
Building a Concept Hierarchy Using Frequent Tag
Sequences

ABSTRACT
Web sites that allow collaborative tagging of resources have
become a commonplace development. As part of the second
generation of applications available on the Web, these sites
provide a tremendous amount of user-generated taxonomic
information. However, information seekers are hindered by
the lack of organization within these tags. To address this
issue, several methods have been proposed for creating an
organizational structure from the tags. Despite their bene-
fits, the current methods do not directly represent an orga-
nization of concepts, as a concept is often composed of more
than one tag. In this paper, we propose a new approach to
generating a concept hierarchy from the user-generated tags.
Exploiting the fact that users often express a concept over
a set of sequential tags, we propose a two-step approach for
generating a hierarchy of concepts. We first discover con-
cepts through tag sequences with sufficient support. Using
these concepts, we then calculate conditional probabilities
to discover the existing hierarchical relationships. The key
benefit of the hierarchy produced through our approach is
that it is topic-based, as opposed to existing related work,
which only produce hierarchies of tags. Our findings are il-
lustrated on a domain-specific dataset of tags supplied by a
popular collaborative tagging Web site.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data Mining

General Terms
Algorithm, Experimentation

Keywords
Folksonomy, Tag Sequences, Sequence Mining, Subsump-
tion, Concept Hierarchy

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Web sites that allow collaborative tagging of resources
have become a commonplace development. Users within
these sites are allowed to provide their own annotations
(tags) to classify resources, where a resource can be any digi-
tal object. The process of tagging is similar to the process of
keyword indexing that librarians and professional curators
usually perform. However, the main distinction with tag-
ging is that there is no use of a formal taxonomy to guide
the process. The resulting collection of user-generated tags
is called a folksonomy [1].

The word folksonomy is the combination of the words folk
and taxonomy, emphasizing the fact that the taxonomic in-
formation generated within these Web sites is done by com-
mon users (folk). The main advantage of folksonomies, as
compared to formal taxonomies, is the low cost in building
and assigning resources. Unfortunately, this benefit also be-
comes a hindrance. Folksonomies allow users to enter tags
containing misspellings, non-alphanumeric symbols, abbre-
viations, along with other items that introduce noise to the
taxonomy.

Despite the challenges of dealing with the noisy data,
several approaches have been proposed for organizing user-
generated tags [6, 8, 10, 11, 12]. The structures generated
in these approaches vary from a forest of trees such as in
[8, 12] to a directed acyclic graph as in [6, 11] to clusters
of directed graphs as in [10]. The current approaches, al-
though promising, lack the ability to organize topics into a
hierarchy of concepts, where a concept can span a sequence
of more than one tag.

In this paper, we propose the following:

• A new approach for discovering domain-specific tags
from a folksonomy. The proposed approach leverages
domain sources such as reliable Web sites to seed the
set of domain-specific topics for querying collaborative
tagging sites.

• An algorithm for discovering important tag sequences.
Utilizing these identified tag sequences, we construct a
domain-specific concept hierarchy, visually represent-
ing topics and relationships.

• An implementation of our overall approach on the do-
main of information specific to patient and customer
health.

This paper is organized as follows. Work related to this
study is outlined in Section 2. Section 3 details our method-
ology and the steps performed in this research. Section 4

defines a frequent tag sequence and provides the algorithm
for discovering one. Section 5 describes our concept hier-
archy and details the algorithm for creating one. Section
6 provides results. Finally, we discuss our conclusions and
future work in Section 7.

2. RELATED WORK
Several studies have investigated the organization of user-

generated tags [6, 8, 10, 11, 12]. The main challenge common
to all proposed techniques is dealing with noisy data present
within the folksonomy tags. Each of these approaches pro-
duce the organizational structure among the tags in a dif-
ferent manner.

