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ABSTRACT

Well-designed indexes can dramatically improve query per-
formance. In the context of XML, structural indexes have
proven to be particularly effective in supporting efficient
XPath queries - the core of all XML queries, by captur-
ing the structural correlation between data components in
an XML document. The duality of space and performance
is an inevitable trade-off at the core of index design. It
has been established that query workload can be leveraged
to balance this trade-off and maximize the throughput of
a group of queries. In this paper, we propose a family of
novel workload-aware indexes by taking advantage of the
recently proposed Trie indexes for XML. In particular, we
propose the WP|[k]-Trie, the AWPIk]-Trie, and the W[k]-
Trie indexes, which use the P[k]-Trie framework to index
frequent label-paths and a carefully selected complimentary
set of label-paths. When a WP[k]-Trie index is available, all
frequent path queries are guaranteed to be evaluated in one
index lookup, and all core XPath queries are guaranteed to
be evaluated with index-only plans. With further considera-
tion of the representativeness of label-paths in the index and
proper annotations, the AWP[k] and W]k]-Trie indexes are
able to improve query evaluation performance by efficiently
singling out queries with empty results and enabling more
efficient query decompositions, with the W[k]-Trie minimiz-
ing the space requirements of the index.

1. INTRODUCTION

With the explosive growth of data and search on the In-
ternet, as well as growing demands in business, government,
and science for managing a myriad of data, XML has emerged
as the data format for representing, storing, and querying
semi-structured data. As this trend is likely to continue,
developing efficient query evaluation techniques for XML,
especially XPath [18] queries which are the core of all XML
queries, is critical.

Indexes have proved to be of significant importance in im-
proving the query performance of XPath queries [8]. Specif-

ically, structural indices, such as DataGuides [7], the 1-
index [14] and the A[k]-index [13] were proposed to capture
the structural correlation between data components, which
is natural to the semi-structured data format of XML. The
DataGuides [7] and the 1-index [14] are very fine in the way
they partition the data. The size of these indexes can be as
large as the data itself , which makes them less practical. For
example, consider the sample XML document as shown in
Figure 1, the corresponding strong DataGuide has as many
nodes as the document itself. The A[k]-index [13] used a
k parameter to control the degree of local bi-similarity of
the partition and hence the size of the index, but sacrifices
the ability to answer queries longer than k£ without access-
ing the data. In addition, all the indexes above require data
validation for answering queries with branching predicates.
The F&B-index [12] tried to address the branching predi-
cate problem by indexing incoming and outgoing paths to
a node, however, its huge space requirements limit its use-
fulness [19]. The P[k]-Trie index [2] indexes P[k]-partition
classes of node pairs in a trie structure, using the reversed
label-paths as keys. Path queries, long or short, with or
without predicates, can be answered with index-only plans
when the P[k]-Trie index (k > 1) is available.
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Figure 1: A Sample XML Docu-
ment

equal importance:
some are queried
more frequently than
others. Workload information can be leveraged to mitigate
the trade-off between index size and precision, producing an
index that yields better overall throughput, while maintain-
ing the index footprint under control.

In previous research, several workload-aware indexes for XML
have been proposed [5, 16, 4, 10]. The D[k]-index [4] and
the M[k]-index [10] introduce variations to the A[k]-index
that allow different degrees of local bi-similarity for differ-



ent paths, using workload information in selecting the bi-
similarity value used for each path. These indexes share
the same costly drawback of the A[k]-index, as validations
are still required for branching queries, and for paths that
are not indexed. Xist [16] provides an index selection tool
that uses workload information to select a set of linear paths
to index, but it also requires validation to answer paths that
are not indexed. APEX [5] indexes frequent paths individ-
ually and groups the partition classes associated with all
other paths that share the same suffix with the frequent
paths into a remainder class. This approach does reduce
the size of the index to a certain degree, but introduces dif-
ficulty in query evaluation when paths that are clustered in
a remainder class have to be distinguished. Furthermore,
even though it is claimed that APEX can answer all queries
with an index-only plan, longer, non-frequent path queries
have to be evaluated by performing multiple join operations,
since only edges, rather than paths, are stored in the index.

It has been clearly established that creating indices based
on workload greatly improves the performance of XPath
queries. While some workload-aware indexes exist, there
is room of improvement in the areas of space efficiency and

query efficiency. The goal of our research is to design workload-

aware indices for XML that are (1) superb for answering fre-
quent path queries and efficient for answering non-frequent
path queries; (2) efficient in identifying queries that yield
empty results; (3) efficient in update induced by the changes
in either the workload or the data itself; (4) efficient in size
and adjustable easily to space allowance.

