
A Study of RDB-based RDF Data Management
Techniques

Vahid Jalali, Mo Zhou, Yuqing Wu

School of Informatics and Computing, Indiana University, Bloomington
{vjalalib, mozhou, yugwu}@indiana.edu

Abstract. RDF has gained great interest in both academia and indus-
try as an important language to describe graph data. Several approaches
have been proposed for storing and querying RDF data efficiently; each
works best under certain circumstances, e.g. certain types of data and/or
queries. However, there was lack of a thorough understanding of exactly
what these circumstances are, as different data-sets and query sets are
used in the empirical evaluations in the literature to highlight their pro-
posed techniques. In this work, we capture the characteristics of data
and queries that are critical to the RDF storage and query evaluation
efficiency and provide a thorough analysis of the existing storage, index-
ing and query evaluation techniques based on these characteristics. We
believe that our study not only can be used in evaluating both existing
and emerging RDF data management techniques, but also lays the foun-
dations for designing RDF benchmarks for more in-depth performance
analysis of RDF data management systems.
Key words:RDF, SPARQL, Storage, Index, Query Evaluation, .

1 Introduction

Resource Description Framework (RDF) [3] which is a World Wide Web Con-
sortium (W3C) recommended standard, represents data entities and their rela-
tionships in the Semantic Web. In RDF, each data entity has a Unique Resource
Identifier (URI) and each relationship between two data entities is described
via a triple within which the items take the roles of subject(S), predicate (or
property)(P) and object(O). RDF Schema (RDFS) [6] further extends RDF to
describe the semantic and structure of the data by introducing classes.

A B C

D

P

E

foaf foaf

co
au
th
o
r

foaf

si
st
er

typ
etype

typ
e type

ty
p
e A: Amy

B: Bob

C: Chris

D: Dan

E: Ellen

P: People

K

DBMS Concept

like

n
a
m
e

Fig. 1. Example RDF data

Fig. 1 shows a graph representa-
tion of a sample RDF data and its
schema that describes people, books
and their relationship in social net-
works. The arch “Amy type Person”
indicates that Amy is an instance of
the class named “Person”.

SPARQL [9] is an RDF query
language recommended by W3C to facilitate users to retrieve meaningful in-
formation from RDF data. A SPARQL query consists of graph pattern(s) that

2

can identify the nodes/edges of interest through graph pattern matching against
the RDF data. The following query retrieves a person who is a friend of A, and
his/her relationship with B is the same as D’s relationship with E.

SELECT ?person WHERE {?person foaf A . ?person ?p B. D ?p E }
To keep pace with the ever-increasing volume of semantic web data and

the needs of answering complicated queries on such data, various RDF storage
methods were proposed to improve the RDF data storage and query evalua-
tion efficiency. Majority of these approaches rely on existing relational database
(RDB) management systems, among which the most notable techniques are
Triple Store [7], Vertical Partitioning [4] and Property Table [17]. Indexing meth-
ods were also investigated, including MAP [10], Hexastore [16] and TripleT [8].

It is the general wisdom that engineering designs all have their advantages
and drawbacks; they are superb for certain circumstances but less so for others.
Benchmarks, which consist of both data set and query set, are designed to help
users determine the strength and limitations of a data management system or a
specific data management technique. In the context of RDF, many efforts [13,
14] have been made in this regard. However the question “what characteristics
of data and query highlight the advantages and drawbacks of a storage method”
are yet to be answered, as benchmarks are not yet covering key characteristics
of RDF data and queries, especially those that bring challenges to RDF storage
and query evaluation techniques.

We set out to conduct such a thorough analysis, focusing on the type of
data and queries that are not well covered (e.x. the sample query above) by the
existing benchmarks and studies. In particular,

– We introduce and analyze a set of key characteristics of RDF data for ana-
lyzing the space efficiency of RDF storage methods.

– We classify SPARQL queries based on roles of the variables, identify the
challenges brought by each to data storage and query evaluation techniques.