In [8], the tag grouping algorithm proposed uses graph
centrality to sort tags. At each step, the algorithm adds the
next most central node to the graph. Using the similarity
measure, the new node is either added as a child to the most
similar node in the graph, if the similarity is greater than
a threshold value, or it is added as a child to the root sig-
naling a new topic in the graph. The resulting structure is
a forest of tag hierarchies, instead of a DAG. Similar struc-
ture is achieved in [12]. The clustering method is a variant
of agglomerative clustering using parameters to control the
groping of nodes into clusters and the hierarchy level.

When searching for communities within social and bio-
logical networks, an alternative approach is applied in [7].
Their algorithm recursively removes the least central edges
within the graph until the desired number of communities is
reached or until the complete hierarchy is built.

In [6], tags are described using the PLSI (Probabilistic
Latent Semantic Model) vector model. The similarity be-
tween edges is described with the JS divergence measure,
to describe the distribution between probabilistic distribu-
tions. To link the nodes in the graphs, the entropy of the
PLSI vector is used; and for each node, a node among the
k nearest neighbors is added as child if its entropy is less
that the entropy of a target node. The resulting structure
is a DAG as opposed to a forest of hierarchies or groups of
sub-graphs. The other feature of the approach is that is can
be applied online, as it allows a target node to be expanded
locally without having to re-construct the graph.

In [9], the subsumption hierarchy calculation was intro-
duced as a means to derive conceptual topic/sub-topic re-
lationships. Building off of this work, [11] utilized the co-
occurrence of single tags within Flickr1 to create a concept
hierarchy. This work provided promising results; however, it
did not take into account sequences of tags when construct-
ing the concept hierarchy.

Discovering association rules among tags, users, and re-
sources is described in [10]. A graph is constructed by creat-
ing a node for all premises and conclusions in the association
rules and connecting the each pair of nodes where an asso-
ciation rule satisfies the support and confidence thresholds.
In in this approach it is possible that within an association
rule the premise or conclusion contains more than one tag;
however, tag sequences are not specifically addressed.

Folksonomies represent an organization of representative
topics shared by a large number of users. Topic identifica-
tion can be mapped to the problem of discovering frequent
sequences of tags. [5] proposed an algorithm for finding fre-
quent maximal text sequences. This algorithm is a refine-

1http://www.flickr.com

ment of the algorithm for discovering sequential patterns
introduced in [4]. Discovering sequences within itemsets is
itself an adaptation of the problem of finding frequent item-
sets in data [2].

3. METHODOLOGY

3.1 Overview
This section outlines how to create a domain specific con-

cept hierarchy from the user-generated tags found within a
folksonomy. Figure 1 highlights the three-step process of:
(1) Retrieving and cleaning a seed set of topics from reli-
able domain sources; (2) Querying, extracting, and cleaning
domain-specific tags from one or more folksonomies; and
(3) Creating the domain’s concept hierarchy from the user-
generated tag sequences. It is possible to perform any one of
these steps more than once, especially to keep the concept
hierarchy up-to-date. For example, Step (1) will need to be
performed to keep the seed set of domain terms up-to-date.
Moreover, performing steps (2) and (3) will keep the concept
hierarchy in sync with the current topics. The framework
introduced here can be applied to any domain as long as a
quality set of seed keywords can be obtained. We specifi-
cally applied this methodology to domain of consumer and
patient health topics and provide detail on each of the three
steps performed in the rest of this section.

Domain topics
Trusted Domain

Sources

1. Extract and clean topics

Folksonomy

2. Query folksonomy for tags
 with topics from Step 1.

3. Create concept
 hierarchy

Figure 1: Framework for the generation of the
concept-based hierarchy using user tags.

