above, the XSP pro-
tocol implementation must provide for the negotiation, es-
tablishment, message exchange, and termination of a ses-
sion between application processes and any intermediate
devices. This negotiation involves a set of requests and re-
sponses that are transmitted over the network as session-
layer PDUs (SPDUs) between network end-points that
speak a session layer protocol implementation. Our bi-
nary XSP protocol specification is designed to provide a
general mechanism for this exchange of protocol control
information (PCI) and application data.

The basic XSP PDU structure consists of a fixed-length
message header defining the following fields: version,
flags, message type, option count, 128 bit source and
destination endpoint identifiers (EIDs), a 128 bit session
identifier, and 16 bits of reserved space. XSP EIDs are a
complex type that are able to represent a number of ad-
dress bitfields as well as human readable names (HRNs).
Table 1 briefly describes each field within the XSP PDU.

In addition to the common XSP header, there is a vari-
able size option block used for the transmission of XSP
control messages and application data. The option block
header contains fields for the option type, service port,
and length, which define the properties of the attached

option data. The length of the option block is indicated
by the first 16 bits of the option length field, which is
size-prefixed in order to not only efficiently send small
(< 216 byte) messages, but also much larger application
data PDUs. If set to 0xFFFF, the next protocol word is a
64-bit unsigned integer length in network byte order that
represents the length of the immediately following option
data. The XSP PDU structure is shown in Figure 2. Simi-
lar to IPv6, the protocol word width is 64-bits to allow op-
timizations on 64-bit CPUs. Since every 64-bit boundary
is also a 32-bit boundary, 32-bit CPUs are not negatively
affected by this optimization.
0 31 63
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Figure 2: The XSP PDU

Header Field bits Description
V 4 Protocol version (e.g. 1)

Flags 12 Message flags for the message. (e.g. prior-
ity)

Type 16 Specifies the type of XSP message. May in-
dicate expected option block types.

Option Count 16 Specifies the number of option blocks asso-
ciated with the XSP message.

SRC EID 128 The source identifier for this message. (e.g.
IPv4, IPv6, HRN)

DST EID 128 The destination identifier for this message.

Session ID 128 The session identifier for this message, i.e.
a random hex string.

Option Type 16 Specifies the option type for the given op-
tion block.

Service Port 16 Specifies an optional “session port” associ-
ated with the option data.

Length 16 Length of option data. 0xFFFF for data >
216 − 1 bytes.

Table 1: Description of XSP PDU fields

During the lifetime of an XSP session, messages con-
sisting of the basic XSP header and zero or more option
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blocks are exchanged over the XSP session context. These
option blocks may define requested transport layer capa-
bilities, articulate an end-to-end path, exchange applica-
tion data, or configure any other XSP-SH features cur-
rently supported along each network segment. This ex-
change takes place as a negotiation between XSP-enabled
network elements (NEs) spanning the endpoints defined
by the established session. A number of XSP primitives
provide this protocol functionality, which correspond to
XSP message types indicated by the Type field within the
XSP PDU. A subset of the core XSP primitives is listed in
Table 2.

The core protocol implements these primitives and
makes them available as part of the XSP-SH layer. For ex-
ample, the XSP AUTH TYPE primitive is used by all han-
dlers conforming to the Security XSP-SH. In contrast to
the built-in types, an application or service developed us-
ing XSP registers its option block handlers with the XSP
session layer, enabling the processing of option block
types associated with the service via the SESS APP DATA
primitive. An XSP-enabled NE receiving such a message
iterates over the option blocks and parses only those op-
tions that an active application has registered to the XSP-
SH layer. These option blocks are opaque to the XSP ses-
sion and are simply made available to the application via
the XSP API. Depending on local configuration and pol-
icy, the NE may forward all or none of the received option
blocks to other Network Elements (NEs) associated with
the session.

As the name implies, one of the key benefits of XSP
is the extensible nature of the protocol. Functionality is
easily extended by defining additional option block types
to be communicated across XSP-enabled NEs and defin-
ing handlers for those option types. The option block ser-
vice port field is used to associate a particular service or
application with the XSP session implementation, allow-
ing overlap between option types communicated along the
same session instance. This is in many ways analagous to
the IANA service port number assignments in the Internet
model, but is extended in XSP to apply across potentially
many endpoints within the active session.

Once XSP messages are received off the wire, an NE
may accept and process a given option type or otherwise
ignore and forward the option block to the next hop, if
any. This method of selective option processing provides
a distinction between “hop-scoped” and “session-scoped”
option types. A hop-scoped option may be processed by
only interested intermediate NEs while a session-scoped
options may be forwarded to the session endpoint without
additional overhead. This distinction is useful when an
end-to-end session may include a number of NEs and ses-
sion control PDUs are signaled along the data forwarding
path, but the message is only parsed at those NEs that are
expecting a particular option type.

