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Abstract

Anonymous authentication can give users the license to misbehave since there is
no fear of retribution. As a deterrent or means to revocation, various schemes for
accountable anonymity feature some kind of (possibly distributed) trusted third party
(TTP) with the power to identify or link such misbehaving users. Recently, schemes
such as BLAC, EPID, and PEREA showed how anonymous revocation can be achieved
without such TTPs—anonymous users can be revoked if they misbehave, and yet
nobody can identify or link such users cryptographically.

Despite being the state of the art in anonymous revocation, BLAC, EPID, and
PEREA allow only a basic form of revocation amounting to “revoke anybody on the
blacklist”. Recently BLAC was extended to support d-strikes-out policies that revokes
anybody who has d or more entries on the blacklist. In this paper we significantly
advance this concept and make the first attempt to generalize reputation-based anony-
mous revocation through our proposed scheme called BLACR. We show how various
negative or positive scores can be assigned to anonymous sessions across various cate-
gories of misbehavior resulting in users being blocked based on their reputation scores.
We show how various relevant policies can be instantiated in BLACR and the workload
for authenticating users is reasonable for web services.

1 Introduction

Anonymity can give some users the license to misbehave. For example, using an anonymizing
network like Tor [20], a vandal may connect to Wikipedia and deface a webpage, or may
post copyrighted material to Youtube. To tackle such misbehaving users several schemes
have been proposed that strike different tradeoffs between privacy and accountability. For
example, anonymous credential schemes allow users to authenticate to a service provider (SP)
as “some anonymous member in a group” to prove they belong to some class of users (e.g.,
students at Indiana University). If a member within the group misbehaves, many schemes
allow the SP to complain to a trusted third party (TTP) (or a distributed TTP) and either
identify the user, link the user’s accesses, or simply revoke the user’s ability to authenticate in
the future. Such schemes include those based on group signatures [1, 7, 19, 26] and dynamic
accumulators [2, 8, 14, 27, 29], and Nymble systems [25, 37, 24, 28, 31].

TTP-free, anonymous revocation Having a TTP capable of deanonymizing or linking
a user’s accesses is dangerous. Such TTPs must be trusted to handle complaints by the SP
fairly, and users can never be certain whether their accesses will remain private. Such TTPs
will thus discourage several legitimate uses of anonymity such as activists posting material
from countries with restricted freedoms, whistleblowers from posting material to sites such
as Wikileaks, and so on. Recognizing the need to eliminate such TTPs, a few schemes have
been proposed such as BLAC [34, 36], EPID [9], and PEREA [35, 4]. These schemes allow
anonymous revocation, where misbehaving users can be revoked without the involvement of
a TTP. Thus there is no entity who can deanonymize or link a user’s anonymous authen-
tications, but yet SPs can prevent such users from returning. Users are guaranteed strong
privacy (they can never be deanonymized), and SPs are spared from future accesses by the
user.
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Related schemes that reduce or eliminate TTPs Recently Camenisch et al. [13] pro-
posed a TTP-free scheme in the case where revocations are relatively rare and users can be
revoked only at set epochs. While their scheme is useful when those tradeoffs are accept-
able, we focus on scenarios where credential revocations are immediate and relatively more
frequent. The only other TTP-free schemes are based on “double spending” of e-cash [18]
(generalized to n-times spending [33]), where only if a user authenticates twice (or n times),
the user’s identity gets revealed or linked. Unfortunately, not all misbehaviors (such as defac-
ing a webpage or subtle astroturfing campaigns for spreading disinformation) can be reduced
to “too many authentications”. BLAC, EPID and PEREA thus support subjective black-
listing, where SPs can revoke users based on human, subjective assessments of misbehavior
by simply blacklisting a user’s session. Recently Schwartz et al. [31] propose contractual
anonymity, where the TTP runs within trusted hardware. Nevertheless, one must trust the
hardware and the code, and furthermore it is not feasible for the trusted program/hardware
to automatically decide whether a prespecified contract is broken in the case of astroturf-
ing attacks or cases of vandalism. In such cases it is necessary for a human assessment of
whether a misbehavior occurred, and automated techniques such as contractual anonymity
may not be feasible in these cases.

In our work, we continue with the philosophy behind BLAC, EPID and PEREA, to
create schemes with anonymous revocation and subjective blacklisting, where users can never
be deanonymized by the SP or some other TTP (even if it is “highly trusted”), and yet can
be blocked from future accesses. We believe such schemes are well-suited to environments
that support anonymous publishing, for example.

Recent anonymous revocation extensions BLAC, EPID, and PEREA allow SPs to
blacklist previous sessions so that offending users cannot authenticate in the future if any
of their previous sessions has been blacklisted. Recently, BLAC was extended [36] to incor-
porate d-strikes-out policies. For example, d = 3 enacts a “three strikes out policy” where
three (or more) misbehaviors from a user results in revocation of that user. PEREA was
then extended [4] to generalize d-strikes-out policies to a weighted version called naughti-
ness policies. Each misbehavior is assigned a severity, and users whose total severity (their
naughtiness) exceeds a certain naughtiness threshold are denied authentication. In all cases,
the server learns only whether an authentication for the anonymous user succeeds or not.

Our contributions In this paper we make the first significant effort to extend TTP-free
anonymous revocation with subjective blacklisting to more general behavior-based policies.
Our approach gives SPs a rich language to characterize acceptable and unacceptable uses of
their services while supporting anonymous revocation. We make the following contributions:

• We generalize the concept of anonymous revocation and make the first attempt to
formalize reputation-based anonymous revocation based on a rich policy language for
anonymous revocation.

• We show that such a scheme can be realized by extending BLAC, which unlike PEREA
does not require misbehaviors to be identified within a “revocation window.” We name
our construction BLACR (BLacklistable Anonymous Credentials with Reputation).
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• We detail a novel weighted extension to BLACR, which allows SPs to penalize or
reward repeated bad or good behaviors from the same anonymous user through a
weighted function.

• While improving on the linear time complexity (in the size of the blacklist) for authen-
tications in BLAC and BLACR remains an open and important problem, through a
quantitative analysis we show that BLACR can indeed be used in practical settings to
support reputation-based anonymous revocation.

2 Overview of Approach

Intuition behind the construction of BLAC/EPID BLAC and EPID use the follow-
ing idea: an anonymous authentication of a user with credential usk results in a ticket of the
form busk

i that is stored by the SP in association with the session (e.g., a video posted by the
anonymous user). Since it is computationally hard for the SP to calculate the discrete log
usk of the ticket busk

i , the user’s identity remains anonymous to the SP. When an SP wants
to blacklist a user associated with a session, it inserts the ticket busk

i for that session into the
blacklist. Users authenticating to the SP must prove their credential is not associated with
any ticket on the blacklist. Such proofs are done in zero knowledge (usk is not revealed to
the SP) and bound to their issued credentials (users cannot forge their own credential usk).
In particular it is possible to prove in zero knowledge the “inequality of discrete log”, that
is, the user’s credential usk′ does not correspond to the discrete log usk of each entry busk

i on
the blacklist.

BLACR: Reputation-based anonymous revocation In essence, BLACR adds a score
parameter to each entry in the blacklist indicating the severity of the misbehavior, and SPs
can require the overall score of an authenticating user satisfy a certain threshold. The chal-
lenge is in proving the user satisfies this requirement in zero knowledge, i.e., the server learns
only whether the user satisfies that threshold and nothing else. BLACR actually features
both positive and negative scores for good and bad behaviors (in a meritlist and black-
list respectively), resulting in an overall reputation score for each user, and thus the name
BLACR (BLacklistable Anonymous Credentials with Reputation). Furthermore, servers can
score reputation across different categories. For example, a server may maintain categories
for video content and comments. Within the category of video content, egregious copy-
right violations such as reposting a television episode could be considered to be more severe
(and scored appropriately) than a copyright violation by a home-made video with an unli-
censed soundtrack. On the other hand, content rated highly by other users could result in
a commensurate reward (positive score). Within the category of comments, inappropriate
language, racist or intimidating comments could be considered to be much more severe than
puerile posts containing offensive words. Comments that have been rated as “helpful” by
users could be rewarded.

The user’s reputation in each category could then be required to be above a certain
threshold for authentication to succeed. We further allow SPs to specify arbitrary boolean
combinations of policies across categories, e.g., users can be allowed access only if their (video
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content reputation is above a certain level) OR (tagging reputation is above a certain level
AND commenting reputation is above a certain level). Here the tagging category refers to
how well users tag their content with appropriate descriptors. Note that negations (NOT)
are easily supported, because the negation of an atom results in checking the reputation is
above a certain threshold instead of below a certain threshold. Again, we emphasize the SP
learns only whether the entire policy was satisfied or not, and learns no other information
(e.g., what subexpressions were satisfied, or what the user’s specific reputation is in one or
more categories) except what it can already infer from the result.

A “weighted” extension to BLACR Consider the case where a user’s misbehaviors
for a certain category have been scored as 2, 3, and 2 as ordered by the time of the user’s
session (note the SP doesn’t know these correspond to the same user). In some cases an SP
may want to penalize multiple misbehaviors with some multiplicative factor. For example,
the SP may want to double the score of the second misbehavior to 6, and triple the score of
the third misbehavior to 6, thus disincentivizing repeated misbehaviors. We also note the
SP can do the same for the reputation lists, rewarding multiple good behaviors. The SP
may even choose to reward multiple good behaviors less to provide users with diminishing
returns, thus further incentivizing many more good behaviors.

