
Strengths and Weaknesses of Sub-Workflow
Interoperability

Beth Plale, Eran Chinthaka Withana, Chathura Herath, Kavitha Chandrasekar, Yuan Luo, Felix Terkhorn
School of Informatics and Computing

Indiana University, Bloomington, Indiana, USA
{plale, echintha, cherath, kavchand, yuanluo, masterkh}@cs.indiana.edu

Abstract—Workflow orchestration tools have gained recogni-
tion for their role in scientific discovery. As the number of
workflows proliferate, reuse and reproducibility become issues
of importance. Reuse of a workflow is enhanced when the
system on which it runs guarantees execution. An increasingly
prevalent of reuse however, begs for interoperability between
workflow systems. We carried out a comparative evaluation
of the practicality of workflow interoperability by focusing on
sub-workflow interoperability and evaluating different systems
within that form. The approach shows surprisingly uniform
performance, relegating the tradeoffs to qualitative differences.

I. INTRODUCTION

Workflow systems are an integral component of cyberin-
frastructure for e-Science [9] [3]. The e-Science workflow is
often modeled as a task graph, made up of tasks often loosely
coupled and coarse-grained. Workflow orchestration draws
from human and business processes, for instance schedul-
ing manufacturing operations, inventory management, and
business process management [8], and these applications of
workflows focus on optimizing for efficiency because they are
run repeatedly over a long timeframe between changes. In
the e-Science domain, however, efficiency is traded off for
flexibility and dynamism of a workflow system in the face of
an ever-advancing science discovery process.

Workflow systems often provide default activities that can
be used as components of a workflow. These activities may
be domain independent, such as third party data movement,
or targeted towards a particular domain such as a BLAST
gene sequence matching activity. Workflow systems can be
categorized by their interaction with and assumptions about
back end compute resources. A system might be targeted
to work with a back end Linux or Windows cluster, run
workflows on the user’s workstation, submit jobs to a Grid,
TeraGrid [6], or a cloud platform. As the size of the back end
resource grows, the workflow system supporting it provides
additional constructs for large-scale parallel execution of jobs.

An increasingly prevalent of reuse however, begs for inter-
operability between workflow systems. A 2007 NSF/Mellon
sponsored workshop [23] explored the topic; it was subse-
quently advanced by Elmroth et al. [12] who suggest that
interoperability can take several forms, expressed as three
Levels. In Level 1 interoperability, workflow system is able
coordinate workflow tasks designed for another workflow sys-
tem. Level II interoperability or sub-workflow interoperability
is where sub-workflows are shared between systems. The

Fig. 1. Sub-workflow interoperability shares workflows between systems in
this diagram adapted from [12]. Activities B and F are called from System
1 by instructing Systems 2 and 3 respectively to execute the activities. B,
while seen as a single activity in System 1, is actually a subworkflow. F is
an activity that runs on grid middleware.

third level of interoperability, Level III, is complete workflow
interoperability where it is possible to execute a workflow
designed for one system by another.

We posit that of the three forms of workflow interoper-
ability, sub-workflow interoperability is likely to have the
longest lasting value. The reason is as follows. Most reuse
of workflows in myExperiment.org [16] is of sub-workflows,
as has been noted by its authors, that is, users share portions
of workflows, and these sub-workflows are being picked up
for adoption at higher rates than are full workflows. Suppose
further then that a workflow system guarantees reproducibility
of its sub-workflows (or full workflows). If a new user were
to include the sub-graph into her workflow, it is reasonable
then that she would be inclined to run the subworkflow where
it is guaranteed to run. Suppose now that the researcher has
two such sub-workflows whose guarantees are provided by
two different workflow systems. It is reasonable then for her
to create a single workflow that uses the two component
workflow systems where the guarantee is strongest.

While we posit that sub-workflows will have longest lasting
value, to our knowledge there is no good comparative data
on the costs, both quantitative and qualitative of adopting the
strategy. We undertook to fill in the gap through a performance
evaluation of sub-workflow interoperability that fixes the high
level system at a user desktop workflow engine, and explores
the performance and programming impact of various forms of