We take advantage of the recently proposed P[k]-Trie in-
dex [2], and use its framework to index a frequent label-
path set and a selected set of complementary label-paths.
The strategies utilized in the selection of the complemen-
tary label-path set reflect the space/performance trade-off.
The simplest strategy indexes label-paths up to length k; we
call this index the WP[k]-Trie. As seen in [2], fairly good
performance can be achieved with a modest k value, with
the additional benefit of answering frequent path queries in
one index lookup. A more sophisticated strategy studies
the structural correlation of a set of paths. We propose the
notion of a label-path being represented by a set of label-
paths at a structural and an instance-level. The AWP[k]-
Trie uses this strategy to extend the label-path set indexed
by the WP[k]-Trie, and adds annotations to its index entries
to help in query optimization. The AWP|[k]-Trie assists the
query optimizer in easily identifying longer sub-queries in
the index and queries that yield empty results, contributing
to the significant improvement in query performance, espe-
cially for non-frequent queries. We also propose a variant
of the AWP[k]-Trie index, called the W[k]-index, to further
reduce the index size and improve query performance, by
considering statistical information about both frequent and
non-frequent queries.

Our contributions can be summarized as follows:

1. We propose a family of workload-aware Trie indexes,
the WPk]-Trie, AWP|[k]-Trie and W[k]-Trie, for in-
dexing frequent label-paths while maintaining efficient
support for non-frequent queries;

2. We exploit the concept of structural and data instance

representativeness of a set of paths with respect to an
XML document, in annotating index entries and in
guiding the selection of the complimentary label-path
sets, to obtain the optimal space/performance trade-
off;

3. We present the query evaluation and optimization op-
tions provided by the workload-aware Trie indexes;

4. We discuss the strategies for efficiently constructing
the workload-aware Trie indexes, as well as incremen-
tal maintenance algorithms that handle changes in the
workload, data, or index configuration;

5. We perform extensive experiments to compare the pro-
posed indexing and query evaluation techniques with
existing techniques in terms of the space footprint,
query performance and maintenance overhead.

The rest of this paper is organized as follows: we present
the terminologies used in this paper in Section 2, followed
by a formal definition of the problem and an overview of
the workload-aware index management and query process-
ing system in Section 3. The family of workload-aware Trie
indexes, along with their construction, evaluation, and main-
tenance algorithms is presented in Sections 4 and 5. Finally,
in Section 6, we present implementation and evaluation de-
tails as well as the results of our experiments. We conclude
with the discussion of future work in Section 7.

2. PRELIMINARIES AND PROBLEM DEF-
INITION
2.1 XML Document and Label-path Based Par-
titions
We treat an XML document X as a node-labeled tree. For-
mally, we define it as a 4-tuple X = (V, Ed, r, \), with V' the
finite set of nodes, £d C V x V the set of parent-child edges,

r € V the root, and A\: V' — L a node-labeling function into
the set of labels L.

Given an XML document X', we define the downward-paths
of X, denoted DownPaths(X), as a set of node pairs (m,n)
where m is an ancestor of n. Furthermore, given a num-
ber k € N, DownPaths(X,k) represents the set of node
pairs such that (1) length(m,n) < k, and (2) (m,n) €
DownPaths(X).! Given two nodes m and n in X, we de-
fine the label-path LP(m,n) as the unique sequence of labels
(bm, ..., ¢n) that occur on the unique path from node m
to node n. Given a node n € V, and a number k € N,
the k-label-path of n, denoted LP(n,k), is the label-path
of the unique downward path of length [ into n where [ =
min(height(n), k).

DEFINITION 2.1. Let X = (V,Ed,r,\) be an XML doc-
ument, and let k € N. Two nodes n1 and na € V are
Nk]-equivalent (denoted ny =prir) n2) if they have the same
k-label-path, i.e., LP(ni,k) = LP(n2,k). Two node pairs
(m1,n1) and (m2,n2) € DownPaths(X, k) are Plk]-equivalent
(denoted (mi,n1) =p) (m2,n2)) if they have the same
label-path, i.e., LP(mi,n1) = LP(ma,n2).

1length(m7 n) denotes the length of the unique path between
m and n in X.

2height(n) denotes the height of node n in X.