Thus in “BLACR-Weighted”, for each category the SP can specify a set of adjusting
factors ∆1,∆2, . . . ,∆L where the score of the i-th instance when the authenticating user
is put on the list is multiplied by ∆i. For example, suppose a blacklist of a category is
{(1, τ1, s1), (2, τ2, s2), . . . , (8, τ8, s8)}. Each tuple represents the session i, ticket τi for the
session, and the score si for the misbehavior in that session. For a certain authenticating user
Alice, tickets τ1 and τ4 belong to her. Her score with respect to the list in BLACR-Unweighted
is thus s1 + s4. Now suppose the SP publishes the adjusting factor ∆1,∆2,∆3,∆4,∆5 for
the list. In BLACR-Weighted, the score of Alice is ∆1s1 + ∆2s4 since Alice is put on the
blacklist for a second time in the entry (4, τ4, s4).

Note that this extension is non-trivial because a user must prove in zero knowledge that
all the tickets corresponding to him/her have the correct factors applied in correct order,
without revealing to the server anything other than whether the entire policy was satisfied
or not. Thus this extended construction of BLACR is also a significant contribution of our
work.

Intuition behind the construction of BLACR BLACR follows the idea of BLAC and
EPID in which each authentication session results in a ticket of the form busk

i . It supports
a more sophisticated access policy as follows. When an SP wants to score a user associated
with a session, it inserts the ticket busk

i for that session together with a score si into the list.
For each entry (ti, bi, si) in the list, the authenticating user creates a commitment Ci and
proves to the SP that either (1) ti 6= busk

i and Ci is a commitment of 0; or (2) (ti = busk
i )

and Ci is a commitment of si. Finally, the user proves to the SP that the sum of the
values committed in Ci is above the required reputation threshold. The idea can be further
extended to multiple categories by having separate lists for individual category.
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3 Security Goals and Syntax

3.1 Security goals

We now give informal definitions of the various security properties that a construction of
the BLACR system must possess. Their formal definition will be given in Appendix A. It is
similar to that of BLAC.

Mis-authentication Resistance Mis-authentication occurs when an unregistered user suc-
cessfully authenticates herself to an SP. In a BLACR system with mis-authentication resis-
tance, SPs are assured to accept authentications only from registered users.

Authenticity In a BLACR system with authenticity, SPs are assured to accept authenti-
cation only from users who satisfy the authentication policy.

Anonymity In a BLACR system with anonymity, all that SPs can infer about the identity
of an authenticating user is whether the user satisfies the policy at the time of protocol
execution, regardless of whatever the SPs do afterwards.

Non-frameability A user Alice is framed if she satisfies the authentication policy, but is
unable to successfully authenticate herself to an honest SP Bob. In a BLACR system with
non-frameability, users satisfying the authentication policy can always successfully authen-
ticate themselves to honest SPs.

3.2 Notation

Tickets, lists and scores Define the ticket generation function which takes as input the
user’s secret key usk and randomness b, and output a value t← T(b, usk). The tuple τ = (b, t)
is called a ticket. As identified in BLAC, T needs to be one-way, injective and its outputs
from the same input should be unlinkable. Let L be a list of pairs (τi, si) for i = 1 to |L|.
Here τi corresponds to a particular ticket, and si corresponds to the score associated with
that ticket. L is a blacklist (resp. meritlist) if all score are negatives (resp. positive). For
the ease of representation, define a score function S:

S : (L, usk) 7→
∑

i∈[|L|],ti=T(bi,usk)

si

where [n] denotes the set {1, . . . , n} for any positive integer n.
The value S(L, usk) is called the list score of a user with credential usk with respect to

the list L, and is the sum of all the scores on the list for tickets corresponding to that user.
Looking ahead, the reputation of a user is his/her merit list score minus his/her blacklist
score.

Categories and reputation The SP scores behaviors in various categories
{c1, c2, . . . , cm}, where m is the number of categories. The SP maintains a blacklist L−i
and meritlist L+

i for each category ci. The reputation of a user in a category ci, denoted as
Ri, is thus the difference of the list score of L+

i and L−i :

Ri = S(L+
i , usk)− S(L−i , usk)
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Weighted scores In practice, score could be weighted based on the number of times the
user has been put on the list to assign more or less penalty or reward for the repeated
behaviors in a particular category. To generalize this idea, we define a set of values called
adjusting factors D = {∆1,∆2, . . . ,∆k} so that the weighted list score of a user with respect
to a list is the sum of the score multiplied by the appropriate adjusting factor. Specifically,
for a list L, a set of adjusting factors D and a credential usk, we define a function, called
weighted score, as S′:

S′ : (L, usk,D) 7→
∑

i∈[|L|],,ti=T(bi,usk)

∆|{j:j≤i∧T(bj ,usk)=tj}|si

where ∆i is defined to be ∆k for all i > k. This function states that the weights must be
applied to the tickets corresponding to the user in the correct order, and then the weighted
scores are added up to get the weighted list score for that list.

3.3 Syntax

The entities in the BLACR system are the Group Manager (GM), a set of Service Providers
(SPs) and a set of users. We note the GM cannot deanonymize or link users. The GM simply
issues a credential to users and ensures each user gets exactly one credential (see Section 6
for a discussion on Sybil attacks). The GM is thus trusted to issue single credentials to
users and is not trusted with the privacy of the users. The BLACR system consists of the
following protocols:

Setup This algorithm is executed by the GM to set up the system. On input of one or
more security parameters, the algorithm outputs a pair of a group public key gpk and a
group private key gsk. The GM keeps gsk private and publishes gpk to the public. gpk is an
implicit input to all the algorithms described below.

SP Setup This algorithm is executed by the SP to set up its public parameters. In
particular, it initializes several lists L+

1 ,L−1 , . . . ,L+
m,L−m, where L+

i , L−i are the meritlist and
blacklist for category ci respectively. The algorithm also outputs an identity string that
uniquely identifies the SP in the system.

Registration This protocol is executed between the GM and a legitimate user to register
the user into the system. Upon successful completion of the protocol, the user obtains a
credential usk, which she keeps private, and is thereby enrolled as a member in the group of
registered users. We stress that this credential is known only to the user, i.e., the GM issues
this credential in a blind way.

Authentication This protocol is executed between a user Alice with credential usk and
an SP Bob. The input of Alice is her credential. The input to Bob is his set of mer-
itlists/blacklists {L+

i ,L−i }`i=1 and a set of thresholds n1, . . . , n` and a policy Pol. Policy Pol

is a combination of sub-policies in DNF form, where sub-policy Pi is a boolean function
defined over two lists, a user credential and a threshold, whose truth value evaluates to 1 if

7



Ri ≥ ni and 0 otherwise. Pol can contain negations ¬Pi of sub-policies as well, in which case
the truth value of ¬Pi evaluates to 1 if Ri < ni and 0 otherwise. Thus for each category, the
corresponding sub-policy specifies the user’s reputation should be above a certain threshold.
The policy can then block users based on a boolean combination of behaviors across various
categories. If c1, c2, c3 represents respectively the categories for video content, tagging and
commenting, the policy in Section 2 can be parsed as (R1 ≥ n1) ∨ (R2 ≥ n2 ∧ R3 ≥ n3)
where n1, n2, n3 are the required threshold for the respective categories. It thus consists of
three sub-policies Pi = (ci, ni) arranged in two conjunctive clauses P1 and (P2 ∧ P3). We
do not require full disjunctive normal form, meaning that the same sub-policy may appear
more than once in different conjunctive clauses. Note that negation of a policy, say ¬P1, is
a boolean function which evaluates to 1 if and only if the reputation in c1 strictly smaller
than the required threshold n1. As an example, the SP may enforce the following policy
(P1 ∧P2)∨ (¬P1 ∧P3), meaning that any user can enjoy the service if his/her reputation in
both categories video content and tagging is high enough, or if his/her reputation in video
content is below the threshold, he/she has to have a high reputation in commenting.

When an execution of the protocol terminates, Bob outputs a binary value of success
or failure. If the SP outputs success in an execution of the protocol, we call the ex-
ecution a successful authentication and say that the authenticating user has succeeded in
authenticating herself; otherwise the authentication is unsuccessful and the user has failed.
Only upon a successful authentication does the SP establish an authenticated session with
the authenticating user during which the user can access the service provided by the SP.
Note that the protocol transcript of a successful authentication as seen by the SP contains
(b, T (b, usk)) where b is some randomness specified by the user.

It is required that Alice is able to successfully authenticate herself to Bob with over-
whelming probability if Pol evaluates to 1 on input of Alice’s credential usk. When we say a
user Alice with credential usk is revoked by an SP Bob with respect to policy Pol, we mean
Pol evaluates to 0 on input of Alice’s credential.

List management This is a suite of three algorithms: Extract, Add and Remove, which are
executed by SPs for managing their lists. On input of an authentication protocol transcript,
Extract($) extracts and returns a ticket τ = (b, t) from an authentication transcript $.
Add((τ, s),L) appends a new entry (τ, s) to the list L while Remove((τ, s),L) deletes an
existing entry (τ, s) from a list L.

4 Our Construction

4.1 Building blocks

4.1.1 Proofs of knowledge

In a Zero-Knowledge Proof of Knowledge (ZKPoK) protocol [22], a prover convinces a ver-
ifier that some statement is true while the verifier learns nothing except the validity of the
statement. Σ-protocols are a type of ZKPoK protocol, which can be converted into non-
interactive Signature Proof of Knowledge (SPK) schemes, or simply signature schemes [23],
that are secure under the Random Oracle (RO) Model [5]. BLACR utilizes the ZKPoK
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that x does not equal logb t, denoted as PK {(x) : y = gx ∧ t 6= bx} due to Camenisch and
Shoup [16].

4.1.2 Commitment scheme

Our construction uses the well known non-interactive commitment scheme due to Peder-
sen [30], which is briefly reviewed below. Let G be a cyclic group of prime order p and g, h
be independent generators of G. On input a value x ∈ Zp, the committer randomly chooses
r ∈ Zp, computes and outputs C = gxhr as a commitment of value x. To reveal the value
committed in C, the committer outputs (x, r). Everyone can test if C = gxhr.

