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Abstract—An HPC application must be resilient to sustain
itself in the event of process loss due to the high probability
of hardware failure on modern HPC systems. These applications
rely on resilient runtime environments to provide various re-
siliency strategies to sustain the application across failures. This
paper presents the ErrMgr recovery policy framework providing
applications the ability to compose a set of policies at runtime.
This framework is implemented in the Open MPI runtime
environment and currently includes three policy options: run-
through stabilization, automatic process recovery, and preemp-
tive process migration. The former option supports continuing
research into fault tolerant MPI semantics while the latter two
provide transparent, checkpoint/restart syle recovery. We discuss
the impact on recovery policy performance for various stable
storage strategies including staging, caching, and compression.
Results indicate that some stable storage configurations designed
to provide low overhead during failure-free execution often
negatively impact recovery performance.

I. INTRODUCTION

With the increasing size of High Performance Computing
(HPC) systems, process loss due to hardware failure is becom-
ing a limiting factor to application scalability. Resilient appli-
cations (i.e., applications that can continue to run despite pro-
cess failure) depend on resilient runtime and communication
environments to sustain the remaining live processes across
the failure of a peer process. In typical HPC environments,
communication is provided by an Message Passing Interface
(MPI) implementation [1] and process launch, monitoring, and
cleanup is provided either by the corresponding MPI runtime
or by a system-provided runtime. Therefore a resilient MPI
implementation depends on a stable and recoverable runtime
environment that can sustain both the MPI implementation and
the application. Unfortunately, resilient runtime environments
and resilient MPI implementations are uncommon today. As a
result, applications - even applications that are designed to be
resilient - are forcibly removed from the system upon process
failure.

This paper presents recent advancements in the Open MPI
project providing the foundational components of a resilient
runtime environment to support resilient MPI applications.
Primary among these components is the Error Management
and Recovery Policy (ErrMgr) framework in the Open MPI
Runtime Environment (ORTE). The ErrMgr framework pro-
vides applications with a variety of individual recovery policy
options that can be composed at runtime to form a tailored
recovery policy solution to best support the resilient appli-
cation. We discuss three currently available recovery policy

options: run-through stabilization, automatic process recovery,
and preemptive process migration. Run-through stabilization
supports continuing research into fault tolerant MPI seman-
tics allowing the application to continue running without
requiring the recovery of lost processes. Automatic process
recovery and preemptive process migration are transparent
Checkpoint/Restart (C/R) supported recovery policies.

Although various individual recovery policies have been
explored in previous research, the ErrMgr framework unites
these techniques into a novel composable infrastructure. This
unique framework allows policies to be composed in a cus-
tomizable and interdependent manner so applications can
choose from a wide range of recovery policy options instead
of just one, as with most previous contributions. Additionally,
the composable nature of this framework reduces the recovery
policy development burden by supporting and encouraging
code reuse. Unique to this framework is the ability of one
policy to failover onto another policy. For example, this
framework allows an application to compose a recovery policy
from individual light-weight and a heavy-weight policies.
Combining the two policies allows the light-weight approach
to be used for small groups of failures, and then failover to
the heavy-weight approach for large groups of failures.

A logical stable storage device provides recovery policies
with a reliable location to place recovery information during
normal execution that can be later used during recovery.
The implementation of the stable storage device can have
considerable impact on both the failure-free and recovery
performance overhead of a recovery policy. Accordingly, this
paper develops the Stable Storage (SStore) framework and
analyses the performance tradeoffs for various stable storage
strategies including staging, caching, and compression. Results
indicate that some stable storage configurations designed to
provide low overhead during failure-free execution often neg-
atively impact recovery performance. Additionally, for some
applications the use of compression and caching can greatly
improve both the failure-free and recovery performance.

II. RELATED WORK

Resilient applications depend on a resilient communication
and runtime environments to enable continued operation across
a process loss. Algorithm Based Fault Tolerance (ABFT) [2]
and Natural Fault Tolerance [3], [4] techniques focus on
modifying, or choosing alternative core algorithms to integrate



fault tolerance techniques. Such algorithms often either con-
tain support for diskless checkpointing [5], [6], [7], [8], [9]
or exploit the ability of an algorithm to compute previous
results from current data [10], [11], [12]. Such techniques
are encouraging examples of how applications can adapt to
become more resilient to process loss at an algorithmic level.

A. Fault Tolerance and MPI

To support resilient applications the underlying message
passing environment must also be resilient to process failures.
As the de facto standard message passing environment, MPI
is often looked to for resilience support [1]. Unfortunately, the
MPI standard does not specify the semantics regarding how
an MPI implementation should behave after a process failure.
Individual, high-quality implementations are left to define their
own behaviors [13]. Most MPI implementations do not support
such additional semantics for fear of added implementation
complexity and the potential performance impact.

The research is limited with regards to MPI implementations
providing the ability to continue operating across process
failure. The most notable project that investigated such an
implementation is the FT-MPI project [14], [15], [16]. FT-
MPI is an MPI-1 implementation that extended the MPI
communicator states and modified the MPI communicator
construction functions. Resilient MPI applications use these
extensions to stabilize MPI communicators and, optionally,
recover failed processes by relaunching them from the original
binary and rejoining them into the MPI communicator.