The Plk]-partition (N[k]-partition) of X is the partition on
the node pairs (nodes) of an XML document X induced
by the P[k]-equivalence (N[k]-equivalence) relation. It im-
mediately follows that each partition class C' in the Nk]-
partition can be associated with a unique label-path, the k-
label-path of the nodes in C'. On the other hand, a k-label-
path Ip € DownPaths(X,k) uniquely identifies an N[k]-
partition class, which we denote as N[k][lp]. Similar to the
N [k]-partition, label-paths can be associated with each par-
tition class in a P[k|-partition and a k-label-path Ip in an
XML document X uniquely identifies a P[k]-partition class,
denoted P[k][lp].

2.2 Trie Index and Query Evaluation
XPath queries are the core of almost all XML query lan-
guages. The core XPath expressions that are frequently
studied [1] can be defined in algebraic format as

E==0|e|l| || |" |EocE|E[E||[EUE

The downward path algebra D, as studied in [2, 6], which
contains only label matching and downward navigation is
the simplest form of a path query. The expressions of D are

E:=0|e|l| | |[EcE

We can use a label-path to represent a D expression, by cap-
turing the label matching (¢) at each step of the navigation.
For example, query ¢ = Ao | oB | oC' (whose corresponding
XPath query is //A/B/C) can be represented by label-path
(A, B,C). In the rest of the paper, we will no longer dis-
tinguish the XPath representation, algebraic representation
and label-path representation of a path query.

Given an XML document X and two path queries p1 and pa,
we say that p; contains p2, denoted as p1 = po, if p1(X) D
p2(X). Using the label-path representation, it is obvious
that p1 C° p2 = p1 = p2 (e.g. p1 is a suffix of p2). We use
the symbol C° to represent the proper suffiz relation between
two label-paths. Please note that p1 C° pas = p1 > p2 is not
always true.

Path and node semantics have been defined for these alge-
bras. In simple terms, path semantics evaluate a query into
a set of node pairs that match the starting and ending token
of a query, while node semantics evaluate into a set of nodes
that match the tail of the query. We further define the D[k]
expressions to be the D expressions with no more than k |’s.
Studies in [2, 6] show that any query in the core XPath alge-
bra can be decomposed into sub-queries in D[k], which can
be answered efficiently when the N[k] or P|[k]-partitions are
available, and be stitched together by natural and structural
joins.

THEOREM 2.1. Let X be an XML document and E an
expression in D[k], Let LPS(E,X) be the set of label-paths
in X that satisfy the node-labels and structural containment
relationships specified by F. Then,

E(X) = U PR
IpeLPS(E,X)
Eredes(X) = U N k] [ip]

IpELPS(E,X)

The P[k]-Trie index [2] organizes the P[k]-partition classes
of an XML document in a trie structure, using the inverted
label-path as keys ®. In other words, a P[k]-Trie index in-
dexes all DownPaths(X,k) of a document X. The extent
of an index entry labeled by Ip € DownPaths(X, k) is the
P[k]-partition class associated with label-path Ip and can be

retrieved by a single trie lookup with key ip~'.

Because the P[k]-Trie indexes node pairs, any core XPath
expression can be evaluated with an index-only plan, by
decomposing the query into sub-queries that are D[k] ex-
pressions, performing index lookup for each sub-query, and
computing the result via natural join, structural join and
projection operations.

3. PROBLEM OVERVIEW
3.1 Problem Definition

The workload of a set of queries @) can be represented in
various ways. We use a set of label-paths to represent the
workload and define the frequent label-path set Fg as a set of
label-paths whose appearance in ) reaches a certain thresh-
old. Fg represents a set of D queries that are considered to
be frequent, either by themselves, or as part of more compli-
cated XPath queries. The task of analyzing ) and generat-
ing Fg is usually done by a workload processor. While this
is an interesting problem, it is not the focus of this paper.
We will use the abbreviation F' to represent Fg.

The research problem we are addressing is: given a docu-
ment X and a workload F, design workload-aware indexes
for X that support efficient evaluation of core XPath queries
with a very small space and maintenance overhead. To be
more specific, we expect the workload-aware index to be
(1) superb for answering path queries that contain the fre-
quent label-path(s) and efficient for answering all core XPath
queries; (2) efficient in identifying queries that yield empty
results; (3) efficient in index updates induced by changes in
either the workload or the data itself; (4) efficient in storage
overhead and adjustable easily to space allowance.