Pedersen Commitment is perfect hiding and computationally binding. That is, even a
computationally unbounded receiver cannot learn anything about the value committed from
the commitment. On the hand hand, a PPT sender can only reveal the commitment with
one value under the discrete log assumption.

We use Cmt(x) to denote a Pedersen Commitment of a value x. Note that Pedersen
Commitment is homomorphic in the sense that on input Cmt(a) and Cmt(b), Cmt(a) ∗
Cmt(b) gives a commitment of a+ b.

4.1.3 Credential signature scheme

We employ the signature scheme proposed by Au et al. [3], which is based on the schemes
of Camenisch and Lysyanskaya [15] and of Boneh et al. [7], to certify enrolled users
in our system. Their scheme, called BBS+ signature, is briefly reviewed here. Let
g, g0, g1, g2, . . . , gk ∈ G1 and h ∈ G2 be generators of G1 and G2 respectively such that
g = ψ(h), where ψ is a computable isomorphism and (G1,G2) is a pair of groups of prime
order p. Let ê be a pairing defined over the pair of groups.

The signer’s secret is a value γ ∈ Zp and the public key is w = hγ. A signature over a

tuple of values (m1, . . . ,mk) is a tuple (A, e, y) such that A = (g0g
m1
1 · · · g

mk
k gy

k+1)
1

γ+e . They
also derive a Σ-protocol for the demonstration of a message-signature pair.

PK{(A, e, s) : ê(A,whe) = ê(g0g
m1
1 · · · g

mk
k gy

k+1, h)}

4.1.4 Signature-based range proof

To demonstrate the reputation of a user is greater than a certain value, we employ the
signature-based range proof due to Camenisch et al. [11]. In a nutshell, the verifier provides
a set of “digital signatures” on the elements of the required range under a verification key.
We consider this set of digital signatures as the public parameter. In order for the prover
to demonstrate that a certain value committed in a commitment is within the range, the
prover proves, in zero-knowledge, that he/she knows a signature under the verification key
for the element committed. This proof is of constant size and is specifically useful when the
range is small.
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4.2 Our construction of BLACR

4.2.1 Parameters

Let λ be a sufficiently large security parameter. Let (G1,G2) be a bilinear group pair with
computable isomorphism ψ as discussed such that |G1| = |G2| = p for some prime p of λ bits.
Also let G be a group of order p where DDH is intractable. Let g0, g1, g2 ∈ G1 and h0 ∈ G2

be generators of G1 and G2 respectively such that g0 = ψ(h0) and the relative discrete
logarithm of the generators are unknown.1 Let H0 : {0, 1}∗ → G and H : {0, 1}∗ → Zp be
collision-resistant hash functions.

4.2.2 Setup

The GM randomly chooses γ ∈R Zp and computes w = hγ
0 . The group secret key is gsk = (γ)

and the group public key is gpk = (w).

4.2.3 SP Setup

Each SP publishes his unique identity string sid. SP also initializes meritlist and black-
list of each category. A meritlist L+

i and blacklist L−i for category ci is a list of tuples
({0, 1}λ,G, [smax]) were smax is the maximum score associated with a misbehavior or good
behavior.

4.2.4 Registration

Upon successful termination of this protocol between a user Alice and the GM, Alice obtains
a credential signature (A, e, y) on Alice’s secret value x. We note that x and y are known
only to Alice (i.e., and not the GM). The private input to the GM is the group secret key
gsk.

1. The GM sends m to Alice, where m ∈R {0, 1}λ is a random challenge.

2. Alice sends a pair (C,Π1) to the GM, where C = gx
1g

y′

2 ∈ G1 and Π1 is a signature
proof of knowledge of

SPK 1

{
(x, y′) : C = gx

1g
y′

2

}
(m) (1)

on challenge m, which proves that C is correctly formed.

3. The GM returns failure if the verification of Π1 returns invalid. Otherwise the GM

sends Alice a tuple (A, e, y′′), where e, y′′ ∈R Zp and A = (g0Cg
y′′

2 )
1

e+γ ∈ G1.

4. Alice computes y = y′ + y′′. She returns failure if ê(A,whe
0) 6= ê(g0g

x
1g

y
2 , h0). Other-

wise she outputs usk = (A, e, x, y) as her credential.

1This can be done by setting the generators to be the output of a cryptographic hash function of some
publicly known seeds.
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4.2.5 Authentication

During an execution of this protocol between a user Alice and the SP, Alice’s private input
is her credential usk = (A, e, x, y). In our construction, the ticket generation function T is
defined as t := H(b||sid)x.

Let sid ∈ {0, 1}∗ be the string that uniquely identifies the SP. When the protocol termi-
nates, the SP outputs success or failure, indicating whether the SP should consider the
authentication attempt successful.

1. (Challenge.) The SP sends to Alice the lists for each category as well as their corre-
sponding thresholds and a random challenge (L+

1 ,L−1 , n1, . . . ,L+
` ,L

−
` , n`,m) as well as

the policy Pol.

2. (Inspection.) Alice computes, for each category ci, S
+
i = S(L+

i , (A, e, x, y)) and S−i =
S(L−i , (A, e, x, y)). This involves checking if the entries on the list belongs to her. A
direct approach would thus require |L+

i | + |L−i | exponentiations for category ci since

it requires Alice to test if tj
?
= H(bj||sid)x for each entry (tj, bj) on the list. To speed

things up, we assume Alice stores all her past tickets and simply checks, for each ticket,
if it is present on the lists, and thus does not need to perform these exponentiations.
She computes the truth value for each sub-policy Pi by testing if

S+
i − S−i

?

≥ ni

For the negation of a sub-policy ¬Pi, Alice tests if S+
i − S−i < ni. She then checks if

Pol evaluates to 1. If not, she returns as failure, indicating that she is revoked.

3. (Proof Generation.) If Alice is not revoked, she returns to the SP a pair (τ,Π2),
where τ = (b, t := H(b||sid)x) ∈ {0, 1}` × G is the ticket associated with the current
authentication, and Π2 is a signature proof of knowledge that τ is correctly formed and
that Pol evaluates to 1 with input usk. Here b ∈R {0, 1}λ is a random value chosen by
Alice.

We defer the details of Π2 to the next subsection since it is quite involved. The SP stores
ticket τ extracted from the transcript, along with information logging Alice’s activity within
the authenticated session.

4.2.6 List management

The three algorithms are all very simple and efficient. Extract($) returns ticket τ in the
input transcript $. Add(L, (τ, s)) returns list L′, which is the same as the input list L,
except with the input tuple (τ, s) appended to it. Remove(L, (τ, s)) returns list L′, which is
the same as the input list L, except with all entries equal to the input ticket (τ, s) dropped.

4.3 Details of the authentication protocol

Express the policy Pol in DNF form as

Pol : Cl1 ∨ Cl2 . . . ∨ Cl`

11



where each conjunctive clause Cli is of the form (Pi1 ∧Pi2 ∧ . . .) and each Pij is a sub-policy
requiring the authenticating user to have a reputation equal or higher than a threshold nij

in category cij. The policy can contain negations too. The negation ¬Pij of a sub-policy Pij

is defined as requiring the authenticating user to have a reputation lower than the threshold
nij.

Recall that the goal of Π2 is to demonstrate that t = H(b||sid)x is correctly formed, and
that Alice satisfies the policy Pol. For the ease of representation, we use b̂ to represent the
value H(b||sid).

Π2 consists of several parts, and we describe each of them in detail. In the first part,
Alice demonstrates that she is a certified user and that t is correctly formed. This is done
by the generation of the following proof, Πx.

SPK
{

(A, e, x, y) : ê(A,whe
0) = ê(g0g

x
1g

y
2 , h0) ∧ t = b̂x

}
(m) (2)

Next, we describe the way Alice demonstrates, in zero-knowledge, that she satisfies an
individual sub-policy P in Σ-protocol. To prevent colluding users from polling their creden-
tials, each proof consists of the knowledge of the discrete logarithm of the ticket t which
assures the verifier that the same x is being used for all sub-policy. Using standard tech-
niques, one can easily combine those Σ-protocols and prove that the whole policy Pol is
satisfied without revealing what sub-policies were satisfied (beyond what can already be
inferred by the final result).

For a sub-policy Pk which requires the authenticating user to have reputation in cat-
egory ck higher than or equal to a threshold nk, define an index set I : {ι|(bι, tι, ·) ∈
L+

k , H(bι||sid)x = tι}. This set corresponds to the tickets associated with Alice in list
L+

k . We use L+
k to denote the size of L+

k .

1. Produce auxiliary commitments for each score on the list L+
k

aux+
k = (C+

k1 . . . , C
+

kL+
k

)

as follows. For all ι ∈ I, compute C+
kι as the commitment of sι. For i ∈ [L+

k ]\I,
compute C+

kι as the commitment of 0.

2. Generate a proof Π+
k to demonstrate the correctness of aux+

k .

SPK



(x) : t = b̂x ∧
(
tι 6= b̂xι ∧ C+

kι = Cmt(0)

)
∨(

tι = b̂xι ∧ C+
kι = Cmt(sι)

)


L+
k

ι=1


(m) (3)

3. Do the same for list L−k , which results in the set of auxiliary commitments

aux−k = (C−
k1, . . . , C

−
kL−k

)

and a proof Π−
k which demonstrate the correctness of aux−k .
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4. Based on aux+
k and aux−k , Alice computes the commitment of her reputation in category

ck as

Rk =

L+
k∏

ι=1

C+
kι/

L−k∏
ι=1

C−
kι

5. Finally, Alice generates a proof ΠR
k which demonstrates she satisfies the sub-policy

Pk regarding category ck. Note that for negation of Pk, Alice generates a proof that
demonstrates S < nk.