Finally, it is worth noting that the XSP protocol ab-
straction allows for XSP sessions to be established in a
transport-agnostic fashion, meaning an active session may
be maintained over any number of available transport pro-
tocols available via the Protocol Channel XSP-SH. In
practice, and perhaps not surprisingly, XSP control ses-
sions are most often established over TCP connections
given their reliability and ubiquity in today’s networks.

4.2 Application Support

The core XSP library is known as libxsp. Building an
XSP-enabled application involves linking against libxsp
to access the main protocol functionality, XSP-SH frame-
work, and configurable connection support for establish-
ing new sessions. An Application XSP-SH provides
hooks for supporting application messaging via external
modules, as described above. These application-defined
handlers implement the desired message format and se-
rialization/deserializaition methods needed to process the
message before being encoded/decoded by the XSP pro-
tocol implementation. This approach allows XSP to com-
municate application-specific information in a general
manner while simultaneously maintaining session state
between a number of associated NEs.

The current XSP implementation includes a Sockets
API-compatible client library, libxsp client, that is being
retooled to expand feature support. This provides familiar
semantics such as open, close, connect, send, recv and ex-
tends these with session-specific calls that interact with
the XSP-SH layer. Thus, an application may establish
a session for a reliable, stream-oriented connection, as
would be provided by TCP, while being able to configure a
desired authorization scheme, dynamic network path, sep-
arate data channels, etc., all from a common interface.

Our XSP implementation also provides a transparent
wrapper, known as the Shim Library indicated in Fig-
ure 1. Using library interposition (e.g. via the Linux
LD PRELOAD mechanism), the wrapper allows existing
applications to take advantage of XSP without requiring
any source code modifications.

5 Use Models

In conjunction with the development of XSP, we have ap-
plied our session layer architecture in addressing specific
issues within today’s Internet. We now focus on two use
models that integrate XSP in order to improve wide-area
network performance and provide a standard interface for
dynamic network configuration.
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Primitive Description
SESS OPEN Establish a new XSP session. Session NE hops may be specified in option blocks.
SESS CLOSE Close an existing XSP session.
SESS ACK Acknowledge a received XSP message. May contain additional information within an option block.
SESS NACK Negatively acknowledge a received XSP message. May contain an error indication within an option block.
SESS DATA OPEN Open a new data connection bound to the current session.
SESS DATA CLOSE Close a data connection bound to the current session.
SESS DATA CHK Checkpoint or synchronize data connection.
SESS APP DATA Send application-specific data within registered option blocks.
SESS AUTH TYPE Send and negotiate authentication type.
SESS NET PATH Configure a network path defined as a common set of rules.

Table 2: A subset of XSP primitives

5.1 Rethinking Bulk Data Movement

Achieving reliable, high-speed data transfer performance
remains a “holy grail” for many in the research and ed-
ucation (R&E) and e-Science communities, and it is in-
creasingly important for the commercial sector as well.
While available link and backbone capacity have rapidly
increased, the achievable throughput for typical end-to-
end applications has failed to increase commensurately.
In many cases, application throughput may be signifi-
cantly less than what is theoretically achievable unless a
considerable amount of effort is spent on host, applica-
tion, and network “tuning” by users and network admin-
istrators alike. The growing WAN acceleration industry
underscores this need.

Our earlier work with Phoebus [33, 34] is a direct re-
sponse to this performance gap, particularly when bulk
data movement is concerned. Phoebus is a middle-
ware system that applies our XSP session layer, along
with associated forwarding infrastructure, for improving
throughput in today’s networks. Phoebus is a descendant
of the Logistical Session Layer (LSL) [47,48], which used
a similar protocol and approach. Using XSP, Phoebus is
able to explicitly mitigate the heterogeneity in network
environments by breaking the end-to-end connection into
a series of connections, each spanning a different network
segment. In this model, Phoebus Gateways (PGs) located
at strategic locations in the network take responsibility for
forwarding users’ data to the next PG in the path, or to the
destination host. The Phoebus network “inlay” of intelli-
gent gateways allows data transfers to be adapted at appli-
cation run time, based on available network resources and
conditions.

In order to adapt between protocols along different net-
work segments, Phoebus uses the Protocol Channel XSP-
SH to implement a number of transfer backends. These
backends can then be used interchangeably via the shared
XSP API while the underlying XSP framework handles
any differences in protocol semantics. The existing Phoe-
bus implementation has developed and experimented with
a number of protocol backends, including TCP, UDP, and
MX [25], as well as userspace protocol implementations
such as UDT [28].

