
Sigiri: Towards A Light-Weight Job Management
System for Large Scale Systems

Eran Chinthaka, Suresh Marru, and Beth Plale
School of Informatics, Indiana University

Bloomington, Indiana, USA.
{echintha, smarru, plale}@cs.indiana.edu

Abstract—e-Science applications are often compute and data
intensive, requiring large-scale compute systems for execution.
Large-scale systems, however, support a variety of resource
management interfaces that an end user must adapt to for
compute job submission and management. Grid[1] middleware
solutions abstract these heterogeneous resource managers and
offer a single unified job management interface. However, Grid
middleware tends to be highly complex, needing technically
sophisticated system administration skills to deploy and maintain
these services. Further, many clusters in the academic setting are
not part of a larger scale grid and have to be directly accessed
by non-uniform vendor specific resource managers.

With the goals of providing a simple, reliable and highly
scalable uniform job management, we introduce Sigiri, a light-
weight job management and abstraction service. Sigiri supports
existing popular job specifications like JSDL[2] and RSL[3].
A Web Service Interface is provided to easily integrate with
various scientific systems and each step in job submission and
management is decoupled to increase scalability. In this paper,
we discuss Sigiri architecture, its simplicity and experiences with
incorporating academic research clusters (managed by part-time
system administrators) into large-scale escience systems.

I. INTRODUCTION

Large scale eScience systems often employ worklfow sys-
tems as a means to execute complex sequences of compute
tasks without requiring intensive user intervention. Workflow
systems support flexible task reordering, reuse, and reconfig-
uration of the task sequence graph. Workflows are required to
encapsulate one or more compute intensive jobs that require
large-scale systems to execute in an efficient and timely man-
ner. As large-scale compute resources become more abundant
(i.e., Amazon EC2 [4], Teragrid [5], Open Science Grid [6], a
private cluster), workflow systems should be capable of work-
ing with all possible and available resources. These multiple
options maximize turnaround time but throw challenges at
workflow adoption by presenting multiple non-interoperable
access interfaces. A higher level abstraction across all possible
platforms is an ideal solution, but premature as the underlying
technologies are still emerging.

From national resources to departmental clusters, vendor-
specific resource managers such as Load-leveler[7], Portable
Batch System (PBS)[8], Simple Linux Utility for Resource
Management (SLURM)[9], and Sun Grid Engine (SGE)[10],

*This research is funded in part by the National Science Foundation under
grants ATM 0331480, ACI-0338618l, OCI-0451237, OCI-0535258, and OCI-
0504075, and a grant from Microsoft.

are in use. Grid middleware such as Globus[11] provides
a uniform interface to interact with compute platforms. In
addition to addressing the interoperability of access mecha-
nisms, Grid middleware also enables the sharing, selection,
and aggregation of a wide variety of geographically distributed
resources including supercomputers, storage systems and data
sources with a single security sign-on. Due to the complex
and diverse requirements the middleware itself has grown
complex and the scientific gateway communities that depend
on the Grid for a production environment are demanding
more than the best effort service. Moreover the complex
middleware requires a high level of technical sophistication in
system administrators, which is often not the case in academic
departments.

The contribution of this paper is the introduction of a job
management solution that supports user needs for a choice
of back-end resources on which to execute applications, from
Grids to the Cloud architectures which are quickly gaining
broad adoption. We have developed a service, called Sigri, that
provides a single interface to compute resources. The design
goals are for a lightweight easy to manage system, and one
that supports the popular job description specifications. The
service is additionally designed to be highly scalable through
an asynchronous architecture. In this paper we demonstrate
the early performance evaluation of the service’s adaptability
on two highly diverse back-end computational resources. In
future work we evaluate Sigri’s scalability and ease of use.

The remainder of the paper is organized as follows. In
Section II of this paper, we discuss the architecture of the
middleware service through identification of various compo-
nents and client and server interfaces. Section III discusses the
strengths of the system and Section IV discusses current and
future security models. Section V discusses early in adopting
Sigiri into scientific workflow systems. We discuss related
work in Section VI and conclude in Section VII with a
discussion of ongoing and future work.