SPK {(S) : Rk = Cmt(S) ∧ S ≥ nk} (m) (4)

6. Define auxk as aux+
k ||aux−k , a proof that a sub-policy Pk is satisfied thus consists of

Πk = (auxk, b, t,Π
+
k ,Π

−
k ,Π

R
k )

4.4 BLACR-Weighted extension

We highlight the way Alice demonstrates, in zero-knowledge, that she satisfies individual
sub-policies Pk in Σ-protocols in BLACR-Weighted.

Firstly, for every category ck, the SP has to publish the set of adjusting factors D+
k and

D−
k . For every ∆+

i ∈ D+
k (resp. ∆−

i ∈ D−
k ), the SP further publishes a signature σ+

i (resp.
σ−i ) on the values (i,∆+

i ) (resp. (i,∆−
i )). It is required that the signatures are generated

using a different key pairs for each D.
As in BLACR-Unweighted, we use an index set I to index the tickets associated with

Alice in list L+
k .

1. Produce auxiliary commitments

aux+
k = (C+

k1, C̃
+
k1, . . . , C

+

kL+
k

, C̃+

kL+
k

)

as follows. For all ι ∈ I, compute C+
kι as the commitment of (∆+

κι
∗ sι), C̃

+
kι as the

commitment of 1, where ∆+
κι

is the appropriate adjusting factor of Alice for the ι-th
entry. Thus, C+

kι is the commitment of the weighted score of Alice of the ι-th entry.
For i ∈ [L+

k ]\I, compute C+
kι, C̃

+
kι as commitments of 0.

2. Generate a proof Π+
k to demonstrate the correctness of aux+

k . We give the intuition of
how Π+

k shows C+
kι is a commitment of the weighted score of the authenticating user.

Firstly, C̃+
ι acts as a boolean flag, hidden from the SP, indicating if τι is a ticket from

the authenticating user. Thus, for all ι such that tι 6= b̂xι , C
+
kι as well as C+

kι should be

a commitment of 0. On the other hand, when tι = b̂xι , C̃
+
kι is a commitment of 1. Due

to the homomorphic property of the commitment scheme,
∏ι

j=1 C̃
+
kι is a commitment

of a value κι where κι is the number of times the authenticating user has been put on
the list up to the ι-th entry. Thus, the correct adjusting factor for the weighted score
of this entry is ∆+

κι
. Recall that σ+

i is the signature from the SP on the tuple (∆+
i , i).

Thus, the proof that Verify(σ+
κι
,∆+

κι
, κι) = 1 binds the value of κι to the appropriate
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adjusting factor ∆+
κι

. Finally, the proof demonstrates that the correct weighted score
of this entry, ∆+

κι
sι, is committed in C+

kι.

SPK



(x, {σ+
κι
,∆+

κι
, κι}) : t = b̂x ∧

(
tι 6= b̂xι ∧ C+

kι = Cmt(0)

C̃+
kι = Cmt(0)

)
∨(

tι = b̂xι ∧ C̃+
kι = Cmt(1) ∧

ι∏
j=1

C̃+
kj = Cmt(κι) ∧

Verify(σ+
κι
,∆+

κι
, κι) = 1 ∧

C+
kι = Cmt(∆+

κι
sι)

)



L+
k

ι=1



(m) (5)

We provide full details on the implementation of this SPK in Appendix B.

3. Do the same for the list L−kij
. This results in another set of auxiliary commitments

aux−k = (C−
k1, C̃

−
k1, . . . , C

−
kL−k

, C̃−
kL−k

)

and a proof Π−
k which demonstrate the correctness of aux−k .

4. Based on aux+
k and aux−k , Alice computes the commitment of her reputation in category

ck as

Rk =

L+
k∏

ι=1

C+
kι/

L−k∏
ι=1

C−
kι

5. Finally, Alice generates a proof ΠR
k which demonstrates she satisfies the sub-policy Pk.

(For its negation ¬Pk, Alice demonstrates S < nk.)

SPK {(S) : Rk = Cmt(S) ∧ S ≥ nk} (m) (6)

6. Define auxk as aux+
k ||aux−k , a proof that a sub-policy Pk is satisfied thus consists of

Πk = (auxk, b, t,Π
+
k ,Π

−
k ,Π

R
k )

4.5 Security analysis

BLACR possesses mis-authentication resistance, authenticity, anonymity and non-
frameability. Formal security analysis is presented in Appendix A.
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Schemes
Authentication Efficiency

Communication Computation
Downlink Uplink User (Check+Prove) Server

BLAC/EPID O(L) O(L) O(L) + O(L) O(L)
PEREA O(L) O(K) O(L) + O(K∆L) O(K)
BLACR O(L) O(L) O(L) + O(L) O(L)

Table 1: Asymptotic Complexities

5 Performance Evaluation

5.1 Complexity analysis

Table 1 summarizes the performance of BLACR in comparison with existing schemes. The
asymptotic complexity of BLACR is the same as that to BLAC. Generating the proofs takes
O(L) time for the user in BLAC and BLACR, and O(K∆L) in PEREA as each witness must
be updated ∆L times. K is the size of the revocation window (the number of authentications
before which a misbehavior must be caught to result in a revocation), and ∆(L) is the number
of new entries on the blacklist since the user’s previous authentication.

Verifying the proofs also takes O(L) at the SP for BLAC/EPID and BLACR, whereas
PEREA requires only O(K) computation at the server.

The downlink communications complexity is linear in the size of the list in all schemes.
The uplink communication complexities are the same as the computational complexities at
the server: O(K) for PEREA, O(L) for BLAC/EPID/BLACR.

5.2 Quantitative analysis

5.2.1 Data transfer

Assume the score of each entry is within 5 bits and the threshold is within 10 bits, and
further assume that the adjusting factors in BLACR-Weighted is relatively stable. That is,
they can be treated as public parameter. The the total communication cost for BLACR
with and without XDH assumption is given in Table 4 assuming a security parameter of
224. The constant ` is the number of sub-policies in BLACR. We assume ` = 10 in our
analysis, and the lists for each category are equal in size. For both BLACR-Unweighted
and BLACR-Weighted, downloading a blacklist is under 110KB with 2,000 entries on the
blacklist, and uploading the proof is similar in size to uploading a medium-size JPEG photo
(714KB for BLACR-Unweighted and 1.5 MB for BLACR-Weighted). As a baseline, we note
the costs for such data transfers at Amazon EC2 amounts to about 15–30 millicents per
authentication and thus the transfer costs of authentications are negligible.

5.2.2 Computation

Table 3 outlines the number of multi-based exponentiations (EXPs) as a measure of time
complexity of BLAC, PEREA and BLACR, with and without precomputation, i.e., the pre-
processing that can be done by the user before seeing the lists. Fortunately, in BLACR a
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significant amount of work can be pre-computed by the user and that results in low latencies
at the user as we show in Figure 1. Let L be the size of the blacklist. For our evaluation
of BLACR, we assume there are ` sub-policies and each the meritlist and blacklist in each
sub-policy are of size L/(2`). Assume a total of B-out-of-L tickets belongs to the user and
we further assume it is evenly distributed. Let A = L − B. Thus, for each meritlist or
blacklist, there are B/(2`) tickets belongs to the authenticating user. ∆L represents the
change of the list from the last time the user authenticates. Both BLAC and BLACR show
significant improvement in performance if the XDH assumption is made, and thus we make
this assumption in our performance analysis.

The following timings are obtained on a Lenovo X200s with an Intel Core 2 Duo CPU
L9400 and 4GB RAM running Windows Vista as the host. We used Oracle VirtualBox 4.0.4
to emulate a guest machine of 512MB RAM running Ubuntu 10.10. Timings of E1, ET ,
EG, and P are obtained using test code based on the Pairing-Based Cryptography (PBC)
library2 (version 0.5.11) based on the type D pairing parameter, with |p| = 224, bundled
with the PBC library. The following table summarizes our experimental results. Note that
G could be an arbitrary group. We can choose G to be G1 or GT . The former gives much
better performance. However, it requires an additional assumption that the DDH problem
is hard in G1. This is formally known as the external Diffie-Hellman (XDH) assumption.

The figures for EN1 and EN2 are taken from [4], which runs on the same machine
directly on the Windows platform. The test code is written in C based on the MIRACL
library3 (version 5.4.2). The modulus N is taken to be 2048 bits. The small exponent is
taken to be 160 bits.

Operations Legend Mode Time
G1-EXP E1 Multi-based EXP 3.489ms

EP1 With/Pre-Processing (fixed single base) 0.528ms
G2-EXP E2 Multi-based EXP 28.281ms

EP2 With/Pre-Processing (fixed single base) 4.134ms
GT -EXP ET Multi-based EXP 7.285ms

EPT With/Pre-Processing (fixed single base) 1.265ms
Pairing P Normal 24.568ms

PP With/Pre-Processing (one input fixed) 19.117ms
EXP modulo N EN2 With/Pre-Processing (fixed base) 8.25ms

EN1 Small Exponent (Without/Pre-Processing) 5.96ms

Size of element in G1 N/A Normal 448 bits
[G1] Compressed 225 bits

Size of element in G2 [G2] Normal 1344bits
Size of element in GT [GT ] Normal 1344bits

Table 2: Benchmark of different operations

Because of the linear cost of authentication, it is currently infeasible for large websites
to score every single session (potentially resulting in millions of entries in the meritlists and

2http://crypto.stanford.edu/pbc/
3http://www.shamus.ie/
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Schemes Parties Computation
BLAC User 7E1+ (2L + 3)ET + 1P

User (w/pre-computation) 2LET
SP 4E1 + (L + 3)ET + 2P

BLAC User (2L + 8)E1+ 2ET + 1P
(XDH Assumption made) User (w/pre-computation) 2LE1

SP (L + 5)E1 + 2ET + 2P
BLACR-Unweighted User (2` + 1)E1 + (5` + 5)EP1 + (7L + 4)ET + (2L + 4A + 4`)EPT + (` + 1)PP

