
Thwarting Wi-Fi Side-Channel Analysis through Traffic
Demultiplexing

Fan Zhang1, Wenbo He4, Yangyi Chen2, Zhou Li2, XiaoFeng Wang2,
Shuo Chen3 and Xue Liu4

fzhang2@unl.edu, wenbohe@cs.mcgill.ca, {yangchen, lizho, xw7}@indiana.edu
shuochen@microsoft.com, xueliu@cs.mcgill.ca

Department of Electrical Engineering, University of Nebraska-Lincoln, NE, USA1

School of Informatics and Computing, Indiana University, IN, USA2

Microsoft Research, Microsoft Corporation, Redmond, WA, USA3

School of Computer Science, McGill University, Montreal, Quebec, Canada4

Abstract

Side-channel information leaks have been reported in various online applications, espe-
cially, in wireless local area networks (WLANs) due to the shared-medium nature of wireless
links and the ease of eavesdropping. Even when Wi-Fi traffic is encrypted, its characteris-
tics are identifiable, which can be used to infer sensitive user activities and data. Existing
countermeasures do not offer effective and efficient protection: packet padding and traf-
fic morphing often bring in substantial communication overheads; attempts to anonymize
user identifiers are vulnerable to the analysis based upon traffic statistics, which allows the
adversary to link traffic traces to individual users.

In this paper, we present a new technique, called traffic demultiplexing, which offers ef-
fective protection against Wi-Fi traffic analysis without incurring noticeable overhead and
performance degradation. Our approach utilizes Media Access Control (MAC) layer virtu-
alization and packet scheduling over multiple virtual MAC interfaces to shape the traffic
on each virtual MAC interface, so as to hide the original traffic characteristics. Different
from the higher-layer defensive approaches designed for specific applications, traffic demul-
tiplexing operates at the MAC layer and therefore provides a general defense for various
applications. In addition, it is transparent to users and other protocol stacks. We imple-
mented our technique over Multiband Atheros Driver for Wi-Fi (MadWifi) and evaluated
it in real WLAN environments. Our experimental study demonstrates that traffic demulti-
plexing is effective and efficient in defending against traffic analysis attacks and also easy to
deploy.

1 Introduction

Side-channel information leaks are pervasive in different communication scenarios, including
web browsing [1, 2], video-streaming [3], voice over-IP (VoIP) applications [4] [5], and secure
shell (SSH) [6]. These information leaks are mostly caused by analyzing statistical characteris-
tics of encrypted traffic, such as distributions of packet sizes, inter-packet timings and others.
Adversaries are found to be able to tailor traffic analysis techniques to seriously threaten user
privacy, even when the traffic is protected by up-to-date encryption techniques. Just through
the analysis on traffic characteristics, for example, adversaries can identify online activities
(e.g., web-browsing, chatting, online gaming, online video, and downloading) [7–9], then infer
the sources of web pages or contents of those online activities [1,10], and further obtain sensitive
information, such as health records, family incomes, and investment strategies etc [2].

The threat of traffic analysis is particularly serious in wireless networks, which has been
widely deployed in residential, hotspot, and campus environments for Internet access. Due to
the shared-medium nature of wireless links, adversaries can easily eavesdrop on a specific user’s
traffic using sniffer software (e.g., Wireshark, Aircrack-ng). For example, it was reported that
the Google street view team “inadvertently” collected Wi-Fi traffic snippets that people sent
over wireless links [11]. In another example, prior research shows that through sniffing Wi-
Fi traffic, a stranger on the street can glean enterprise employees’ search queries, despite the
protection of Wi-Fi encryptions (WPA/WPA2) [2].

To defend against traffic analysis, techniques have been developed to make traffic character-
istics less identifiable. Commonly used strategies alter the distribution of packet size through
padding packets [1, 2], faking superfluous packets, and chopping packets into fixed size seg-
ments [12]. One can also use traffic morphing techniques [13] to make the statistical features of
one class of traffic look like those of another class. These approaches, however, often introduce
significant communication overheads [2], and requires remote servers (e.g., web servers and mul-
timedia servers) to change the packet size distribution for each application or each user, which
make their deployment questionable.

An alternative approach is to use anonymous communication [14,15], the identifier-free ap-
proach [16] and pseudonym [17, 18] to prevent adversaries from associating individual packets
with a specific user. However, prior research shows traffic characteristics (e.g., packet distribu-
tion and received signal strength indicator (RSSI)) may still allow an eavesdropper to identify
the party in communication [19], thereby disclosing his/her sensitive information.

To achieve both effective and efficient defense against traffic analysis, we present in this paper
a novel design, called traffic demultiplexing. Our idea is to partition a Wi-Fi traffic flow into
snippets, each composed of a subset of the packets in the flow, when transmitting these packets
through different virtual Media-Access-Control (MAC) interfaces to a Wi-Fi channel. These
snippets are later reassembled at a Wi-Fi Access Point (AP), such as a wireless router, before
the communication is relayed to the Internet. This presents to a Wi-Fi eavesdropper multiple
traffic flows from different sources, each with traffic characteristics sufficiently deviated from
the original flow and apparently independent of those from other MAC interfaces. These flows
can be further adjusted to look like being produced by different Internet activities. As a result,
the adversary can be cheated into believing that multiple users are running different programs
on different systems. Given this confusion of application contexts, private user information
becomes much more difficult to extract. Compared with prior approaches, our techniques avoid
aggressive padding to achieve a similar level of protection, thereby performing more efficiently.
To make this happen, we developed a new MAC layer traffic partition approach that includes
MAC layer virtualization and dynamic packet scheduling over multiple virtual MAC interfaces,
and conducted a thorough evaluation of the techniques. We provide a demo for our proposed
technique (http://www.youtube.com/user/fccherry091?feature=mhum).

We summarize the contributions of the paper below:

• Novel defense against Wi-Fi side-channel analysis. Compared with existing techniques,
our novel design achieves a much more cost-effective defense against traffic analysis over wireless
links. Specifically, traffic demultiplexing operates at the MAC layer, hence provides a more
generic protection for the applications than the high-level mitigation designed specifically for
these applications [2, 13]. Further, our design partitions the traffic over wireless links into
snippets and sends the snippets through multiple virtual MAC interfaces to hide their traffic
characteristics, which avoids the significant overhead other approaches incur for packet padding
and noise adding. Finally, the new technique grants Wi-Fi users a fine-grained control on how
their traffic is divided, and offers new scheduling strategies to assign traffic snippets to different
interfaces. This makes a Wi-Fi eavesdropper more difficult at identifying the features of the
original traffic.

•Implementation. We implemented a prototype of our techniques on the Multiband Atheros

2

Driver for Wi-Fi (MadWifi). Through MAC layer virtualization, virtual wireless interfaces can
be dynamically created and their attributes can be configured (e.g., MAC address, transmission
power and data rate). Our approach treats each virtual interface as a regular network interface,
and schedules network traffic onto these interfaces according to a set of user-defined packet
scheduling algorithms, including ours that are designed to optimize traffic demultiplexing. The
prototype we implemented includes a per-packet-based transmission power control (TPC) tech-
nique to prevent adversaries from inferring user identification through the strengths of Wi-Fi
signals, and the countermeasures to thwart attempts to link virtual interfaces to a given user.
Also, our technique is built to be transparent to upper layers and be compatible with the IEEE
802.11 standards.

•Evaluations. We evaluated traffic demultiplexing in real WLAN environments under differ-
ent traffic analysis attacks. Experiments show that the technique effectively suppresses traffic
analysis: it reduced the classification accuracy from 83.24% to 44.21% for online activities, from
30.6% to 5.0% for the web page identification attack, and from 78.3% to 60.0% for language
identification in VoIP traffic, without noticeable overhead. Meanwhile, our study demonstrates
that traffic demultiplexing does not incur noticeable network performance degradation and
scales well when deployed in real WLANs.