– We design extensive empirical study to investigate and compare existing
RDF data management techniques and prove that the data and query char-
acteristics we identified are indeed critical.

– We analyze existing RDF benchmarks based on the data and query charac-
teristics we propose, and suggest improvement in RDF benchmark designing.

2 Storage Efficiency

In this section, we study the space efficiency, i.e. the amount of space required for
storing RDF data, of different RDB-based RDF data storage methods, nonindex-
based and index-based methods.
Definition 1. Given an RDF document D in triple format, and a data storage
or indexing method M that is designed to store D, the storage efficiency of M
with respect to document D is SED

M = SM(D)
S(D) , where S(D) represents the size of

the text document D in triple format, and SM(D) represents the space required
for storing D using method M.

3

Obviously, the smaller the value of SED
M, the better method M is for stor-

ing/indexing document D. In the rest of this section, we study the most promi-
nent RDF data storage and indexing techniques in the literature, identify key
characteristics of RDF data that determine the storage requirement, and propose
formulas for calculating SM(D) for each method. Then, we will report the result
of our impartial study on the storage efficiency of these techniques, w.r.t. RDF
documents with various combinational configurations on the key characteristics.

2.1 RDF Data Storage Methods

The most prominent RDF data storage methods are Triple Store (TS) [7] ,
Vertical Partitioning (VP) [4] and Property Table (PT) [17]. Fig. 2 illustrates
how these three methods store some fragments of the RDF data whose graph
representation was shown in Fig. 1.

Subject Predicate Object

A type P Subject Object Subject Object Subject Name foaf

D type P A P A D A "Amy" D

K type Book D P D "Dan" Null

A foaf D K Book

K name "DBMS�Concepts" Subject Object

A name "Amy" K "DBMS�Concepts" Subject

D name "Dan" A "Amy" K

D "Dan"

Triple�Store

Type foaf

name

Vertical�Partitioning Property�Table

Name

"DBMS�Concepts"

Book

P�

Fig. 2. The Sample Data Stored in TS, VP and PT

Data Schema Overhead
TS 3×|D|×L OTS

VP 2×|D|×L |pred(D)|×OV P

PT (|D|-|lft(D)|)×L +3×|lft(D)|×L |cls(D)|×OPT+OTS

The space requirements
of these storage methods
are shown in the table on
the right. We use |D| to rep-
resent the total number of triples in D and L the average size of all values in D,
while the other data characteristics and how they impact the storage efficiencies
of a data storage method will be discussed in details next.

In Triple Store [7], all triples are stored in a single table with three columns
(S, P, O). Therefore, the space requirement is determined by the number of tuples
in the table, e.g. the number of triples in the RDF data (|D|), and the size of
each value to be stored. The only overhead (OTS) is for storing the schema of
the triple store table in the system catalog.

In Vertical Partitioning [4], a separate table is created for each distinct
predicate to store all triples that feature this predicate. As all triples in each
table share the same predicate, the predicate is omitted and only the values of
the subject and object are stored. Therefore, the space requirement is determined
by the number of tuples in these tables, as well as the number of tables, which
is the number of unique predicates in the RDF data (|pred(D)|). The overhead
(OV P) is incurred by storing of the schema of each VP table, which increases
when |pred(D)| increases.

In Property Table [17], RDF data are stored in traditional relational tables
whose schemata carry the semantics of the residential data. There are two types
of PTs that provide distinct ways in shredding RDF triples into tables: (1)
Clustered Property Table, in which RDF triples with the subjects sharing the

4

same set of predicates are clustered into a property table; and (2) Property-class
Table, in which a table is created for each class and stores information about
all members of the class, with the attributes being the single-value predicates
of these members. In both implementations, a leftover table with three columns
(S, P, O) is created for storing the triples not belonging to any other table.
In the former method, the schemata of the property tables highly depends on
the clustering algorithms, which varies based on the implementations. Thus we
focus on the later method in which the property tables are determined once the
schema information is given. In the rest of the paper, when we refer to Property
Table method, we are indeed referring to the property-class table method.