remote activity. Adhering to the categorization and terminol-
ogy of Elmroth et al. 2010 and shown in Figure 1, System 1 is
hosted on a user’s desktop machine. In this model, workflow
activities run where the engine runs. This is the case for
activities A and E. Two forms of sub-workflow interoperability
are shown in the figure. Activity B is called from System 1
by instructing System 2 to execute the activity. B, while seen
as a single activity in System 1, is actually a subworkflow
consisting of activities C and D. Activity F is called from
System 1 by instructing System 3 to execute the activity. F,
which is seen as an activity in System 1 calls out to grid
middleware to carry out the execution of the activity. Other
forms of sub-workflow interactivity can exist, but a system
that can utilize local machine resources for simple execution
and use remote resources for more complex tasks is simpler in
the simple case. Remote access workflow systems are complex
distributed systems, and that programming complexity should
not hurt the simple case, enforcing the adage what a user
doesn’t know should not hurt them. In our evaluation we hold
System 1 constant as a user desktop workflow system, specifi-
cally, the Trident Scientific Workflow Workbench [5]. Trident
was chosen because it is easy to use and as a Windows desktop
solution could benefit from sub-workflow interoperability as
there is a preponderance of scientific functionality running
on Linux based systems. Trident uses the .NET Workflow
Foundation for workflow execution.

We undertook a qualitative and quantitative evaluation of
sub-workflow interoperability. Using the model in Figure 1, for
the System 2 case we evaluate the performance of the Kepler
workflow system [4], and the Apache ODE [1] workflow tool.
For the System 3 case where remote services are invoked
directly we evaluate GFac [22] and the Opal toolkit [24]. We
also evaluate each system’s Model of Computation (MOC)
[12] with respect to the host workflow system. The model of
computation, according to Elmroth, considers the definition
of interaction between activities. Intuitively, the MOC gives
interpretation to the edges that connect two vertices of a
workflow graph (i.e., the activities). We are interested in
determining how compatible a remote system MOC is to the
local system MOC with respect to typing, control or data flow,
and scheduling of activities.

The contribution this paper makes is a careful study of
the tradeoffs of a sub-workflow interoperability solution. The
remote engine model compares favorably to the remote grid
middleware in terms of performance.

The remainder of this study is organized as follows. Sec-
tion II discusses related work. Section III details architectural
aspects. Section IV discusses the workload and Section V
discusses the quantitative and section VI qualitative results.
Section VII discusses future work.

II. RELATED WORK

A wide range of workflow systems [29] [18] have been de-
veloped for scientific research. While systems such as Dagman
[28] are general purpose [29], others have a stronger domain
adoption [26]. Some of these systems are designed to optimize

for supercomputing resources (e.g. Grids [29], Dagman [28],
Wings [15]) while others are better suited to desktop or single
user environments such as Taverna [26]. Even among general
purpose workflow systems, some have unique capabilities,
making them the ideal choice for certain applications. For
example, in domains where parametric sweeps are common
Pegasus [10], in combination with DAGMan [14] treats para-
metric sweeps as first class operations and provides an ability
to handle very large number of jobs.

Because of the large number of workflow systems and their
unique capabilities scientists are researching ways to standard-
ize different workflow systems. Jinde et al. [20] is a study
of interoperability amongst business workflows management
systems. There have been efforts to standardize workflow in-
teroperability and Hayes et al. 2002 [19] presents the standards
the workflow systems need to adhere to achieve business
workflow interaction, yet these standards imposed limitations
on workflow systems to cater for requirements that arise at a
particular business environment. The AFRICA [30] framework
proposes interoperability among workflow systems which use
SOA based XML message interactions. Even though some
of these efforts are promising, different workflow representa-
tions (e.g. directed graphs, petri-nets, UML diagrams), unique
domain and compute resource specific requirements within
different workflow environments have complicated attempts at
interoperability. Certain workflows systems [26] [21] provide
capabilities for Level I interoperability using Web services
based activities/actors.

Fig. 2. Types of sub-workflow interoperability: local execution within
system 1 is shown by activity AP and AQ invoking a workflow through
WorkflowFoundation. Activity AR communicates with the Kepler remote
engine to run a subworkflow on Big Red (solid black lines). Activity AS

contacts grid services directly to invoke nodes individually (dotted black
lines). Activity AT invokes the ODE workflow engine to run a subworkflow
on Big Red (solid red lines). Activity AU contacts grid services directly to
invoke nodes individually (dotted red lines).