The preliminary idea of scheduling traffic onto multiple interfaces has been discussed in [20],
where a naive scheduling algorithm was presented, and packets are scheduled only according
to the packet size range. However, with the proposed scheduling algorithm in [20] an attacker
may easily infer which virtual interfaces are used by a specific user through combination anal-
ysis. On the other hand, several implementation issues are also ignored in [20], such as which
communication layers should be changed to implement the demultiplexing idea, what proto-
cols should be affected and adapted with traffic demultiplexing, how to prevent against timing
analysis attack by an attacker to figure out which interfaces belong to which user, how network
performance will be affected if users adopt multiple interfaces in reality, and how to make the
proposed idea against a wide range of side-channel information leak in WiFi networks besides
the online activity information leak, including web page identification, and the leak of VoIP
features.

The remainder of this paper is organized as follows. We present the background of our
work in Section 2. We then describe the detailed design and implementation of traffic demulti-
plexing in Section 3. Section 4 presents the security analysis. In Section 5, we evaluate traffic
demultiplexing through experimental testing in real WLANs. We summarize the related work
in Section 6. Finally, we conclude the paper in Section 7.

2 Background

2.1 Attack Model

Traffic analysis techniques have been studied for decades [1–10]. The adversary assumption
is that the attacker can eavesdrop on communication traffic, and observe its characteristics,
such as packet size, interarrival timing and Wi-Fi signal strengh, etc. Using the traces of
these characteristics, the adversary can classify them to infer sensitive user information through
various machine learning techniques, such as Support Vector Machine (SVM), Neural Network
(NN), Bayesian techniques and Hidden Markov Models (HMM). Prior research shows that these
techniques can succeed on a wide range of online applications [5,9,21,22]. In our research, we
consider the following three common attack scenarios, which are extensively studied in prior
work, to evaluate the efficacy of our new technique:

• Identification of user online activities. Traffic characteristics, such as packet interarrival
time and packet size, can be used to profile users’ actual online activities (e.g., web-

3

Application

Virtual MAC
Interface 1 (ath0)

Virtual MAC
Interface 2 (ath1)

Virtual MAC
Interface 3 (ath2)

AP

User

Outside Networks

Unique physical
MAC address

Packet Exchange

Logic Connection

Packets of an application
from the user to outside

Packets from outside
networks to the user

(a) Data transmission in traffic demultiplexing

w
iretap

(0,232] (232,1540] (1540,1576]
0

0.5

1

1.5

2

2.5

3R

3.5

4
x 10

4

Packet size ranges

N
um

be
r o

f p
ac

ke
ts

ath0
ath1
ath2

(b) Traffic on each interface

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet size

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

fu
nc

tio
ns

original
ath0
ath1
ath2

(c) PDF on each interface

Figure 1: An example of traffic demultiplexing. (a) Packets from a single application are dynam-
ically switched over multiple MAC interfaces. For example, an outgoing packet encapsulated
by the MAC address of ath0 is sent to an access point (AP). The response from the outside
networks is sent to the user through another virtual MAC interface ath2. (b) Original traffic
is distributed into three virtual interfaces. ath0 transmits packets with sizes smaller than 232
bytes, packets with size larger than 1540 bytes are dispatched by ath2, and the rest are sent
through ath1. The packet sizes on three virtual interfaces are orthogonal. (c) We see that
three virtual interfaces have very different packet distributions (e.g., average packet size of the
original traffic is 962.04 bytes, that of three virtual interfaces are 143.88, 1061.90 and 1568.00
bytes, respectively).

browsing, chatting, online game, online video, and downloading), even when the traffic is
encrypted [8, 9].

• Identification of web pages. Sun, et al. [1] and Liberatore, et al. [10] show that it is possible
to accurately identify a web page by using only the sizes of the packets and the direction
which they passed through (i.e., from or to the client) in the encrypted traffic.

• Identification of VoIP features. Wright, et al. [4] show that when VoIP packets are com-
pressed with variable bit rate (VBR) encoding schemes and encrypted with a length-
preserving stream cipher, it is possible to determine the language spoken in the encrypted
conversation by running classifiers (e.g., HMM and Bayesian) on “bit rate.”

Note that different from those prior studies, which mainly focus on IP packets, we look
at the threat on the MAC layer: our approach works on frame sizes without knowing their
end-to-end information.

2.2 Objectives

Existing countermeasures against Wi-Fi side-channel leaks either incur significant overheads
and cause performance degradation or are found to be less effective. For example, physical
space security and jamming [23,24] aim to reduce the number of packets that can be overheard
by eavesdroppers but introduce interference with legitimate communication [19]. As another
example, anonymity channels [14,15] and the identifier-free approach [16] were used to conceal
user identifiers from a Wi-Fi eavesdropper. However, prior research shows that these approaches
are vulnerable to physical layer fingerprinting [19] (e.g., RSSI values), which allows the adversary
to associate Wi-Fi packets with a specific user. In addition, the overheads of encryption and
key management of these techniques were found to be substantial, resulting in a throughput
degradation of 10% according to a prior study [16]. Other conventional defense such as traffic
padding, packet padding, and traffic morphing could also incur a large overhead, as reported by
prior research [1, 2, 12,13].

4

A practical defense against Wi-Fi traffic analysis is expected to have the following properties:

• Effectiveness: the defense should significantly reduce the accuracy of a traffic analysis.

• Efficiency: the technique is expected to be efficient, without incurring noticeable overheads
and performance degradation.

• Generic: it is highly desired that the new approach offers a more generic protection to a
wide range of applications against various side-channel analyses.

• Compatibility: the technique should be compatible with the existing standards and pro-
tocols, and transparent to users and the application developers.

To achieve these objectives, we developed a new technique based upon traffic partition [25,
26], a technique originally designed for privacy preserving data collection and publication. Prior
research such as frequency hopping [27] partitions wireless traffic into multiple flows and trans-
mits them through different frequencies. In contrast, our traffic demultiplexing approach
creates several parallel virtual wireless interfaces, which can be associated with different appli-
cations, and also allows per-packet-based scheduling to assign each packet to a wireless interface.
This treatment alters the inter-packet timings, packet size distributions and other traffic fea-
tures, and therefore offers a more effective protection against traffic analysis. In addition, our
new approach does not require aggressively padding packets or adding cover traffic, and there-
fore avoids substantial communication overhead.

Figure 1 presents an example of traffic demultiplexing, which partitions and transmits the
Wi-Fi traffic produced by a BitTorrent (BT) application through three virtual interfaces (as
shown in Figure 1(a)): ath0 sends packets smaller than 232 bytes; ath2 delivers those larger
than 1540 bytes, and the rest goes through ath1 . Figure 1(c) shows the probability distribution
function (PDF) of packet sizes on each interface, which demonstrates how our approach changes
traffic characteristics in terms of packet size distributions over individual interfaces. As we can
see from the figure, these traffic characteristics become dramatically distinctive from those of
the original traffic.

3 Traffic Demultiplexing

3.1 Overview

In this section, we elaborate the design and implementation of our demultiplexing techniques.
Figure 2 sketches the modules and network protocol stack of our approach. Service module

controls the communication between a client and a Wi-Fi Access Point (AP) for configuring
virtual MAC interfaces. MAC-layer virtualization supports the creation and management of
multiple virtual MAC interfaces over a single physical interface. Each interface is configured
with different MAC addresses and treated as a fully functional, regular network interface. This
virtualization can be turned on and off according to the user’s privacy policies.