The space requirement for PT method consists of two parts: the space re-
quired for storing the property tables and the space required for storing the
leftover table, each of which, similar to our discussion of the TS and VP meth-
ods, consists of a data component and a schema component. The number of
property tables is the number of classes (|cls(D)|). |lft(D)| represents the num-
ber of triples that cannot be places in any property table but have to be placed
in the leftover table. The overhead for each property table is denoted by OPT ,
while the overhead of the leftover table is the same as a triple store table, OTS .

OTS = O + 3 × C

OV p = O + 2 × C

OPT = O + (avgPred(D) + 1) × C

Assuming that the space required for
storing the information of each attribute in
the system catalog is the same, denoted C,
and the overhead for storing the information
of a table is the same, denoted O, then, the
overhead for storing the schema information, referred to as OTS , OV P and OPT

in the table above, can be further depicted using the formulae on the right.
Here, avgPred(D) represents the average number of single-value predicates of
each class. Please note that in the PT method, besides the attributes that cor-
respond to the single-value predicates of each class, an additional attribute is
introduced to store the URIs of the subjects.

2.2 Index-based Storage Methods

<k
1
k
2
k
3
>

(a) MAP

<k
1
k
2
>

k
.

.

.

...

(b) HexTree

<k> ...
...

k
1
k
2

.

.

.

...

(c) TripleT

Fig. 3. RDF Indices [8]

To facilitate efficient query
answering in RDF data,
multiple indexing techniques
were proposed, including
MAP [10], Hexastore [16]
and TripleT [8], whose
structures are illustrated in
Fig. 3. Indeed the index-
based methods proposed
are not merely designs of indices but alternative ways for storing RDF data
for efficient data accessing based on indexing techniques. Hence, we call them
index-based storage methods.

Before we discuss the space requirement of the index-based storage methods,
we review the space requirement of a traditional clustered B+-tree index. Given
the number of unique values of the index key Nk, the data size of the index key

5

Sk, the size of a pointer Sptr, and the size a page SP (assume that Sptr and SP are

fixed), the space requirements of the B+-tree is SBT (Nk, Sk) = SP ×
logf Nk∑
i=1

f i,

where the fan-out f can be computed as f = SP

Sk+Sptr
.

The space requirement of each index-based storage method consists of two
parts: (1) the space requirement of the clustered B+-tree indices; and(2) the
space requirement of the payload pointed by the leaf nodes in B+-tree indices.
We summarize them in the table below.

Payload Index
MAP 0 6× SBT (|D|, 3 × L)

Hexastore
∑

role={S,P,O}

|πroleD| × L 6×
∑

role={SP,SO,PO}

SBT (|πroleD|, 2 × L)

TripleT 3 × |val(D)| × L SBT (|val(D)|, L)

MAP [10] builds six clustered B+-tree indices on six RDF triple store tables,
each clustered on one permutation of S, P and O, i.e. SPO, SOP, PSO, POS,
OSP, OPS. As a result, all RDF triples are stored six times on the leaf nodes
of these indices. On each such replication a B+-tree index is built, with Nk=|D|
and Sk=3× L. Please note that there is no additional payload as all three roles
are indexed.

Hexastore [16] improves the storage efficiency of MAP by reducing the space
requirement of the index part and the duplication of the RDF data. Instead of
indexing all three roles, Hexastore builds six clustered B+-tree indices on two
out of three roles of RDF triples, i.e. SP, PS, SO, OS, PO, OP, while the two
indices on symmetric roles, e.g. SP and PS, share the same payload that contains
the distinct values of the other role, in this case O. In the worst case, the RDF
triples are duplicated five times.

Rather than creating six B+-tree indices, TripleT [8] uses only one B+-tree
to index all distinct values in an RDF document, across all roles. Each leaf node
in this B+-tree has a payload that is split into three buckets, S, P and O, and
each bucket holds the list of related atoms for the other two roles. Therefore
the space requirement of TripleT is the sum of (1) the overall payload, in which
each triple in the RDF data is stored 3 times, one under its subject’s value, one
under its predicate’s value, and one under its object’s value; and (2) the size of
single B+-tree index.