II. ARCHITECTURE

The middleware tool is designed using a publish-
subsribe[12] model so employs a decoupled architecture to
improve the robustness and efficiency of the system. Job
management is divided into decoupled functional blocks to
provide component independence which, when coupled with
asynchronous communication, improves the system scalability.



Figure 1 identifies the components and depicts their interac-
tions.

• Sigiri Web Service
• Job Submission and Management
• Asynchronous Job Status Notification

Fig. 1. Sigiri Architecture Diagram

A. Sigiri Web Service

: A front-end service provides a web service single access
point for platform independent clients, such as workflow
clients, to submit and manage jobs to multiple large-scale
systems. The asynchronous job submission request is queued
and persisted and the request is responded to by means of a
unique internal job identifier. The clients have an option of
registering a callback URL or email to receive notification of
job status changes. The Sigiri web service also supports job
termination and other job management operations. The service
persists the client handles and the resource manager handles
and correlates between the two accordingly.

B. Job Submission and Management

: Referred to in Figure 1 by the Persistent Layer block
and some number ’n’ of Resource Manger Daemons, each
managed compute resource has a light-weight daemon which
periodically checks the job request queue, translates the job
specification to a resource manager specific script, submits the
pending jobs and persists the correlation between the resource
manager’s job id with internal id. The daemon also handles
resource manager specific faults and propagates them to the
service to notify the clients.

The Job monitoring process continuously monitors the state
of submitted jobs using a resource manager specific API to
retrieve the information. Where supported, like IBM Load
leveler[7], Sigiri uses the resource manager C API for regis-
tering callbacks during submission and the resource managers
notify the registered end point with status changes. When call
backs are not supported Sigiri polls the resource manager for
status information taking into consideration quality of service
metrics like estimated queue wait time, maximum wall time
and scaling back accordingly.

C. Asynchronous Job Status Notification

: Sigiri clients can register a call back email address to
receive notifications of job progression and status. On status
changes notified by a resource manager or polled by Sigiri,
the monitoring daemon verifies for any registered call back

clients and notifies each. It also updates the persistence data
for clients to poll.

The job acceptance and submission is decoupled to sustain
the initial response time and to surge protect the rate of
resource manager’s job submission. The sustained rate of
acceptance increases the scalability of the job management
system greatly empowering support of large scale workflow
systems. This decoupling also helps the system to sustain
the communication failures of underlying resources and retry
and recover when the system returns to healthy state. This
asynchronous job acceptance introduces latencies but the ro-
bustness and constant performance out weighs this minimally
introduced delays.

III. DESIGN DECISIONS

The design and implementation of the job management
system is driven by the needs of large-scale scientific systems.
Some of the key considerations include the following:

A. Abstraction of heterogeneous resource managers

: Resource managers on large-scale systems differ from each
other for various reasons including vendor preference, licens-
ing costs, platform dependence and performance. Resource
managers accept different job script formats and have different
interfaces, but all of them provide ways to submit jobs, monitor
progress and many even support call back notifications. In
our job management solution, all resource manager specifics
are coded into Job Submission And Management module
and provided to users as an extensible API. The interface
is abstracted to work with different resource managers, and
clients send one of the supported standard job description
formats. A resource manager-specific plugin translates the job
description to specific scripts, submits and manages the job.

Currently Sigiri supports IBM Load Leveler[7], PBS[8]
and SLURM[9]; new resource managers can be added with
minimal effort. The script parser can be extended to write
the new scripts and JobManager class can be extended to
implement the submit, cancel, and check status methods. And
finally the new resource has to be registered with Sigiri system.
The remainder of the job management system is generic and
one installation of a server can manage multiple resources.

B. Regulation of resource manager submissions

: Each resource manager has a scalability limit on concur-
rent job submissions. The Sigiri job management components
regulate job submissions by throttling and working within the
operating limits of resource managers. Since Job Acceptance
and Submission are decoupled, clients do not see higher
latencies, and the immediate status notifications indicate that
the job queuing within the Sigiri system. Initial performance
evaluations reveal that the users will get the ”job submitted”
response within 125ms.