The Heterogeneous Adaptable Reconfigurable Networked
SyStems (HARNESS) runtime environment supports the FT-
MPI project by providing process fault detection and global
recovery operations [17], [18]. The recovery procedure in the
HARNESS project relies on a distributed, resilient election
algorithm that chooses a leader that in turn determines the
view of the system after a failure. In the Open MPI Runtime
Environment (ORTE) we simplify this algorithm by requiring
that the Head Node Process (HNP) survive all anticipated
failures in the HPC system; thus the HNP becomes the re-
covery leader. This simplification reduces both the algorithmic
complexity of the recovery protocol and the time required to
stabilize the runtime environment after process loss. Similar to
the HARNESS project, ORTE uses a fault notification service
to distribute fault events throughout the runtime environment.

The ABARIS project [19] provided a fault tolerance frame-
work for MPI implementations allowing a user to select from
a variety of individual recovery policies at runtime. They
supported the ability to ignore process loss, restart compu-
tation from the last checkpoint, and migrate processes using
coordinated checkpointing. The ErrMgr framework in the
ORTE allows for the dynamic selection of the recovery policy
combining the dynamic recovery policy concept from ABARIS
and the infrastructure lessons from the FI-MPI/HARNESS
projects. Extending from the previous research, this frame-
work allows recovery policy options to be both individually
selectable and composable providing the application with a
wider range of policy options.

B. Fault Recovery

Once a process failure has been detected and the runtime
has stabilized, then the software stack can consider recovery
options. The recovery policy may be as straightforward as
removing references to the failed processes and continuing
execution, often called running through failure or running
while crippled. Alternatively, the application or runtime en-
vironment may choose to promote a replicated process, or
restart the failed processes from the original binary or from
a previously established checkpoint. As discussed in the
ABARIS project [19], providing the application and runtime
environment with a variety of recovery options allows it to
choose the option best suited for the application given the
state of the computing environment.

To recover from process loss, replication and rollback recov-
ery policies return one or more processes to a previously es-
tablished state [20]. Message logging and Checkpoint/Restart
(C/R) represent the primary categories of rollback recovery
techniques.

Process replication often either involves primary backup or
active replica update techniques [21], [22]. Only a few MPI
implementations have experimented with replication, often
focusing on implementations transparent to the application.
Notable implementations include MPI/FT [23], P2P-MPI [24],
VolpexMPI [25], and rMPI [26]. Each implementation focuses
on providing only a replication-based recovery policy. In this
paper, we present an infrastructure that is able to support
replication research as one of many composable recovery
policies available in the system.

Message logging rollback recovery techniques restart the
failed processes from either the beginning of execution or,
when combined with uncoordinated C/R, from a previously
established checkpoint. The failed process is then allowed
to rely on a log of external events to guide the process
execution back into a state consistent with the rest of the
processes in the job [27], [28]. Notable implementations of
various message logging protocols include Manetho [29],
Egida [30], MPL* [31], RADICMPI [32] and MPICH-V [33],
[34]. The MPICH-V project contributed a variety of imple-
mentations each investigating various message logging and
C/R techniques [35]. The extensible infrastructure in Open
MPI, including the ErrMgr framework, supports concurrent
research into both C/R and message logging techniques. Early
work on the integration of message logging techniques into
Open MPI are presented in [36].

Checkpoint/Restart (C/R) rollback recovery is a technique
used to reduce the amount of computation lost to process
failure by restoring processes from a previously established
point in the computation. Applications establish checkpoints
during failure-free operation by writing them to a stable
storage medium. A stable storage medium is a logical device
that survives the maximum number of anticipated failures in
the system [20]. Usually this is represented as a centralized
file server able to recover all processes in a job, though peer
based techniques can be used for partial job recovery.



When discussing the cost of checkpointing techniques,
we must consider the effect on both the application and
the system. The additional execution time required by the
application as a result of taking a single checkpoint is called
the Checkpoint Overhead [37], [38]. The Checkpoint Latency
is the time required to create and establish a checkpoint on
stable storage [37], [38]. If the application is suspended until
the checkpoint is established then the checkpoint overhead is
equal to the latency, which is the case for many direct to central
storage techniques.

There are three broad categories of C/R implementations
with varying degrees of complexity and consistency: unco-
ordinated, message induced, and coordinated [20]. Uncoor-
dinated C/R protocols do not coordinate among processes
when creating checkpoints, but instead apply algorithms to
determine the set of consistent checkpoints on restart [39],
[40], [41], [42]. Message induced (or communication induced)
C/R protocols take both independent and forced checkpoints
dependent upon state information piggybacked on messages in
the system [43], [44], [45]. Coordinated C/R protocols require
that all processes take a checkpoint at logically the same
time [46]. Coordinated C/R protocols create a consistent, and
often a strongly consistent or quiescent state, of the network
before checkpoints are created to account for messages in-
flight at the time of the checkpoint [41], [47]. Coordinated
C/R protocols are a popular implementation choice due to its
relative simplicity and strong consistency characteristics.