2.3 RDF Data Characteristics

Based on the analysis above, we identify the followings as key factors that can
be used to describe the characteristics of an RDF data D and to evaluate and
measure the space efficiency of RDF data storage and indexing techniques.

1. |D|: the total number of triples in D;
2. |pred(D)|: the number of unique properties in D;
3. |val(D)|: the number of unique values in D;
4. |cls(D)|: the number of classes in D;
5. avgPred(D): the average number of properties belonging to the same class

in D; and

6

6. |lft(D)|: the number of triples whose subjects do not belong to any class or
whose predicates are multi-value predicates.

As the values of (2), (3), (4) and (6) partially depend on the value of (1),
indeed, it is the ratio of these values to |D| that truly describe the data distri-
bution of an RDF data. Please also note that there is correlation between |D|,
|pred(D)|, |cls(D)| and avgPred(D). Even though there is no direct functional
relationship between them, but given three, a tight up/lower bound is set on the
value the forth can taken.

2.4 Data Characteristics in RDF Benchmarks

We have identified 6 key factors of RDF data that have significant impact on
the storage efficiency of RDF data storage and indexing techniques. We believe
insightful comparison of such techniques should be conducted on data-sets in
which all the key factors vary.

Benchmark |pred(D)| |val(D)| |D| Used in
Barton [5] 285 19M 50M [4, 11, 14, 16]
LUBM [2] 18 1M 7M [16]
Yago [15] 93 34M 40M [11]

LibraryThing [1] 338824 9M 36M [11]

The data characteristics that
are covered by the existing
benchmarks that are used in the
research work of RDF data stor-
age and indexing is summarized in the table on the right. As the schema infor-
mation is frequently absent from these benchmarks, we do not summarize the
schema related data characteristics, namely |cls(D)|, avgPred(D) and |lft(D)|,
in the table.

2.5 Empirical Analysis

To provide a thorough understanding of the storage methods, and answer the
question about exactly what type of RDF data each storage method is best/worst
at, we generate and conduct experiments on synthetic data sets, big and small,
with various combination on the key factors we identified in Sec. 2.3. The trend
we observe are the same. In this section, we present our results on the comparison
based on multiple data sets with a fixed number of triples (100,000 triples to be
specific), but vary on other characteristics.

Please note that to better understand the correlation between |pred(D)| and
storage efficiency of RDF repository that highlights the advantage and drawback
of the PT method, we design our RDF data set such that all triples fit in property
tables and the leftover table is empty. Since a leftover table is nothing but a
triple store table of the residential RDF triples, the storage efficiency of the PT
methods on data that yield non-empty leftover table can be easily estimated by
integrating the analysis and observations of both PT and TS methods.

We use MySQL to implement the storage methods discussed in Sec. 2.1 and
Sec. 2.2. Specifically, we use relational tables and B+-tree indices to implement
the three index-based storage methods discussed in Sec. 2.2, by storing the RDF
triples in their proper clustering order in relational tables and create B+-tree
indices on top of these tables, hence the key concepts and features of the original
methods are loyally preserved.

7

0

2

4

6

8

sp
a
ce

 e
ff
ic
ie
n
cy

 (
lo
g
)

TS

VP

PT (Min)

PT (Avg)

!2

0

2

4

6

8

0.00001 0.0001 0.00247 0.01 0.1 1

sp
a
ce

 e
ff
ic
ie
n
cy

 (
lo
g
)

|pred(D)|/|D|

TS

VP

PT (Min)

PT (Avg)

PT (Max)

Fig. 4. Space Efficiency Comparison:
Data Storage Methods

Data Storage Methods The impact
of the number of unique predicates
(|pred(D)|) on the space efficiency of the
data storage methods is shown in Fig. 4. As
the value of |pred(D)| is strongly correlated
to the number of triples in an RDF docu-

ment, we use the ratio, |pred(D)|
|D| as the pa-

rameter. Please note that logarithmic scale
is used on the y-axis, due to the large dif-

ference exhibited by different methods.
Reflecting our analysis presented in Sec. 2.1, TS is indifferent to |pred(D)|.
SED

V P is heavily affected by |pred(D)| because the larger |pred(D)| is, the
greater the overhead for storing the schema info of the tables would be. VP,
originally designed to improve the space efficiency of TS, can end up to be not
efficient, even very inefficient, when the overhead is driven up by large number
of unique predicates, cancelling out the saving of not storing the predicate value
in those tables.