C. Dynamic Workflow Support

: Scientific workflows often need to be adaptive and dy-
namically reconfigurable [13] based on various factors like



change in real-time input data, unanticipated output behavior,
delays in batch queues or applications exceeding anticipated
execution times. Adapting workflows to these environmental
changes requires that the workflow system be able to change,
cancel, and modify job submission requests. Sigiri exposes
this needed functionality through the web service interface.
Option features like verifying the status of resource alloca-
tions will help workflow clients make informed decisions and
reconfigure workflows accordingly.

D. Monitoring by Push or Pull Models

: Each resource manager offers different approaches for
querying job status information. As a bottom line, every
resource manager provides support for polling for status, but
certain resource managers, like Load Leveler provides a C
API to register a callback. This push based notification model
is very efficient as the resource manager can instantly notify
status changes as opposed to delays in poll based approach.
Sigiri tries to take advantage of push based notifications where
available and falls back to poll based approach if the resource
manager does not support push.

E. Ensuring status changes are not missed

: Scientific workflow tasks are very long running and cannot
be risked to miss a completed job due to communication or
any other middleware failures. Resource managers typically
maintain job status in memory for only a brief period of time
after a job is complete, after which the job details are pushed
into a historical repository. Secondly, almost every resource
manager kills any pending jobs after the specified wall-clock
time is reached.

When polling for jobs, there are scenarios where a job
status can be missed when the resource manager may remove
job status between polls by the job management system.
We have additionally seen resource manager demons getting
overwhelmed by current load and become inaccessible tran-
siently. To ensure that workflows continue to make progress
for any of these reasons or other unexpected communication
failures, Sigiri tracks each job based on its execution metrics.
When status is not notified for a specified period, it reverts
to alternative approaches of acquiring job status. For example,
if the job active notification is received and no completion of
failure is received after the maximum wall clock time, then
history data is queried to find more information about the job
and user is notified of the same. Similarly when Sigiri has
subscribed to receive notifications from push based resource
managers and transient network failures cause status to be
missed, Sigiri will also poll the resource manager and its
history files directly ensuring no status is missed.

IV. SECURITY

Job management systems should enforce strong security
measures to avoid any unauthorized access or malicious at-
tacks to large-scale systems. The Sigiri web service mandates
SSL mutual authentication and the client and server certifi-
cates are issued and periodically audited through a controlled

process. The database connections are tightly controlled as
well. Sigiri does not do any further job deletion and all
secured connections to the job management system are from a
secured workflow stack. These services interact with one direct
hop and we argue that transport level security and/or WS-
Security is sufficient for securing the web service interface.
We currently use grid certificate based mutual authentication,
based on SSL, but because of the flexibility of the underlying
Web services stack, employing WS-Security based security
would be straight forward. Further security improvements are
planned as discussed in Section VII.

V. SUCCESS STORIES

Sigiri is in use as the job manager to support Linked
Environments for Atmospheric Discovery (LEAD) [14] cy-
berinfrastructure. LEAD is a large-scale e-Science system
which enables researchers and educators to assimilate real-
time observational weather data and configure and run weather
forecasts on demand. In support of LEAD workflow submis-
sions, Sigiri is managing jobs to Indiana University’s Big
Red, a 30.7 Teraflop, 3000 IBM JS21 cores Massively Parallel
Processing system managed by Load Leveler. Sigiri has also
been tested on National Center for Supercomputing Appli-
cation’s Abe, a 89.47 Teraflop, 9600 Intel 64 cores cluster
managed by PBS Resource Manager. The easy installation
of Sigiri has motivated adoption and management by a part-
time administrator who maintains a 16 core Intel cluster at
Howard University and non-grid enabled Indiana University’s
Quarry, a 896 Intel Xeon cores cluster managed by PBS being
incorporated into LEAD workflows.

National grid resources like TeraGrid serve the majority
of the e-Science production workflow needs. There are a
significant number of research applications which have to be
co-located with the data and as the latter undergoes constant
changes, scientists prefer to execute them on local academic
research clusters. For example, LEAD collaborators at Howard
University intend to study upper air data obtained during an in-
tensive field campaign and process that data to display standard
meteorological charts used to develop forecasts for operational
decision-making. The charts are rendered on different temporal
and spatial scales. Additionally the cataloged and stored data
will be processed retroactively to develop analysis of the
thermodynamic and dynamic conditions that prevailed during
the campaign. Through Sigiri, the LEAD workflow engine
is able to utilize academic clusters like Howard University’s
cluster. This feature is anticipated to increase the adaption of
more such research applications through scientific workflows.