III. ARCHITECTURAL ORGANIZATION

The architectural organization presented here defines the
infrastructure used in the study. It can be seen as a combination



of cases that might be used in practice. While exercising the
whole architecture is unrealistic in a real setting, the sub-
workflow cases individually and in small-group combinations
are realistic. Too, the architecture clearly demonstrates the
components held constant in the study, that is, we held the top
level workflow framework to be a desktop workflow system.
There are four primary components of the architecture, which
are refinements to the model of Figure 1 and these are:

Baseline execution: The baseline execution does not use
sub-workflow interoperability, and instead runs workflows
locally, within System 1 in Figure 2. The top level workflow
engine is the Trident Scientific Workflow Workbench and it
runs workflows locally. Trident calls out to the Workflow
Foundation to orchestrate execution.

Remote workflow engine: In the remote workflow engine
case, an activity in System 1 contacts a remote workflow
engine, illustrated by activities AR and AT in the figure. AR

invokes Kepler which contacts the Opal Toolkit to execute a
subworkflow on the Big Red supercomputer through Globus
Gram. Activity AT invokes the Apache ODE workflow engine
that contacts GFac to execute a subworkflow on Big Red using
Sigiri resource manager [7].

Remote grid/cloud middleware: A second form of sub-
workflow interoperability is illustrated by activities AS and
AU . These activities contact grid/cloud middleware directly.
Activity AS contacts Opal. Since there is no orchestration at
the remote system, the remote grid/cloud services are capable
of executing only one task of a workflow. Shown in the black
dotted lines is GRAM executing one of the three services
of a sub-workflow Similarly activity AU contacts GFac for
execution of one of the three tasks pointed to by the dotted
red lines.

High performance compute resources these are the high
performance compute resources such as Teragrid, Open-
ScienceGrid, or a supercomputer.

Using terminology of Figure 1, the top level workflow
system is the desktop engine Trident Scientific Workflow
Workbench. Trident runs on a Windows machine. The local
workflow case, or baseline case, does not use sub-workflow
interoperability. Its entire workflow, depicted in Figure 2 as
Trident activities Ap and Aq invoking two workflow tasks
under the control of Workflow Foundation running on the same
host or host cluster as Trident.

The second case is illustrated by activity AR’s invocation of
the Kepler workflow system to orchestrate a workflow. Kepler
uses the resource manager, Opal, to submit jobs to the super-
computer, Big Red; Opal submits using Globus Gram [13].
This case illustrates sub-workflow interoperability where a
local workflow engine must interact with a remote workflow
engine (as does the case illustrated by AT ). The third case is
AS initiating a remote grid/cloud service directly. It exercises
the case of sub-workflow interoperability achieved by means
of direct invocation of grid/cloud resources as categorized
by Elmroth et al. 2010. Cases 4 and 5, AT and AU , are
second examples of cases AR and AS respectively. AT invokes
the Apache ODE workflow engine which schedules jobs

using GFAC, and WS-GRAM [13] with job communication
facilitated through a wrapper service that allows a web services
infrastructure to communicate with legacy Fortran codes. AU

invokes remote grid/loud services directly.

IV. WORKFLOW WORKLOADS

The core workflows of the study cover four cases over two
workflow patterns as follows:

1) Data Intensive, Sequential Workflow
2) Data Intensive, Parallel Workflow
3) Compute Intensive, Sequential Workflow
4) Compute Intensive, Parallel Workflow
The sequential workflow is made up of 5 identical tasks

executed sequentially. For the compute-heavy version Linpack
Java version is used. Linpack solves linear equations, and we
configured it to carry out execution on a 5000 x 5000 matrix,
using double precision floating point coefficients. The inputs
and outputs are small, on the order of 5KB. The data-intensive
workflow carries out applies a cryptographic hash function
(i.e., MD5) on a 1.5 GB file. Because there are no natural data
dependencies in this workflow, a 1.5 GB file is copied from
one location to another before each MD5 service is performed.
The parallel workflow executes the same computations (MD5
or Linpack) in parallel. The workflow is sandwiched on either
end by scatter and gather nodes.

A sequence diagram shown in Figure 3 temporally depicts
activity along a vertical timeline of invocation sequences
for the Kepler/Opal stack, showing communication between
workflow engines and grid services.

V. EVALUATION

The experimental performance evaluation piece of our study
is intended to reveal the performance overheads of adopting
a sub-workfow solution. The metrics used to determine key
overheads are

1) Time difference, Tdi, to invoke workflow instance i on
local machine versus time to invoke workflow through
a remote workflow engine. That is, the time penalty of
using a second workflow engine.

2) Difference between sub-workflow through a second
workflow engine versus directly accessing remote grid
services.