3.2 Svstem Qverview
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Figure 2: Workload-aware Index Management and
Query Evaluation

Figure 2 shows the architecture of the information man-
agement and query processing module of an XML database
management system that features workload-aware indexes.
There are three major components that work together to

3We use Ip~! to represent the inverted path of label-path Ip



evaluate queries: the index manager, query evaluator, and
query optimizer. The index manager is at the center of
this study. It uses the workload F' to construct workload-
aware indexes based on the XML documents stored in the
database, and updates these indexes whenever the workload,
the data, or the index configuration changes. It provides in-
dex access to the query evaluator through a lookup operation
that takes a label-path as input and produces a set of node
(node pair) identifiers. It also provides index availability in-
formation to the query optimizer through a probe operation,
allowing the query optimizer to take full advantage of the
indexes and generate an optimal evaluation plan.

In our family of workload-aware indexes, we index all label-
paths in F' plus a selected set of complementary label-paths.
The strategies utilized in the selection of the complementary
label-path set reflect the space/performance trade-off that is
at the core of index design.

4. WORKLOAD ENHANCED 7P[k-TRIE

4.1 Extending ther[k)-Trie with Workload

The P[k]-Trie index [2] significantly out-performs the A[k]-
index [13] by enabling index-only evaluation plans for all
path queries. However, it also suffers from the same space /
performance dilemma as the A[k]-index: the degree of local
bi-similarity of all index entries is limited by the k£ parame-
ter. This problem is especially evident when most frequent
label-paths are short save for a few exceptions. Therefore,
choosing a small k value results in a smaller index, but at
the expense of not being able to answer some frequent label-
path queries efficiently; choosing a large k value results in a
much larger index, where most index entries are rarely used.

To get the best of both worlds, we take advantage of two
important properties of the P[k]-Trie index: (1) the inde-
pendence of the trie branches in terms of the degree of local
bi-similarity; (2) the fact that the P[k]-Trie index supports
index-only evaluation plans for all core XPath queries and
performs reasonably well with a modest k value, as long as
k > 1. Thus, we propose to index all frequent label-paths,
and all paths of length < k (with a rather small k value).

Given a data set for an XML document X, it is reasonable
to assume that the frequent queries are those that are mean-
ingful. Therefore, without loss of generality, we assume that
the workload is a subset of DownPaths(X).

DEeFINITION 4.1. Given an XML document X and a work-
load F, the k-extension of F in X, denoted Ext™*(F),
is the union of F and all downward paths of length < k:
Ext™*(F) = FU DownPaths(X, k).

For the convenience of the discussion, for a label-path set
S, we use |S| to represent the number of label-paths in S,
and use length(S) to represent the length of the longest
label-path of the set, e.g. length(S) = r;leagc(|lp|). From the

definitions above, it is obvious that

o |Ext™F(F)| < |F|+ |DownPaths(X, k)|; and
o k <length(Ext™"(F)) < max(k,length(F)).

The WP[k]-Trie index (Workload-aware P[k]-Trie index) is
the simplest form of a P[k]-based, workload-aware index. It
indexes the label-paths in the k-extension of a given work-
load, where the k value can be configured based on the query
workload and the space allowance for the index.

DEFINITION 4.2. Given an XML document X, a workload
F and a parameter k, the WPIk]-Trie index of X that is
sensitive to F' is a trie index thal indexes the label-paths
in Ext™"®(F): the index keys are the inverted label-paths
in Bat™"(F) and the extent of each index entry associated
with a label-path lp is Pll|[lp], the P[l]-partition class of X
with | = length(Ext™*(F)).

ExAMPLE 4.1. Consider the example XML document X
as shown in Figure 1. The WP[1]-Trie index of X that is
sensitive to workload F = {(A, A, B,C,D),(A,F,B,C,D)}
is shown in Figure 3. Please note that there is no index
entry associated with label-paths (B,C,D), (A,B,C,D) and
(F,B,C,D), since they are not part of Ext™ ' (F).

4.2 Query Evaluation with the wp[k]-Trie

The WP[k]-Trie index provides a lookup function that is
similar to that of the P[k]-Trie index, or any traditional trie
index. Given a WP|k]-Trie index T" and a label-path query
Ip, the lookup function T'[Ip] retrieves the extent of the index
entry that can be located with key Ip~*, or () otherwise.

Let’s consider evaluating a label-path query lp against the
XML document X, on which a WPIk]-Trie index is avail-
able *. Tt is not always the case that an index entry can be
allocated that matches Ip. It would be the task of the query
optimizer to perform query decomposition and generate an
optimal evaluation plan. As discussed in Section 3, besides
index lookup, our workload-aware index framework also pro-
vides an index probe function, which assists the query opti-
mizer in accomplishing its task. The index probe function
takes a label-path [p as input and returns the label-path that
is the best (longest) match to Ip, or ) when there is enough
information in the index to determine that Ip(X) = 0.