Fig. 5. Storage Efficiency Analysis: Property Table

The impact
of |pred(D)| varies
on PT, in which
other factors play
more important
roles on the space
efficiency. In Fig. 4,
PT(Max), PT(Avg)
and PT(Min) represent the maximum, average and minimum storage efficiency
we obtained on various RDF data sets that share the same |pred(D)|. We then
investigate the impact of other factors, including the number of classes (|cls(D)|)
and average number of predicates per class (avgPred(D)), on PT method.

As seen in Fig. 5(a), indeed |pred(D)| does not have any direct impact on
SED

PT . It only defines what the values of avgPred(D) and |cls(D)| may be. For
RDF documents with the same |pred(D)|, SED

V P are different when avgPred(D)
and |cls(D)| are different. When |D| and |cls(D)| are fixed, the direct impact of
avgPred(D) on SED

PT is illustrated in Fig. 5(b). The curve reflects the trade-off
between the save in data storage by introducing wider property tables and the
overhead in storing the schema info of all the columns in these wider tables.

Fig. 6. Storage Efficiency
Comparison: Indexing

Index-based Storage Methods We store RDF
data of various |val(D)|/|D| ratio using the three
index-based storage methods. Our experimental re-
sults, as shown in Fig. 6, confirmed our analysis. As
summarized in Sec. 2.2, space efficiency wise, the dif-
ference between MAP and Hexastore lies in the size
of the index tree and index lead nodes. Hence, Hexas-
tore is always more space efficient than MAP. TripleT
distinguishes itself from MAP and Hexastore by in-

8

dexing only unique values. Therefore, the unique number of values in the RDF
data is the dominating factor of the space efficiency of TripleT. In addition, as it
stores each triple only three times, in most cases it is more efficient than MAP
and Hexastore. However, it becomes less efficient when the number of unique
values increases.

3 Query Evaluation

At the end of the day, data storage and indexing techniques are invented to facil-
itate efficient query evaluation. Hence, besides space efficiency, query efficiency
is of ultimate importance.

3.1 Query Patterns

SPARQL [9],recommended by W3C, has been the de facto standard RDF query
language. A SPARQL query consists of one or many graph patterns, the evalua-
tion of which is based on graph pattern matching against the RDF data graph.
Let L be a finite set of literals, U a finite set of URIs and V a finite set of vari-
ables. Then an RDF triple is in the set U×U×(U∪L) and a simple triple pattern
(STP) in a SPARQL query is in the set (U ∪ V)× (U ∪ V)× (U ∪ V ∪L). Please
note that a variable can appear in the role of subject, predicate, or object.

s,type, ?o s, p, ?o s, ?p, o ?s, p, o ?s, type, o

?s,type,?o ?s, p, ?o ?s, ?p, o s, ?p, ?o ?s, ?p, ?o

We list 10 different simple
triple patterns based on the
number and roles of variables in
a pattern. Specifically we distinguish “type” from other predicates, because
matching the pattern (?s, type, o) is very different from (?s, p, o) in Property
Table as the knowledge of the class that ?s belongs to can determine the prop-
erty table to search in, while the knowledge of the constant p can not have the
same filtering effect on the optimization process.

A graph pattern (GP) is a non-empty set of STPs. We define a connected
graph pattern recursively as follows.

Definition 2. A graph pattern with single STP is connected. If two connected
graph patterns, g1 and g2, share a common variable or URI, we say that the
graph pattern g3 = g1 ∪ g2 is also connected.