Building upon our experiences with Phoebus, we de-

veloped a modular extension to the Phoebus architecture
called Session Layer Burst Switching, or SLaBS [32].
SLaBS uses the XSP session layer to enable an intelli-
gent store-and-forward data movement service that takes
advantage of large buffers at PG adaptation points to
form data bursts and optimizes their transmission over
dedicated network resources. Appropriately enough,
we call these bursts “slabs” and the process of form-
ing slabs “slabbing”. In essence, slabs are SPDUs that
are formed by coalescing smaller SPDUs from the edge
(e.g. user application flows) that have been terminated at
PGs. Incoming SPDUs are multiplexed, or reframed, into
larger SPDUs (slabs) which are more suitable for high-
performance transmission over wide-area networks using
the protocol adaptations available with Phoebus. The XSP
session layer provides the mechanism for exchanging slab
information over a SLaBS control session and the multi-
plexing/demultiplexing of SPDUs between SLaBS gate-
ways. Additional details are available in our previous
work [32, 34].

Up to now, all of the data movement within the Phoe-
bus and SLaBS approaches has used a synchronous, “send
when available” approach. We now describe an extension
to SLaBS that takes advantage of an asynchronous, “come
and get it when ready” model for data transfers supported
by XSP signaling.

5.1.1 Bulk Asynchronous GET

As networks continue to get faster, a key performance
consideration is not only the efficiency of the transport
protocol but also the level of operating system (OS) in-
volvement in supporting data movement between end-
hosts. Traditionally, a transfer application will read data
from the local resource (e.g. disk) and invoke the OS to
transfer that data with TCP (or UDP with some user-level
protocol implementation.) As the transfer proceeds, the
OS is tasked with meeting the application requests for
copying data into its user-space buffer while simultane-
ously, and synchronously, sending data over the network
and acknowledging receipt of PDUs from the transport
layer. With 10Gb/s network interfaces becoming more
common in high-performance computing environments,
we are currently in a situation where an application strug-
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gles to achieve commensurate throughput without signif-
icantly taxing the CPU, or at least some siginificant frac-
tion of available cores. Although there are a number of op-
timizations available, from kernel socket splicing to TCP
offload engines, this situation is not sustainable for appli-
cations interested in moving bulk data sets over networks
at 10Gb/s and beyond.

One alternative is to decouple the data movement over
the network from the involvement of the operating system
itself. In this model, sending a resource, whether it be a set
of files or data already within the page cache, involves let-
ting the OS simply stage the data in memory on behalf of
the requesting application while allowing the remote host
to asynchronously “get” the prepared memory regions via
some transport mechanism. We call this particular type of
transfer scenario Bulk Asynchronous GET, or BAG.

The BAG approach entails having a producer make
some resources available for a remote consumer to ac-
cess, during some particular window of activity, which is
exactly what our earlier definition of a session allows via
XSP. The BAG operation is asynchronous in that the pro-
ducer is only notified of a transfer completion if requested
or required by the implementation, and typically via an
out-of-band message. An analogy can be drawn between
BAG and that of shipping packages via UPS or FedEx.
The sender is not, generally, continuously involved with
the delivery of their items from one location to another.
Instead, UPS is notified that some number of packages
are available at a particular address for pickup, the sender
makes them available at their front door, and UPS “gets”
the packages and delivers them to the desired destination.
A sender may even request delivery confirmation which
can be received or checked “out-of-band” via a web site.

What BAG requires is the ability to decouple the sender
(really the host operating system) from the task of push-
ing the actual data through the network, freeing up the
system to perform other tasks, just as UPS frees a shipper
of packages to go about their day. Fortunately, the rapidly
evolving area of Remote Direct Memory Access (RDMA)
technologies has provided exactly this capability.

The BAG approach draws inspiration from data cen-
ter environments where switched-fabric interconnects like
InfiniBand and similar RDMA protocols have played a
significant role in enabling massive parallelization with
improved throughput and reduced latency and overhead.
Supporting zero-copy networking, RDMA operates on the
principle of transferring data directly from the memory of
one system to another, across a network, while bypass-
ing the operating system and eliminating the need to copy
data between user and kernel memory space. These di-
rect memory operations are supported by enabling net-
work adapters to register, or “pin”, memory and directly
access these explicitly allocated regions without involve-
ment or context switching from the host operating system.

Recently, enhancements to Ethernet for “data center
bridging” have led to RDMA implementations that run
directly over existing layer-2 network infrastucture, us-
ing RDMA-enabled network adapters called rNICs. By
allowing the network adapter to encapsulate memory-
resident application data within layer-2 frames directly,
the overhead of higher level protocols can be virtually
eliminated. A number of RDMA over Ethernet (RoE) im-
plementations are under development and a standard for
high-performance Ethernet rNICs has been proposed and
implemented within currently available hardware [3, 37].