3.2 Retrieval and Cleaning of Domain Topics
The first step in building a health concept hierarchy from

folksonomy tags was to identify a seed set of consumer health
topics. We started with a subset of 100 trusted health Web
sites provided by the Consumer and Patient Health Informa-
tion Section (CAPHIS) of the Medical Library Association
Web site2. Our set consisted of the sites that allowed crawl-
ing, as indicated by each of the site’s robot.txt file3. After
identifying our allowable list of sites, we parsed each of the
site’s A-Z index glossary listing of terms and extracted the
terms found within link’s anchor text. For example, the
glossary page for terms starting with “F” provided links to
terms such as the following: Flu, Fluoride, Food Allergies,
and Fractures, among others. We also performed the same
term extraction process within the other main health cat-
egories available on these Web sites. For example, several

2http://caphis.mlanet.org/
3http://www.robotstxt.org/

of the sites contained links targeting patients of different
ages: Children’s Health and Seniors’ Health; categories for
both genders: Men’s Health and Women’s Health; as well
as other health categorizations: Diseases & Conditions and
Treatments & Procedures.

The list of downloaded topics was then processed for clean-
ing. We removed non-alphanumeric symbols and common
stop words such as: the, of, and, etc. We also split the
entities that included several related topics, such as Acute
Coronary Syndromes (Heart Attack; Myocardial Infarction;
Unstable Angina), into separate topics. Our final step was
to convert all words to lower case. After eliminating dupli-
cate topics, the set of total unique health topics extracted
from the seed Web sites totaled 11, 679.

3.3 Extracting Domain-Specific Tags
In order to target the subset of tags relating to health sub-

ject matters available from a folksonomy, we used the seed
set topics discovered in the previous steps as the keyword
tags. We chose to use Delicious as our source folksononmy
for this research. Utilizing its data feed API4, we generated
a query for each of the 11, 679 health topics.

The advantages of using the API include the availability
of different options to query the site and the availability of
structured data in the query results that is more manage-
able for the next processing steps. The results provided from
the API are presented as a set of entries. Each entry corre-
sponds to an annotation record created within the Delicious
folksonomy, where a resource (a Web page URL) has been
annotated by a user, at a specific time, and with a set of
tags. The annotation record is uniquely identified by the
combination of the URL of the resource and the user who
annotated it.

For topics consisting of only one word, we combined the
topic term with the term health to retrieve results with both
tags from Delicious. For all other health topics consisting of
more than one term we used the terms as tags to query De-
licious. We retrieved a total of 163, 128 annotation records
from Delicious for use within this study.

The downloaded tags were cleaned in the same manner
as performed on the seed topics described above. Dur-
ing this cleaning process, any single tag consisting of more
than one word concatenated with a non-alphanumeric sym-
bol was split into more than one tag. For example, the tag
Heart Disease split into two tags: heart and disease. Dur-
ing the analysis of the tags generated by users, we discovered
that users also concatenated more than one term with the
empty space ‘’. For example, the tag HeartDisease consists
of more than one word; however, we did not attempt to split
tags of this form.

3.4 Creating the Concept Hierarchy
After the tags have been retrieved and cleaned, the next

step is to discover any frequent tag sequences. Once the
frequent tag sequences are discovered then a directed graph
is generated to expose the concepts and relationships that
exist within these tag sequences. The nodes of the graph
are created from the sequence of tags and edges are created
between any two nodes, if there exist a topic/sub-topic rela-
tionship. We utilize the subsumption relationship described
in [9] to establish the association between the nodes. The
next two sections describe in detail the algorithms developed

4http://delicious.com/help/json/

to create frequent tag sequences and construct the concept
hierarchy.

4. FREQUENT TAG SEQUENCES
Discovering sequential patterns within the annotation records

of the folksonomy allow concepts of length greater than one
to be identified. For example, the health topics of heart
disease and acute coronary syndrome span more than one
term and the sequential order of these terms is semantically
important. It is our observation that when annotating re-
sources associated to topics such as these that users will
place the tags in the same order as the words in the topic.
Therefore, discovering sequences of varying lengths allow us
to investigate the relationships of topics, and not just sin-
gle tag-to-tag relationships. In this section, we first pro-
vide formal definitions to clarify the problem of discovering
sequences of tags that are frequently found in folksonomy
annotation records. We then detail the process on how we
discover these sequences.