VI. RELATED WORK

The primary objective of the Sigiri job management system
is to enable workflow-driven applications to have a choice
of back-end computational resources through a unified job
management service that scales better than existing approaches
and is easy to install and maintain. The extensibility of the
Sigiri server side component eases the task of incorporat-
ing new resource manager managed compute resources in



a way that minimizes administration overhead. Sigiri in its
current form targets filling the need for a light weight job
management solution, hence is not directly comparable to
comprehensive job management solutions such as the Grid
Resource Allocation and Management (GRAM) [11], Condor-
G [15], and GridWay [16], all of which provide uniform
job management with web service interfaces, but are tightly
integrated with complex middleware to address a broad range
of problems. Sigiri, on the other hand, provides standalone
functionality which in itself has attracted academic system
administrators to incorporate their resources into workflow
systems. Specifically, systems like Gram provide a unified job
interface for the resource managers integrated in to grids. Sigri
addresses a key items not currently supported in Gram. These
include the following:

• few researchers have access to grid-enabled resources.
From the example given in Section V, there are small
scale clusters that scientists need to integrate to run their
workflows. Each of these systems have different resource
manager implementations implemented and the system
administrators are reluctant to install complex systems
on these clusters.

• missing job statuses has been a known problem in the
LEAD[14] system and more broadly. Missing statuses
requires users to re-submit the jobs, increasing the to-
tal execution time and also reducing overall workflow
throughput. Sigiri provides robustness in obtaining job
statuses by providing multiple ways of getting informa-
tion of submitted jobs and this is expected to minimize
this important problem.

CREAM [17] provides job management through a Web
services interface but is designed to support a custom job
description language and assumes a grid environment for job
submission. Custom job description languages are a burden on
workflow system managers, hence Sigiri’s support for popular
job specifications like Job Submission Description Language
(JSDL)[2] and The Globus Resource Specification Language
(RSL)[3]. Furthermore Sigiri directly interacts with resource
managers so assumes no grid or meta scheduling middleware.

VII. FUTURE DIRECTIONS

Sigiri will continue to evolve while preserving the decou-
pled, lightweight, reliable, scalable job management system
inter-operating with existing popular job specifications. In
our experience, system administrators play a key role in the
interaction of scientific codes with large-scale systems, so
providing a service that eases the administration will continue
to be a top level requirement. This paper introduces Sigri
and its design features and early success. In addition to a
comprehensive evaluation of Sigri’s major design claims, we
are investigating additional directions for development, several
of which are identified by users who have had early experience
with Sigri:

1) Dash Board: : Long running scientific workflows man-
date the need of ability to monitor individual task job progress
and also outputs. We plan to implement a Web dashboard to

monitor the progress and status of jobs and also aggregate
reports of jobs and and their states.

2) Failure Recovery: : Failures are inevitable in any dis-
tributed system. Sigiri persists all the statuses and currently
can recover from various component failures. Furthermore we
intend to add automatic anomaly detecting rules to monitor
events, emails or human triggers and recover from any of
the underlying resource managers or hardware. Also, dynamic
workflows [13] need intensive human or automated system
intervention which Sigiri will facilitate.

3) Quality of Service: : Sigiri currently provides support
of specifying additional quality of service parameters like
anticipated job queue time, maximum wall time, which are
used to monitor jobs more closely and when deviations occur
notify clients. This additional granular monitoring will be
further enhanced and improved to ensure no jobs are left
orphan due to any failures.

4) Parametric Workflow Support: : Parametric workflows
are constructed by a function of high throughput input gen-
eration, by systematically varying a set of input values or
executing with a set of input files. These workflows result in
a large number of jobs per workflow and submitting and man-
aging these jobs individually will add additional overhead on
workflow systems. Specifications like JSDL allow parameter
sweep extensions to specify these multiple jobs and bundle into
one request. Sigiri will support these parametric extensions.
We are further evaluating the need of glide-in support where a
wider, bigger job will be submitted to the underlying resource
manager and Sigiri can start up a personal resource manager
and manage the acquired resources while executing multiple
smaller jobs within it.