Although C/R is not part of the MPI standard, it is often
provided as a (semi-)transparent service by MPI implemen-
tations including LAM/MPI [48], M? [49], CoCheck [50],
MPICH-V [35], MVAPICH [51], and Open MPI [52], [53].
Most implementations provide support for checkpointing an
MPI application and restarting it from a new job submission.
Few implementations provide automatic, in-place recovery of
the MPI application. In this paper we will present an imple-
mentation of automatic, in-place recovery using a coordinated
C/R technique similar to that presented in [54].

Process migration moves a process from a source machine
to a destination machine during execution for either fault
tolerance or load balancing purposes. When process migration
is used for fault tolerance, it is important that the technique
used does not leave residual dependencies on the source
machine. A residual dependency is a dependency on the source
machine after the process has migrated to the destination
machine. There are a variety of techniques for transferring a
process from the source to the destination machine [55]. This
paper presents an implementation of an eager copy process
migration protocol where the computation is paused while the
entire process image is transferred and restarted on the desti-
nation machine. Other work has investigated applying a pre-
copying (a.k.a., syphoning or live migration) process migration
protocol to reduce the migration overhead experienced by the
application [56], [57].

C. Stable Storage

A logical stable storage device provides recovery policies
with a reliable location to place recovery information during
normal execution that is used during recovery. Due to the large
amount of recovery data typically involved with C/R based
recovery policies, the performance of stable storage accounts
for the majority of the checkpoint latency.

Checkpoint compression is one way to reduce the check-
point latency; reducing the amount of checkpoint data that
is pushed to stable storage reduces the I/O required to store
the checkpoint [58], [59], [60], [61]. Most research using
compression employs in-line compression while writing the
checkpoint [59]. Only a few researchers have looked at
compression as part of a larger staging process at the stable
storage level, as we will in this paper. Though compression
may reduce the size of the checkpoint, it only improves
the checkpoint latency “...if the speed of compression is
faster than the speed of disk writes, and if the checkpoint
is significantly compressed.” [59].

Another technique used to reduce checkpoint latency is to
use peer-based storage and/or multi-level staging techniques.
Peer-based stable storage techniques remove the dependency
on central storage by using node-local storage on peer systems
to reduce the stress on the central file system [62]. The
SCR [63] and stdchk [64] projects have shown consider-
able performance and system reliability improvements by
moving to a peer-based stable storage environment for C/R.
Staging and staggering techniques reduce the stress on the
central storage device by managing the concurrent writes in
response to the currently available bandwidth and system
architecture [65], [66], [67], [68]. Caching files in node-
local storage, reduces the stress on stable storage improving
recovery performance [69], [70]. This paper explores the effect
of node-local staging, caching, and compression techniques in
the stable storage pipeline on recovery policy options.

III. OPEN MPI ARCHITECTURE

Open MPI [71] is an open source, high performance, MPI-2
compliant implementation of the MPI standard [1]. Open MPI
is built upon the Open MPI Runtime Environment (ORTE)
project that provides runtime services customized at build and
runtime to support Open MPI applications running on HPC
systems.

A. Modular Component Architecture

Open MPI is designed around the Modular Component
Architecture (MCA) [72]. The MCA provides a set of com-
ponent frameworks to which a variety of point-to-point, col-
lective, and other MPI and runtime-related algorithms can be
implemented. The MCA allows for runtime selection of the
best set of components (implementations of the framework in-
terfaces) to properly support an MPI application in execution.

MCA frameworks in Open MPI are divided into three dis-
tinct layers: Open Portable Access Layer (OPAL), Open MPI
Runtime Environment (ORTE), and Open MPI (OMPI). OPAL
is composed of frameworks that are concerned with portability
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across various operating systems and system configurations
along with various software development support utilities
(e.g., linked lists). ORTE is composed of frameworks that
are concerned with the launching, monitoring, and cleaning
up of processes in the HPC environment. The OMPI layer
is composed of frameworks to support the MPI interfaces
exposed to the application layer. Figure 1 illustrates this
layering.

Many frameworks are combined to form the ORTE
layer. The communication frameworks in ORTE combine
to provide a resilient, scalable out-of-band communication
path for the runtime environment. The Out-Of-Band (OOB)
framework provides low-level interconnect support (cur-
rently TCP/IP based). The Runtime Messaging Layer (RML)
framework provides a higher-level point-to-point communi-
cation interface including basic datatype support. The Group
Communication (GrpComm) framework provides group com-
munication, collective-like operations among various pro-
cesses active in the runtime environment. The Routing Table
(Routed) framework provides a scalable routing topology for
the GrpComm framework.

The Process Lifecycle Management (PLM) framework is re-
sponsible for launching, monitoring, and terminating processes
in the runtime environment. The ORTE Daemon Local Launch
Subsystem (ODLS) framework provides the same services as
the PLM, but on a local node level. The Resource Mapping
Subsystem (RMapS) framework is responsible for mapping a
set of processes onto the currently available resources.

The ErrMgr framework is accessible throughout the ORTE
and OMPI layers. This framework provides a central reporting
location for detected or suspected process, or communication
failure. In this paper, we have extended the ErrMgr to include
support for a composable set of recovery policies, discussed
in Section IV. The Notifier framework works with the ErrMgr
framework and provides an interface for processes to send and
receive reports on abnormal events in the system, including
process failure or communication loss.