4.1 Definitions
We define the data within a folksonomy in much of the

same manner as it is defined in [8, 10, 12], with a couple of
distinct differences.

Definition 1. A folksonomy, F, is a collection of the finite
sets U, R, T, D, A where

• U, R, T, D represent users, resources, tags, and date-
times, respectively.

• A is a set of annotation records. An item a ∈ A has the
following format: (u, r, {t1, ..., tn}, d), represending the
user, u ∈ U , who annotated a resource, r ∈ R, with
a set of tags, {t1, ..., tn}, where ti ∈ T , on a date and
time, d ∈ D.

A folksonomy allows users to signup to participate, thus
creating a unique user id. Users provide tags at their own
discretion to annotate a resource. A tag can be any type
textual string whether the string consists of a word, a term,
an acroynm, or any combination thereof. The type of re-
source that is tagged is dependent on the folksonomy itself.
Many of the popular folksonomies existing today allow users
to either tag a URL to a specific Web page (i.e., Delicious),
tag an image (i.e., Flickr), or tag a purchasable item (i.e.,
Amazon5).

Definition 2. A tagset, within a folksonomy, is the set of
m tags {t1, t2, ..., tm} created by a user to annotate a re-
source at a specific date and time.

The tagset is analogous to the set of items purchased (an
itemset) within a transactional database system [2]. A dis-
tinction exists, however, between an itemset and an item
sequence. Within an item sequence, the order in which the
items appear must be considered. For example, it is seman-
tically important to know that tags ti, ti+1, ti+2 (i.e., ti =
attention, ti+1 = deficit ti+2 = disorder) appear in this or-
der. Therefore, it is essential to consider the notion of a text
sequence explained in [5] as well as the concept of an item
sequence discussed [4].

5http://www.amazon.com

Definition 3. A tag sequence is a serial arrangement of n

tags, 〈t1, t2, ..., tn〉 existing within a tagset. We refer to a
tag sequence of length n as a n-sequence.

A sequence 〈s1, s2, ..., sm〉 is a sub-sequence of another tag
sequence 〈t1, t2, ..., tn〉, if m ≤ n and ∃j ∈ {0, ..., n−m},∀i ∈
{1, 2, ..., m} : si = ti+j .

Definition 4. The support for a tag sequence is defined as
the fraction of the total tagsets containing the tag sequence.
Therefore, a tag sequence is frequent if its support is greater
than a minimum support threshold σ. Similar to above, a
frequent n-sequence, is a sequence of length n that is fre-
quent.

4.2 Finding Frequent Tag Sequences
We split the task of discovering frequent tag sequences

into two phases: (1) the Transformation Phase and (2) the
Discovery and Expansion Phase. The Transformation Phase
converts the information retrieved from Delicious into a for-
mat for finding frequent tag sequences. The Discovery and
Expansion Phase iterates through n-sequences discovering
frequent n-sequences and then expanding them to create
candidate (n + 1)-sequences for the next iteration. Each of
the phases is described below.

Transformation Phase. The first phase of the algo-
rithm transforms an annotation record into a set of 1-sequence
records. The annotation record has the form: (tid, u, r, t, d),
where tid is the datababase primary key for this record and
u, r, t, and d are defined byA above. The 1-sequence records
have the form: (tid, tagi, indexi), where tagi represents the
ith tag in the sequence and indexi = i. For the following
annotation record:

Field Value
tid 1
u ‘johndoe’
r ‘http://www.cdc.gov/’
t {‘centers’, ‘disease’, ‘control’, ‘prevention’ }
d ‘2009-JAN-01 12:00:00 AM’

the resulting 1-sequence records are generated:
tid tag1 index1
1 centers 0
1 disease 1
1 control 2
1 prevention 3

In general, to represent an n-sequence record, we create a
2n + 1 tuple of the following form:

(tid, tag1, .., tagn, index1, ..., indexn).