Bridge layer is a veneer placed above the virtualized MAC layer to provide transparent
networking interfaces for its upper layers. It is responsible for dispatching outbound packets
to multiple virtual interfaces through the demultiplexing scheduler and concatenating inbound
packets from these interfaces through MAC translation. Demultiplexing scheduler, which en-
sures that schedules packets through different interfaces, is discussed in Section 3.4.

We implemented our design into a prototype by modifying the latest MadWifi (madwifi-ng),
a popular WLAN driver [28], both on the AP and on the client side. Our implementation works
well with Wired Equivalent Privacy (WEP), WPA/WPA2, and dynamic host configuration
protocol (DHCP), etc. It is compatible with the IEEE 802.11 protocol set: traffic demultiplexing
on a client or an AP does not interfere with the communication of the parties that do not use
it.

5

Application

TCP/IP Stack (ARP, IP, UDP, TCP)

Virtual MAC
Interface 1 (ath0)

Virtual MAC
Interface 2 (ath1)

Virtual MAC
Interface 3 (ath2)

Physical MAC Interface (wifi0)

MAC-layer
Virtualization

Co
nf

ig
ur

at
io

n

m
es

sa
ge

s

Bridge Layer

Se
rv

ic
e

M
od

ul
e

MAC
Translation

Demultiplexing
Scheduler

Figure 2: Network stack with three virtual interfaces. Our modifications include service module,
bridge layer, and MAC-layer virtualization.

Application

Virtual MAC
Interface 1 (ath0)

Virtual MAC
Interface 2 (ath1)

Virtual MAC
Interface 3 (ath2)

AP

User

Outside Networks

Unique physical
MAC address

Packet Exchange

Logic Connection

Packets of an application
from the user to outside

Packets from outside
networks to the user

AP Side Client STA
Side

Request: Enc[Nclient]

Response:
 Enc[Nclient , Nap , Virtual addresses]

Data Frame (virtual address 1)

Data Frame (virtual address 2)

Configuration
(Creation, Cancelation)

Data Transmission

Configuration by
Service Module

MAC
TranslationUpper

Layer Demultiplexing
Scheduler

MAC
Translation

Upper
Layer

Service Module
is in charge of

management of
virtual addresses

(1)

(2)
(3)

(4)

Demultiplexing
Scheduler

Figure 3: Communication process over multiple virtual wireless interfaces.

3.2 Creating Virtual MAC Interfaces

As illustrated in Figure 3, virtual MAC interfaces are created by a two-way handshake through
an encrypted channel, which includes the following four steps. (1) A client sends out a request
to create virtual interfaces with a nonce Nclient, encrypted with a symmetric key shared by the
client and the AP. (2) Upon receiving the request, the AP first chooses the number of virtual
interfaces to create, denoted as I, which is determined by the privacy policies set by the user and
the available resource. The privacy policy can be as simple as whether a specific application,
indicated by its Transfer Control Protocol (TCP) port numbers, needs this demultiplexing
service. Each virtual interface created is given an unused MAC address randomly selected by
the AP. More specifically, a MAC address has 48 bits, with the first 24 bits used to identify the
vendor. Our approach ensures that only the 24-bit sequences related to real vendors are picked
up when assigning virtual addresses, thereby making the virtual interfaces look realistic. To
keep track of these addresses, the AP maintains a look-up table to map virtual addresses to the
physical MAC addresse of the user’s adapter. (3) Then, the AP sends the client an encrypted
reply including both the nonce and the assigned virtual MAC addresses. (4) Once the client
receives the response, it checks whether the nonce matches the one it includes in its request. If
so, it begins to virtualize MAC interfaces using received MAC addresses. This virtualization
was implementable through modifying the Wi-Fi drivers such as MadWifi. Note that a client
also needs to maintain a table to map its virtual addresses to physical ones.

To cancel a virtual interface, the client goes through a similar handshaking process to request
the AP to release the interface. In this way, the AP is able to actively recycle the resources and
dynamically configure virtual interfaces. This two-way handshake can be piggybacked in the

6

management frames (e.g., probe frames and association frames) specified by the IEEE 802.11.
However, these frames are not encrypted by current APs and Wi-Fi clients. As a result, we had
to implement the protocol into the encrypted data frames of IEEE 802.11, which also require
the client to be first authenticated by the AP.

3.3 Communication with Virtual Interfaces

Traffic demultiplexing supports virtual MAC interfaces on a wireless card, with different MAC
addresses working in a station mode. It dynamically specifies device attributes for each packet
and makes each virtual interface look like a different wireless card. Also, we modified the sending
and receiving procedures of the MadWifi on both the AP and client sides. The details of this
implementation are described as follows.

Sending procedure. For sending frames, we set the device attributes (e.g., MAC address,
priority transmission queue, transmission power, and data rate) of each virtual interface dy-
namically for each packet passing through. First, the demultiplexing scheduler assigns a virtual
MAC interface to a packet. As shown in Figure 4, a packet is dispatched to the virtual interface
ath0. Then ath0 encapsulates the packet to a MAC frame. Note that the current network
adapter ensures that the size of an IP packet is within the maximum transmission unit (MTU)
specified at the MAC layer, and therefore re-fragment of the packet becomes unnecessary. Such
an encapsulation was implemented in the function “ieee80211 encap”. After that, the virtual
interface adjusts the transmission power and data rate before sending the packet, as a real
wireless card does.

Receiving procedure. According to the IEEE 802.11, a client drops the packets whose
destination MAC addresses do not match the client’s MAC address. In our implementa-
tion, we set the receiver filter “rfilt” of the physical wireless interface to promiscuous mode
(HAL RX FILTER PROM) and then utilized a software filter to only accept the packet
when its destination address is one of the virtual MAC addresses the client possesses. As illus-
trated in Figure 4, the client performs MAC translation by replacing the virtual MAC address
in the destination address field with the unique physical MAC address before the packet is
delivered to the upper-layer. This translation makes our changes to the MAC layer transparent
to the protocols working on the upper layers, especially to Address Resolution Protocol (ARP)
that maps an IP address to a physical MAC address. We implemented MAC translation in the
decapsulation function “ieee80211 decap.”

An AP keeps record of the MAC addresses of the clients connecting to it (or “associated”
with it). For each packet received, the AP checks its source MAC address and drops the
packet if the address is not known. In our research, we modified “ieee80211 find rxnode”, a
function that searches for such associated addresses, to replace virtual MAC addresses with their
corresponding physical counterparts. We also enabled the AP to perform the MAC translation
as described before.

In summary, traffic demultiplexing is transparent to upper-layer and other protocol stacks.
Also, our modification on the MAC layer does not affect user experience and is compatible with
the IEEE 802.11 standard.

ACK Loss vs. Rate Control. In Wi-Fi settings, data rate is adaptive to the channel quality
measured by packet loss rate, which is estimated based on the MAC-layer acknowledgement
(ACK) frames. These ACK frames are sent by the wireless card automatically when the hard-
ware receives the packets labeled its physical MAC address. However, the packets sent to
virtual MAC addresses cannot trigger the ACK frames. Without MAC-layer ACK frames in
standard IEEE 802.11 protocol, a sender (i.e., AP) has to retransmit the packets several times
until reaching maximum retry times, which would make the sender assume that the wireless
link was bad and the packet loss rate was quite high. As a result, the sender would set the
data rate as low as “1Mbps”. To avoid such a network performance degradation, we can use

7

Packets from
Kernel with

IP layer

Demultiplexing
?

no

Yes

Virtual Interface ath0
Encapsulation with
the virtual address

Hand over to standard Madwifi
processing and send

Virtual
addresses?

Yes

Hand over to
upper layer

Decapsulation the
802.11 header

Standard Madwifi code
for receiving

Receiver Filter: get
the frames with

virtual addresses

Replace the virtual
addr by phy-addr

AP ?

NoStation is
associated ?