Given a label-path Ip and a WP[k]-Trie index T of X that
is sensitive to workload F, we say that lp incurs an index
hit if lp € Ext™*(F). We call it a structural hit if there
exists a label-path Ip’ € Ext™*(F) such that Ip C° Ip’. We
call it a true structural hit if it is a structural hit, but not
an index hit. We call the longest suffix of Ip that can cause
a structural hit in 7" the structHit-suffix of Ip in T and the
longest suffix of Ip that can cause an index hit in 7" the
ideHit-suffiz of lp in T'.

LEMMA 4.1. Let T be a WPIk]-Trie index of XML docu-
ment X that is sensitive to workload F. Given a label-path
query lp, let lps be the structHit-suffiz of lp in T and lp; be
the idxHit-suffix of lp in T, then,

o |ip| > |ips| = [lpil;
Tt has been proved in [2] that the P[k]-Trie index is ca-
pable of supporting index-only plans for answering any core
XPath queries, therefore, in this paper, we focus only on the
efficient evaluation of label-path queries.
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e Ip incurs an index hit in T iff lp = lps = Ips; Case# | Case Description | probe(lp) | Ip(X)
Case 1 Ip =lps = lp; lp T[ip]
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The correlation between a label-path query lp and its match Alps| > k
in a WP[k]-Trie index T can be summarized in the cases Case4 | |lps| =lpi| =0 0 0

illustrated in Figure 4. Here, bold circles represent label-
paths that are indexed; thin circles represent nodes in the
index that serve as structural components; dotted circles
represent label-path queries.
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cases, the ideHit-suffix of Ip. Unless the idzHit-suffix itself is
a frequent path, the probe function will return a label-path
of length k.

Upon receiving the result of probe(lp), the query optimizer
will be able to generate one of the following evaluation plans:
(1) if probe(lp) = lp, it will place an index access operator for
Ip; (2) if probe(lp) = 0, it will conclude that the query result
is empty and immediately inform the query evaluator; and
(3) if probe(lp) = Ip' is a proper suffix of Ip, it will decompose
the query into two sub-queries: the returned path Ip’ and the
rest of the label-path Ip’ ®, and then place an index access
operator for Ip’ into the evaluation plan. The index probe is
then repeated on Ip’. The behavior of the probe function is
summarized in Table 1.

®Assuming p C° Ip, we use P to represent a sub-query re-
sulting from the decomposition of Ip, such that pop = Ip
and p and p share the token on their border.

Table 1: Evaluating Label-path Queries with the WP[k]-
Trie Index

For any path query lp € F, it is guaranteed that lp €
Ext™*(F) and the evaluation of Ip falls in Case 1. There-
fore, it is guaranteed that Ip can be answered with one in-
dex lookup. In addition, given that the P[k]-partition of an
XML document indexes the partition classes of node pairs,
as stated and proved in [2], all core XPath queries can be
evaluated by an index-only plan when k > 1. This result
can be easily extended to the WP[k]-Trie index, since the
label-path set indexed by the WP[k]-Trie index is a super-
set of the set indexed by a P[k]-Trie index. In other words,
the P[k]-Trie index is a special case of the WP[k]-Trie in-
dex, where F' C DownPaths(X, k). Therefore, the following
theorem stands.

THEOREM 4.1. Given an XML document X and a work-
load F, when the WP[k]-Trie index of X that is sensitive
to F is available, all path queries in F can be answered in
one index lookup and all core XPath queries can be answered
with index-only plans.

EXAMPLE 4.2. Given the XML document X as shown in
Figure 1, assume that the WP[1]-Trie index as shown in
Figure 3 is available. Let’s consider a few queries against
X.

Q1 = //A/F/B/C/D. Case 1, probe(Q.) = (A, F,B,C, D),

then Q1(X) = T(A, F, B,C, D)] = {(no, n11)}.
Q2 = //E/D. Case 3.1. probe(Q2) = 0, then Q2(X) = 0.
Qs = //A/B/C/D. Case 2, probe(Qs) = (C, D). The query

K

optimizer will decompose Qs into two sub-queries (A, B, C')

and (C,D). It repeats index probe on the label-path
(A,B,C) and receives (B,C) as a result. Through



another query decomposition, it probes (A, B) and re-
ceives (A, B) as a result. The evaluation plan will then
be Q3(X) =T[(A,B)] =< T[(B,C)] = T[(C, D)].