Please note that our classifications of whether a graph pattern is connected
purely depends on whether the STPs share variables or URIs, not whether the
graph pattern, when represented as a graph, is a connected graph. For instance,
in our classification, {s1,?p,o1. s2, ?p, o2} is a connected graph pattern.

Join type Example

S-S ?s p1 o1. ?s p2 o2
O-P s1 p1 ?x. s2 ?x o2
O-O s1 p1 ?o. s2 p2 ?o

P-P s1 ?p o1. s2 ?p o2
S-O ?x p1 o1. s2 p2 ?x

S-P ?x p1 o1. s2 ?x o2

We call a connected graph pattern single joint
graph pattern (SJGP) if it has exactly two STPs.
Based on the roles that the shared variable takes
in these STPs, we can identify six different types of
joins.

Definition 3. Given a SJGP, g = {stp1, stp2},
where stp1 = (s1, p1, o1) and stp2 = (s2, p2, o2).
We say that g is formed by S-S join if s1, s2 ∈ V and s1 = s2. Similarly we can
define O-O, S-O, P-P, S-P, and O-P joins.

9

Certainly, a graph pattern may consist of multiple STPs, multiple variables
and multiple types of joins. We call them Complex Join Patterns (CJP). To
better understand how CJPs can be evaluated by different storage methods, it
would be beneficial to first understand how many types of CJPs there are.

[12] defined chain shape patterns (CSP) as a set of STPs linked together via
S-O joins and star shape pattern (SSP) as a set of STPs linked together via S-S
joins. They proved that all data storage approaches do not favor queries with
CSP and PT favors queries with SSP.

However, CSP and SSP as defined in [12] represent only a very small fragment
of SPARQL queries. In this paper we propose a more sophisticated classification
based on the positions of variables in a graph pattern, which extends the concepts
of CSP and SSP by (1) considering all positions of variables, i.e. S, P and O; and
(2) considering all types of joins besides S-S join in SSP and S-O join in CSP.

Definition 4. Given a connected graph pattern gp that consists of more than
two STPS, we say that gp is:

– an Extended Chain-shaped Pattern(ECP) if no more than two STPs in gp
share a common variable;

– an Extended Star-shaped Pattern (ESP) if all STPs in gp share at least one
common variable;

– a Hybrid Pattern (HP) if gp does not fall into above categories.

The graph pattern in the query we presented in Sec. 1, {?person foaf A .
?person ?p ?person. D ?p E }, is an ECP, featuring a S-S join and a P-P join.

3.2 Query Patterns in Benchmarks

The design of the query set in a benchmark plays the critical role in testing how
efficiently a data management system can handle various types of queries. We
summarize the query patterns (STP, SJP and CJP) that are covered by existing
benchmarks.

Benchmark STP SJP CJP Used in
Barton[5] ?s type o, ?s type ?o, S-S, S-O SSP, CSP [4, 11, 14, 16]

?s p o, ?s p ?o, ?s ?p ?o
LUBM[2] ?s p o, ?s p ?o S-O, O-O None [16]
Yago[15] ?s type o, ?s p o, S-S, S-O, O-O SSP, CSP [11]

?s p ?o, ?s ?p ?o
LibraryThing[1] ?s p o, ?s p ?o S-S, S-O, O-O SSP [11]

Our ob-
servations are:
(1) Queries
with variables
in the predi-
cate role are not well explored. When the lone query with ?p in Barton was used,
it was applied to an RDF data with only 28 unique predicates [4]. (2) The queries
in each benchmark cover at most three different SJPs, and none of them feature
any join that involves a variable in the predicate role. (3) The queries in these
benchmarks are as complex as SSP and CSP, but none of the benchmark fea-
tures any extended join patterns we defined, which, as shown in our motivating
example in Sec. 1 is a typical query that appear in real life applications.

3.3 Empirical Study

To better understand how the RDF data storage and index-based storage tech-
niques proposed in the literature stand up to the challenges of the important
types of query patterns, we designed a set of queries to stress the systems.