User (w/pre-computation) (2L + A)ET
SP (8L + 3` + 3)ET + 1EPT + (2` + 2)E1 +(2` + 2)PP

BLACR-Unweighted User (7L + 2` + 3)E1 + (2L + 4A + 7` + 5)EP1 + 2ET + (2`)EPT + (` + 1)PP
(XDH Assumption made) User (w/pre-computation) (2L + A)E1

SP (8L + 3` + 3)E1 + 1EPT + (2` + 2)ET +(2` + 2)PP
BLACR-Weighted User (L + A + 2` + 1)E1 + (2B + 5` + 5)EP1 + (10L + A + 4)ET +

(10L + 4`)EPT + (2L + ` + 1)PP
User (w/pre-computation) (2L + A)ET
SP (13L + 3` + 3)ET + (2L + 1)EPT + (2L + 2` + 2)E1 +(2L + 2` + 2)PP

BLACR-Weighted User (9L + 2A + 2` + 3)E1 + (8L + 4B + 7` + 5)EP1 + (2L + 2)ET +
(XDH Assumption made) (2A + 2`)EPT + (2L + ` + 1)PP

User (w/pre-computation) (2L + A)E1
SP (13L + 3` + 3)E1 + (2L + 1)EPT + (2L + 2` + 2)ET +(2L + 2` + 2)PP

PEREA (w/ Naughtiness) User [(A + 1)∆L]EN1 + [16K + dK−1
3

e+ 12]EN2

SP [15K + dK
3
e+ 8]EN2

Table 3: Complexities analysis for BLAC, PEREA, and BLACR

Schemes Downlink Uplink
BLACR-Unweighted (1573L+ 10`+ 224)bits (6272L+ 2240`+ 3586)bits
BLACR-Unweighted (454L+ 10`+ 224)bits (2915L+ 2240`+ 2466)bits
(XDH Assumption made)
BLACR-Weighted (1573L+ 10`+ 224)bits (12768L+ 2240`+ 3586)bits
BLACR-Weighted (454L+ 10`+ 224)bits (6048L+ 2240`+ 2466)bits
(XDH Assumption made)

Table 4: Space Complexities of BLACR
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blacklists). Thus we expect servers to trim their blacklists and meritlists to “noteworthy”
bad and good behaviors. For practical authentication rates we can see that BLACR can
feasibly support meritlists and blacklists with 1,000–2,000 entries. The computation for an
authentication in BLACR is highly parallelizable. In fact, all the work with respect to each
entry in the list can be done independently. Thus, the system scales well with the increase
in the number of cores in the CPU and our subsequent analysis reflects this scalability.
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Figure 1: Estimated authentication times at the SP and User and the cost for the SP.

As we can see in Figure 1(a), for 1,000–2,000 entries on the blacklist/meritlist, BLACR
supports authentication rates of 8–17 authentications/minute using an 8-core server (to
give a baseline idea of cost, a fully reserved instance of such a server on Amazon EC2
would cost around $2,500/year including data transfer costs). BLACR-Weighted would
support about 2–5 anonymous authentications/minute. BLAC is cheaper, of course, and
can support about 32–61 authentications/minute. We also see that PEREA-Naughtiness
(the closest analog to BLACR) has authentication times independent of the size of the
blacklist but linear in the revocation window K. For K = 30, the authentication rate is
about 60 authentications/minute.

For the computation at the user we show the costs are reasonable because users can
precompute several values before authentication. In Figure 1(b) we can see that BLACR-
Weighted with precomputation (both BLACR and BLACR-Weighted have the same perfor-
mance with precomputation) is very close in performance to BLAC with precomputation—
users would expect only a 5–10 second delay per authentication in BLACR, and a 3–7 second
delay in BLAC with 1,000–2,000 blacklist/meritlist entries. In comparison, PEREA takes
much longer at the user (PEREA trades off efficient verification at the SP for more work at
the user). For K = 30 and with 1,000–2,000 blacklist/meritlist entries, authentication takes
around 97–189 seconds. Thus BLACR performs well on the user side. We note that BLACR
and BLACR-Weighted without precomputation take about 14–28 seconds and 49–97 seconds
respectively for 1,000–2,000 blacklist/meritlist entries.

If server costs must be kept low, and if the SP desires to have much larger blacklists,
PEREA with naughtiness offers a reasonable alternative at the cost of some accountability—
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misbehaving users must be identified within the revocation window, otherwise they get
away with the misbehavior. Importantly, PEREA can apply reputation only to the “last K
authentications” of a user. On the other hand, with BLACR we demonstrate that the costs
are reasonable for “a couple of thousand of entries in total” on the meritlists and blacklists
and the revocation guarantees are much stronger (a user’s misbehavior can be identified at
any time, days or months later, and the user can still be revoked). Also the reputation based
anonymous revocation of BLACR offers a much richer language for revocation than PEREA
with naughtiness. We also point out that BLACR-Weighted can be used for a handful of sub-
policies, and BLACR-Unweighted for the rest for better performance. Finally, SPs willing
to spend say $10,000/year on four 8-core servers and data transfer costs would be able to
support 10,000 blacklist/meritlist entries.

6 Discussion

Outsourced authentication For our cost analysis we used Amazon EC2 pricing as an example
of baseline costs for the SP. While the SP may choose to house the authentication servers,
cloud based authentication can be a compelling and low-cost choice. We note that in such a
scenario the SP does not divulge any secrets to the cloud service provider, and it is only a
matter of trusting the result of the computation at the cloud. We acknowledge it is possible
for the cloud to lie about who is blacklisted. If the SP cannot trust the cloud to be honest
about who is revoked, the SP can perform this computation itself.

Rate limiting As pointed out in previous work on anonymous revocation [25, 37, 34, 36,
35, 4], blocking anonymous users is ineffective if these users can misbehave several (e.g.,
hundreds) of times before their misbehaviors are discovered. Thus users’ anonymous au-
thentications must be rate-limited in such schemes. For example, if users are limited to
5 anonymous authentications per day, and if it takes on average about a day to “catch”
misbehaviors, users can at most misbehave in 5 sessions a day. Existing schemes such as n-
times periodic anonymous authentication [12] provide this tool. The technique of unlinkable
serial transactions [32] can be used to prevent multiple simultaneous authentications as well
(although this is less of a concern if authentications are associated with actions as discussed
in the context of concurrent sessions).

Sybil attacks Any anonymous authentication scheme will be vulnerable to Sybil at-
tacks [21] if users can get new credentials after their issued credential is blacklisted. It
is generally recognized that such schemes must be bootstrapped off “Sybil-free” credential
schemes to ensure each user obtains only one credential. For example, a government issued
passport can be viewed as Sybil-free (it is infeasible for most people to get passports with
different identities), and then a BLACR credential issuing authority can make note of the
passport number and that a credential has been issued to that passport. If the user tries
to get a new credential the authority will realize that a credential has already been issued
for that passport. Of course, another question that arises is what to do when a legitimate
user loses his/her credential and needs a new credential. One possibility is to offer the
user a credential with less privacy (pseudonymous credential) that can be easily blocked
for a certain probation period before a new credential is issued again. Repeated requests
for new credentials can result in permanent banning from the system or longer probation
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periods [34, 36].
Timing attacks We propose optimizations for the user based on precomputation. If cer-

tain users choose to not perform precomputation, or take different times to authenticate, the
SP may be able to differentiate between users with less or more entries on the blacklist. Thus
we advise that in real-world deployments, all client software must be required to perform
precomputation before they request to authenticate. Furthermore, all users should pad the
computation time to have some fixed overall delay to appear similar. Such precautions are
needed in all anonymous authentication schemes, and we do not further discuss it here.

Blacklist gaming An attack not studied by anonymous revocation schemes thus far is
what SPs can infer through gaming of blacklists or revocation lists. SPs can add and remove
tickets in such a way that might reveal information about subsequent authentications from
users. Studying such gaming attacks is a promising direction for future work. In the interim,
users can recognize gaming attacks if a ticket disappears and then reappears on a blacklist.
Refusing to authenticate in such circumstances prevents gaming attacks where the SP tries
to produce different versions of blacklists to authenticating users.

Concurrent sessions We must avoid the case where a user can authenticate before being
blacklisted and then remain logged in even after being blacklisted. We recommend that
authentications are associated with short-lived actions as opposed to long-lived sessions—
for example, in the Wikipedia setting, an authentication is performed while submitting an
edit. Blacklisting can then be performed between actions, and even if such actions are
preempted during a blacklisting operation, requiring a reauthentication (resubmission) is not
inconvenient. If long-lived sessions must be supported, following a blacklisting, all logged in
users should be required to prove their innocence by logging in again.

Efficient authentication We have already argued that BLACR is efficient enough for
real-world deployments. Nevertheless, recent TTP-based schemes such as Nymble [25, 37],
Nymbler [24] and Jack [28] aim to make the authentications as fast as possible (to the order
of micro and milliseconds) at the SP. While BLACR cannot compete to be faster than such
schemes, BLACR (and BLAC, EPID, and PEREA) offer the benefit of being TTP-free. Thus
certain applications may require an extremely low impact on the SP, and the users may be
willing to use TTP-based schemes given no other choice.