3) Variability in approaches for subworkflow stacks. This
gives the variation for a given service time or latency.
The best and worst case can often vary significantly,
leaving the user uncertain of which will perform better
on any given day.

Test environment. The Trident Workflow Workbench and
Workflow Foundation run on a Windows server, Intel E7450
four 2.0 GHz 24-core processor, 128 GB RAM running
Windows Server 2008 R2 Enterprise edition. We used Tri-
dent version 1.2.1 and Workflow Foundation 4. The remote
services, shown as System 2 in Figure 1, are run on a cluster
consisting of 16 dual-socket, 2 core (4 total cores/node) MD
Opteron system with 16 GB of memory per node running



Fig. 3. Linear sequence diagram of sub-workflow interoperability. Remote
engine interaction between Trident and Kepler. Solid lines are sub-workflow
events. Dotted lines are remote grid services events. Gray lines are notifica-
tions.

64-bit Red Hat Enterprise Linux. Nodes are connected via
Gigabit Ethernet. Local disks are 73 GB in size and nodes in
the cluster have GB Ethernet connectivity to a 24 TB NAS
that is front-ended by a file server consisting of NFS v4.

The remote workflow tasks are executed on Big Red, a 1024
IBM JS21 Blade server, each with two dual-core PowerPC 970
MP processors, 8GB of memory per node. Compute nodes are
connected via gigabit Ethernet to a GPFS file system hosted
on 16 IBM p505 Power5 systems. We submit jobs to run
on the system through IBM’s LoadLeveler resource manager.
LoadLeveler, in turn, relies on Adaptive Computing’s Moab
scheduler to dispatch user jobs to appropriate and available
compute nodes. In our experiment, we use an experimental
queue of BigRed which has 4 node/16 core job capacity but
very low queue latencies.

The data intensive workflows make use of the underlying
Luster Distributed File System for file movement within the
same site. The workflow suites used in the evaluation are
capable of moving files between remote sites using GridFTP
and RFT, but the data intensive workflows in this evaluation
focus on data movement within the same site. Every activity
in the Data Intensive Sequential Workflow copies the data file
to its input working directory before it starts processing and
once it finishes the processing copies the output file to its

output working directory. So every activity in Data Intensive
Sequential Workflow will copy its input file from the output
working directory of the previous activity. The first activity
would copy the input file from the input parameter to the
workflow. The Data Intensive Parallel Workflow is launched
with the location of the data files as the inputs to the workflow.
Each activity in the workflow copies the input data files to
its input working directory and produces its output files to
its output working directory. The last activity of the Data
Intensive Parallel Workflow gathers all the outputs from the
parallel activities to a single output directory. Each test is
executed five times and minimum, maximum and median
values are computed.

The secondary workflow systems that we use are Apache
ODE workflow engine and the Kepler workflow system. For
the former, XBaya [27] mediates between Trident and the
Apache ODE workflow engine. ODE uses GFac to manage
interactions with application services. GFac can instantiate
workflow tasks; it moves data for Grid resources and interacts
with job submission and resource management providers to
schedule jobs to Grid resources. We set up our experiment so
that GFac uses Sigiri to submit jobs to the supercomputing
resource at IU. For the latter, Kepler workflow engine uses
Opal actors to interact with job submission components.
We use GRAM actors to submit and manage jobs with the
supercomputer to execute jobs. Kepler invokes an Opal actor
which consists of a generic web service client to launch job
and query job status. The Opal actor submits a job to the
Opal server which submits the job to the resource manager in
BigRed using GRAM. Once a job is done, the output data is
staged from BigRed to Opal Server. When the Opal job status
is COMPLETE, the actor will be terminated.

The remote grid services we use are Gfac and Opal. Trident
interacts directly either with GFac or Opal server to get the
jobs scheduled and executed. Trident also uses a custom file
movement utility, implemented as an Opal service, for the file
movement to the supercomputer resources, in case of Opal-
based workflows. In case of GFac/sigiri remote grid services,
GFac serves as data mover.

A. Baseline of sub-workflow overhead

We capture an overall measurement of sub-workflow over-
head by running a workflow directly within the Trident work-
station and comparing that against the same workflow executed
by a secondary workflow engine. In order to have a fairer
comparison, we ignore waiting time in the job queue in the
remote case.