Yes Drop

No

Yes

No

Power and Data
Rate Control

Demultiplexing
Scheduler

Phy-addr ?

No
Drop

Yes

Figure 4: Packets flow on receiver and sender sides

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Size (bytes)

P
ro

po
rti

on
 o

f p
ac

ke
t s

iz
e

Browsing
Chatting
Online Gaming
Downloading
Uploading
Online Video
BT
VoIP

Figure 5: Packet size proportion of various applications (from an AP to a client)

fake ACK frames generated by the network driver, or disable the ACK frames, which in turn
disables the rate adaptation. For simplicity, our prototype simply disables the automatic MAC-
layer ACK by changing the Atheros configuration register number 0x8048 and setting the flag
HAL TXDESC NOACK. Further, we set the attribute, tx rate, in a bunch of packets to
dynamically control the data rate.

3.4 Demultiplexing Scheduler

The demultiplexing scheduler aims to hide the characteristics of the original traffic by dis-
patching packets through different virtual interfaces. This objective, however, cannot be well
served by naive scheduling policies such as Random Algorithm (RA) (randomly scheduling
a packet to a virtual interface) and Round-Robin (RR) (scheduling packets in the order of
virtual interfaces), as the traffic characteristics (e.g. packet size distribution) can still be recov-
ered by monitoring a wireless interface sufficiently long: after all, the sniffed traces represent
an unbiased sample from the original traffic. Hence, more effective scheduling techniques need
to be developed to transform the traffic features beyond recognition. Here we elaborate the
approaches designed and implemented in our research.

The traffic characteristics most extensively used in traffic analysis include packet size and

8

(0,232] (232,1540] (1540,1576]
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

Packet size ranges

N
um

be
r o

f p
ac

ke
ts

(a) Original Traffic

(0,232] (232,1540] (1540,1576]
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

Packet size ranges

N
um

be
r o

f p
ac

ke
ts

(b) Interface 1

(0,232] (232,1540] (1540,1576]
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

Packet size ranges

N
um

be
r o

f p
ac

ke
ts

(c) Interface 2

(0,232] (232,1540] (1540,1576]
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

Packet size ranges

N
um

be
r o

f p
ac

ke
ts

(d) Interface 3

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet size

Pr
ob

ab
ilit

y
di

st
rib

ut
io

n
fu

nc
tio

ns

Original
interface 1
interface 2
interface 3

(e) PDF

Figure 6: Traffic demultiplexing with MD for a BT application. (a) The original packet
size distribution is [0.39, 0.1, 0.51]. (b) Interface 1 simulates chatting with the distribu-
tion [0.8515, 0.0985, 0.05]. (c) Interface 2 resembles online gaming with the distribution
[0.5005, 0.4495, 0.05]. (d) Interface 3 is disguised as downloading with the distribution [0, 0, 1].
We see that the actual distributions of virtual interfaces is very close to the target probability
distribution. (e) The correlation of each interface is not obvious, and packet distribution on
three interfaces are distinct from the original traffic.

packet interarrival time. Our approach schedules the packets within the same traffic flow through
different interfaces, which automatically causes the interarrival times observed from individual
virtual interfaces to deviate from that measured from the physical interface. Therefore, the focus
of our research is on changing the packet size distributions associated with individual virtual
interfaces to deceive the eavesdropping adversary. Let I be the number of virtual interfaces and
`max be the maximum packet size of incoming packets. Assume that there are L possible packet
size ranges, {(0, `1], (`1, `2], · · · , (`L−1, `L]}, where `L = `max. Let pij be the probability of
packets whose size is among (`j−1, `j] on the virtual interface i. We define the target probability
distribution φi on interface i, where φi = [φi1, φ

i
2, · · · , φij , · · · , φiL]. φij is denoted as the target

probability of the packet size within (`j−1, `j] on the virtual interface i. Preferably, we hope to
make pij as close to φij as possible. Therefore, given φi, how to design a demultiplexing scheduler
to emulate the target is essentially an optimization problem as follows.

min
I∑

i=1

√√√√(L∑
j=1

∣∣∣φij − pij∣∣∣2
)

sub
I∑

i=1
pijN (i) = PjN;

I∑
i=1

N (i) = N;

L∑
j=1

φij = 1;
L∑

j=1
pij = 1;

φij , p
i
j ∈ [0, 1]; i ∈ [1, I]; j ∈ [1, L];

(1)

where N (i) is the number of packets on the interface i, N is the total number of packets, and
we define Pj as the probability of packet size between (`j−1, `j] in the original traffic. Note
that different φi reflects different scheduling policy, and here we describe how to determine the

9

target packet size distribution, φi, to mislead adversaries and prevent them from linking virtual
interfaces to a specific user.

Masquerading Demultiplexing (MD). This scheduling strategy is designed to make the
traffic scheduled on a virtual interface look as if it is produced by a real application, so as to
cheat the adversary into believing that the user is doing something else.

To determine φi for MD, let’s first define the packet size ranges. Figure 5 shows the packet
size distribution of various applications. We observe that the sizes of more than 95% packets fall
into two ranges: [108, 232] and [1546, 1576]. Such packet size ranges are likely to be adopted by
attackers for traffic analysis. Hence, we use the same packet size ranges to conceal the original
packet size distribution, by taking L = 3 and the packet size ranges as (0, 232], (232, 1540],
and (1540, 1576]. Through the measurements from traffic traces, we find that chatting contains
mainly short packets and its packet size distribution over the above ranges is [0.85, 0.1, 0.05],
browsing has a large variance on packet size and its packet size distribution is [0.3, 0.2, 0.5,
and downloading consists of large packets and its packet size distribution is [0, 0, 1]. Based on
the observation on packet size distribution, the target distribution φi can be easily determined
to masquerade interface i to a predefined application. With such φi, the MD is achieved by
optimizing Equation 1. To achieve the best performance, the selection of target distribution φi

is usually dependent on the original traffic.
Since traffic demultiplexing is running online, a scheduler needs to send a packet to a virtual

interface without knowing the future traffic. The true optimality is hard to attain. As so, we
introduce a heuristic algorithm to achieve a close optimal solution. This heuristic algorithm
selects the interface which has the largest difference between φij and pij to schedule the incoming
packets.

Heuristic Algorithm for Traffic Demultiplexing:
Choose-VirtualInterface(L, I, φij)

1 for a coming packet sk with its length L (sk)
2 do j ← j satisfies L (sk) ∈ (`j−1, `j]
3 for i← 1 to I
4 � Compute pij of interface i.

5 do i′ = arg max
i∈[1,I]

(φij − pij)

6 return i′

We next show an example in Figure 6 to illustrate the idea in MD, where we masquerade a
BT flow as chatting, online gaming, and downloading onto three virtual interfaces, respectively.
Therefore, we set the target packet size distribution as φ1 = [0.85, 0.1, 0.05], φ2 = [0.5, 0.45, 0.05],
and φ3 = [0, 0, 1]. Through MD, the traffic on three virtual interfaces has distinct traffic
characteristics and differs significantly from the original traffic.

In our design, APs and clients are allowed to choose their demultiplexing scheduling policies
independently and change scheduling policies dynamically. Hence, users have the flexibility of
using appropriate demultiplexing schedulers for their own privacy needs.

4 Security Analysis

In this section, we analyze the effectiveness of the proposed technique in defending against the
attempts to link the virtual interfaces to specific users and restore the features of the original
Wi-Fi traffic.