10

|D| |pred(D)| |val(D)| |cls(D)| avgPred(D) |lft(D)|
10M 900 1.7M 100 10 0

The data characteristics of
our synthesized data-set is shown
on the right. This data set is chosen as it does not favor one data storage and/or
index-based storage method over another, in terms of space efficiency. |lft(D)|
is 0, in order to weed out the impact of the leftover table when we evaluate the
query evaluation performance of PT.

Query Pattern |Result|
STP1 ?s p o 1K
STP2 ?s type o 1K
STP3 s ?p o 1K
STP4 s ?p o 22
STP5 ?s ?p o 1K
SJP1 ?x p1 o1. ?x p2 o2 1K
SJP2 s1 p1 ?x. s2 ?x o1 1K
ESP1 s1 ?x o1. s2 ?x o2. s3 ?x o3 100
ECP1 s1 p1 ?x. ?x ?y o1 . s2 ?y o2 100

We have tested on large number of
queries, STPs, SJPs, and CJPs, of various
value/join selectivity and result cardinal-
ity. We pick the queries on the right to
illustrate our analysis and observations.
The class a query belongs to is reflected
in its name. Query patterns and the re-
sult cardinalities of these queries are also provided.

Fig. 7. STP - Data Storage Methods

Simple Triple Pat-
terns (STP) We
first study how dif-
ferent data stor-
age methods fair
answering STP queries.
We focus on the
missing pieces in

the literature and investigate the impact of the certainty of the values in the
predicate role on the evaluation of STPs. As shown in Fig. 7(a), for STP1, VP
outperforms TS and PT, since in VP, the search is limited to only the table
corresponding to the given predicate, while the search in TS involves the full TS
table, and the search in PT involves multiple tables, corresponding to classes
that feature the given predicate. In comparison, PT performs better when only
one property table can be identified, i.e. STP2, with the combination of “type”
in the predicate role and a constant in the object role, as shown in Fig. 7(b).
This impact is magnified when a variable is on the predicate role, i.e. STP3,
as illustrated in Fig. 7(c). For this type of queries, TS outperforms VP and PT
thanks to its simple schema, as in both VP and PT, all tables have to be searched
to answer the query.

Fig. 8. STP - Index-Based Storage Methods

We then study
how the indices fa-
cilitate the eval-
uation of STP queries.
TripleT is penal-
ized when it eval-
uates STPs with
constants on two roles, i.e. STP3, as it only indexes on one value, rendering
many pointers to follow into its complicated payload after searching in the B+-
tree structure, while MAP and Hexastore are both capable of immediately locate
the query results. The dramatic difference is shown in Fig. 8(a). When the con-

11

stants given in the STP are rare, i.e. STP4, the benefit of the light-weight B+-tree
index of TripleT ensures that it outperforms both MAP and Hexastore, as shown
in Fig. 8(b). The penalty is not as severe when there is only one constant, no
matter what role it takes in the STP, i.e. STP5, as shown in Fig. 8(c).

Fig. 9. Query Performance: SJP

Simple Join Pat-
terns (SJP) For
SJP queries, when
there are no other
variables in the STPs,
the dominating fac-
tors for query effi-

ciency are indeed those which dictate the efficiency for answering each single
STP query, as can be observed from the comparison between the evaluation of
SJP1 (Fig. 9(a)), which features an S-S join, and SJP2 (Fig. 9(b)), which fea-
tures a P-O join. Index-based storage methods are critical for improving the
performance of SJP queries, as MAP, Hexastore and TripleT are all indifferent
to the role of the variable in an STP and INLJ (index nested loop join) is fre-
quently a good choice when indices are available. The improvement can be seen
by comparing Fig. 9(a) and Fig. 9(c) (please note the difference in the scales on
the y-axis).

Fig. 10. Query Performance: CJP

Complex Join Patterns (CJP)
As to the CJP queries, we focus on
the extended star and chain shaped
patterns (ESP and ECP) we iden-
tified, especially the patterns that
were not studied in the literature be-
fore, for example, ESP1, a star pat-
tern that join on predicate role, and ECP2, a chain shaped pattern involving a
P-P join.