For the compute-intensive workflows, the remote ODE
workflow engine version had only 2.4% higher execution time
than local execution. The remote grid service version using
Gfac/Sigiri, on the other hand, had 15.5% higher execution
time than local machine execution. This difference is be-
cause of the overhead in invoking GFac, the service factory,
for dynamic web service creation. Kepler sub-workflow and
Opal/GRAM grid services showed only 5% higher execution
time than local machine execution. Hence, the difference in



time can be attributed to the difference in architecture between
local and subworkflow and remote grid execution. The 10.5%
higher overhead for Gfac/Sigiri versus Opal/Gram can loosely
be seen as the overhead of a web services approach.

B. Workflow engine and remote grid service options

The two remote approaches differ in that one, which we
call ”remote engine” has Trident working with a secondary
workflow engine. The second approach has Trident executing
a ”remote task” directly. Figures 4(a) and Figure 5(a) compare
performance of ODE workflow engine option to the remote
grid service option (through GFac and Sigiri) for sequential
compute intensive and data intensive workflows, respectively,
with log scale along Y axis. The performance of the workflow
engine stack is slightly better than the remote task case. The
remote task stack is dominated by Service Creation and Trident
Termination latencies. The ODE stack has the flexibility to
reuse a dynamic service. But in the remote task case, Trident
must get GFac to dynamically start a new service for every
task invocation. This contributes to ”Service Creation” being a
significant overhead. Too in the remote task approach, Trident
has more activities to manage whereas in the remote engine
approach, the number of nodes in the Trident workflow is
minimal. This higher number of workflow activities within Tri-
dent contributes to the latency captured as Trident Termination.
Since ODE uses an internal data movement tool (i.e., GFac and
every component in the synthetic workflow consumes the same
input file, the tools move the file for the first activity and re-
use the same location for the other nodes in the workflow. But
for the remote task approach, files are moved for every service
invocation adding more overhead to the workflow execution.

Figure 4(b) and Figure 5(b) compare the performance of
Kepler workflow engine to Opal/Gram remote task approach
for both sequential compute and date intensive workflows.
Unlike GFac which create services dynamically, Opal uses pre-
deployed web services and hence Service Creation overhead
exists neither in Kepler-Opal subworkflow nor Opal related
remote grid service model. In the remote task approach,
Trident has more activities to manage and track, whereas
for the remote engine approach, the number of nodes in the
Trident workflow is minimal.

For the data intensive workflow, data movement is explicitly
managed by a Kepler actor in the remote engine case or
a Trident activity in the remote task case. Both Kepler’s
actor(node) and Trident’s activity(node) are Opal web service
clients. The number of actors/activities in the data intensive
workflow doubled due to the data movement services. We put
the Execution time of data movement service that happened
on execution sites as the Data Received time; and the small
submission overhead of the data movement service (due to
forking) is added to the Submitting Overhead. Moreover, in
Opal stage-out each web service outputs data from the remote
execution sites to the Opal server. Hence Kepler/Opal Service
Termination time is larger than the ODE/GFac case. Similarly,
the higher number of workflow activities within Trident con-
tributes to the latency captured as Trident Termination.

(a) ODE and GFac/Sigiri: compute intensive workflow

(b) Kepler and Opal/GRAM: compute intensive workflow

Fig. 4. Compute intensive workflows

C. Execution variability

Performance of a system is determined in part by the vari-
ability of its performance over repeated runs. Figure 6 captures
variation in execution times for ODE and Kepler solutions
under sequential compute and sequential data workflows. The
error bars represent the logarithm of minimum and maximum
values of a given measurement and the plotted value represent
the logarithmic median of the measured values.

In the case of the sequential compute intensive workflows
ODE and Kepler stacks take approximately the same amount
of time (16 sec). But examining the deviation between min-
imum and maximum values, the ODE stack has a smaller
deviation (106 sec) to Kepler’s (1481 sec). The large deviation
of the latter can be attributed to submission overheads. The
ODE stack keeps the submission overhead within a small
range. Kepler uses GRAM as its job submission middleware
and GRAM takes a varying amount of time to get the job



(a) ODE and GFac/Sigiri: data intensive workflow

(b) Kepler and Opal/GRAM: data intensive workflow

Fig. 5. Data intensive workflows

scheduled and executed in the compute resource. During
this experiment we also experienced job failures caused by
different GRAM failures and had to re-run our experiments on
multiple occasions. Additionally, the ”Application Invocation”
overhead in ODE is significantly lower than other stacks.
Higher ”Application Invocation” overhead in Kepler could be
attributed to inefficient workflow activity and service handling
within the Opal actors. For data intensive sequential workflows
the ODE and Kepler stacks show similar performance numbers
(80 sec). Kepler shows the lowest deviation (575 sec) with
ODE at 650 sec. Kepler shows significant overhead during
the shutting down phase of the service (Service Termination).
Further investigation on the issue revealed that this is due to
the implicit log file movements occurring in Opal server.