7 Conclusions

Several anonymous authentication schemes with varying degrees of accountable anonymity
have been proposed in the past. In our work we focus on the paradigm of TTP-free schemes
that offer both subjective blacklisting (where misbehaviors need to be flagged by humans)
and anonymous revocation (where users can be blocked without knowing who they are).
In this paradigm, more research is needed on the policy side, where service providers can
articulate various forms of misbehaviors (or good behaviors) of anonymous users and thus
deny access not on simple count-based policies but with a richer language. We make a step
in this direction by generalizing TTP-free “reputation-based anonymous revocation”, and
open several possibilities for future improvements in this line of research.
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A Formal Security Analysis

We use a simulation-based approach to define the security notions for BLACR-Weighted,
which also covers its special case BLACR-Unweighted. Below we refer to the system as
BLACR. Firstly, we define an ideal world BLACR system assuming the existence of a trusted
party T . Any cryptographic construction of BLACR is secure if it is “equivalent” to the
ideal world BLACR, which, is secure by default.4

We consider a static model in which the numbers of honest and dishonest users, as well
as SPs, are fixed during system setup. We use UHU , UAU , UHS and UAS to denote the set of
honest users, SPs and dishonest users and SPs respectively. The dishonest parties are under
the control of a single PPT algorithm A. We introduce another PPT algorithm E , called
environment, which provides the input to, and receives the outputs from, the honest players
(users, SPs, GM). E can also interact with A freely. In the real world, the players (users,
SPs and GM) communicate via cryptographic protocols while in the ideal world, the players
do not communicate directly. Rather, they communicate via a trusted party T , which is
also responsible for handling all inputs and outputs on behalf of them. Next, we define the
functionalities of BLACR in the real world as well as the ideal world. We use UU to denote
the set of all users, that is UU = UHU ∪ UAU . Likewise, we use US = UHS ∪ UAS to denote
the set of all SPs. We use the word event to denote the execution of a functionality and the
events are scheduled according to E ’s wishes, with the restriction that the first event must be
Init and that Init can only be scheduled once. Each event is given a unique identifier tid
generated by E . We would like to remark that communications with T is not anonymous
meaning that T knows the exact identity of the communicating party. Dishonest players
under the control of A can deviate from the specification of the functionalities freely.

• Init(tidInit, UHU , UAU , UHS, UAS, {SPk}k∈UAS
,

{SPk}k∈UHS
, bGM). The system begins when E fixes the honest and dishonest users and

SPs, and assigns each SP indexed by k ∈ US with a unique name SPk. The bit bGM

indicates if the GM is honest or not.

Real World. The GM generates a key pair (gpk, gsk), and gpk is sent to all players in
the system.

Ideal World. The trusted party T initializes an empty set U , which will be used to
record the registration and authentication events of the users in UU .

• Reg(tidReg, i). E instructs user Ui for i ∈ UU to register with GM. Note that this
protocol is not anonymous in the sense that GM knows the user index i.

4Note: The definition we give does not entail all formalities necessary to fit into the universal composability
(UC) framework [17]; our goal here is to prove the security of our construction. The UC framework allows
proving the security of schemes that remain secure when composed with other schemes, which we do not
attempt to prove.
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Real World. Ui sends a request for registration (tidReg, i) to the GM. The user, as
well as GM, outputs individually the outcome of this event (tidReg, success/
failure).

Ideal World. Ui sends a request to T which checks i has never registered before and
informs the GM that user i would like to register. GM returns accept/reject to
T , which is forwarded to Ui. Ui and GM also output (tidReg, success/failure)
to E . If Ui (resp. GM) is honest, its output to E is always the same as it receives
from (resp. gives) T . In case they are controlled by A, they can deviate from
the specification. If GM returns accept, T creates a column in UU with index
(i, tidReg).

• Auth(tidAuth, i, j, Pol). E instructs user Ui to authenticate with SPj and instructs SPj

to reply with policy Pol. A policy Pol is of the form (
∨`

i=1

(
∧`i

j=1Pkij

)
) and each Pkij

is a list of 4-tuples (cij, nij,D+
ij ,D−

ij), where cij represents a category, nij represents a
threshold and the sets D+

ij , D−
ij are the list of adjusting factors, which will be {1, 1, . . .}

in case it is BLACR-Unweighted. The negation of the policy includes an extra bit to
indicate it should be treated as negation.

Real World. Ui sends a request for authentication (tidAuth) to SPj. The user, as well
as SPj, outputs individually the outcome of this event (tidAuth, accept/ reject).

Ideal World. Ui sends a request to T , who forwards the request to SPj. SPj replies
with policy Pol, along with the relevant meritlists and blacklists. Each list is
of the form {(tidAuth1, s1), (tidAuth2, s2), . . . , }, where tidAuth· represents an
authentication event and s the corresponding score. T then checks, using UU , to
see if Ui satisfies Pol and forwards Pol and the meritlists and blacklists to Ui, along
with a bit indicating if Ui satisfies the policy. Ui replies to T with a bit, indicating
if he/she would like to proceed. If Ui chooses not to proceed, both players do not
have to output anything. If Ui chooses to proceed, T sends valid/invalid to
SPj to indicating if the authenticating user satisfies Pol or not. SPj replies with
accept/reject and T forwards the results to Ui. If SPj replies with accept, T
appends the entry tidAuth to the column in UU indexed by (i, tidReg, j). Both
Ui and SPj output (tidAuth, accept/reject) to E to indicate the result of this
event.

• Add-To-List(tidATL, j, c, +/−, tidAuth, s). E instructs SPj to add the authentica-
tion identified by tidAuth to its meritlist or blacklist for category c with score s.

Real World. If tidAuth corresponds to an authentication event such that SPj outputs
accept, SPj adds the ticket of the corresponding authentication to its meritlist or
blacklist for category c with score s. SPj outputs (tidATL, success/failure) to
E to indicate if this event is executed successfully.

Ideal World. SPj sends the request to T , who checks if tidAuth corresponds to an
authentication event in which SPj outputs accept, and replies with a bit to SPj
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indicating the result. SPj adds (tidAuth, s) to its meritlist or blacklist for cate-
gory c if the check is successful. SPj outputs (tidATL, success/failure) to E to
indicate if this event is executed successfully.

• Remove-From-List(tidRML, j, tidATL). E instructs SPj to remove the entry added
to its list in the event tidATL.

Real World. If tidATL corresponds to a Add-To-List event such that SPj outputs
accept, SPj removes the ticket of the corresponding authentication from its mer-
itlist or blacklist for category c. SPj outputs (tid(RML), success/failure) to E
to indicate if this event is executed successfully.

Ideal World. SPj sends the request to T , who checks if tidATL corresponds to a
Add-To-List event in which SPj outputs success, and replies with a bit to SPj

indicating the result. SPj removes the corresponding entry from its meritlist or
blacklist if the check is successful. SPj outputs (tidRML, success/ failure) to
E to indicate if this event is executed successfully.

Ideal world BLACR provides all the desired security properties. Firstly, all the trans-
actions, in the view of GM and SPs, are anonymous. T only informs GM and SP some
anonymous user would like to register or authenticates in Reg or Auth and thus anonymity
is guaranteed. Secondly, T verifies if the authenticating user has registered before and checks
if the user satisfies the policy in Auth and thus authenticity and mis-authentication resis-
tance and authenticity are assured. Finally, T informs the SPs if an authenticating user
satisfies the policy in Auth and thus an honest user will always be accepted by an honest
SP during authentication. Thus, the system provides non-frameability.

Finally, we are able to define the security of a cryptographic BLACR. A cryptographic
BLACR is secure if for every real world adversary A and every environment E , there exists
an ideal world algorithm S controlling the same players in the ideal world as A does in the
real world such that, E cannot tell whether it is running in the real world interacting with
A or it is running in the ideal world interacting with S, which has blackbox access to A.
Formally, we present Definition 1 below.

Definition 1 Let RealE,A(λ) (resp. IdealE,SA(λ) ) be the probability that E outputs 1 when
run in the real world (resp. ideal world) with adversary A (resp. S having blackbox access
to A). A cryptographic BLACR is secure if for all PPT adversaries E and A, the following
expression holds:

|RealE,A(λ)− IdealE,SA(λ)| = negl(λ),

where we use negl(λ) to denote a negligible function in security parameter λ.
We state the following theorem regarding the security of BLACR.

Theorem 1 BLACR satisfies Definition 1 under the q-SDH Assumption and the DDH As-
sumption in the random oracle model.

We analyze the security of our BLACR construction by proving indistinguishability between
an adversary’s actions in the real world and the ideal world. Again, we focus on BLACR-
Weighted since BLACR-Unweighted is just a special case of it. In the following we use
BLACR to represent BLACR-Weighted.
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The idea of the proof is that, given a real world adversary A, we show how to construct
an ideal world adversary S such that no PPT environment E can distinguish whether it is
interacting with A or S. The proof is divided into two cases according to the subset of
players controlled by A. In the first case, A controls the GM and a subset of SPs and users
while in the second case, only a subset of SPs and users are dishonest. The first case covers
the security requirements of anonymity and non-frameability while the second case covers
the property of misauthentication resistance and authenticity. For instance, anonymity and
non-frameability should hold against a malicious GM.

We handle each case separately in the following two lemmas.

Lemma 1 For all PPT environments E and all real world adversaries A controlling a subset
of SPs and users, there exists an ideal world simulator S such that

|RealE,A(λ)− IdealE,S(λ)| = negl(λ)

Proof We define a simulator S which interacts with the environment E as an ideal world
adversary, and at the same time provides the view as the environment as well as the honest
players to the real world adversary A. S also acts as an ideal world adversary to the trusted
party T . We reiterate the goal of S here: for any PPT A, S’s goal is to provide the view
to E so that E cannot distinguish if it is interact with A or S having blackbox access to
A. Firstly, S simply forwards any messages between E and A. Next, we describe how S
participates in each event.

• Init(tidInit, UHU , UAU , UHS, UAS, {SPk}k∈UAS
,

{SPk}k∈UHS
, 0). The system begins when E fixes the honest and dishonest users and

SPs, and assigns each SP indexed by k ∈ US with a unique name SPk. The last bit 0
indicates GM is honest.

Representing honest GM to A. S generates the key pair (gpk, gsk) on behalf of the
honest GM, and sends gpk to A.

