Abstract:

A NOTE ON CONDITIONAL EXPRESSIONS#

by

Daniel P. Friedman
And
David S. Wise
Computer Scilence Department
Indiana University

Bloomington, Indiana L4740l

TecHNicAL ReporT No. 70

A Note ON CoNDITIONAL EXPRESSIONS

DanIEL P. FRIEDMAN
AND
Davip S. WisE

OcTosER, 1977
ReEvisep: ApriIL, 1978

Evaluation of a conditional expression may succeed
even when the "deciding predicate" diverges and the
alternatives are records (or nodes) whose fields have
different content.

Keywords and Phrases: parallel evaluation, suspending CONS, LISP,

conditional forms, IF-THEN-ELSE, ambiguous functilon,
infinite structures.

CR Categorles: 4.2, 4.32, 5.24, 4.13.

¥Research reported herein was supported (in part) by the National
Science Foundation under grants numbered DCR75-06678 and MCS75-08145.

In an early paper [7,p. 55] McCarthy proposed eight
equations for the formal properties of conditional forms
in pure LISP. Each of these equations are labelled as strong

equivalences except the first:

if p then a else a = a . (1)

This equation states that when a conditional expression has
identical arms then the value is surely the value of those arms,
independently of the wvalue of the "deciding predicate", p. The
weakness of this equation arose because the equation need not

hold if evaluation of p does not terminate (diverges).. In that
case we would like the value of the conditional to be a, if indeed
both arms are known to be equal, but the sequential implementation
of conditional expressions precludes it (but see [81]).

Since implementations of conditional expressions usually
follow the model of conditional statements, they are universally
percelved as being sequential. Nearly all implementations require
the evaluation of the predicate by the single processor before
either arm is evaluated. 1In the' case that the predicate diverges

it 1s sufficient that the conditional expression, itself, diverges.

The resolution of the weakness of (1) lies in its inherent
need for suspended (delayed or lazy) evaluation in implementing
McCarthy's language [7]. The delayed evaluation work of

Vuillemin [ie], sidesteps this issue by defining the conditional

expression as a primitive operation strict in its first parameter

(i.e. the deciding predicate). A function is strict in its h

parameter if divergence of the iEE argument implies divergence of
the function on that list of arguments [2].

Scott [9] even requires that

if L then a else b

be 1 (indicating a divergent computation) in his lattice-theoretic
approach to computation. Henderson and Morris [5,p. 103] remark
on the need for simultaneous evaluation of all three parts of a
conditional expression as an apparent problem for the really

"lazy evaluator."

Tn this note we propose an implementation and corresponding
equations for a solution to this problem. Two of our four
alternatives are identical to two of McCarthy's equations. Our
third and fourth alternatives displace McCarthy's weak (1).

His remaining four are somewhat altered*, at the cost of some
simplification on arithmetic expressions. Difficulties arise
when identical divergent computations (in this case the predicates)

are represented as two disassoclated suspensions 2 1

T We accept the sufficiency of the remainder but not their
necessity. These distributive equations on conditionals may
replace his.
if (if p then q else r) then a else ¢ =
if p then (if q then a else c¢)
else (if r then a else ¢);

if p then (if g then a else b) else ¢ =
if q then (If p then a else c¢)
else (if p then b else c);

if p then a else (if r then c else d) =
if r then (if p then a else c)
else (iIf p then a else d).

A suspension 1s a temporary structure planted within the

field of a record when it is created instead of the value which
rightfully should be there. It contains information sufficient
to derive that value at any time it is necessary to the course
of the computation. In terms of LISP, sufficient information is

the form which specifies the value of the field and the environment

which retains all bindings necessary to evaluate that form at any time
in the future. Since both these data are readily available at any
point within a pure LISP system, creation of a suspension requires
only constant time and space. It follows that LISP's record
constructor function, cons, is well-defined over any arguments.

This redefinition of cons allows for function definitions whose value
has undefined substructure or appears to be an infinite 1list

(see also Landin's streams [6]).