It is also possible to represent the n-sequence record with
an alternative format of

(tid, tag1, .., tagn, index1, length);

however, we chose to implement the record using the first
approach.

Discovery and Expansion Phase. After the 1-sequence
records are created in the Transformation Phase, the Dis-
covery Phase and Expansion Phase will begin. At each
level (n = 1, 2, ...), the Discovery and Expansion Phase will
discover frequent n-sequences from the current set of n-
sequences and then expand these frequent sequences into
candidate (n + 1)-sequences to be used in the next itera-
tion of the loop. This approach to building frequent tag

sequences of length n has the same foundation as the apri-
ori [3] algorithm for finding frequent item sets, the Aprio-
riAll [4] algorithm, and the algorithm for finding maximal
frequent sequences in text presented in [5].

4.2.1 Algorithm
generate-frequent. The generate-frequent function is

the main function for generating the frequent tag sequences.
It takes as parameters C1 and σ and returns the set of all fre-
quent sequences discovered, F . C1 is the set of 1-sequence
records generated in the Transformation Phase. σ is the
minimum support threshold to use when discovering fre-
quent sequences. We chose σ = .04%. In our implemen-
tation, σ is then converted from the support threshold value
(.04%) into a frequency count value by multiplying the num-
ber of annotations records with σ.

function generate-frequent(C1 , σ)
i = 1
F = {}
while Ci 6= ∅

Fi ← find-frequent(Ci, σ)
Ci+1 ← generate-candidates(Fi)
F ← F + Fi

i++
return F

function find-frequent(Ci, σ)
Fi = {}
foreach t←unique 〈tag1, ..., tagi〉 ∈ Ci

if t.count() > σ

Fi ← Fi+ all sequences in Ci containing t.
return Fi

function generate-candidates(Fn)
Cn+1 = {}
foreach f ∈ Fn

foreach S ← set of fs with the same tid

Sort(S) by index1
for consecutive records si, sj ∈ S

if si.index1 + 1 == sj .index1
Cn+1 ← Cn+1+

(si.tid, si.tag1..n, sj .tagn, si.index1..n, sj .indexn)
return Cn+1

find-frequent. The find-frequent function takes as pa-
rameters Ci and σ. Ci is the set of candidate frequent i-
sequences and σ is the support threshold. For each unique
tag sequence, if the count of records containing the i-sequence
〈tag1, ..., tagi〉 is greater than σ then all of the i-sequence
records containing the sequence are added to the frequent
sequence set, Fi, that is returned.

generate-candidates. The generate-candidates func-
tion is similar to apriori-generate described in [4]; how-
ever, generate-candidates does not join the set of frequent
n-sequences with itself to create all of the candidate (n+1)-
sequences. Instead, one pass is made over the set of frequent
n-sequences and the tag indices of each n-sequence record
are utilized to create the candidate (n + 1)-sequences. The
other benefit of this approach is that there is no need for
a step to prune any (n + 1)-sequences with a non-frequent
n-sequence because all of our candidate (n + 1)-sequences
contain a frequent n-sequence.

The generate-candidates function takes as a parameter
Fn, the collection of frequent n-sequence records sorted by
tid. The algorithm will iterate through each frequent n-
sequence record, and for each grouping of records with the
same tid, the algorithm will sort the set of records by the
first index (index1). If the index1 value for two consecutive
records, within this group, is offset by one then the func-
tion will create the candidate (n + 1)-sequence record using
the n tags (tag1, ..., tagn) and n indices (index1, ..., indexn)
from the first record and the nth tag (tagn) and nth in-
dex (indexn) from the second record. This is possible be-
cause the last n − 1 indices of the first record will match
the first n − 1 indices of the second record, based on how
the n-sequence records have been defined. Cn+1, the set of
candidate (n + 1)-sequence records, is returned.