B. Checkpoint/Restart Infrastructure

The checkpoint/restart infrastructure integrated into Open
MPI [52], [53] is defined by process and job levels of control.
These two levels of control work in concert to create stable

job-level checkpoints (called global snapshots) from each
individual process-level checkpoint (called local snapshots).

Job-level control is composed of two original frameworks
and one new framework. The Snapshot Coordination (SnapC)
and File Management (FileM) frameworks are part of the
original design. This paper introduces the SStore framework
into the C/R infrastructure in Open MPI. The SnapC frame-
work controls the checkpoint life-cycle, from distributing
the checkpoint request to all processes, to monitoring their
progress, to synchronizing the final snapshots to stable storage.
The FileM framework focuses on the movements of individual
local snapshots to and from storage devices possibly across file
system and node visibility boundaries.

The new SStore framework is a stable storage framework
that abstracts the SnapC framework from the underlying
mechanism of how snapshots are established on the stable
storage medium. A global snapshot is said to be established
on stable storage when the snapshot is able to be used to
recover the application from stable storage up to the number of
anticipated failures in the system. For example, in a centralized
stable storage environment (e.g., SAN) that is able to handle
the loss of the entire job, the global snapshot is established
when all of the local snapshots have successfully been written
to the centralized stable storage environment. In a peer-
based, node-local stable storage medium that replicates local
snapshots among N peers, the global snapshot is established
upon verified completion of the replication stage.

The SStore framework currently supports two components:
central and stage. The central component stores local snap-
shots directly to the logically centralized stable storage device
(e.g., SAN, parallel file system). The application is stalled
until all of the local snapshots have been established to the
storage device. The stage component uses node-local storage
(e.g., local disk, RAM disk) as a staging location for moving
local snapshots back to the logically centralized stable storage
device. The application is allowed to continue execution once
all of the local snapshot have been written to the node-local
storage devices. The ORTE daemon then concurrently moves
the local snapshots back to the logically centralized stable stor-
age device, overlapping snapshot movement with application
execution often improving the checkpoint overhead.

To improve the performance of C/R based automatic recov-
ery and process migration, discussed in Section IV, we have
also implemented local snapshot caching and compression
in the stage component. Local snapshot caching requires
processes to keep a copy of the last NV local snapshots (default
2) on node-local storage. This improves the performance of
automatic recovery since all of the non-failed processes are
not moved in the system, and can use the locally cached copy
of the snapshot instead of going to the stable storage device.

The compression feature adds one more step in the staging
pipeline. After the application writes the local snapshot to
node-local storage it is able to continue execution. Once all
of the process on the node have finished checkpointing the
ORTE daemon compresses the local snapshot using one of a
variety of compression utilities (e.g., bzip, gzip, zlib). After the



compression stage, the compressed local snapshot is moved to
the logically centralized stable storage device. Moving forward
with this framework, we plan to support other checkpoint-
specific stable storage file systems (e.g., stdchk [64]).

IV. ERROR MANAGEMENT AND RECOVERY POLICY
FRAMEWORK

The Error Management and Recovery Policy (ErrMgr)
framework was originally designed to provide Open MPI
processes and daemons a stable interface to report process and
communication failure so that the proper job abort procedure
could be taken. This paper extends the ErrMgr framework to
support a variety of recovery policies. However, since recovery
is a non-standard feature this framework preserves, by default,
the termination of the job upon process failure. The ErrMgr
framework is a composite framework which allows more than
one recovery policy component to be active at the same time.
The ability to compose a recovery policy from multiple ErrMgr
components enables the application to tailor the recovery solu-
tion to their application and system requirements. Additionally,
the composable nature of this framework reduces the recovery
policy development burden by supporting and encouraging
code reuse.

In the composite ErrMgr framework components stack
themselves in priority order and pass a status vector between
active components. To facilitate cross-component collabora-
tion, the status vector allows one component to indicate to
the next component any action it may have taken as a result
of an anticipated or detected process fault. For example, this
framework allows for two process recovery components to
work together to provide a light-weight and heavy-weight
recovery policy. The light-weight recovery policy may handle
small groups of concurrent failures, and then defer to the
heavy-weight recovery policy that is able to handle a larger
groups of concurrent failures.

An MPI process detects process failure by way of commu-
nication timeouts or errors and calls the process_fault ()
interface of the ErrMgr to report the fault. The ErrMgr works
in concert with the Notifier framework to distribute the fault
event throughout the runtime environment. These frameworks
are able to recognize and handle multiple reports of the same
failure. The ErrMgr in the MPI process is able to stabilize
locally while waiting for a global ruling on how to proceed
by the same ErrMgr component active in the HNP, serving as
the global leader.

Fault detection inside the ORTE environment is currently
communication and, optionally, heartbeat based. If one process
is unable to communicate with a peer it declares that process as
failed and notifies the ErrMgr framework for recovery. If there
is no recovery policy defined by the ErrMgr component then
the job aborts. The local ErrMgr component can receive fault
notification events from external fault detection/prediction
sources through the Notifier framework (including support
for CIFTS FTB [73]). Though the current components decide
globally how to recover from a failure, the framework interface

is general enough to support a more localized or distributed
recovery policy and notification implementations.