Figure 3: System-level view of RDMA transfers with XSP-
driven Bulk Asynchronous GET (XSP-BAG)

Using XSP, we have developed a conceptual model of
a BAG service that uses an RDMA transport and have
begun implementing the necessary components within
the XSP session layer. This has involved two main
tasks: (i) creating an RoE Protocol Channel XSP-SH,
and (ii) adding XSP option types that allows the appli-
cation to exchange the necessary metadata to perform
the remote GET operations and signal transfer comple-
tion events. The RDMA protocol handler in XSP-SH
uses the OpenFabrics [12] rdmacm and Infiniband ib-
verbs libraries to establish the RDMA transport context
and initiate the supported RDMA operations. The em-
ployed Infiniband “RDMA READ” operation is equiva-
lent to the GET described in Bulk Asynchronous GET
and requires the exchange of memory region pointers to
move data from one RDMA-connected host to another.
The XSP option blocks defined for BAG transfers (option
type XSP OPT BAG) encode and exchange the necessary
local and remote addresses, keys, and size of each mem-
ory region to transfer.

Figure 3 shows a system-level view of XSP provid-
ing the necessary signaling to maintain a BAG transfer.
After the XSP session establishes the RDMA context,
registers local and remote buffers, and exchanges point-
ers, the rNICs proceed to transfer data within the desig-
nated memory regions without further involvement from
the OS. What is missing from this picture is the service
that “stages” requested data in memory to be transferred.
We now investigate our SLaBS data movement system as
one such in-the-network service, and we envision a fu-
ture dedicated host capability that can support the mem-
ory staging of local resources through the intelligent use
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of the OS page table implementation.

5.1.2 SLaBS with XSP-BAG

Our first implementation of the BAG approach extends
SLaBS with the ability to use RDMA over Ethernet to
more efficiently transfer slabs across dedicated network
paths. Here, the memory regions to GET are the slab SP-
DUs being buffered at the SLaBS gateway and the main
challenge involves extending the threaded buffer model
within SLaBS to support efficient BAG transfers over
high-latency WAN paths.

Figure 4: SLaBS “triple buffering” for XSP-BAG

As network latency increases, it is well understood that
pipelining the transmission of network buffers is required
in order to continually keep data “in-flight” within the net-
work. TCP solves this with a sliding window protocol
clocked to the round-trip time (RTT) of the path, the ef-
fects of which become exaggerated over so-called “long
fat networks” leading to considerable performance issues.
In contrast, SLaBS maintains an open loop model over
the dedicated core network paths which allows us to de-
termine ahead of time what resources are necessary and to
pace slab transfers based on buffer and throughput capa-
bilities at various points in the network. This amounts to
ensuring that the buffering implementation has at least one
bandwidth-delay product1 (BDP) sized buffer in transit at
any given time. However, in the BAG model with RDMA,
there is an inherent trade-off between the number of reg-
istered memory regions and total buffer size required to
saturate the given network path.

Our current SLaBS buffer implementation, illustrated
in Figure 4, uses an adjustable size ring buffer with config-
urable memory region partitions within the overall buffer.
To simplify the amount of memory region metadata ex-
change required with XSP, we employ a simple “triple
buffering” scheme where three memory regions are ex-
changed between SLaBS gateways in a round-robin fash-
ion to keep the network saturated. While incoming SP-
DUs are written to one region, the second region is a
“ready-to-send”slab and its associated metadata has al-
ready been sent to the remote side within an XSP slab
option block. The remote side posts the GET operations

1The bandwidth delay product of a network path is typically calcu-
ated as BDP = RTT (seconds) ∗ rate(Bps)

as they are received over the XSP control session while a
third region is continuously being retrieved.

5.1.3 Performance Evaluation

This section presents our initial performance results as we
evaluated the XSP-BAG additions to the SLaBS gateway
system. All results were collected from a testbed environ-
ment consisting of 7 nodes connected with 10Gb/s Myri-
com Ethernet NICs, each node having at least two 10Gb/s
interfaces. The testbed forms a linear network topology
with client and server nodes at the edges, two SLaBS
gateways in the middle, and 3 delay nodes segmenting
the network into representative LAN and WAN segments.
The edge host and netem nodes were Sun X2200 servers
with quad-core AMD Opteron CPUs and 4GB of RAM,
while the gateway systems contained AMD Phenom II
X4 processors and included 8GB of high-speed DDR2
RAM. The gateways systems were additionally outfitted
with two Mellanox rNICs in order to evaluate SLaBS per-
formance with native, or “hard”, RDMA over Ethernet.
All of our transfer tests are memory-to-memory copies to
avoid disk I/O bottlenecks., and unless otherwise noted,
network traffic is generated using the iperf 2 bechmark.