5. HEALTH CONCEPT HIERARCHY
A concept hierarchy is a directed graph that places more

general concepts closer to the root and pushes more spe-
cific topics closer to the terminal points of the graph. Di-
rected edges create a parent-to-child relationship between
two nodes within a graph. The parent node subsumes the
child node, if the parent’s concept is more general than the
child’s[9]. Using conditional probabilities, the concept hi-
erarchy algorithm creates a directed edge between nodes
d1 and d2, noted d1 −→ d2, if P(d1|d2) > θ and P(d2|d1) <

P(d1|d2), where θ is the subsumption threshold. From our
experiments, we chose θ = 0.7. The conditional probabili-
ties are calculated using the tagsets containing d1 and the
tagsets containing d2.

A candidate node for the hierarchy is created for each
frequent n-sequence. The value displayed for the node con-
sists of concatenating the n tags with a space (‘ ’). For
example, if the frequent tag sequence discovered is 〈‘post’,
‘traumatic’, ‘stress’, ‘disorder’ 〉 then the label for this node
is ‘post traumatic stress disorder.’

5.1 Algorithm
The entire concept hierarchy can be constructed from the

candidate node tuples generated in generate-candidate-

nodes and the set of edges generated in generate-edges.

function generate-candidate-nodes(F)
N = {}
i = 0
for f ∈ F

N ← N + (i, concat(〈tag1, ..., tagn〉, ‘ ’))
i++

return N

function generate-edges (F, N, θ)
E = {}
for ni, nj ∈ N where ni 6= nj

if P(ni|nj) > θ and P(nj |ni) < P(ni|nj)
E ← E + (ni −→ nj)

else if P(nj |ni) > θ and P(ni|nj) < P(nj |ni)
E ← E + (nj −→ ni)

return E

generate-candidate-nodes. The generate-candidate-
nodes function takes as a parameter, F , the set of frequent
tag sequences discovered in the generate-frequent function
described above. The set of node tuples, N , is returned. A

Table 1: Health Sequences (Seq.) Discovered
Seq. Lgth. Seed Seq. Ct. Discovered Tag Seq. Ct.

1 2,202 295,656
2 4,176 70,058
3 2,835 6,022
4 1,346 546

>4 1,120 54
Totals 11,679 372,336

node tuple, (nid, value), contains a unique node id, nid, and
the value for the node, value. The value is created by con-
catenating the tags with a space, as described above. The
nodes generated in this function are considered candidates
because it is possible one or more may not appear in the
hierarchy, if it is not connected to an edge.

generate-edges. The generate-edges function takes
three parameters: F , N , and θ and returns E. F is the set
of frequent sequences discovered in the generate-frequent

function. N is the set of candidate nodes generated in
generate-candidate-nodes. θ is the conditional probabil-
ity used to create an edge. For our implementation, we
chose θ = 0.70. The set of edges, E, is returned from
generate-edges. Each directed edge from ni to nj is de-
noted ni −→ nj , where ni is known as the source of the
edge and nj is known as the target of the edge.

The two conditional probability calculations of nodes ni

and nj are denoted P(ni|nj) and P(nj |ni). These values
are calculated using the tagsets associated with each node,
which can be easily discovered because a node is generated
from a frequent tag sequence 〈tag1, tag2, ..., tagn〉 and the n-
sequence record (tid, tag1, ..., tagn, index1, ..., indexn) con-
tains the tagset id, tid, along with the sequence of tags.
Therefore, a collection of tuples containing the node id and
tagset id, (nid, tid), can be used to calculate the conditional
probabilities.

When generating the concept hierarchy, our graph con-
struction algorithm creates a virtual node labeled {root} to
connect all nodes that are not subsumed by another node.
These nodes are not a sub-topic of another node and thus
placed at the top level of the concept hierarchy. The figures
provided in the Section 6 display this virtual node.