VI. QUALITATIVE ASPECTS OF HYBRID MODEL

We experimentally evaluated two models of remote execu-
tion for a handful of scenarios to illuminate the latencies and
variabilities inherent in different approaches. In this section
we discuss qualitative aspects of the comparison specifically:

1) The model of computation (MOC) - the MOC of a
workflow system captures such aspects of a workflow
system as the execution models supported by a system,
the node scheduling algorithm, and typing restrictions
on edges.

2) Level of control at desktop
3) Architectural coherence: A measure based on the num-

ber of components, fragility of interfaces, etc. which are
related to the downstream maintenance and sustainabil-
ity costs.

A. Model of Computation

The MOC defines the expressiveness of a workflow system.
That is, what kinds of execution models are supported? Does
a system support parallel execution? Control flow or data
flow execution of DAGs, finite state machines? The model
of computation is discussed in Elmroth et al., and the MOC
of several systems differentiated in Goderis et al. [17]. In
this study we fix the top level workflow system as the Trident
desktop workflow engine, and study various forms of sub-
workflow interoperability. Further, Elmroth et al. states that
”sub-workflows are seen as black boxes and their internal MoC
is not important to workflows higher up in the hierarchy”,
meaning that we need not consider the internal edges of
the subgraph (sub-workflow). The black-box nature of the
sub-workflow model has advantages and disadvantages. The
advantage factors into the picture when one examines the
MOC of Trident. Trident is a control-flow workflow system.
All scheduling decisions are based on static information and
this information is used to generate a Actor/activity firing
schedule in the form of a Windows Workflow Foundation run-
time script before it starts execution.

Goderis et al. define a process network model where
each actor executes in a Java thread, and all actors execute
concurrently. Trident does not natively support the process
network model. There is only one thread executing when a
Trident workflow is executed. As a result, in case of a parallel
workflow in Trident, there is no concurrent execution, but
only interleaving execution of activities using the same thread.
However, Trident can support a process network model by
each parallel activity to spawn a child thread, then define
a reduce or join type of process that waits for completion
of these concurrent asynchronous threads. This is how we
executed the parallel workflows of this study. The fact that
the sub-workflow is a black box means that the Trident MOC
neither extends nor limits the MOC used within the sub-
workflow.

B. Level of Control at Desktop

Workflow engines are often bound to certain services to
carry out tasks used during workflow execution. These tasks



(a) ODE and Kepler: compute intensive workflow, sequential (b) ODE and Kepler: data intensive workflow, sequential

Fig. 6. The variability in execution times for the two remote engine approaches can be seen by the error bars of each execution step.

include data movement services, authentication and authoriza-
tion frameworks, job submission and monitoring services. This
significantly limits the functionality of the workflow engine,
because it can only perform the kinds of data movement it
supports. But through the remote grid model, a user can use
any data movement framework she chooses and also has the
ability to optimize data movements and data placement in
compute resource.

If the top level workflow engine supports checkpointing
and recovery operations, when a workflow fails at a certain
node, the workflow can be restarted from that node. But if the
failed node represents a multiple task sub-workflow, the failure
can take time to recover. For example, if a certain experiment
contains 10 tasks to be executed and if it is implemented as set
of components, then a failure at the 8th node is not excessively
costly, because the workflow can be restarted to run at the 8th
node. But if the same experiment is implemented as a sub-
workflow, and if 3rd to 8th component are in the subworkflow,
failure of the 8th node requires the workflow to be restarted
from the 3rd task.

The ODE workflow engine, particularly through its instan-
tiation in the OGCE tool suite [2] is limited by its ability to
add new workflow activities. For functionality to be added, it
must be exposed as a Web service. Both Kepler and Trident
workflow engines on the other hand are primarily targeted to
desktop based workflow executions and thus provide flexibility
to incorporate new functionality easily into the system. With
the actor model in Kepler and activity model in Trident, a user
can program any functionality into the workflow, enabling a
wide variety of functionality to be supported in the workflow.