Qs = //D/A/B/C/D. Case 3.3, probe(Qs) = (C,D). The
first few rounds of index probe and query decomposition
are similar to those of Qs. However, the last probe
of (D, A) yields 0. Therefore, the optimizer concludes
that Qa(X) = 0 without invoking any evaluation.

4.3 wplk)-Trie Construction and Maintenance
Given an XML document X and a workload F, the WP[k]-
Trie index can be constructed with one depth-first traversal
of X', with the help of a stack whose size is bounded by the
height of X'. The construction proceeds as follows:

Step 1 : Initialize the labels of interest (LOI) to be the set
of tail labels of the label-paths in F.

Step 2 : Traverse X. At any time during the traversal,
when node n is being visited, the node label and node
id of each node on the path LP(r,n) are maintained
in a stack, with the root node r at the bottom.

Step 2.1 : For each i € [0, k], compose a label-path
Ip using the labels of the top 7 nodes in the stack;
insert the node pair (stack[i].id, stack[0].id) into

the index with key Ip~!.

Step 2.2 : If A(n) € LOI, for each j € [k+1, stackHeight],

compose Ip as in Step 2.1. If I[p € F, insert the
corresponding node pair into the index with key
Ip~t.

Indexes should always be updated simultaneously when data
changes. As to the changes that can occur in an XML docu-
ment, we limit our discussion to the insertion or deletion of
a leaf node, since the insertion, deletion of sub-trees and the
modification of nodes can be treated as a sequence of basic
insertion and deletion operations.

Workload-aware indexes must be able to adapt quickly and
efficiently when the workload changes in order to provide
continuous support for efficient query evaluation, especially
for frequent queries. In addition, an index should be easily
adjusted when the space allowance changes, in the case of
workload-aware indexes, to further benefit the evaluation of
non-frequent queries. A key merit of the P[k]-Trie index
is that all core XPath queries can be evaluated by index-
only plans. Therefore, information preserved in the index is
sufficient for all index maintenance, including those changes
triggered by adding and removing frequent label-paths and
the refinement or compression of the index triggered by mod-
ifying the k value, without the need to access the XML doc-
ument.

Document changes - add a leaf node: Assume that
a node Nnpew 18 inserted into the XML document to be a
child element of node n. Assume that the path between the
root node r and n is (no,n1,...,n1) (no = r and n; = n)
and the label-path LP(r,n) = (A(no), A(n1),...,A(n;)). For
the convenience of the discussion, we assign ni+1 = Nnew-
The modification to the WPIk]-Trie will be local to the
branch rooted at A(nnpew) and involves a few insertions to
the index. Every node pair (n:,nnew) ((+1—k < i <
l+1) will be inserted into the index with the label-path

(A(ni), A(ni+1), - -, A(n41)) 7 as index key. For j € [0, -],
the node pair (n;, Tnew) is inserted into the index only when
the label-path (A(n;), AM(nj41),. .., A(ni41)) € F.

Document changes - remove a leaf node: Adjustments
in the index triggered by the deletion of a leaf node are
limited to the index branch rooted at A(nrmo), assuming
Nrmo 18 the node to be deleted. It is exactly the opposite of
the process triggered by the insertion of a leaf node.

Workload changes - add a frequent label-path: As-
sume that a new label-path Ip is added to the workload
F. We take advantage of the information present in the
WP|k]-Trie and evaluate Ip as a path query. If the result is
not empty, we insert the resulting node pairs into the index,
with Ip~! as key.

Workload changes - remove a frequent label-path:
When a label-path [p is removed from the workload F', no
action is needed if Ip € DownPaths(X,k); otherwise, the
index entry associated with Ip is removed.

Index Configuration Change - change k value: A nice
property of the P[k]-Trie index is that its layers are inde-
pendent. The P[k]-Trie index is simply the top k layers of
the P[k+1]-Trie index. Taking advantage of this property,
the adjustment needed for decreasing the k value from ki
to k2 is simply removing the bottom ki — k2 layers of the
trie structure, with the exception that the index entry as-
sociated with a label-path [p will not be removed if Ip € F.
Increasing the k value is exactly the opposite. To add a new
layer at level k, the content of the new index entries can be
computed by performing natural join between the entries on
level k1 and k2, where k1 + k2 = k.

4.4 Properties and Limitations

The idea behind the WP[k]-Trie index is straightforward.
The WPIk]-Trie is easy to construct and maintain and bears
the following properties: Given an XML Document X a
workload F', and T' the WP[k]-Trie index of X that is sen-
sitive to F', then,

e The height of T', therefore, the maximum search length
during lookup, is bounded by length(Ext™*(F)), and
length(Ext™ " (F)) < maz(k, length(F));

e The number of index entries in 7" is no larger than
|DownPaths(X, k)| + |F|. Consider that under most
circumstances | DownPaths(X, k)| > | F|, thus the size
of T is close to the size of the P[k]-Trie of X.