As described in Section 3, we have taken three measures to prevent an adversary from in-
ferring virtual interfaces used by a specific user. (1) Encrypted communication: As shown in

10

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Rate (KBps)

C
D

F

0 50 100 150 200 250 300 350 400 450
35

40

45

50

55

60

65

70

Number of Packets

R
S

S
I

Virtual Interface 1
Virtual Interface 2
Virtual Interface 3

(a) Without TPC

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Time (S)

R
S

S
I

X201 (N6200)
iPhone4
eee pc1000 (RT2860)
X201 (N6200)
iPhone4 (mobile)
Apple MacBook pro

0 50 100 150 200 250 300 350 400
35

40

45

50

55

60

65

70

Number of Packets

R
S

S
I

Virtual Interface 1
Virtual Interface 2
Virtual Interface 3

(b) With TPC

Figure 7: RSSI values of three virtual interfaces over one wire-
less card. (a) RSSI values vary in a narrow range and follow
the same patterns without TPC. (b) Different virtual inter-
faces show different RSSI patterns with TPC.

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Size (bytes)

C
D

F

Figure 8: The CDF of pos-
sible applications by composi-
tion attacks. The real applica-
tions are in red line with the
circle marker.

Section 3.2, we encrypt configuration messages of traffic demultiplexing, which contain informa-
tion about the mapping between virtual and physical interfaces. (2) Dynamic configuration of
virtual interfaces: We enable a dynamic configuration of the parameters for virtual interfaces
(e.g., number of interfaces used, MAC addresses, power and rate levels). This makes it more
difficult to correctly guess how many users are in the Wi-Fi network and which virtual interfaces
are used by which user. (3) Intelligent scheduling policies: We dynamically update the schedul-
ing algorithms for traffic demultiplexing in order to change the features of the traffic on different
virtual interfaces continuously. Therefore, we prevent the adversaries from accumulating valid
statistics to link the virtual interfaces to a specific user. The update can be triggered by the
change of security requirement or the number of users in the Wi-Fi network.

Next, we analyze the protection our techniques offer in defending against power analysis,
timing analysis and composition attack.

4.1 Against Power Analysis

Adversaries may attempt to use wireless signal strengths measured in multiple locations to infer
a user’s location and, therefore, associate packets to a specific user. Many existing defenses
against traffic analysis are vulnerable to such a power analysis [19, 29–31]. To mitigate this
threat, we adopt per-packet power control to obfuscate the observable features of received
signal strength indicator (RSSI). Today’s MadWifi drivers offer the support for per-packet-based
transmission power control (TPC) with a granularity of 0.5dBm and low switching latency (less
than 1 millisecond) [32, 33]. By adjusting TPC at a fine granularity when performing a per-
packet scheduling over virtual interfaces, we were able to diversify the RSSI values on individual
virtual interfaces, which prevents the adversary from associating these interfaces with a specific
user.

Our implementation enables TPC in MadWifi by setting “ath hal settpc(ah, 1).” We adopted
a TPC policy that gives a fixed transmission power to each virtual interface. For an outgo-
ing packet, traffic demultiplexing first acquires the virtual interface it belongs to through the
scheduler, and then configures the transmission power attribute, “ni txpower,” of this packet
according to the parameter set in the virtual interface. Also, we need to disable several adaptive
mechanisms, such as the antenna diversity, rate selection algorithms and virtual carrier sensing
(RTS/CTS) mechanism [32].

We tested the RSSI values of three virtual interfaces over one wireless card (Atheros 5212
chipset), as illustrated in Figure 7(a). The figure shows that without TPC, RSSI values vary in
a narrow range and follow the same pattern on all three virtual interfaces. Hence, it is likely for

11

an adversary to associate these interfaces to a specific user. Using the TPC policy, Figure 7(b)
demonstrates that the RSSI values on these interfaces exhibit different patterns. It appears
that the traffic on these interfaces come from different users.

4.2 Resistance to Timing Attacks

The packet interarrival time is often used in traffic analysis to infer sensitive user data. Such
a timing side-channel leak can be effectively suppressed by traffic demultiplexing. Specifically,
by distributing packets to different virtual interfaces, our approach shuffles the packets from
the original Wi-Fi flow over these interfaces, making the inter-packet timings observed from
individual interfaces significantly different from those of the original flow. Here, we use an
example to show how it works. In the example, we scheduled packets from a web browsing
application onto three virtual wireless interfaces. The average packet interarrival time of the
web browsing is 0.028s. After traffic demultiplexing under MD (Section 3.4), the interarrival
times on the interface 1, 2, and 3 became 0.330s, 0.134s, and 0.092s respectively. The average
observed interarrival time on the interface 1 falls into the range of online chatting, which is
typically between 0.3s to 5s; the interarrival time on interface 2 is in the range of online gaming
applications, mainly from 0.1s to 0.5s; the interface 3 appears as if it is downloading data with
a bandwidth of 17KBps. Hence, the proposed traffic demultiplexing method is robust against
the timing attacks. It implies that the packet interarrival time of Wi-Fi traffic can hardly be a
reliable source of information for an eavesdropper, as it varies greatly depending on application
settings, network conditions, service providers, and packet loss rates during sniffing.

4.3 Against Traffic Composition Analysis

An adversary may sniff the traffic on all the wireless interfaces and attempt to enumerate the
combinations of the traffic flows. Demultiplexing using the MD algorithm (Section 3.4) makes
the traffic on each virtual interface look like being produced by a real online application, thereby
making it more difficult for the adversary to figure out whether our technique has been used in
the wireless network, and to further link multiple virtual interfaces to a specific user.

Ideally, the Wi-Fi traffic produced by one application is divided into I sub-flows, each
looking like that of a real (preferably different) application. Unfortunately, this cannot always
be achieved in practice. What we can do here is adding a few noise packets to the flow so that it
can exactly cover I flows of real applications. Specifically, consider the MD algorithm described
in Section 3.4, we can make each sub-flow as close as possible to a real application through
the elaborate selection of target distribution. Although it may be hard to satisfy all the cases,
we can ensure that all but one of the I sub-flows will exhibit the traffic features of other real
applications. Our approach further adds noise packets to the reminder sub-flow to morph it
into another program’s traffic. Note that the overheads incurred by this strategy are lower than
those of the morphing technique proposed in prior research [13], simply because we only need
to work on a sub-flow of the traffic instead of the whole traffic itself. This was verified in our
experimental study (Section 5).

Fundamentally, both our approach and traffic morphing are kind of “camouflage” techniques
that are designed to hide traffic features from the eavesdropper who are not aware of the use
of the techniques. On the other hand, our research shows that even when this is not true,
our approach can still hold its ground. Specifically, consider the adversary who assumes the
presence of our demultiplexing technique in a WLAN and attempts to reconstruct the original
traffic from observed flows. We studied this problem in a real-world scenario that involved
three users doing online chatting, browsing and downloading respectively. In the experiment,
the chatting and downloading traffic was transmitted through two virtual interfaces, and that
of the browsing went through other three interfaces. The adversary who observed all 7 virtual

12

Table 1: Target distribution of MD for applications
App. Target Distribution of MD

φ1 φ2 φ3

br. [0.85,0.1,0.05] [0.5,0.45,0.05] [0,0,1]
ch. [0.5,0.45,0.05] [0.3,0.2,0.5] [0,0,1]
ga. [0.85,0.1,0.05] [0.3,0.2,0.5] [0,0,1]
do. [0.85,0.1,0.05] [0.3,0.2,0.5] [0,0,1]
up. [0.85,0.1,0.05] [0.3,0.2,0.5] [0,0,1]
vo. [0.85,0.1,0.05] [0.3,0.2,0.5] [0,0,1]
bt. [0.85,0.1,0.05] [0.5,0.45,0.05] [0,0,1]

interfaces faced totally 127 (
7∑

i=1
Ci
7) possible combinations of the virtual interfaces. Among

them, we found that at least 28 different combinations looked exactly like real traffic, including
6 chatting, 5 gaming, 6 downloading, and 11 browsing or BT communication. The cumulative
distribution function (CDF) of these traffic compositions are presented in Figure 8. Given this
anonymity set, it became very difficult for the adversary to figure out how many users were in
the Wi-Fi network and what online activities were really happening there.