5) Security: : For resources which already support grid
middleware, we plan to leverage the Grid Security Infras-
tructure and support authentication and authorization of grid
certificates and proxies.

6) Cloud Computing Support: : With the emerging cloud
computing, inter-operating with grid, stand alone private clus-
ters and cloud provisioned resources is challenging for any
large-scale escience environment requiring to submit jobs. We
are evaluating Sigiri along with few other components to
provide the needed abstraction for these diverse interfaces to
ease the burden on workflow systems.

7) Integrating Other Job Management Interfaces: : We
will continue to integrate and support other job management
systems and will incorporate those on requirement basis.

ACKNOWLEDGMENTS

The authors wish like to extend their deep appreciation and
thanks to all the members of Extreme Lab, Mike Lowe, Jenett
Tillotson of Indiana University and Victor Hu, IBM for their
intellectual discussions and support.

REFERENCES

[1] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the
grid: Enabling scalable virtual organizations,” International Jounral of
Supercomputer Applications, vol. 15, no. 3, 2001. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.9069



[2] A. Anjomshoaa, F. Brisard, R. L. Cook, D. K. Fellows, A. Ly, S. Mc-
Gough, and D. Pulsipher, Job Submission Description Language (JSDL)
Specification v0.3, Global Grid Forum, 2004.

[3] “The globus resource specification language (rsl), specification,”
http://www.globus.org/toolkit/docs/3.2/gram/ws/developer/mjs rsl schema.html.

[4] “Amazon elastic computing cloud,” http://aws.amazon.com/ec2/.
[5] C. Catlett, “The philosophy of TeraGrid: building an open, extensible,

distributed TeraScale facility,” Cluster Computing and the Grid 2nd
IEEE/ACM International Symposium CCGRID2002, pp. 5–5, 2002.

[6] O. E. Board, “The open science grid,” Journal of Physics: Conference
Series 78:012057, 2007.

[7] IBM Load Leveler: Users Guide, International Business Machines
Corporation, Kingston, NY, September 1993.

[8] OpenPBS v2.3: The portable batch system software, Veridian Systems,
Mountain View, CA.

[9] A. Yoo, M. Jette, and M. Grondona, “SLURM: Simple Linux Utility for
Resource Management,” Lecture Notes in Computer Science, pp. 44–60,
2003.

[10] W. G. S. Microsystems), “Sun grid engine: Towards creating a compute
power grid,” in CCGRID ’01: Proceedings of the 1st International
Symposium on Cluster Computing and the Grid. Washington, DC,
USA: IEEE Computer Society, 2001, p. 35.

[11] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented
Systems,” Network And Parallel Computing: IFIP International Con-
ference, NPC 2005, Beijing, China, November 30-December 3, 2005:
Proceedings, 2005.

[12] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec, “The many
faces of publish/subscribe,” ACM Computing Surveys (CSUR), vol. 3,
pp. 114–131, 2003.

[13] M. Caeiro-Rodriguez, T. Priol, and Z. Németh, “Dynamicity in
scientific workflows,” Institute on Grid Information, Resource
and Workflow Monitoring Services , CoreGRID - Network of
Excellence, Tech. Rep. TR-0162, August 2008. [Online]. Available:
http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-
0162.pdf

[14] K. Droegemeier, V. Chandrasekar, R. Clark, D. Gannon, S. Graves,
E. Joseph, M. Ramamurthy, R. Wilhelmson, K. Brewster, B. Domenico
et al., “Linked environments for atmospheric discovery (LEAD): A
cyberinfrastructure for mesoscale meteorology research and education,”
20th Conf. on Interactive Information Processing Systems for Meteorol-
ogy, Oceanography, and Hydrology, 2004.

[15] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-
G: A Computation Management Agent for Multi-Institutional Grids,”
Cluster Computing, vol. 5, no. 3, pp. 237–246, 2002.

[16] E. Huedo, R. Montero, and I. Llorente, “The GridWay framework
for adaptive scheduling and execution on Grids,” Scalable Computing:
Practice and Experience, vol. 6, no. 3, pp. 1–8, 2005.

[17] P. A. et al, “Cream: A simple, grid-accessible, job management system
for local computational resources,” in XV International Conference on
Computing in High Energy and Nuclear Physics, 2006.