Representing dishonest SP/users to T . In this event, S has no interaction with T .

• Reg(tidReg, i). E instructs user Ui to register with GM.

Representing honest user to honest GM. If i ∈ UHU , S simulates the protocol itself
on behalf of both sides.

Representing honest GM to A/ dishonest user to T . If i ∈ UAU , S receives (tidReg, i)
from A. S extracts from A the values (x, y′) in Eq. 1. If the extraction fails, S
aborts. Otherwise S sends (tidReg, i) to T . If T replies with accept, S issues
a credential to A following the protocol. Otherwise, it rejects the request from
A. S stores uski = (A, e, x, y) it issues to A. Note that S is able to compute x
and y since it has extracted the values (x, y′) successfully in Eq. 1. The protocol
outcome from A on behalf of user Ui is forwarded to T .

• Auth(tidAuth, i, j, Pol). E instructs user Ui to authenticate with SPj and instructs
SPj to reply with policy Pol. Note that Ui only receives (tidAuth, j) and SPj only
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receives (tidAuth, Pol) from this event. A policy Pol is of the form (
∨`

i=1

(
∧`i

j=1Pkij

)
)

and each Pkij
is a list of 4-tuples (cij, nij,D+

ij ,D−
ij), where cij represents a category, nij

represents a threshold and the sets D+
ij , D−

ij are the list of adjusting factors, which will
be {1, 1, . . .} in case it is BLACR-Unweighted.

Representing honest SP to A/ dishonest user to T . If i ∈ UAU and j ∈HS , S receives
(tidAuth) from A. S does not know which user credential A is using. On the
other hand, S receives, on behalf of Ui, (tidAuth, j) from E as the event. S sends
(tidAuth) to T on behalf of a user i such that i ∈ UAU . T replies with Pol, a
set of meritlists and blacklists, together with a bit indicating if user i satisfies the
policy. Based on the set of meritlists and blacklists, S reconstructs the meritlists
and blacklists. Specifically, each entry in the list is of the form (tidAuth, s), S
locates the corresponding authentication transactions and appends (t, s) to the
corresponding list where t is the ticket associated with the authentication. S
sends the meritlist and blacklist to A, along with Pol to A. If A chooses not to
proceed, S replies to T that he would not proceed. Otherwise, S has to locate
the actual user index î that A is using. Note that A may be using the credential
of user î ∈ UAU instead of i to conduct the authentication. To do so, S tests if
t = b̂x for all x in its list of uskî = (Aî, eî, xî, yî). S aborts if it cannot locate
an entry î. Otherwise, S sends to T (tidAuth) on behalf of user î and chooses
to proceed regardless of whether T indicates if user î satisfies the policy. If A
produces a valid authentication to S while T indicates user î does not satisfy the
policy, S aborts.

Representing honest user to A/ dishonest SP to T . If i ∈ UHU and j ∈AS , S receives
(tidAuth) from T as SPj. It sends (tidAuth) to A. A replies with a set of meritlists
and blacklists as well as Pol. Based on the meritlists and blacklists and Pol from
A, T replies to T with Pol and the corresponding meritlists and blacklists. In
case the tickets in the meritlists and blacklists provided by A does not correspond
to any past authentications, S simply ignores them in the blacklists and meritlists
sent to T . If T replies with a bit indicates that the authenticating user satisfies
the authentication policy, S conducts the authentication to A with a fake zero-
knowledge proof-of-knowledge of Eq. 5. If A accepts the authentication, S replies
to T with accept.

• Add-To-List(tidATL, j, c, +/−, tidAuth, s). E instructs SPj to add the authentica-
tion identified by tidAuth to its meritlist or blacklist for category c with score s.

Representing honest SP. If j ∈ UHU , S checks if tidAuth corresponds to an authen-
tication event such that SPj accepts and adds the ticket of the corresponding
authentication to its meritlist or blacklist for category c with score s.

Representing dishonest SP to T . If j ∈ UAU , S sends the request to T and adds
(tidAuth, s) to its meritlist or blacklist for category c if T replies that the check
is successful.

• Remove-From-List(tidRML, j, tidATL). E instructs SPj to remove the entry added
to its list in the event tidATL.
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Representing honest SP. If j ∈ UHU , S checks if tidATL corresponds to a
Add-To-List event such that SPj outputs accept and removes the ticket of
the corresponding authentication from its meritlist or blacklist for category c.

Representing dishonest SP to T . If j ∈ UAU , S sends the request to T and removes
the corresponding entry from its meritlist or blacklist if T replies that the check
is successful.

If S does not abort, the output provided by all players, including the dishonest players
represented by S in the ideal world is the same as that output by the all players, including
the dishonest players represented by A to E and thus

|RealE,A(λ)− IdealE,S(λ)| = negl(λ).

It remains to show that S aborts with negligible probability.

1. In an Reg event, S aborts if it cannot extract the values (x, y′) from A. This happens
with negligible probability due to the soundness of the zero-knowledge protocol in the
random oracle model.

2. In an Auth event, S aborts if it cannot locate the user index î. The corresponds
to the case when A is able to produce an x such that it has a valid BBS+ signature
(A, e, y) and this happens with negligible probability under the unforgeability of the
BBS+ signature.

3. In an Auth event, S aborts if T indicates user î does not satisfy the policy while A
produces an authentication such that S has to accept.

�

Lemma 2 For all PPT environments E and all real world adversaries A controlling the
GM, a subset of SPs and users, there exists an ideal world simulator S such that

|RealE,A(λ)− IdealE,S(λ)| = negl(λ)

Proof Similar to the proof of Lemma 1, we define a simulator S which interacts with the
environment E as an ideal world adversary, and at the same time provides the view as the
environment as well as the honest players to the real world adversary A. S also acts as
an ideal world adversary to the trusted party T . Firstly, S simply forwards any messages
between E and A. Next, we describe how S participates in each event.

• Init(tidInit, UHU , UAU , UHS, UAS, {SPk}k∈UAS
,

{SPk}k∈UHS
, 1). The system begins when E fixes the honest and dishonest users and

SPs, and assigns each SP indexed by k ∈ US with a unique name SPk. The last bit 1
indicates GM is under the controlled of A as well.

Representing honest users/SP to A. S receives gpk from A.

Representing dishonest SP/users to T . In this event, S has no interaction with T .
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• Reg(tidReg, i). E instructs user Ui to register with GM.

Representing dishonest user to A/ dishonest GM to T . If i ∈ UHU , S receives
(tidReg, i) from T . S initiates a registration request with A and uses the zero-
knowledge simulator to simulate the zero-knowledge proof-of-knowledge in Eq. 1.
If S obtains a credential from A, it replies accept to T .

• Auth(tidAuth, i, j, Pol). E instructs user Ui to authenticate with SPj and instructs
SPj to reply with policy Pol. Note that Ui only receives (tidAuth, j) and SPj only

receives (tidAuth, Pol) from this event. A policy Pol is of the form (
∨`

i=1

(
∧`i

j=1Pkij

)
)

and each Pkij
is a list of 4-tuples (cij, nij,D+

ij ,D−
ij), where cij represents a category, nij

represents a threshold and the sets D+
ij , D−

ij are the list of adjusting factors, which will
be {1, 1, . . .} in case it is BLACR-Unweighted.

Representing honest SP to A/ dishonest user to T . If i ∈ UAU and j ∈ UHS, S
receives (tidAuth, j) as Ui from E . S sends (tidAuth) to T on behalf of a user
i. T replies with Pol, a set of meritlists and blacklists, together with a bit
indicating if user i satisfies the policy. At the same time, S receives (tidAuth)
from A. Based on the set of meritlists and blacklists, S reconstructs the meritlists
and blacklists. Specifically, each entry in the list is of the form (tidAuth, s), S
locates the corresponding authentication transactions and appends (t, s) to the
corresponding list where t is the ticket associated with the authentication. S
sends the meritlist and blacklist to A, along with Pol to A. If A chooses not to
proceed, S replies to T that he would not proceed. Otherwise, if A produces a
successful authentication, S checks if there exists î ∈ UAU such that Uî satisfy the
policy. If yes, S sends (tidAuth) to T on behalf of user î. If none of the user in
UAU satisfies the policy, S has to create one since A is in possession of the GM’s
secret key and he can simply create one to pass the authentication. Specifically,
S chooses an index i ∈ UAU and submits (tidReg, i) to T and subsequently reply
to T with accept on behalf of the dishonest GM, and submits tidAuth to T on
behalf of this newly created user i.

Representing honest user to A/ dishonest SP to T . If i ∈ UHU and j ∈AS , S receives
(tidAuth) from T as SPj. It sends (tidAuth) to A. A replies with a set of
meritlists and blacklists as well as Pol. Based on the meritlists and blacklists
and Pol from A, T replies to T with Pol and the corresponding meritlists and
blacklists. In case the tickets in the meritlists and blacklists provided by A does
not correspond to any past authentications, S simply ignores them in the blacklists
and meritlists sent to T . If T replies with a bit indicates that the authenticating
user satisfies the authentication policy, S conducts the authentication to A with
a fake zero-knowledge proof-of-knowledge of Eq. 5. Note that the real value b̂x is
also replaced with a random value t. If A accepts the authentication, S replies to
T with accept.

• Add-To-List(tidATL, j, c, +/−, tidAuth, s). E instructs SPj to add the authentica-
tion identified by tidAuth to its meritlist or blacklist for category c with score s.
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Representing honest SP. If j ∈ UHU , S checks if tidAuth corresponds to an authen-
tication event such that SPj accepts and adds the ticket of the corresponding
authentication to its meritlist or blacklist for category c with score s.

Representing dishonest SP to T . If j ∈ UAU , S sends the request to T and adds
(tidAuth, s) to its meritlist or blacklist for category c if T replies that the check
is successful.