5 Evaluations

5.1 Real-world Deployment and Experiment Setup

In order to evaluate the effectiveness and efficiency of traffic demultiplexing, we conducted
experiments in a real WLAN environment. A laptop with the prototype of traffic demultiplex-
ing installed acts as an AP, which is equipped with a Proxim AP-2000 11b/g Cardbus Series
(Atheros 5212 chipset) wireless card. Clients are equipped with Atheros wireless cards with
different chipsets (AR5212 and AR928X), both allowing us to modify the MadWifi driver. The
AP and clients run Ubuntu 10.04 with the kernel version of 2.6.32, and they all work in the
802.11g band. We vary the data rate in the experiments from 1Mbps to 54Mbps depending
on network conditions. The AP supports the data encryption with WEP/WPA/WPA2 by
running hostapd (hostapd-0.7.3) [34]. The sniffer program installed on another laptop collects
the real traffic traces through the Intel Wireless Wi-Fi Link 4965AGN network card with the
Libpcap [35] library.

Generally, we set the number of virtual interfaces I = 3. Seven popular applications are
investigated. They are browsing (br.), chatting (ch.), gaming (ga.), downloading(do.), upload-
ing(up.), online video (vo.), and Bit-Torrent (bt.). Packet sizes are divided into three ranges
(i.e., L = 3): (0, 232], (232, 1540], and (1540, 1576]. For the given ranges, the target packet size
distribution function φi in MD is listed in Table 1. In order to disguise, φ1 is the distribution of
chatting for every non-chatting application, and the φ1 for chatting is the distribution of gam-
ing. Similarly, φ2 is [0.3, 0.2, 0.5] to make the traffic look like browsing except for the original
browsing and BT applications, which are simulated as gaming. φ3 is set as [0, 0, 1] to resemble
a downloading application.

We measured the network performance of traffic demultiplexing, in terms of throughput and
packet delay. We evaluated the effectiveness and efficiency of traffic demultiplexing with MD
under three traffic analysis attacks. In comparison with other defensive approaches, such as
packet padding and traffic morphing [13], we evaluated the efficiency of traffic demultiplexing
when defending against various traffic analysis attacks.

13

Table 2: Network performance: original vs. MD (I = 3)
App. Original (KBps, s) MD (KBps, s)

Troughput Delay Troughput Delay
br. 55.81 0.0194 53.60 0.0208
do. 296.78 0.0036 264.34 0.0043
up. 216.56 0.0049 209.90 0.0052
vo. 111.30 0.0123 109.96 0.0142
bt. 142.74 0.0083 130.28 0.0087

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Rate (KBps)

C
D

F

����� ��� ���
	

����

����

������

Figure 9: CDF of bandwidth consumption for online video vs. different number of virtual
interfaces I.

5.2 Network Performance

5.2.1 Throughput and Delay

In this subsection, we discuss the network performance of traffic demultiplexing. We tested
traffic demultiplexing in the testbed with five applications, shown in Table 2. Experiment
results showed that the average throughput for the original traffic was a little bit larger than
traffic demutliplexing with MD, and the average packet interarrival time of the original traffic
was smaller. The small increase in delay and decrease in throughput was because we enabled the
promiscuous mode of the wireless card and disabled MAC-layer ACK in order to implement the
MAC layer virtualization. In the promiscuous mode, a receiver filters out the packets for other
destinations by software instead of hardware. Without MAC-layer ACK, more upper-layer
retransmissions will occur to compensate the MAC layer loss. However, by using the traffic
demultiplexing technique, the change in throughput and delay is almost unnoticeable. We will
show, in next subsection, that traffic demultiplexing does not affect the available bandwidth for
other users.

5.2.2 Scalability

We evaluated the scalability of traffic demultiplexing by investigating the performance of a
bandwidth-consuming application, “online video,” when setting the different number of virtual
interfaces (I). Figure 9 shows the CDF of bandwidth consumption when we ran the same online
video application on different I. It demonstrates that the bandwidth consumed under different
virtual interfaces remains almost unchanged despite the increase of I. Traffic demultiplexing
scales well when we increase the number of virtual interfaces. Hence, the adoption of traffic
demultiplexing by a user does not affect the experience of others.

14

Table 3: Accuracy of classification (W = 5s) (%)
App. Original Morphing MD
br. 37.77 31.37 0.26
ch. 77.93 72.15 75.66
ga. 88.18 71.68 37.34
do. 99.88 100.00 99.90
up. 95.92 95.92 91.33
vo. 93.32 91.81 0.00
bt. 89.68 37.54 4.97
Mean 83.24 71.18 44.21

Overhead 0.00 39.44 13.53

5.3 Effectiveness and Efficiency

We investigated the three common attack scenarios to evaluate the efficacy of traffic demulti-
plexing. Based on the description in Section 4, we assumed that an adversary cannot recognize
the difference between virtual and real interfaces.

5.3.1 Against the Identification of Online Activities

We built a classification system by incorporating SVM and NN techniques, to infer a user’s online
activities among seven online applications: browsing (br.), chatting (ch.), gaming (ga.), down-
loading(do.), uploading(up.), online video (vo.) and Bit-Torrent (bt.) [7]. Traffic traces were
collected as training data to build the classification model. After that, we set an “eavesdropping
duration” (denoted as W), which is the shortest time duration for testing data. Characteristics
we employed in the classification system were: number of packets, max/min/average/standard
deviation of packet size, and interarrival times in downlink and uplink. Our experiments also
showed that an adversary could infer what a user is doing with an accuracy of 83.24% in 5
seconds (i.e., W = 5s), and the accuracy achieved 91.86% when the eavesdropping duration,
W , increased to 60 seconds. The traffic demultiplexing with MD decreased the classification
accuracy significantly with a small overhead, as shown in Table 3. The overall accuracy of
MD was 44.21%. Furthermore, the accuracy for MD barely rose along with the increase of the
eavesdropping duration W . They nearly remained unchanged at 46.29% when eavesdropping
duration was set at 60 seconds (Due to the space limit, we do not show the results for W = 60
seconds).

In terms of accuracy, we find that gaming, browsing, online video, and BT applications
are undetectable in MD. In contrast, the classification accuracy was pretty high for chatting,
downloading and uploading. Downloading is even higher than the original case. The reason
is that most applications are disguised as a composition of chatting and downloading, hence
the classification tends to identifying all the traffic as chatting or downloading. In addition,
uploading is the only application which has low traffic in downlink but high traffic in uplink,
compared with other applications. Hence, it is hard to disguise uploading as another application
without packet splitting.

We compared traffic demultiplexing with traffic morphing as shown in Table 3. Specifically,
we morphed chatting to gaming, disguised gaming as browsing, simulated browsing as BT, made
BT look like online video, pad video to be downloading. Traffic morphing reduced the accuracy
to 71.18%. It had less overhead than packet padding but still with 39.44% overhead. Our
defensive method, traffic demultiplexing with MD, achieved lower accuracy of 44.21% with a
even smaller overhead, 13.53%. The overhead was introduced to ensure traffic on an individual
virtual interface like a real application, described in Section 4.3. These data show that traffic

15

Table 4: Accuracy comparison for web applications
Strategies Accuracy (%) Overhead (%)
Original 30.6 0.0
Traffic Morphing 6.3 9.3
Random Padding 5.3 10.6
MD (I = 3) 5.0 1.7

demultiplexing performed better than traffic morphing in our measurements. It was a significant
improvement in both privacy and overhead.