A. Runtime Stabilization

The default behavior of the ErrMgr framework is to termi-
nate the entire MPI job upon the detection of process failure.
The sustain ErrMgr component provides the ability to choose
to run-through the process failure by, instead of terminating the
job, simply stabilizing the runtime environment and continuing
execution.

The Routed, GrpComm, and RML frameworks have been
extended to include interfaces for the ErrMgr to notify them
of process failure for framework- and component-level stabi-
lization. The individual components are then responsible for
recovering from the failure. If the component cannot recover
from the loss, indicating an unrecoverable runtime, it can
return an error value which will terminate the job.

Since MPI processes always route ORTE layer out-of-
band communication through their local daemon, the daemon
contains the bulk of the recovery logic for rerouting, delaying
or dropping communication around recovery from process
loss reducing the per process recovery overhead. Dropped
communication will return as a communication error to the
sending or receiving process.

As part of the stabilization an up-call is made available to
the OMPI layer from the ErrMgr component to indicate that
a process has been lost and that the OMPI layer stabilization
and recovery procedures should be activated. Stabilization at
the OMPI layer often includes, but is certainly not limited to,
flushing communication buffers involving the failed peer(s),
activating error handlers and error reporting paths back to the
application, and stabilizing communicator and other opaque
MPI data structures. The semantics for how MPI functions
behave across process failure is still an active area of research
and is currently under consideration by the Fault Tolerance
Working Group in the MPI Forum. The ErrMgr framework
was designed to support this effort by providing well-defined
stabilization procedures for the runtime environment. The
OMPI layer builds upon the stabilized runtime to support
research into MPI fault tolerance semantics.

B. Automatic Recovery

Instead of just running through a failure, the application may
choose to recover from the loss by automatically recovering
from the last established global snapshot of the application by
enabling the autor ErrMgr component. The autor component
is notified of process failure via the process_fault ()
interface. By default, the autor component places a failed
process on a different node than the one it resided on before
the failure. This avoids repeated failures due to node specific
component failure that may have caused the original process
failure.

Since this implementation of automatic recovery is based
in a coordinated C/R implementation, all processes must be
restarted from a previously established global snapshot in
order to provide a consistent state on recovery. Depending



on the SStore component active in the application, the local
snapshots may be pulled directly from logically centralized
stable storage or staged to node-local storage before restart.
If there is a locally cached copy of the local snapshot, a
process can improve recovery time by using it to reduce the
performance bottleneck on central storage.

C. Process Migration

When a process or node failure is anticipated, the ErrMgr
components are notified via the predicted_fault () in-
terface. This interface provides the ErrMgr components with a
list of anticipated process and node faults supported by an ex-
ternal fault prediction service or system administrator. The ex-
ternal fault prediction service can express with each prediction
both an assurance level, and an estimated time bounds. The
estimated time bounds allow the process migration ErrMgr
component, crmig, to tell if it has enough time to migrate
the processes or if it should defer to the autor component for
failure recovery taking advantage of the composible nature of
the ErrMgr framework. The ompi-migrate tool provides
a command line interface for end users to request a process
migration within a running MPI application.

Additionally, this command line interface allows an external
service the ability to provide a suggested list of target nodes
to use in replacement for the affected nodes. The RMapS
framework uses the suggest_map_targets () interface
to allow the ErrMgr components the opportunity to suggest
nodes for each recovering process. The ability to suggest
destination nodes allows a system administrator to move
processes from a set of nodes going down for maintenance
to a set of nodes dedicated to the process for the duration of
the maintenance activity. This also allows users to experiment
with using process migration for load balancing since they
can also specify specific process ranks instead of just nodes
for migration.

The crmig ErrMgr component implements an eager copy
process migration protocol without residual dependencies
based on the coordinated C/R infrastructure in Open MPI.
Only the migrating processes are checkpointed, all other pro-
cesses are paused after the checkpoint coordination. Once the
migrating processes have been successfully restarted on their
replacement nodes, the non-migrating processes are released
and computation is allowed to resume.

If an unexpected failure occurs during process migration,
then the migration is canceled and the autor component is
allowed to recover the job from the last fully established global
snapshot. If the autor component is not active, and no other
recovery policy is enabled, then the job will terminate.

V. RESULTS

This section presents an analysis of the affect of stable
storage configuration on recovery policy performance. In these
tests we are using the Odin cluster at Indiana University.
Odin is an 128 node, Dual AMD 2.0 GHz Dual-Core Opteron
machine with 4 GB of memory per compute node. Compute
nodes are connected with gigabit Ethernet and InfiniBand. It is
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Fig. 2. Performance affect of SStore components on application latency.

running RedHat Linux 2.6.18-53, BLCR 0.8.1, and a modified
version of Open MPL. In our analysis we ran the benchmarks
and applications using two of the four cores on each of the
compute nodes, as to alleviate some of the memory contention
on the nodes. In this experiment the local snapshots were
compressed (using gzip) on the same node as the application
process. Future studies will assess the benefits of using an
intermediary node to assist in the compression process.