6. RESULTS AND DISCUSSION
The 11, 679 health topics originally extracted from the

health Web sites where discovered 372, 336 times within the
downloaded and cleaned tag sequences. Table 1 provides
analysis on the health topic sequences. To further analyze
these numbers, we split the health topics by term length.
The sequence length column, Seq. Lgth., has separated the
topics into their appropriate lengths bucket. The Seed Seq.
Ct. column details how many of the seed health topics have
the respective length. The Discovered Tag Seq. Ct. column
shows how many times a health topic of the associated length
was discovered within the tag sequences from Delicious. It
can be seen that of the 372, 336 times a health topic was
discovered that 79% were of length one (295, 656 times).
Although, this was the greatest majority of items discovered,
the analysis indicates 20% of the topics discovered where of
length two or three (76, 080 times).

Our resulting concept hierarchy has a total of 3, 204 nodes
and 20, 785 edges. Of the 3, 204 nodes within the graph,

404 were not subsumed by another and thus considered the
top concepts. Additionally, 1, 805 of the 3, 204 nodes were
created from 1-sequences and the other 1, 399 were created
from n-sequences, where n > 1.

Figures 2 and 3 display the change in frequent tag se-
quences associated with the tag flu over the course of our
study. As the topics of h1n1 and swine flu gathered pub-
lic attention during the end of the month of April 2009, so
too did the frequent tags sequences associated with these
topics. Figure 2 displays the following sub-topics associated
with the flu: colds, cold and the flu; pandemics; shots and
flu shots; and bird, bird flu, avian, avian flu, and h5n1. Fig-
ure 3 displays all of the data queried from Delicious during
this research. As it can be seen additional topics revolving
around pandemics, swine flu, and h1n1 became frequent.

The interconnectedness between several topics can be seen
within the graph. Our visualization provides a very easy
way to see the progression of frequent topics among the tag
sequences. The time dimension associated with each anno-
tation record provides the ability to study the evolution of
health topics important to consumers and patients, such as
disease outbreaks, current diet and nutrition practices, and
treatments for diseases such as cancer, just to name a few.

Figure 4 displays the concepts related to eating and disor-
der. There are several concept communities related to dis-
order that have emerged from the frequent tag sequences:
borderline personality disorder, obsessive compulsive disor-
der, attention deficit/hyperactivity disorder, seasonal affec-
tive disorder, post traumatic stress disorder, and eating dis-
order. Although these disorders are not interrelated, they
are all specific types of disorders. The concept of eating in-
troduced health concepts such as healthy eating and eating
well, binge eating, as well as eating disorder. This figure
provides a quality example of two distinct concepts (eating
and disorder) and how they are connected together by the
sub-topic of eating disorder.

Figure 2: Graph created for tag sequences associ-
ated with the tag flu - tags before April, 23 2009

Figures 2 - 4 all display concept hierarchies related to spe-
cific tags. Several of the topic/sub-topic relationships that
exist within these graphs are simply displaying a single term
topics that subsumes a two-term topic, where the single term
is contained within the two-term topic. For example, the di-
rected edge flu−→flu shot. Although this relationship may
seem obvious, the fact that an edge appears between these
two concepts underscores the fact that the the two concepts
are frequent and a conditional probability was satisfied be-
tween them.

7. CONCLUSIONS AND FUTURE WORK

Figure 3: Graph created for tag sequences associ-
ated with the tag flu - all tags

In this paper we introduced the concepts of tag sequences
and frequent tag sequences as applied to folksonomies. We
used a seed set of patient and consumer health topics mined
from reliable health Web sites to query the social tagging
Web site Delicious. Using the collection of user-generated
tags retrieved from Delicious, we were able to discover fre-
quent tag sequences of length 1..n. Utilizing these tag se-
quences, we then created a directed graph to establish the
concept hierarchies that existed within the user-generated
content.

Our findings provide a way to visualize the relationships
that exist within the folksonomy by only concentrating on
the most frequent tag sequences. Additionally, frequent con-
cepts spanning more than one tag are displayed, something
of which is not possible when using hierarchical clustering or
graph creation methods utilizing only tag-to-tag similarities.