5.3.2 Against the Identification of Web Pages

As described in Section 4, an attacker usually cannot infer if a Wi-Fi network adopts the traffic
demultiplexing technique, or determine the application used by a user. However, an attacker
may guess the application of a specific user and apply the existing traffic analysis attacks on a
specific interface where the traffic looks like the assumed application. If an attacker assumes
the web browsing applications, we show the efficiency of traffic demultiplexing under the web
page identification attack using naive Bayes classifier (NBC) [10,13].

We first set up the traffic analysis attack to system [1, 10], and used morphing, random
padding, and traffic demultiplexing to defend against such an attack, respectively. We collected
traffic traces of top 80 web pages of USA according to Alexa [36] in encrypted Wi-Fi networks.
Based on packet size in the MAC layer, we investigated the identifiability of these web pages.
Table 4 shows the comparison of the performance of traffic demultiplexing with random padding
and traffic morphing. For random padding, every packet was appended with a padding of
random length in [0, 256) bytes to achieve a good tradeoff between efficiency and overhead.
For traffic morphing, we used the same optimal scheduling as [13]. In traffic demultiplexing,
the number of virtual interfaces is 3 (I = 3). The packet size ranges for MD were [0, 500),
[500, 1000), and [1000, `max] bytes.

We observed that the traffic demultiplexing achieved the best performance in terms of both
accuracy and overhead. Note that the classification accuracy values in our experiment are
smaller than those in [13]. It is because the data collected in our experiment is from the MAC
layer, while the data in [13] is from the transport layer, so we cannot tell whether the packets
we collected belong to one web page. Also, when we implemented the traffic morphing, we did
not split packets to reduce overhead, and did not apply it on a data set as large as in [13].

5.3.3 Against the Identification of VoIP Features

In this subsection, we show how traffic demultiplexing defends against the identification of
VoIP features. We collected VoIP data for 40 minutes by using a variable bit-rate (VBR) codec
such as speex [37]. The data are encrypted by the IETF standard Secure Real-time Transport
Protocol [38]. We implemented a similar testbed as [4] and tested the differentiation between
English and Spanish by using the naive Bayes classifier. We compared the efficiency of traffic
demultiplexing with random padding and traffic morphing. For random padding, every packet
was appended with a padding of random length in [0, 60) bytes. For traffic morphing, we
use the optimal scheduling as similar as [13]. In traffic demultiplexing, the ranges of packet
size are [0, 32), [32, 60), and [60, `max] for MD. Note that we obtained three accuracy numbers
corresponding to the three traces that MD produces. The reported the highest among the three.

From the results shown in Table 4, we see that traffic demultiplexing achieves the best
protection against information leak with a significantly reduced overhead.

16

Table 5: Accuracy comparison for VoIP applications
Strategies Accuracy (%) Overhead (%)
Original 78.3 0.0
Traffic Morphing 65.0 36.3
Random Padding 68.3 61.7
MD (I = 3) 60.0 11.2

6 Related Work

6.1 Traffic Analysis Attacks and Defenses

Traffic analysis on side-channel information leaks has threatened users’ privacy in various of
applications, such as SSH [6], keystroke dynamics [39] [40], web browsing [1,2,41], video stream-
ing [3], and VoIP [4,5] etc. Encrypted traffic does not prevent an attacker from violating users’
privacy through traffic analysis. Traffic analysis attacks on encrypted HTTP streams [1, 2, 41]
are reported to be able to reveal what a user is browsing. The traffic characteristics on en-
crypted VoIP packets [5] can be used to identify phrases used in a call. In addition, due to the
shared-medium nature, user identification, location, tracking, and behaviors are all at risk from
state-of-the-art traffic analysis attacks [18,29,30,42,43].

Regarding the defense mechanism, high-level mitigation policies, such as packet padding [1,
2] and traffic morphing [13], are likely to be either inefficient or incur significant overhead.
Pseudonyms [17,18] may still lead to information leaks in terms of coarse granularity of traffic
partition. The identifier-free approach proposed in [16] encrypts all explicit identifiers from
all transmitted bits to improve privacy, but the overhead of encryption and key management
cannot be overlooked. Hence, an efficient and effective defense against side-channel information
leaks is an important research topic with strong practical relevance.

6.2 Virtualization in Wi-Fi Networks

Recently,researchers have introduced virtualization into Wi-Fi networks. A fat virtual AP
introduced in [44] is an 802.11 driver that aggregates the bandwidth available at accessible APs
for users and also balances their loads. VirtualWiFi [45] or MultiNet [46] uses a network hopping
scheme to switch the wireless card across multiple APs of wireless LANs with one MAC address.
The PeerBoost [47] system uses the coexistence of infrastructure and ad-hoc modes over the one
wireless card to maximize the throughput of Wi-Fi networks. Different from previous research,
our work on traffic demultiplexing creates multiple virtual interfaces and shapes different traffic
characteristics on individual interfaces to protect user privacy.

7 Conclusions and Future Work

In this paper, we propose traffic demultiplexing to protect user privacy. It creates multiple
virtual MAC interfaces, dynamically dispatches traffic flows over these interfaces, and rebuilds
different traffic characteristics for each virtual interface to obscure the original patterns. Since
traffic demultiplexing does not require aggressively padding packets or adding cover traffic,
and therefore avoids substantial communication overhead. In addition, traffic demultiplexing
is transparent to upper layers and does not change the user experience. We evaluate the per-
formance of traffic demultiplexing through real experiments in WLAN testbeds. Experimental
results demonstrate the effectiveness and efficiency of traffic demultiplexing in defending against
various traffic analysis attacks. Further, traffic demultiplexing has good scalability and hence
is suitable for WLANs deployed in residential, hotspot, and campus environments.

17

Although we implement traffic demultiplexing by modifying the MadWifi driver in our
testbed prototype, the defensive approach we proposed is more general and can be adopted
in many other wireless device drivers, such as ath5k and iwlagn. In addition, it can be applied
to other network layers for the general purpose of privacy enhancement. For example, we can
adopt traffic demultiplexing in the IP layer to defend against traffic analysis in Ethernet. We
believe that traffic demultiplexing can help relieve today’s application related privacy concerns
in general and effectively enhance privacy-preserving in wireless networks in particular.

The discussion of this paper mainly focuses on a passive adversary who eavesdrops on the
Wi-Fi channel. In a more powerful threat model, the adversary can even actively probe MAC
interfaces through sending messages to the victim. This can happen, for example, when the
victim has an email client running or uses a P2P software. In this case, the adversary could
fingerprint the feature of the packet she send (e.g., a very special size of an email) to infer the
victim’s virtual interfaces by checking which interface receives the packet. This type of traffic
marking techniques has been discussed in prior research [48, 49]. Such a threat can be greatly
mitigated by tieing a set of virtual interfaces to a specific online activity that needs protection.
For example, we can use three interfaces to cover the web content the user is browsing, while
reserving another interface for less sensitive activities such as receiving emails and performing
P2P communications. As a result, the adversary capable of contacting the user through these
activities will not be able to link the user to the three interfaces. In our follow-up research, we
will further study this threat and other possible countermeasures.

References

[1] Q. Sun, D.R. Simon, Y. Wang, W. Russell, V.N. Padmanabhan, and L. Qiu. Statistical
identification of encrypted web browsing traffic. In Proceedings of IEEE Symposium on
Security and Privacy, 2002.

[2] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in web applications: A
reality today, a challenge tomorrow. In Proceedings of IEEE Symposium on Security and
Privacy, pages 191–206, 2010.

[3] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, and T. Kohno. Devices that tell on you:
Privacy trends in consumer ubiquitous computing. In Proceedings of USENIX Security
Symposium, 2007.

[4] C.V. Wright, L. Ballard, F. Monrose, and G. M. Masson. Language identification of en-
crypted VoIP traffic: Alejandra y roberto or alice and bob. In Proceedings of USENIX
Security Symposium, 2007.