For the automatic recovery, process migration, and stable
storage overhead discussions we will primarily be using a
noop program that can be configured with a variable sized
random matrix to emulate various process sizes. In these
experiments, the noop program was given a 10MB random
matrix per process.

Additionally, we assessed the impact of SStore configura-
tions, including compression, on the Parallel Ocean Model
(POP) [74], Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [75], and High-Performance Linpack
(HPL) [76] HPC software packages. In our analysis of POP,
we used the benchOl.tacc benchmark over 5 days of simula-
tion. In our analysis of LAMMPS, we used a scaled version of
the metal benchmark eam involving 11 million atoms over 400
steps. In our analysis of HPL, we used a variety of problem
sizes: 40,000 for 64 process, 55,000 for 128 processes, and
70,000 for 192 processes.

A. SStore Overhead

In this section we assess checkpoint overhead by measuring
the impact of various stable storage strategies on application
performance. We used a continuous latency test that measures
the time taken for an 8KB message to travel around a ring of
64 processes. With this test we are able to both illustrate the
impact of the stable storage strategy on the application, and
to measure the impact of the checkpoint overhead. Figure 2
illustrates the impact of using the following SStore compo-
nents:

« central
« stage
« stage with compression enabled



The central SStore component adds approximately 1018
microseconds of half roundtrip point-to-point latency overhead
across the checkpoint operation which takes 11.1 seconds.
The stage SStore component adds approximately 244 mi-
croseconds of overhead spread over 21 steps of computation.
The checkpoint took 8.3 seconds, spending only 0.8 seconds
establishing the local snapshot on the local disk, and 7.4
seconds staging the local snapshots back to stable storage. The
compression enabled stage SStore component adds approxi-
mately 257 microseconds of overhead spread over 4 steps of
computation. The checkpoint took 4.1 seconds, spending only
0.7 seconds establishing the local snapshot, and 2.7 seconds
staging the local snapshots back to stable storage.

Compression adds slightly more to the checkpoint overhead
in comparison with the default stage component, but reduces
the duration of the effect. The checkpoint latency is reduced
from 8.3 to 4.1 seconds by enabling compression, since this
application is highly compressible as it resembles the com-
pression rate of the noop application presented in Table I(a).

The checkpoint latency is reduced from 11.1 to 8.3 seconds
by switching from the direct central storage (i.e., central) to
the staging protocol. Often this reduction in checkpoint latency
is caused by the flow control in the stage SStore and rsh
FileM components which constrains the number of concurrent
files in flight to 10, by default. The flow control focuses the
write operations so that only a subset of the nodes are using
the bandwidth to stable storage at the same time instead of all
nodes fighting for the same exhausted bandwidth.

The performance impact on the application runtime for
the various SStore component configurations is shown in
Figure 3(a) for POP, Figure 3(b) for LAMMPS, and Fig-
ure 3(c) for HPL. All of these figures demonstrate that the
stage SStore component is an improvement over the central
component, especially for large checkpoint sizes. Interestingly,
the compression enabled stage component may slightly im-
prove the checkpoint overhead in comparison with the default
stage component. Since the compression occurs on-node and
competes for computational cycles, one might expect the
opposite effect. However, if the application is sufficiently com-
pressible, the overhead involved in checkpointing is regained
by reducing the time to establish the checkpoint to stable
storage, reducing the overall impact of checkpointing on the
network and application.

B. Automatic Recovery

In this section we assess the performance of the automatic
recovery ErrMgr component, autor, for various SStore com-
ponent configurations. For this assessment, we are using the
noop application to focus our investigation. The noop appli-
cation is a naturally quiescent application (since it does not
communicate) with a fixed process size allowing us to focus
the analysis on the automatic recovery specific overheads. In
this experiment failed processes are placed on different nodes
than the ones they resided on before the failure. Processes
are forcibly terminated by sending SIGKILL to the target
processes from an external agent.
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Fig. 3. Checkpoint overhead impact of various SStore components.

First, we will assess the performance implications of auto-
matically recovering from a single process failure for various
job sizes restarting on spare machines in the allocation.
Figure 4(a) presents the effect of using the following con-
figurations of SStore components:

« central

« stage

« stage with compression enabled

« stage with caching enabled

From Figure 4(a), we can see that cache enabled stage
component has drastic performance benefits as the job size
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(b) Impact on a range of concurrent process failures in a 64 process job.

Fig. 4. Performance impact of SStore components on automatic recovery.

increases providing constant recovery time of approximately
3 seconds. Caching reduces the recovery pressure on stable
storage by allowing the non-failed processes to restart from the
node-local storage while only the failed processes are forced
to stage-in their local snapshots from stable storage.

The central component outperforms the cache enabled
stage component for small job sizes. This is because even
with a caching enabled stage component the failed processes
must first copy the local snapshot to the node-local stor-
age then restart from it. This is in contrast to the central
component which avoids the copy to node-local storage by
directly referencing the local snapshot. Notice also that the
compression enabled stage component begins to outperform
the default stage configuration at larger job sizes since it is
reducing the amount of data being transferred between the
stable storage device and node-local storage.