In the future we plan to extend this work to:

• Incorporate the associations between the tagsets gen-
erated by different users for the same URL. If we utilize
a two-step approach of (1) finding URLs based on the
seed topics and then (2) retrieving all tagsets associ-
ated with this resource, then it is possible to establish
additional semantic relationships between topics.

• Detect and remove tagsets highly regarded as spam.
It has been discovered through our current research
effort that users may generate identical or nearly iden-
tical frequent n-sequences (where n > 10). Therefore,
the approach of finding highly similar frequent, long
tag sequences that do not produce relevant topical in-
formation can be detected as spam and removed from
the concept hierarchy.

• Incorporate resources such as WordNet6 to aid in dis-
covering synonyms and hypernyms to assist in the con-
struction of the concept hierarchy.

• Provide a way to easily visualize the concept hierar-
chy changes as the minimum support threshold for fre-
quent tag sequences is manipulated.

8. REFERENCES
6http://wordnet.princeton.edu/

Figure 4: Graph created for tag sequences associated with the tags eating and disorder

[1] Folksonomy, 2009.
http://en.wikipedia.org/wiki/Folksonomy.

[2] Agrawal, R., Imielinski, T., and Swami, A. N.

Mining association rules between sets of items in large
databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data
(Washington, D.C., 1993), P. Buneman and
S. Jajodia, Eds., pp. 207–216.

[3] Agrawal, R., and Srikant, R. Fast algorithms for
mining association rules in large databases. In
Proceedings of 20th International Conference on Very
Large Data Bases (1994), J. B. Bocca, M. Jarke, and
C. Zaniolo, Eds., Morgan Kaufmann, pp. 487–499.

[4] Agrawal, R., and Srikant, R. Mining sequential
patterns. In Proceedings of the 1995 IEEE
International Conference on Data Engineering (1995),
pp. 3–14.

[5] Ahonen-Myka, H. Finding all frequent maximal
sequences in text. In 16th International Conference on
Machine Learning ICML-99 Workshop on Machine
Learning in Text Data Analysis (Ljubljana, Slovenia,
1999), D. Mladenic and M. Grobelnik, Eds., pp. 11–17.

[6] Eda, T., Yoshikawa, M., and Yamamuro, M.

Locally expandable allocation of folksonomy tags in a
directed acyclic graph. In WISE ’08: Proceedings of
the 9th international conference on Web Information
Systems Engineering (Berlin, Heidelberg, 2008),
Springer-Verlag, pp. 151–162.

[7] Girvan, M., and Newman, M. E. Community
structure in social and biological networks. Proceedings
of the National Academy of Sciences of the United
States of America 99, 12 (June 2002), 7821–7826.

[8] Heymann, P., and Garcia-Molina, H.

Collaborative creation of communal hierarchical
taxonomies in social tagging systems. Tech. Rep.
InfoLab Technical Report 2006-10, Stanford
University, 2006.

[9] Sanderson, M., and Croft, B. Deriving concept
hierarchies from text. In SIGIR ’99: Proceedings of the

22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(New York, NY, USA, 1999), ACM, pp. 206–213.

[10] Schmitz, C., Hotho, A., Jäschke, R., and

Stumme, G. Mining association rules in folksonomies.
In Data Science and Classification. Springer Berlin
Heidelberg, 2006, pp. 261–270.

[11] Schmitz, P. Inducing ontology from flickr tags. In
Proceedings of the Collaborative Web Tagging
Workshop (WWW ’06) (2006).

[12] Shepitsen, A., Gemmell, J., Mobasher, B., and

Burke, R. Personalized recommendation in social
tagging systems using hierarchical clustering. In
Proceedings of the 2008 ACM conference on
Recommender systems (New York, NY, USA, 2008),
ACM, pp. 259–266.