• Remove-From-List(tidRML, j, tidATL). E instructs SPj to remove the entry added
to its list in the event tidATL.

Representing honest SP. If j ∈ UHU , S checks if tidATL corresponds to a
Add-To-List event such that SPj outputs accept and removes the ticket of
the corresponding authentication from its meritlist or blacklist for category c.

Representing dishonest SP to T . If j ∈ UAU , S sends the request to T and removes
the corresponding entry from its meritlist or blacklist if T replies that the check
is successful.

The simulation provided to A by S is perfect due to the zero-knowledgeness of the
protocol as well as the DDH assumption. Thus, the output provided by all players, including
the dishonest players represented by S in the ideal world is the same as that output by the
all players, including the dishonest players represented by A to E and thus

|RealE,A(λ)− IdealE,S(λ)| = negl(λ).

�

B SPK Implementation Details

We detail the instantiation of an authentication protocol with policy Pol = P in BLACR-
Weighted, a single-term policy which requires an authenticating user to have reputation in
category c higher than or equal to a threshold n. It is easy to extend it to any Pol in DNF
form.

User Alice receives from SP the blacklist L+ = {(t1, b1, s1), . . . , (tL+ , bL+ , sL+)} and L− =
{(t1, b1, s1), . . . , (tL− , bL− , sL−)}, where L+ and L− are the size of L+ and L− respectively.
Alice also obtains the list of adjusting factors D+ = {(1,∆+

1 , σ
+
1 ), (2,∆+

2 , σ
+
2 ), . . .} and D− =

{(1,∆−
1 , σ

−
1 ), (2,∆−

2 , σ
−
2 ) . . .}.

In this particular instantiation, we use the credential signature for σ+
i . Specifically,

σ+
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c h

e+
i
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i
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i

2 g
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i
3 , h0), with w+

c being the public
key for the signature scheme for category c. Recall that each category may have its own
adjusting factor and requires a different public key for the signature scheme.

We further assume u1, u2, u3 are some independent generators of G1 and g1, g2, g3 are
some independent generators of G. We use Ê0, Ê1, Ê2, Ê3, Êu1 , Êu1w and Êu1w+ to denote
ê(g0, h0), ê(g1, h0), ê(g2, h0), ê(g3, h0), ê(u1, h0), ê(u1, w) and ê(u1, w

+). All these pairings
can be pre-computed and is assume to be included as part of the public parameter.
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Assume Alice’s secret key is of the form (A, e, x, y). She first check if her reputation
R = S′(L+, x,D+) − S′(L−, x,D−) is over the threshold n. Next, she computes the ticket
for this authentication t = H(b||sid)x for a randomly generated value b. Next, she needs
to compute the non-interactive proof Π2 = (Πx,Π) which assures the SP she is a legitimate
user satisfying policy Pol.

Πx is an non-interactive proof that assures t is correctly formed. Specifically, Alice
computes A1 = ur1

1 ur2
2 , A2 = Aur2

1 for some randomly generated r1, r2 ∈R Zp. Next, Alice
produces Πx′ which is the following non-interactive proof:

SPK



(x, y,r1, r2, e, β1, β2) :

t = b̂x ∧
A1 = ur1

1 ur2
2 ∧

1 = A−e
1 uβ1

1 uβ2

2 ∧
ê(A2, w)

Ê0

= ê(A2, h0)
−eÊ−r2

u1wÊ
β2
u1
Êx

1 Ê
y
2


(M) (7)

where M = R||A1||A2||b||t with R being the random challenge given by the SP and β1 = r1e,
β2 = r2e.

Πx is then parsed as (Πx′ ,A1,A2).
The second part of the non-interactive proof, Π, is given below.
Firstly, define the index set I for list L+, that is, I : {ι|(bι, tι, ·) ∈ L+, H(bι||sid)x = tι}.

Intuitively, for any i ∈ I, (bi, ti, si) ∈ L+ corresponds to a ticket together with its score of
Alice on the list L+. For each i ∈ I, ki := |{ι|ι ≤ i ∧ ι ∈ I}| denotes the number of times
Alice has been put on the list L+ and the correct weight is ∆+

ki
.

For all i ∈ I, Alice computes Ci = g
∆+

ki
si

1 gri
2 , C̃i = g1g

r̃i
2 for some randomly generated

ri, r̃i ∈R Zp. Likewise, for all i ∈ [L+]\I, computes Ci = gri
2 , C̃i = gr̃i

2 for some randomly
generated ri, r̃i ∈R Zp. Parse aux+ as (C1, C̃1, . . . , CL+ , C̃L+).

For i ∈ [L+]\I, Alice computes Ai,1 = ( ti
bx
i
)ai,1 , Ai,2 = g

ai,1

1 g
ai,2

2 for some randomly gener-

ated ai,1, ai,2 ∈R Zp, and randomly generates Ai,3,Ai,4 ∈R G.
For i ∈ I, Alice randomly generates Ai,1,Ai,2 ∈R G. She then computes Ai,3 = u

ai,3

1 u
ai,4

2

and Ai,4 = A+
ki

u
ai,4

1 for some randomly generated ai,3, ai,4 ∈R Zp.
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For i = 1 to L+, Alice computes a non-interactive proof Πi:

SPK



(x, ai,1, ai,2, βi,1, βi,2, βi,3, βi,4, βi,5,

ri, r̃i, ai,3, ai,4, e
+
ki
, ki,∆

+
ki
, y+

ki
) :

t = b̂x ∧
Ai,2 = g

ai,1

1 g
ai,2

2 ∧
1 = A−x

i,2 g
βi,1

1 g
βi,2

2 ∧

Ai,1 = t
ai,1

i b
−βi,1

i ∧
Ci = gri

2 ∧
C̃i = gr̃i

2


∨



t = b̂x ∧
ti = bxi ∧
C̃i

g1

= gr̃i
2 ∧

i∏
j=1

C̃j = gki
1 g

βi,5

2 ∧

Ai,3 = u
ai,3

1 u
ai,4

2 ∧

1 = A
−e+

ki
i,3 u

βi,3

1 u
βi,4

2 ∧

ê(Ai,4, w
+)

Ê0

=
Ê

βi,4
u1 Êki

1 Ê
∆+

ki
2 Ê

y+
ki

3

ê(Ai,4, h0)
e+
ki Ê

ai,4

u1w+

∧

Ci = (gsi
1 )

∆+
kigri

2





(M) (8)

where M = R||Ai,1||Ai,2||Ai,3||Ai,4||b̂||bi||t||ti||aux+ with R being the random challenge given
by the SP and βi,1 = ai,1x, βi,2 = ai,2x for i ∈ I and βi,3 = e+ki

ai,3, βi,4 = e+ki
ai,4, βi,5 =∑i

j=1 r̃i.
Alice parses Π′

i as (Πi,Ai,1,Ai,2,Ai,3,Ai,4). To verify Π′, the SP also needs to check
Ai,1 6= 1 in addition to checking Πi. Alice parse Π+ as (Π1, . . . ,ΠL).

Similarly, Alice computes the proof for the list L− and denotes the proof as Π−. Denote
aux− the set of tuples (C−

i , C̃
−
i ) for i = 1 to L−. (The values in aux+ will be denoted as

(C+
i , C̃

+
i ) hereafter.) Parse Π as (Π+,Π−, aux+, aux−).

The last part of the proof, denote as ΠR, allows Alice to convince the SP that she satisfy
the policy P .

Alice first computes C =
∏L+

i=1C
+
i /

∏L−

i=1C
−
i = gR

1 gρ
2, where ρ =

∑L+

i=1 ri +
∑L−

i=1 ri where
ri’s are the randomness used in creating the values Ci and R is the reputation of Alice. Thus,
this value C is a commitment of Alice’s reputation! The goal of the proof ΠR is thus to show
that the value committed in C, that is, R, is in the range above the threshold n.

In general, exact range proof can be used. However, the group order is known and for
any reputation value R′, one can always change it to R′ + p so that it is above the required
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thresholds. To prevent this attack and to conduct an efficient proof, the SP first produce
a rough estimation of the maximum possible reputation a user could have, which must be
smaller than the group order. Let say the maximum reputation is T , the SP transmits
T − n+ 1 signatures to Alice, who then proves to the SP that she has a signature the value
committed in C.

This particular instantiation employs the weakly secure signature due to [6], which is
sufficient for this purpose. A signature on a message i is a value Bi such that ê(Bi, wmh

i
0) =

ê(g0, h0) for a public key wm. In our protocol, the SP sends to Alice (B0, . . . , BT−n+1). That
is, signatures from 0 to T − n. Additionally, define Êu1wm as ê(u1, wm).

Alice computes I = R − n, A1 = ur1
1 ur2

2 , A2 = BIu
r2
1 for some randomly generated

r1, r2 ∈R Zp. Alice then computes the following non-interactive proof ΠR′
:

SPK



(R,ρ, r1, r2, e, β1, β2) :

L+∏
i=1

C+
i /

L−∏
i=1

C−
i = gR

1 gρ
2 ∧

A1 = ur1
1 ur2

2 ∧
A−n

1 = A−R
1 uβ1

1 uβ2

2 ∧
ê(A2, wm)ê(A2, h0)

−n

Ê0

= ê(A2, h0)
−RÊ−r2

u1wm
Êβ2

u1


(M) (9)

where M = R||A1||A2||aux+||aux− with R being the random challenge given by the SP and
β1 = r1I, β2 = r2I. Alice parses ΠR as (ΠR′

,A1,A2).
If the threshold n does not change very often, the SP can regard these signatures

(B0, B1, . . .) as public parameters and thus saves a lot of transmission bandwidth. Nega-
tion of the policy is treated in a similar manner in which the SP publishes the signatures
from n− Tmin to n− 1, where Tmin is an estimation of the lowest possible reputation.

The whole proof from Alice thus consists of (Πx,Π,Π
R).
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