For example, we define evens as the infinite 1list of
even integers beginning at 2 and powers as the infinite list

of powers of 2 also starting at 2:

evens = evennumbers(l) (2 4 6 8 18 12 .3)3

evennumbers(n) = cons(double(n)’evennumbers(succ(n)) p -

powers = powersof(l) = (2 4 8 16 32 64 ...);

powersof(n) = cons(double(n)Jpowersof(double(n))).

Accessing the fields of a structure so suspended 1s not
quite @8 easy as in pure LISP. When the fields of a record are

probed with accessing functions (car and cdr in LISP), the

presence of a suspension must be detected. If one is present,

it must first be coerced. Coercion is evaluation of the

retained form in the retained environment and requires time and
space no greater than that required if the argument had been
evaluated when the record was constructed in the first place.
(Probably considerably less,since it stops at the first record
construction.) When the value is found it displaces the suspension
(as in call-by-delayed-value [10]) to be immediately accessible

on future probes on théﬁ field, and it is returned as the value

of the probe invocation which caused coercion.

We have shown that such an implementation strengthens
considerably the classic power of pure LISP. In fact, it is
necessary to meet McCarthy's definitions for car, cdr, and
cons [7]. We here combine this with another of McCarthy's
[7 ,p. 48] operators AMB to strengthen the problematic
equation for conditional expressions.

McCarthy defines a binary ambiguity operator AMB(x,y) to
yield the value x or the value y when both are defined, to
yield the value which is defined if only one is, and to yield
undefined results otherwise. An implementation for AMB
requires simultaneous evaluation of both arguments to guarantee
that the convergent argument is not starved while the divergent
one monopolizes the evaluator. The utility of this operator
for multiprocessors should not be overlooked. Let us define a
four-argument ambiguity operator which we define using braces

rather than parentheses to suggest that the argument order is

truly irrelevant:
AMBM{w,x,y,z} = AMB(AMB(w,x) ,AMB(y,z)).

We distill the concept of conditional expression down to
the function guard. The name of this two parameter function
is motivated by Dijkstra [1]. It is strict in its first
argument and satisfies two equations similar to McCarthy's
second and third equations for conditionals:

guard(True,x) = x;

(2)

guard(False,x) = 1

where L is not a value which will be chosen by AMB. These

equations may be satisfied by implementing

i

guard(p,x) if p then x else 1

under any common interpretation of if-then-else .,

Dijkstra's guarded-if may itself be implemented using these

mechanisnms:

guarded-if(pl, el, 3 AMBH{guard(pl, el),
B,s €, _ guard(pz, ez),
P> €. guard(pa, ea),
D eq) _ guard(pk, eu)

(Guarded conditionals of lengths other than four are clearly
available.) Thé sémantics of this définition properly includés
Dijkstra's; we allow several Py to be L or even to be true with
the corresponding e;=L, 8O long as at least one of the pj is true

where ej is defined.

Using AMBL4-, guard, boolean operators, and known LISP primitives

we now define our conditional expression:

if p then x else y =

AMBU4{guard (. p s ® Y
guard(not(p),y).
guard(and(atom(x),atom(y) ,eq(x,y)) x)
guard(and(not(atom(x)) ,not(atom(y)))
cons(if p then car(x) else car(y),

if p then cdr(x) else cdr(y)))

The four choices for the ambiguity operator correspond to

four equations for conditional expressions in pure LISP:

if True then x else y = Xx;

if False then x else y = V3

(3)

p then a else a = a (where a 1s an atom);

| s =
Fh b

p then cons(q,r) else cons(s,t) =

cons(if p then g else s, if p then r else t)

The first two equations above appear in McCarthy's paper{7]. The

second two are cases of McCarthy's first équation £ 1)g the third
equation reflects his later work with Manna [8].

The suggested implementation of this semantics for

E = if p then x else y

simultaneously evaluates all of p, x, and y. If p converges first,

then the value E will be that of a chosen one of x or ¥y, SO one

of those evaluations may be abandoned. If both x and y converge
first and they are of the same type, then one of the second two
equations are - applied to yield a value independently of the
convergence of p. Significantly no evaluation ever proceeds past
the first Invocation of cons, and the chance for convergence is
thereby considerably enhanced. Furthermore, when the fourth
equation is applied, no further computation is implied by the
conditional arguments on the right; these forms are immediately

subsumed into a suspension.