[5] C.V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson. Spot me if you
can: Uncovering spoken phrases in encrypted VoIP conversations. In Proceedings of IEEE
Symposium on Security and Privacy, 2008.

[6] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. ACAS: automated construction of ap-
plication signatures. In Proceedings of the 2005 ACM SIGCOMM workshop on mining
network data, pages 197–202. ACM, 2005.

[7] F. Zhang, W. He, X. Liu, and P. Bridges. Inferring users’ online activities through traffic
classification. In Proceedings of WiSec, 2011.

[8] A. Dainotti, W.D. Donato, A. Pescape, S. Rossi, et al. Classification of network traffic
via packet-level hidden Markov models. In Proceedings of GLOBECOM, pages 1–5. IEEE,
2008.

18

[9] C.V. Wright, F. Monrose, and G. Masson. HMM Profiles for Network Traffic Classification
(Extended Abstract). In Proceedings of Workshop on Visualization and Data Mining for
Computer Security (VizSEC/DMSEC). Citeseer, 2004.

[10] M. Liberatore and B. Levine. Inferring the source of encrypted http connections. In
Proceedings of Computer and Communications Security, 2006.

[11] Google says it inadvertently collected personal data, 2010.
http://bits.blogs.nytimes.com/2010/05/14/ google-admits-to-snooping-on-personal-data/.

[12] RFC4949, August, 2007. Internet Security Glossary, Version 2.

[13] C.V. Wright, S.E. Coull, and F. Monrose. Traffic morphing: An efficient defense against
statistical traffic analysis. In Proceedings of NDSS, 2009.

[14] The Tor Project. Tor: anonymity online. http://www. torproject.org/.

[15] P. Golle, X. Wang, M. Jakobsson, and A. Tsow. Deterring voluntary trace disclosure in
re-encryption mix networks. In Proceedings of IEEE Symposium on Security and Privacy,
2006.

[16] B. Greenstein, D. Mccoy, J. Pang, T. Kohno, S. Seshan, and D. Wetherall. Improving
wireless privacy with an identifier-free link layer protocol. In Proceeding of MobiSys, 2008.

[17] M. Gruteser and D. Grunwald. Enhancing location privacy in wireless LAN through dispos-
able interface identifiers: a quantitative analysis. ACM Mobile Networks and Applications,
10(3):315–325, 2005.

[18] T. Jiang, H.J. Wang, and Y. Hu. Preserving location privacy in wireless LANs. In Pro-
ceedings of MobiSys, pages 246–257, 2007.

[19] B. Greenstein D. Grunwald K. Bauer, D. McCoy and D. Sicker. Physical layer attacks on
unlinkability in wireless LANs. In Proceedings of PETS, 2009.

[20] F. Zhang, W. He, and X. Liu. Defending against traffic analysis in wireless networks
through traffic reshaping. In Proceedings of ICDCS, 2011.

[21] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee. Internet traffic
classification demystified: myths, caveats, and the best practices. In Proceedings of the
2008 ACM CoNEXT conference, pages 1–12. ACM, 2008.

[22] A. Moore and D. Zuev. Internet traffic classification using Bayesian analysis techniques.
ACM SIGMETRICS Performance Evaluation Review, 33(1):50–60, 2005.

[23] S. Lakshmanan, C.L. Tsao, R. Sivakumar, and K. Sundaresan. Securing wireless data
networks against eavesdropping using smart antennas. In Proceedings of ICDCS, 2008.

[24] I. Martinovic, P. Pichota, and J.B. Schmitt. Jamming for good: design and analysis of a
crypto-less protection for WSNs. In Proceedings of WiSec, 2009.

[25] W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T.T. Abdelzaher. Pda: Privacy-preserving
data aggregation in wireless sensor networks. In Proceedings of INFOCOM, pages 2045–
2053. IEEE, 2007.

[26] T. Li, N. Li, J. Zhang, and I. Molloy. Slicing: A New Approach to Privacy Preserving Data
Publishing. Arxiv preprint arXiv:0909.2290, 2009.

19

[27] M. Strasser, S. Capkun, C. Popper, and M. Cagalj. Jamming-resistant key establishment
using uncoordinated frequency hopping. In Proceedings of Security and Privacy, pages
64–78. IEEE, 2008.

[28] http://madwifi-project.org/.

[29] J. Wilson and N. Patwari. See through walls: Motion tracking using variance-based radio
tomography networks. IEEE Transactions on Mobile Computing, 2010.

[30] P. Tao, A. Rudys, A. M. Ladd, and D. S. Wallach. Wireless LAN location-sensing for
security applications. In Proceedings of WiSE, 2003.

[31] K. Bauer, D. McCoy, B. Greenstein, D. Grunwald, and D. Sicker. Performing traffic
analysis on a wireless identifier-free link layer. In Proceedings of Richard Tapia Celebration
of Diversity in Computing, pages 18–23, 2009.

[32] K. Kowalik, M. Bykowski, B. Keegan, and M. Davis. Practical issues of power control in
IEEE 802.11 wireless devices. In Proceedings of International Conference on Telecommu-
nications, pages 1–5. IEEE, 2008.

[33] K. Ramachandran, R. Kokku, H. Zhang, and M. Gruteser. Symphony: synchronous two-
phase rate and power control in 802.11 WLANs. In Proceeding of MobiSys, pages 132–145.
ACM, 2008.

[34] hostapd. http://hostap.epitest.fi/hostapd/.

[35] Libpcap. http://www.tcpdump.org/.

[36] Top sites in united states. http://www.alexa.com/topsites/countries/US.

[37] Speex. http://www.speex.org/.

[38] M. Baugher, D. McGrew, M. Naslund, and E. Carrara. The secure real-time transport
protocol (SRTP).

[39] F. Monrose and A. Rubin. Authentication via keystroke dynamics. In Proceedings of
Computer and Communications Security, pages 48–56, 1997.

[40] X. Song, D. Wagner, S. David, and X. Tian. Timing analysis of keystrokes and timing
attacks on SSH. In Proceedings of USENIX Security Symposium, 2001.

[41] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine. Privacy vulnerabilities in
encrypted HTTP streams. In Proceedings of Privacy Enhancing Technologies Workshop,
pages 1–11, 2005.

[42] J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and D. Wetherall. 802.11 user fingerprint-
ing. In Proceedings of MobiCom, pages 99–110. ACM Press, 2007.

[43] J. Franklin, D. Mccoy, P. Tabriz, and V. Neagoe. Passive data link layer 802.11 wireless
device driver fingerprinting. In Proceedings of USENIX Security Symposium, pages 167–
178. USENIX Association, 2006.

[44] S. Kandula, K. C. Lin, T. Badirkhanli, and D. Katabi. Fatvap: Aggregating ap backhaul
capacity to maximize throughput. In Proceedings of NSDI, 2008.

[45] http://research.microsoft.com/en-us/projects/virtualwifi/.

20

[46] R. Chandra and P. Bahl. MultiNet: Connecting to multiple IEEE 802.11 networks using a
single wireless card. In Proceedings of INFOCOM, volume 2, pages 882–893. IEEE, 2004.

[47] O. Barak, R. Friedman, and G. Kliot. PeerBooster: Enhancing Throughput in Wi-Fi
Networks Through Network Virtualization.

[48] X. Wang, S. Chen, and S. Jajodia. Network flow watermarking attack on low-latency
anonymous communication systems. In Proceedings of the IEEE Symposium on Security
and Privacy, 2007.

[49] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao. Dsss-based flow marking technique for
invisible traceback. In Proceedings of the IEEE Symposium on Security and Privacy, pages
18–32, 2007.

21