In experience gained in the research lab and in the class-
room, Trident is easy to use. Programming new workflow
activities requires writing a small C# activities. With its
user-friendly interface and programming model, we believe
the tool could appeal to the scientist who is comfortable
with a Windows platform and inclined to write and deploy
new workflow functionalities that execute within their local

compute resources. From the workflow engines with which we
have experience, Trident has the lowest time to get a custom
workflow up and running.

C. Architectural Simplicity

The remote task approach (over remote engine approach)
gives the user more control over the execution of the ex-
periment. But with this control comes maintenance overhead
and complexity, because the user has to manage all the
components and their interactions. For example, if any of the
interfaces that the components are interacting changes, the
workflow author has to change the components to adapt to
the changes. Whereas in the remote workflow engine solution
the changes will be handled inside the calling workflow
engine infrastructure. From our experience with the LEAD
[11] science gateway, grid middleware adds complexity to the
architecture. Handling security issues is also a known concern
with these systems. This work becomes more complex with
the reliability issues of these middleware components [25].
When Trident is expected to interact directly with Sigiri and
Opal, the workflow author will have to handle the complexities
for each activity, including authentication mechanisms, fault
tolerance and checkpointing. In the sub-workflow workflow
engine approach, the user must provide perfect configuration
parameters for the next workflow engine to function properly.
As we discussed in section V, the cost of failure of a sub-
workflow can be higher compared to the component workflow.
This gap further widens proportional to number of nodes in
the sub-workflow.

VII. CONCLUSION

The results of our study reveal that the remote workflow
engine approach generally outperforms the remote task ap-
proach. This is due in part to the fact that the workflow engines
we used are currently in use in scientific experiments and
have many optimizations built into them. For example, the
dynamic service creation and life cycle management within



ODE stack through the generic factory service, significantly
reduces the overhead in handling application service invo-
cations. Intelligent file movement services have additionally
substantially reduced overheads in data intensive workflows.
Additional conclusions include the following:

Grid middleware is responsible for a significant amount of
overhead in a scientific workflow stack scheduling jobs into
super-computing resources. The job failures and the higher
variation of overheads we experienced during our evaluation
suggests that the instability and unpredictable behavior of grid
middleware components have high impact on the scientific
workflow systems that are using them. However efficient and
optimized these workflow stacks are, the issues in middleware
can make these workflow suites uncertain, if not unusable.

Similar to other workflow systems, Trident facilitates work-
flow runs in Windows based environments. But we think more
improvements are necessary to make this toolkit more useable
among the scientific research community. For example, Trident
lacks the support for parallel execution constructs within it.
Even though activities are picked up and scheduled in parallel,
for a parallel workflow, they are executed sequentially.

Scientific applications written using a wide variety of pro-
gramming and scripting languages, must be wrapped and
exposed using interoperable methods for them to be invoked
by workflows engines. In our evaluation we used the generic
service factory of GFac and Opal to wrap applications. GFac
with its current capabilities can expose an application deployed
in a supercomputing resource. But with the increased usage of
cloud computing platforms for scientific workflow executions
we intend to expand our evaluation to include cloud computing
platforms using other application wrapping methods.

VIII. ACKNOWLEDGEMENTS

This project was funded in part by the National Science
Foundation under grants NSF CSR-0720580 and NSF EIA-
0202048, and from a gift from Microsoft.

REFERENCES

[1] Apache ode (orchestration director engine). Http://ode.apache.org/.
[2] The open grid computing environments portal and gateway toolkit.

Http://www.collab-ogce.org.
[3] A report from the US national science foundation blue ribbon panel on

cyberinfrastructure. IEEE Computer Society, May 2002. ISBN 0-7695-
1582-7.

[4] I. Altintas, C. Berkley, et al. Kepler: An extensible system for design and
execution of scientific workflows. In Scientific and Statistical Database
Management, 2004. Proceedings. 16th International Conference on, pp.
423–424. IEEE, 2004. ISBN 0769521460. ISSN 1099-3371.

[5] R. Barga, J. Jackson, et al. The trident scientific workflow workbench.
IEEE International Conference on eScience, 0:317–318, 2008.

[6] C. Catlett. The philosophy of TeraGrid: building an open, extensible,
distributed TeraScale facility. In ACM International Symposium on
Cluster Computing and the Grid. Published by the IEEE Computer
Society, 2002.

[7] E. Chinthaka, S. Marru, et al. Sigiri: Towards a light-weight
job management system for large scale systems. Tech. Rep.
TR681, School of Informatics and Computing, Indiana Univer-
sity, Bloomington, Indiana, 2009. Http://www.cs.indiana.edu/cgi-
bin/techreports/TRNNN.cgi?trnum=TR681.