Figure 4(b) presents checkpoint latency for a variety of
concurrent failures in a fixed size job, in this case 64 processes.
The time to recover the job is not changed by the number
of failures since for all of the non-cache enabled SStore
components the entire job is terminated and recovered from
stable storage. The main variable in Figure 4(b) is the recovery
time when caching is enabled. We can see that caching
continues to provide performance benefits up to about half of
the job failing at which point the central component begins

to perform better.

Interestingly, even up to 62 concurrent process failures a
caching enabled stage component still performs better than
the default stage component. This indicates that even with
a few processes taking advantage of the node-local cache, in
this case 2 processes, there are still performance benefits to
not further stressing the stable storage device.

If we allow failed processes to be restarted on the node in
which they previously failed, the benefits of caching becomes
even more significant. The time to restart becomes approx-
imately 1.5 seconds regardless of the number of concurrent
failures or the job size. This is a slightly unrealistic use case
for typical deployments since processes failing due to node
failure often cannot access the node to restart from since it has
crashed. However, this is an interesting data point for future in-
vestigations into peer-based, node-local storage that eliminates
or reduces the need for logically centralized stable storage
devices, confirming much of the previous literature [63], [64].

C. Process Migration

In this section we assess the performance of the eager
copy process migration ErrMgr component, crmig. As in
Section V-B, we are using the noop application to focus
the analysis of the performance overheads involved in process
migration. In this experiment, processes were migrated from
a source set of machines to a destination set of machines
that were distinct from the source set. So in this experiment,
caching will not provide any benefit since the source node is
never the same as the destination node for any of the migrating
processes.

The common use case for proactive fault tolerance is to
move an entire nodes worth of processes in anticipation of a
node failure. First, we will assess the performance impact of
migrating two processes while varying the size of the MPI job.

In Figure 5(a), we can see that the central component
performs better than the either of the sStage component
configurations. Looking at the breakdown in Figure 5(b)
we are able to see that the time to restart the processes
remains fairly constant regardless of the job size among each
SStore component. This is due to the relatively low bandwidth
requirement of pulling two local snapshots from stable storage.
The signifiant difference comes in the time to stage the local
snapshot to and from stable storage. The reduction in the
checkpoint overhead is beneficial when checkpointing for fault
recovery, but contributes additional overhead to the process
migration performance.

Process migration is limited by the time to move the
checkpoint from the source to the destination system. Both
the central and stage SStore components rely on a logically
centralized stable storage device. As such, they copy the local
snapshot to the stable storage device from the source machine
then immediately copy it back from stable storage to the
destination machine. For future work, we are investigating
direct copy techniques that remove the logically centralized
stable storage device from the process migration procedure.
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(b) Breakdown of performance impact of SStore components.

Fig. 5. Performance impact of SStore components on process migration on
a range of job sizes.

Our discussion in this paper focuses on the performance impli-
cations of two common stable storage techniques provided by
C/R enabled MPI implementations. So for a small number of
migrating processes, the central component requires the least
number of copies during the migration, and given the limited
bandwidth requirements of migrating only two processes this
SStore component is the best performance option.

Next we assess the performance implications of process
migration by varying the number of migrating processes for
a fixed size job, in this case 64 processes. Figure 6(a) shows
that as the number of processes migrating are increased the
compression enabled stage component begins to outperform
the default stage component, and approaches the performance
of the central SStore component. If we look at the breakdown
of the migration overhead in Figure 6(b), we can see that
the time to checkpoint increases as we increase the number
of migrating processes, since we are checkpointing more
processes and putting more pressure on the bandwidth to
stable storage. Reciprocally, we can see the time to restart
the migrating processes increases as the number of migrating
processes increases for the same reasons. So it makes sense
that the compression enabled stage component begins to
approach the performance of the central component since it
reduces the amount of data traveling over the network to and
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Fig. 6. Performance impact of SStore components on process migration on
a range of migrating processes in a 64 process job.

from stable storage.

D. Compression

Checkpoint compression can improve checkpoint latency by
reducing the amount of data that needs to traverse the network
to and from stable storage. The benefits of compression,
in terms of improving checkpoint latency, is determined by
how well the processes address space represented in the
local snapshot can be compressed. If the checkpoint does not
compress well this can negate much or all of the benefits of
including compression in the staging pipeline. The checkpoint
overhead may also increase since, if the compression occurs
on the same machine as the process in execution, the two
processes could compete for CPU cycles. In order to access
the impact of compression on the checkpoint overhead and
latency we looked at four applications.

As a baseline number we looked at benchmarking the
noop program with O additional bytes of data, effectively
a “hello world” style MPI program. Table I(a) presents the
experimental data showing considerable improvements in the
checkpoint latency when enabling compression. Since the
checkpoint is 92% compressible the checkpoint latency is
reduced by 71.4% for a 192 process MPI job. Since the noop
program waits until it is signaled to finish the Application
Performance numbers are not meaningful for this application.