Figure 5 shows that at 10Gb/s, the SLaBS gateway sys-
tems are not able to successfully form slab SPDUs and si-
multaneously burst buffered slabs over either TCP or UDP
data channels. Increasing the number of additional incom-
ing streams does not significantly affect the buffering or
backend performance. With the XSP-BAG extensions and
the RDMA data channel, the slab bursting performance
nearly matches that of only writing SPDUs into the slab
buffer from the edge connections. Indeed, the RDMA data
channel transmits at the maximum bandwidth achievable
by the rNIC, approximately 9.71Gb/s.

We also tested the popular file transfer tool,
GridFTP [27], using both a direct TCP connection
and when enabling SLaBS via the XSP wrapper library
to transfer 128GB between GridFTP servers. As shown
in Figure 6, the maximum achievable GridFTP transfer
rate on our testbed systems is approximately 8.3Gb/s,
fully utilizing a CPU core. 3 As the WAN latency is
increased, direct TCP performance suffers whereas with
SLaBS, and the RDMA data channel enabled, observable
transfer performance remains consistent beyond 100ms,
improving upon the direct TCP transfer by up to 18% in
the highest latency case.

Figure 7 illustrates the importance of chosing the right
sized SLaBS buffer to adequately maintain full utilization
of the WAN path as latency increases. The buffer sizes
indicated in the chart represents the total allocated buffer

2Popular network measurement tool – see http://iperf.sourceforge.net
3Using the threaded GridFTP server and parallel streams at these

rates only served to further decreases observable transfer performance.
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within the SLaBS gateway, 1/3 of which is in-flight via
a remote GET at any given time. As that GET size ap-
proaches the BDP of the WAN path, performance of the
RDMA data channel begins to decrease as the remote side
has to wait for the next XSP slab record to pipeline, ef-
fectively “wasting” the available network capacity and in-
creasing the signaling to GET ratio. With a 512MB buffer,

Figure 8: SLaBS CPU overhead

SlaBS is able to achieve full WAN network utilization
well beyond 100ms, covering a large number of typical
WAN path latencies while requiring a memory footprint
achievable in most network service platforms.

Finally, we look at the benefits to system CPU utiliza-
tion 4 in the gateway when using the XSP-BAG approach
with SlaBS. Figure 8 compares TCP socket write calls,
with and without RDMA, versus kernel socket splice op-
timizations, with and without RDMA, in the egress (re-
mote GET side) SLaBS gateway. The splice and vm-
splice syscalls use a kernel memory pipe to “splice” or
connect file descriptors (may refer to sockets) and mem-
ory pages while avoiding costly userspace copying. Using
only the splice calls instead of TCP write, we can achieve
a nearly 40-50% reduction in total CPU usage; however,
the transfer is still still bound by OS overhead. With the
RDMA data channel and splice, the picture changes dra-
matically and we see only 6-7% total CPU utilization at
nearly 10Gb/s transfer rates.

These results clearly show the benefit of the XSP-BAG
model in improving performance of data movement ser-
vice like SLaBS. Not only can we more effectively use
dedicated network resources, but the total load on the sys-
tem can be significantly reduced, allowing for other po-
tential optimizations such as encryption or compression
of the data stream.

5.2 Dynamic networks

The effective configuration and management of network
resources is an issue of growing importance as networks
become increasingly diverse and dynamically configured
paths play a central role in a particular class of new appli-
cations and services. Indeed, the SLaBS and XSP-BAG

4We show total system utilization across cores. In our 4-core sys-
tems, this equates to 25% total CPU load respresenting one completely
non-idle core, 50%: two non-idle cores, etc.
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models just described depend on the ability of the net-
work to provide dedicated and stable network resources
to support high-performance data movement. Along with
this diversity, devices in the network are also becoming
smarter. Programmable router platforms [1, 4] and Open-
Flow [9] enabled switches allow new experimental pro-
tocols, services, and management techniques to be evalu-
ated over existing network infrastructure.

The deployment of passive optical networks [35]
(PONs) in bringing fiber to the home has spurred re-
search into adopting such optical networks as a way to
scale Internet infrastructure to 10-100G speeds and be-
yond [42,45]. Eliminating the need to convert optical into
electrical signals allow PONs to reduce complexity and
costs, and all-optical technology is finding its way into
routers where it has the potential to dramatically increase
Internet backbone capacity. As the name implies, PONs
passively switch multiplexed waves over optical fiber and
splitters, as opposed to lambda-switching or optical burst
switching techniques [39] where active electronics are
necessary to configure the lightpath either statically or just
ahead of the data burst. With an appropriate control plane
capability, data movement services like SLaBS are in a
perfect position to utilize such high-performance paths
where the deterministic path characteristics allow us to
optimize the protocol and link usage.