McCarthy offers a distributive law for function invocation
across conditional expressions [7,p 58] which contrasts with
our fourth equation. We have instead specified distributing
conditional expressions across function invocation, taking
advantage of a particularly recognizable invocation. Cons
is a distinguished function which leaves its signature on its

result so we can easily detect its use post facto using the

atom predicate. Regardless of the depth at which cons was
invoked in yielding non-atoms for both arms of the conditional,
the applicability of the fourth equation is detectable and

is wvalid.

Two examples explain the impact of AMB on our semantics. The
first concerns two equal infinite lists, whose equality is not

directly computable because of their lengths. Let

addtwo¥*(1is) = cons(succ(succ(car(lis))),

addtwo¥(cdr(lis))).
Then the result of

if equal(length(evens),length(powers))

then cdr(evens) else addtwo¥*(evens)

is (4 6 8 10 12 ...) in spite of the fact that the predicate is L.
The arms of the conditional are both constructed, and so therefore
is the answer. The only equality tested is on the integers in the

answer list -- not on the lists themselves.

Consider, secondly, the value of the expression

if equal(length(evens) ,length(powers))

then evens else powers

which 1s partially defined. It is a list of infinite length

whose first two elements are defined. The printed result is
(2 4 292

where the ellipsis of question-marks is the message of an
evaluator exceeding its allotted resources. In this case the
resource is exhausted trying to determine the length of infinite
1ists, whose convergence would select 6 or 8 as the next element

of the result.

The fact that structures being printed are traversed in
preorder as they are printed [3] colors this latter example considerably.
It requires that we provide sequences with a common prefix, as
opposed to a suffix, as the arms of this exemplary conditional
expression. The behavior of the evaluator would be the same
if the arms were the lists (2 4 6 8 10) and (2 4 91 8 10); the
evaluation diverges -- awaiting the value of the predicate --
before the common suffixes are even noticed. If the accessing
pattern were random then accesses to all but the third element
of the list defined by such a conditional expression would
succeed! 1In contrast, if the arms wew respectively (1 2 3) and

(2 2 3) then the list printed would have been

(so%s .

if the structures were a list and an atom, say (2) and 2, then

the behavior would have been

272

without even printing the left parenthesis.

These examples run with the results described on a prototype
system, which extends the formalism of unordered structures with
divergent elements considerably beyond that suggested by AMB
and its derivatives. The formalism and the implementation of

the model which led to our note are reported elsewhere [4].

16 .

Reierences

1s

lO.

Dijkstra, E. W. A Discipline of Programming, Prentice-Hall,

Englewood Cliffs, NJ (1976).
Friedman, D. P., and VWise, D. S. COHNS should not evaluate
its arguments. In S. Michaelson and R Milner (eds.), Automata,

Languages and Programming, Edingurgh Univ. Press, Edinburgh

(1976), 257-284.
Friedman, D. P., and Wise, D. S. Output driven interpretation
of recursive programs, or writing creates and destroys data

structures. Information Processing Lett. 5, 6 (Dec., 1976),

155-160.
Friedman, D. P., and Wise, D. S. Applicative multiprogramming.

Technical Report No. 72, Computer Scilence Department, Indiana

University (1978).

Henderson, P., and Morris, J., Jr. A lazy evaluator. Proc.

3rd ACM Symp. on Principles of Programming Languages (Jan., 1976),

26-15,
Landin, P. J. A correspondence between ALGOL 60 and Church's

lambda notation. Comm. ACM. 8, 2 (Aug., 1965), 89-101.

McCarthy, J. A basis for a mathematical theory of computation.

In P. Braffort and D. Hirschberg (eds.), Computer Programming

and Formal Systems, North-Helland, Amsterdam (1963), 33-70.

Manna, Z., and McCarthy, J. Properties of programs and partial
function logic. In B. Meltzer and D. Michie (eds.), Machine

Intelligence 5, American Elsevier, New York (1970), 27-37.

Scott, D. S. Data types as lattices. SIAM J. Comput. 5, 3
(Sept., 1976), 522-587.

Vuillemin, J. Correct and optimal implementation of recursion in a

simple programming language. J. Comp. Sys. Sci. 9, 3 (1974), 332-354.