Although the WP[k]-Trie index with a very modest k value
can help evaluate all frequent path queries in one index
lookup and evaluate all core XPath queries with an index-
only plan, it still presents some limitations:

Limitation #1 The information kept in the index is not
sufficient to always determine whether a path query
results in an empty set (as per Case 3.2), but has to
do so through multiple query decomposition and probe
operations, as illustrated by @4 in Example 4.2.



Limitation #2 For non-frequent path queries whose length
is larger than k, it is almost always the case that it will
be decomposed into a sequence of sub-queries of length
k, unless a frequent label-path happens to be its suf-
fix. This may result in a significant number of joins in
the query evaluation process when the k value is small.
Query @3 in Example 4.2 is such an example.

Limitation #3 Indexing all label-paths of length 0 «~ k in
the WP[k]-Trie significantly increases the size of the
index. This results in “over-populated” layers at the
top of a WP[k]-Trie index, while some of these index
entries are rarely used.

5. ANNOTATED wr[k]-TRIE INDEX

The limitations of the WPIk]-Trie index outlined above in-
dicate that there is still space for improvement in the de-
sign of the workload-aware Trie indexes with respect to the
space/performance trade-off. In this section, we propose
the AWP[k]-Trie index (Annotated WP[k]-Trie index) as
the solution.

5.1 The Study of Representativeness

We first address limitation #1 of the WP[k]-Trie index,
which is the inability to identify some path queries whose
result is empty. The root of this problem is that by index-
ing only a subset of the downward label-paths beyond length
k, the index no longer “fully represents” the structural dis-
tribution of the XML document.

DEFINITION 5.1. Given a label-path lp € DownPaths(X)
and a set of label-paths S, we say that lp is structurally repre-
sented by S with respect to X, denoted lp <° S, if for every
label-path lp’ in DownPaths(X) which is one step longer
than lp and has lp as a suffiz, either lp’ € S orlp’ is a suffix
of a label-path in S.

Given an XML document X and a workload F, for every
Ip that is either in Fxt™*(F) or is the suffix of a label-
path in Eati'k(F)7 we can easily compute the boolean flag
struct(lp) = Ip <° Ext™F(F). This flag will allow us to
identify more queries that result in () than the WP[k]-Trie.

LEMMA 5.1. Given an XML document X a workload F,
and a path query lp, we can conclude that Ip(X) = 0 if its
structHit-suffiz in the W[k]-Trie indez is a proper suffiz of
Ip and it is structurally represented by Ext™"(F). E.g.

Ips C° lp Alps <° ExtF(F) = Ip(X) =0

We now address limitation #2 of the WP[k]-Trie index,
which is the potential over-shredding of a path query in
query evaluation. The root of the problem is that the evalu-
ation of a path query always resorts to query decomposition
when it does not incur an index hit in the probe. Since
only frequent paths of length > k are indexed, non-frequent
queries are decomposed into a sequence of sub-queries of
length k. This is clearly not the most efficient evaluation
plan for some queries, especially those that incur a true
structural hit and whose structHit-suffix is structurally rep-
resented in Ext™"(F). Q3 in Example 4.2 is such a case.

Let’s recall Theorem 2.1 introduced in Section 2. We would
like to be able to identify all queries that can be evaluated
using Theorem 2.1, e.g, those queries whose label-paths in
LPS(E, X) are all indexed, facilitating evaluation whenever
possible.

DEFINITION 5.2. Given an XML document X, a set of
label-paths S and a label-path lp € DownPaths(X), we say
that lp is represented at the instance level by S with respect
to X, denoted lp <* S, if there exists a label-path set S’ =
{lp'|lp’ € SAIp C° Ip'}, such that Ip(X)= U (Ip'(X)).

lp’es’

Note that S” does not necessarily include all label-paths that
have Ip as their suffix, but rather, there exists a smallest S’
which includes only the “closest” label-paths that have Ip as
their suffix.

To summarize our study of label-path representativeness, we
define the notion of full representativeness as follows:

DEFINITION 5.3. Given an XML document X, a set of
label-paths S and a label-path lp € DownPaths(X), we say
that lp is fully represented by S with respect to X, denoted
Ip<8,iflp<*SAlp<"8S.