In support of scientific computing and R&E commu-
nities, one approach to managing a specific class of back-
bone network resources has resulted in so-called Dynamic
Network Environments (DNEs). These DNEs allow net-
work resources to be provisioned “on the fly” by users,
services and advanced applications. Demand-driven al-
location of these ephemeral, dedicated links and paths
enables unprecedented optimization of network utiliza-
tion and is an ideal tool for demanding network appli-
cations. These “circuit networks” currently support high
performance and Grid computing applications that must
reliably and quickly move large quantities of data, and
there are currently a number of existing DNE control
plane technologies in general use. These include reserva-
tion and provisioning systems such as LambdaStation [14]
and Terapaths [26]. ESnet and Internet2 have developed
network-specific reservation systems, OSCARS [38] and
DRAGON [36], to deploy on their respective circuit net-
works.

A considerable amount of effort is now being focused
on the problem of local, or end-site network configura-
tion. In many cases this involves extending a circuit pro-
visioned via existing DNE systems into the local-area net-
work of a particular institution where it can provide a ded-
icated, end-to-end virtual path for the requesting applica-
tion or user. Efforts such as PWE3 [15] are exploring sim-
ilar edge-to-edge capabilities over MPLS paths. Given the
diversity of available devices within the typical end-site,

standardization efforts such as NETCONF [21] are be-
coming increasingly important in providing a consistent
interface to install, manipulate, and delete configurations
within these environments.

Taking a step back, what users and applications funda-
mentaly require is a general mechanism to create, mod-
ify, and remove dynamic paths based on a shared global
view of available network resources. An immediate use
model for XSP is the ability to provide such a common
and consistent interface for existing control plane archi-
tectures and systems. By allowing network configuration
to be bound and managed by a session of activity, XSP
allows applications to transparently configure and utilize
a wide range of provisionable networks with minimal ef-
fort.

5.2.1 XSP netPath Model

Since our early work with Phoebus and its ability to act
as an application “on-ramp” for DNEs, we have contin-
ued to extend the XSP framework to allow for more gen-
eral network configuration. The netPath XSP-SH now
enables the extensible and interchangeable use of an in-
creasingly growing subset of the above technologes. To
date, we have implemented handlers for OSCARS, Ter-
apaths, and OpenFlow and have begun implementations
for NETCONF and end-host network configuration for
Linux-based systems.

Figure 9: An xspNetPath structure contains a list of “rules” to
be configured by the indicated netPath XSP-SH modules

In order to provide a common interface for each han-
dler, the netPath framework abstracts a set of configura-
tion parameters, or “network rules”, that are needed to
configure the underlying network device. Each netPath
XSP-SH implementation uses this common abstraction to
install a given network rule as determined by the speci-
fied XSP-SH handler type. By realizing that a large ma-
jority of network configuration tasks involves only a few
core set of operations, we have been able to create rules
that can be expressed with a relatively short list of pa-
rameters. In this we share a common theme with Open-
Flow and their n-tuple for defining all configurable flows
in an OpenFLow capable switch. Configuring dynamic
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network paths in particular is typically a process of bring-
ing up the appropriate interfaces, installing a number of
forwarding rules, and applying a set of properties such as
QoS bits and VLAN tags, or capacity and duration con-
traints in the case of DNE reservations.

The netPath interface exported via the XSP API
presents an xspNetPath structure to the application which
can specify a set of dynamic path actions such as CRE-
ATE, MODIFY, DELETE, QUERY, etc. This structure
can be manipulated to contain a number of xspNetRule
entries that, taken together, defines an end-to-end path, or
it may simply contain a single rule to effect some particu-
lar configuration on a specific device. Figure 9 illustrates
this structure.

The xspNetPath structures are encoded within XSP
option blocks and sent along the active session as
SESS NET PATH messages. An XSP NE configured with
the netPath XSP-SH indicated within the xspNetRule en-
tries load the appropriate handler and applies the specified
configuration. An XSP EID within the xspNetRule en-
tries allow the netPath handlers to identify and locate the
particular network device or service to configure. The un-
derlying handler interacts with the active session to pro-
vide acknowledgements if the operation completed suc-
cessfully, or descriptive NACKs if it was unable to apply
some or all of the device configuration.

5.2.2 Describing Dynamic Networks

A key requirement in the effective use of dynamic net-
works is the ability to accurately and completely describe
the network topology and the services contained within.
This information should include not only a list of services
but should also detail the attributes of attached devices,
the characteristics of network links, and the ability to find
measurements that provide a picture of the current state
of the network. Services should also be able to register
information about what features and capabilities they pro-
vide in order to be discovered and utilized. Collecting and
publishing measurement, service, and topology data on a
large scale has been the focus of the perfSONAR [30] ef-
fort and is one that has taken an important role in the op-
eration of DNEs as described above.