(a) noop Compression Data

NP Application Performance (sec.) Checkpoint Latency (sec.) Compression Rate (MB)
Central |  Stage (%) | Zip (%) Central | Stage (%) | Zip (%) Normal Zip %
64 N/A N/A (- %) N/A (- %) 10.3 7.6 (125.8 %) 44 (57.5 %) 258.5 21.0 91.9 %
128 N/A N/A (= %) N/A (- %) 21.8 17.7 (18.8 %) 6.9 (68.4 %) 593.8 48.3 91.9 %
192 N/A N/A (- %) N/A (- %) 40.9 28.9 (29.5 %) 11.7 (71.4 %) 1167.4 93.3 92.0 %
(b) LAMMPS Compression Data
NP Application Performance (sec.) Checkpoint Latency (sec.) Compression Rate (MB)
Central | Stage (%) | Zip (%) Central | Stage (%) | Zip (%) Normal Zip %
64 567.5 5135 (9.5 %) 5150 (9.3 %) 69.1 713 (-11.9 %) 38.0 (451 %) 4029.4 14746 634 %
128 3423 293.1 (144 %) 2771 ( 19.0 %) 87.1 90.7 (-41%) 374 (571 %) 4638.7 1694.7 635 %
192 271.3 1943  (30.0 %) 183.7  (33.8 %) 107.1 104.1 (27 %) 358 (66.6 %) 5427.2 17869 671 %
(c) POP Compression Data
NP Application Performance (sec.) Checkpoint Latency (sec.) Compression Rate (MB)
Central | Stage (%) | Zip (%) Central | Stage (%) | Zip (%) Normal Zip %
64 310.7 294.6 (52 %) 293.1 (5.7 %) 19.7 13.8 (299 %) 6.1 (69.0 %) 609.3 106.2 82.6 %
128 327.7 297.9 (9.1 %) 297.0 (94 %) 35.3 27.9 (20.8 %) 8.5 (75.8 %) 1105.9 144.5 86.9 %
192 270.0 222.3 (17.7 %) 221.1 (18.1 %) 53.6 39.8 (259 %) 14.8 (72.3 %) 1802.2 205.9 88.6 %
(d) HPL Compression Data
NP Application Performance (sec.) Checkpoint Latency (sec.) Compression Rate (MB)
Central | Stage (%) | Zip (%) Central | Stage (%) | Zip (%) Normal Zip %
64 4522 300.8 (335 %) 3027 (33.1 %) 182.4 2183  (-19.7 %) 237.2  (-30.1 %) 13557.8 13020.2 4.0 %
128 6923 4576 (339 %) 458.1 (33.8 %) 301.8  371.6  (-23.1 %) 3474  (-15.1 %) | 24581.1 232346 55 %
192 1020.8 6287 (384 %) 617.1 (39.5 %) 4938 561.8 (-13.8 %) 551.0 (-11.6 %) | 40105.0 37411.8 6.7 %
TABLE I

EFFECTS OF STAGING AND COMPRESSION ON APPLICATION PERFORMANCE AND CHECKPOINT OVERHEAD.

Next we consider the effect of compression on the metal
benchmark for the LAMMPS software package. Table I(b)
shows that compression can reduce the size of the LAMMPS
global snapshot by up to 67% from 5.3 GB to 1.7 GB reducing
not only the checkpoint latency by 67%, but also the amount
of stable storage disk space required to store the checkpoint.

Next we consider the effect of compression on the
benchOl.tacc benchmark of the POP software package. Ta-
ble I(c) shows that compression reduces the size of the global
snapshot by up to 89% and the checkpoint latency by up to
76% constituting considerable savings for this application.

Finally we consider the effect of compression on the HPL
software package. Table I(d) shows that compression only
reduces the size of the global snapshot by up to 7%. Due
to the low compression rate and the large checkpoint size the
checkpoint latency increases, but the checkpoint overhead is
reduced by up to 40%. All of the application studies show that
the checkpoint overhead can be reduced by using a staging
approach to stable storage in place of a direct approach.

VI. CONCLUSION

This paper presents recent advancements in the Open MPI
project providing the foundational components of a resilient
runtime environment to support resilient MPI applications. We
discuss our extensions to the ErrMgr framework to provide
composible, application specified recovery policies. In addition
to run-though recovery, we discuss two additional ErrMgr
recovery components that provide transparent, C/R based
process migration and automatic recovery policies. We present
a new stable storage framework, SStore, that provides the
recovery policies with an abstract interface to the stable storage

device. Additionally, we present an analysis of the impact
on recovery policy performance for various stable storage
strategies including staging, caching, and compression. The
techniques and recovery policies discussed in this paper will
be available in the Open MPI 1.5 release series.

Moving forward from this work we intend to continue
research into providing a resilient MPI interface required to
support resilient MPI applications. We also intend to investi-
gate alternative recovery techniques to the ErrMgr framework
including live-migration, replicated processes, and message
logging based recovery. The initial results of using com-
pression in the stable storage pipeline has encouraged us to
continue investigation into better models of the effects of
checkpoint compression on a wider range of applications. We
anticipate investigating peer-based, node-local storage tech-
niques as part of the SStore framework. This will include
investigation into direct source to destination checkpointing
to support process migration. Additionally, this will include
adding a support for specialized C/R file systems (e.g., stdchk)
within the SStore framework.
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