As can be observed from Fig. 10(a), on ESP1, VP outperforms TS and PT.
The reason is that when the predicate is unknown, in both TS and PT, all data
has to be searched then joined. However, in VP, to yield the final results, triple
in one table only need to join with other triples in the same table. In other
words, the vertical partitioning serves as a pre-hashing. As it could be seen in
Fig. 10(b), VP and PT slightly outperform TS, as they both take advantage of
the known predicate to narrow down the search in evaluating one STP. However,
due to the uncertainty introduced by the variable in the predicate roles, their
advantage over TS is not as obvious as if the query is a CSP with features only
S-O joins. As the index-based storage methods are indifferent to the the roles
of the variable, adding more STPs and more joins only intensify what we have
observed in the SJP cases.

4 Conclusion

Based on the in-depth study of the RDB-based RDF data storage and index-
ing methods, we introduce a set of key data characteristics based on which we

12

compare the storage efficiency of these methods. We study SPARQL queries,
introduce new ways to classify patterns based on the locations of the variables,
and compare and analyze the query evaluation efficiency of the storage methods,
focusing on the query patterns that were not in the RDF benchmarks and not
reported in the literature.

Our empirical evaluation testify the law of engineering design: there is no
one-size-fit-all methods — each method is superb only for certain types of data
and certain types of queries. Our study also illustrates the insufficiency of ex-
isting RDF benchmarks for providing thorough and in-depth measurement of
RDF data management and query evaluation techniques. We believe that our
analysis and findings presented in this paper will serve as guideline for designing
better RDF benchmarks, which is indeed what we plan to pursue in the wake of
completing this project.

References

1. Librarything data-set. http://www.librarything.com/.
2. LUBM data-set. http://swat.cse.lehigh.edu/projects/lubm/.
3. Resource Description Framework (RDF). Model and Syntax Specification. Tech-

nical report, W3C.
4. D. Abadi and et al. Scalable Semantic Web Data Management Using Vertical

Partitioning. In VLDB, pages 411–422, 2007.
5. D. Abadi and et al. Using The Barton Libraries Dataset As An RDF Benchmark.

Technical Report MIT-CSAIL-TR-2007-036, MIT, 2007.
6. D. Brickley and et al. Resource Description Framework (RDF) Schema Specifica-

tion. W3C Recommendation, 2000.
7. J. Broekstra and et al. Sesame: A Generic Architecture for Storing and Querying

RDF and RDF Schema. In Semantic Web, pages 54–68, 2002.
8. G. Fletcher and et al. Scalable Indexing of RDF Fraphs for Efficient Join Process-

ing. In CIKM, pages 1513–1516, 2009.
9. T. Furche and et al. RDF Querying: Language Constructs and Evaluation Methods

Compared. In Reasoning Web, pages 1–52, 2006.
10. A. Harth and et al. Optimized Index Structures for Querying RDF from the Web.

In LA-WEB, pages 71–, 2005.
11. T. Neumann and et al. RDF-3X: a RISC-style Engine for RDF. Proc. VLDB

Endow., 1(1):647–659, 2008.
12. T. Neumann and et al. Scalable Join Processing on Very Large RDF Graphs. In

SIGMOD, pages 627–640, 2009.
13. M. Schmidt and et al. SP 2 Bench: A SPARQL performance benchmark. In ICDE,

pages 222–233, 2009.
14. L. Sidirourgos and et al. Column-store Support for RDF Data Management: Not

all Swans are White. Proc. VLDB Endow., 1:1553–1563.
15. F. Suchanek and et al. YAGO: A Core of Semantic Knowledge - Unifying WordNet

and Wikipedia. In WWW, pages 697–706, 2007.
16. C. Weiss and et al. Hexastore: Sextuple Indexing for Semantic Web Data Manage-

ment. Proc. VLDB Endow., 1:1008–1019, August 2008.
17. K. Wilkinson and et al. Jena Property Table Implementation. In SSWS, 2006.