One of the major challenges born out of perfSONAR-
related development has been the unification of service
and network topology information in a common frame-
work and schema representation. Representing complete
topology information in a generic way is made difficult
since detailed, cross-layer connectivity is often desirable
or even necessary in describing dynamically changing
device configurations and when attempting pathfinding
across such networks. The task is further complicated
when dealing with network features such as link aggrega-
tion and protocol encapsulation, and translation between

network segments with potentially different VLAN tags
and QinQ encoding. Driven by these requirements, we
have worked on a topology representation that extends ex-
isting standards and draws upon a number of current best-
practices. Our goal is to describe existing networks as
completely as possible while remaining flexible enough
to handle future developments and additions. These ef-
forts have recently culminated in what we call the Uni-
fied Network Information Service (UNIS) [10], providing
a general schema and a deployable service for publish-
ing named services and topology information in a globally
distributed fashion.

<node id=’’urn:unis:...:node=srv1’’>
<port id=’’urn:unis:...:node=srv1:port=eth3’’>
<name>eth3</name>
<description>10G connection to rtr1</description>
<capacity>10000000000</capacity>
<link id=’’urn:unis:...:node=srv1:port=eth3:link=srv1−rtr1’’>
<relation type=’’source’’>
<portIdRef>urn:unis:...:node=srv1:port=eth3</portIdRef>

</relation>
<relation type=’’sink’’>
<portIdRef>urn:unis:...:node=rtr1:port=Te1/0/1</portIdRef>

</relation>
</link>
</port>
<rule id=’’urn:unis:...:node=srv01:rule=eth3 vlan 607’’>
<type>LINUX NET</type>
<vlan>
<id>607</id>
<portIdRef>urn:unis:...:node=srv01:port=eth3</portIdRef>
</vlan>
</rule>
</node>

<path id=’’urn:unis:...:path=srv1−circuit’’
<symmetric>true</symmetric>

...
<id>2</id>
<ruleIdRef>urn:unis:...:service=OSCARS:rule=circuit</ruleIdRef>
</hop>

...
<hop>
<id>5</id>
<ruleIdRef>urn:unis:...:node=rtr1:rule=Ge1/0/4 607</ruleIdRef>
<ruleIdRef>urn:unis:...:node=rtr1:rule=vlan 607 trunk</ruleIdRef>
</hop>
<hop>
<id>6</id>
<ruleIdRef>urn:unis:...:node=srv1:rule=eth3 vlan 607</ruleIdRef>
</hop>
</path>

Figure 10: A UNIS XML Path example with annotated rules

The UNIS schema builds upon the same base elements
as defined in the NM-WG [6] topology schema used by
perfSONAR and allows for interoperability between sys-
tems. These base elements allow networks to be described
in terms of domains, nodes, ports, links, networks, paths,
and services in a flexible and extensible manner. We have
recently extended the UNIS schema to allow for anno-
tations to these base elements so as to include network
configuration, or “rule”, information within the network
topology description itself. An example of such a topol-
ogy fragment is show in Figure 10. In this model, a net-
work path in UNIS can be represented as a list of rule ref-
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Figure 11: Conceptual view of the netPath XSP-SH being used to provide a common interface for dynamic network configuration,
in this example creating a “virtual circuit” between two remote domains.

erences, which are annotations to node, port, and service
elements within the topology description.

The similarity to the XSP netPath model is not by ac-
cident. In fact, resolving a UNIS path of rule references
is intended to represent the same network configuration
information in the equivalent xspNetPath structure. This
has a number of benefits, not the least of which is the
ability to maintain a consistent and exportable view of
active paths and associated network device configuration
within a given network domain. Clients interfacing with
the UNIS service can query path information to learn the
state of the network and actively modify device configu-
rations using XSP netPath. In a similar fashion, XSP NEs
may update UNIS with the current status of the device
configuration by updating rule annotations in the topol-
ogy description.

Using UNIS and XSP netPath, we are in the process of
creating and evaluating the effectiveness of network envi-
ronments similar to the one shown in Figure 11. Within
each network, XSP NEs with netPath handlers manage
the configuration of a number of network devices within a
particular domain. These running XSP instances may be
part of a deployed gateway such as Phoebus or are other-
wise made available as standalone XSP services or host
agents depending on the end-site deployment. By provid-
ing a standard interface and session negotiation between
netPath handlers, XSP can automatically configure dy-
namic network paths on behalf of the requesting applica-
tion based on topology information obtained from UNIS,
bringing the “virtual circuit” all the way to the end-host if
desired.