[8] E. Deelman, D. Gannon, et al. Workflows and e-Science: An overview of
workflow system features and capabilities. Future Generation Computer
Systems, 25(5):528–540, 2009. ISSN 0167-739X.

[9] E. Deelman and Y. Gil. Managing large-scale scientific workflows
in distributed environments: Experiences and challenges. In e-Science
and Grid Computing, 2006. e-Science’06. Second IEEE International
Conference on, p. 144. IEEE, 2006. ISBN 0769527345.

[10] E. Deelman, G. Singh, et al. Pegasus: A framework for mapping complex
scientific workflows onto distributed systems. Scientific Programming,
13(3):219–237, 2005. ISSN 1058-9244.

[11] K. Droegemeier, D. Gannon, et al. Service-oriented environments for
dynamically interacting with mesoscale weather. Computing in Science
& Engineering, 7(6):12–29, 2005.

[12] E. Elmroth, F. Hernández, et al. Three fundamental dimensions of
scientific workflow interoperability: Model of computation, language,
and execution environment. Future Generation Computer Systems,
26(2):245–256, 2010. ISSN 0167-739X.

[13] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented
Systems. IFIP International Conference, Beijing, China, 2005.

[14] J. Frey. Condor DAGMan: Handling inter-job dependencies, 2002.
[15] Y. Gil, V. Ratnakar, et al. Wings for pegasus: Creating large-scale

scientific applications using semantic representations of computational
workflows. In Proceedings of the National Conference on Artificial
Intelligence, vol. 22, p. 1767. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, 2007.

[16] C. A. Goble and D. C. De Roure. myexperiment: social networking
for workflow-using e-scientists. In WORKS ’07: Proceedings of the 2nd
workshop on Workflows in support of large-scale science, pp. 1–2. ACM,
New York, NY, USA, 2007. ISBN 978-1-59593-715-5.

[17] A. Goderis, C. Brooks, et al. Heterogeneous composition of models
of computation. Future Generation Computer Systems, 25(5):552–560,
2009.

[18] Y. Han, A. Sheth, et al. A taxonomy of adaptive workflow management.
In Workshop of the 1998 ACM Conference on Computer Supported
Cooperative Work. 1998.

[19] J. Hayes, E. Peyrovian, et al. Workflow interoperability standards for the
internet. Internet Computing, IEEE, 4(3):37–45, 2002. ISSN 1089-7801.

[20] Z. Jinde. Study on Interoperability of Workflow Management Systems.
Journal of University of Electronic Science and Technology of China,
2, 2002.

[21] P. Kacsuk and G. Sipos. Multi-grid, multi-user workflows in the P-
GRADE grid portal. Journal of Grid Computing, 3(3):221–238, 2005.
ISSN 1570-7873.

[22] G. Kandaswamy and D. Gannon. A Mechanism for Creating Scientific
Application Services on Demand from Workflows. In International
Conference on Parallel Processing Workshops, pp. 25–32. 2006.

[23] K. Klingenstein and D. Gannon. A workshop on scientific and scholarly
workflow cyberinfrastructure: Improving interoperability, sustainability
and platform convergence in scientific and scholarly workflow. Tech.
rep., NSF and Mellon Foundation, 2007.

[24] S. Krishnan, L. Clementi, et al. Design and evaluation of opal2: A toolkit
for scientific software as a service. In Proceedings of the 2009 Congress
on Services - I, pp. 709–716. IEEE Computer Society, Washington, DC,
USA, 2009. ISBN 978-0-7695-3708-5.

[25] S. Marru, S. Perera, et al. Reliable and Scalable Job Submission:
LEAD Science Gateways Testing and Experiences with WS GRAM on
TeraGrid Resources . TeraGrid Conference, June 2008.

[26] T. Oinn, M. Addis, et al. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics, 2004. ISSN
1367-4803.

[27] S. Shirasuna. A dynamic scientific workflow system for the Web services
architecture. Ph.D. thesis, Indiana University, 2007.

[28] C. Team. Dagman (directed acyclic graph manager). Http://www. cs.
wisc. edu/condor/dagman.

[29] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid
computing. ACM Sigmod Record, 34(3):44–49, 2005. ISSN 0163-5808.

[30] M. Zur Muehlen. A Framework for XML-based Workflow
Interoperability–The AFRICA Project. In Americas Conference on
Information Systems. Citeseer, 2000.