Finally, one of the additional features UNIS provides
is that of service lookup and name resolution. If not re-
solveable via the local XSP NE configuration, the EIDs
specified within each xspNetRule are located with queries
to UNIS, which maintains registered service information
along with network topology. One area we wish to explore

is the implementation of a Naming/Addressing XSP-SH
that would allow the XSP session layer to use UNIS in a
more general way.

6 Status and Future Work

Our XSP use models have described solutions within two
areas that play an important role in future Internet designs,
namely performance and the management and configura-
tion of network devices. Within our XSP framework, we
anticipate extending functionality to the session layer in
areas such as security, routing, forwarding, naming, and
addressing that will bring new architectural features to
users and applications through a common interface. We
believe an added benefit of our session-based approach
will help address the larger issues of availability, deploy-
ment, and economic viability in current and future net-
works. We also readily admit that this work is ambitious
and is confronted with a number of unknowns as networks
continue to evolve. However, it should be noted that our
approach does not have to reinvent the Internet in one fell
swoop, but rather, it may be one of gradual adoption–
implementing a core set of services that can work along-
side existing Internet infrastructure while enhancing and
extending functionality where possible.

With the current XSP protocol and library implementa-
tions, we have solved one of the key barriers to developing
new functionality in a consistent and easily accesible way.
Through the XSP-SH layer, a particular implementation
may come or go but the application interface to a standard
set of services remains consistent. This allows for a great
amount of flexibility in evaluating new architectural ap-
proaches over a variety of techniques. To support XSP de-
ployments, we have developed a service known as the XSP
Daemon, or XSPd, which implements the core XSP pro-
tocol functionality and a configurable XSP-SH layer. As
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an XSP-enabled NE, XSPd can support new and develop-
ing session-layer features and interact with other XSP ser-
vices like Phoebus and SLaBS. One common scenario is
to let XSPd authenticate and authorize high-performance
transfer applications while configuring dynamic network
paths that enable Phoebus and SLaBS to accelerate the
data channel, all within a single session spanning multi-
ple NEs.

One of the biggest challenges in exploring new and
emerging network technologies has involved the ab-
sence of a platform to experimentally validate new ideas
in real-world environments without seriously disrupting
production systems. To address this, and to supple-
ment our local testbeds, we are actively experimenting
with the Global Environment for Network Innovations
(GENI) [24]. GENI provides a virtual laboratory for
experimenters to develop and explore innovative and at-
scale future Internet architectures, with a significant num-
ber of available resources designed to be fully virtualized
and instrumented while at the same time enabling deep
programmability. We are taking advantage of the hetero-
geneous network devices available at both core and edge
networks with the ability to integrate existing or custom
components as new, shareable resources within GENI it-
self. Our XSP experiments have shown promising results
in configuring dynamic paths and employing Phoebus and
SLaBS over the GENI backbone.

As future work, we plan to extend the XSP-BAG model
as an active service on end-hosts in order to achieve better
integration with the native operating system, supporting
high-performance, bulk data transfers from disk-to-disk.
With the availability of 40G and 100G network testbed
on the horizon, we hope to evaluate both the end-host
and SLaBS BAG transfer models at much higher network
speeds.

An implementation of the XSP protocol as a native
kernel module, using a sockets-compatible interface via
an AF INET XSP mechanism, is also being considered.
This would provide much tighter integration and im-
proved performance for a number of data movement ap-
plications, while at the same time simplifying our session
layer stack architecture.

Finally, we are investigating the role of UNIS to pro-
vide a core set of naming and addressing services. A
growing area of research involves this notion of location
and identifier separation and we are targeting UNIS to
play an active role in this regard. By allowing service
registration across both public and private address space,
UNIS provides a mechanism for storing and distributing
location-independent names (EIDs) for resource discov-
ery and access. XSP-enabled NEs can use this discovery
mechanism to locate the associated “border gateways” in
the network that perform late-binding of existing transport
layer addresses (e.g. TCP 5-tuple) and establish forward-

ing rules to provide access to the running service. We
will also look into integrating related mechanisms such as
LISP [2] and HIP [50] as additional XSP-SH modules.

7 Conclusion
This paper presents our XSP session layer and protocol
implementation as an extensible framework for managing
the interaction between applications and network-based
services. Given the scope of our architecture, we have
focused on two use models in particular and describe how
XSP is being applied to improve performance in modern
networks and dynamically configure dedicated network
paths on which our performance-enhancing middleware
services depend. We illustrate our Bulk Asynchronous
GET approach as a model for how XSP can merge tech-
nologies and services from opposite ends of the network-
ing spectrum, from data centers to wide-area networks,
into a single, common interface for applications and users.
As the Internet continues to evolve, we believe XSP is po-
sitioned as a general and extensible platform for exploring
future internet architectures.
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