5.2 Awp[k)-Trie Index

Equipped with the notions of structural and instance level
representativeness of a label-path by a label-path set, we are
now ready to define the notion of a self-sustaining label-path
set and the self-sustaining closure of a label-path set.

DEFINITION 5.4. Given an XML document X and a label-
path set S, we say that S is self-sustaining with respect to X
if for any label-path lp that is a suffiz of a path in S, it is
the case that (1) lp € S; or (2)Ilp < S.

DEFINITION 5.5. Given an XML document X and label-
path set S, we define the self-sustaining closure of S, denoted
S*T, to be the minimum among all sets that has S as a
subset and is self-sustaining with respect to X .

The AWP[k]-Trie index of an XML document X, sensitive

to workload F, indexes the label-paths in (EaxtX'k(F)))H7

including annotations that reflect the structural representa-
tiveness property for each suffix label-path in (Eavt)(’k(F))X+.

DEFINITION 5.6. Given an XML document X, a workload
F, and a parameter k, the AWP[k]-Trie index of X that is
sensitive to F' is a trie index that indexes the label-paths in

(Extx'k(F))XJr: the index keys are the inverted label-paths
n (Ealct)(’k(F))X+ and the extent of each index entry associ-
ated with a label-path lp is P[l][lp], the P[l]-partition class of
X with 1 = length((ExtX'k(F))XJr). A struct flag is associ-
ated with each label-path that is either in (Ezt“ﬁ(’k(F))/"'}Jr or
is a suffiz path of a label-path in (Eazt)('k(F))XJr
whether it is structurally represented by (Ext™"*(F))

to indicate
X+



TrieRoot

e

(n1, n1), | struct=v

(n0, nO), |------ sm‘3=v struct=Y __
(n12, n12) "4 (n5, n5),
(n9, n9),
/ / \(nlB, n13)

A A
struct =¥ struct = N struct = N struc

(n2, n2),
(n6, n6),
(n10, n10),
(n14, n14)

(013, %) L

(n5, n6),
(n9, n10),
(n13, n14)

(o, n3), | .-
(n12, n15) st

[0, n15)]

struct =¥ [~z 3y truct =¥ struct=Y .___
(n7,n7), (n4, n4) (n8, n8)
(n11, n11),
(n15, n15)
[ A A
struct = ¥ struct = v truct = ¥
*[(n2, n3),
(n6, n7), .
(n10, ni1), (n0, n4) (n0, n8)
(n14, n15)
B
struct =N ---___ (n1, n3),
"7 ==+ (n5,n7),
/ (n9, n11),
(n13, n15)
A F
truct = ¥ truct = Y
A A
struct = v struct =Y -
(n0, n11)

Figure 5: AWP[1]-Trie of X with F = {(A, A, B,C,D),(A,F,B,C,D)}.

ExampLE 5.1. Consider the example XML document X
shown in Figure 1. The AWP[1]-Trie index of X that is
sensitive to workload F = {(A, A, B,C, D), (A, F,B,C,D)}
is shown in Figure 5.

In this index structure, every node has an associated struct
flag. For example, struct((A,A)) = TRUE, since there is
no label-path in DownPaths(X) that has (A, A) as a proper

In order for the query optimizer to take full advantage of
the two lookup functions, the AWP[k]-Trie index provides
a probe function that takes a label-path as input and returns
the best (longest) label-path for both direct and sub-tree
lookup. For the clarity of the discussion, we use probeq(lp)
to represent the returned label-path for direct lookup, and
probes(Ip) for the label-path returned for the sub-tree lookup.
probes(lp) is set to NULL if probe can not propose a sub-

suffiz; struct((B,C, D)) = FALSE, since the label-path (E, B, C, Fxee lookup better than what is proposed for a direct lookup.

of DownPaths(X) is not in ExtX’l(F)X+,' and struct((A, B, C, D)L)Tpgn receiving the probe result, it will be up to the query
TRUE, since (A, A, B, C, D), the only label-path in DownPaths()(‘)Ptimizer to decide how to utilize the information and gen-

that has (A, B, C, D) as a proper suffiz is in (ExtX’l(F))X+.

Comparing this indez to the WP[1]-Trie for the same docu-
ment and workload (as shown in Figure 3), two label-paths
that were not indezxed in the WPI1]-Trie index are indezed
here: Ipy = (B, C, D), since lp1 £#° (Ext™'(F)), and Ips =
(A, B,C, D), since lps A" (Ext™(F)).

5.3 Query Evaluation with the Awp[k]-Trie
We define two lookup methods for the AWP[k]-Trie index:
direct and sub-tree lookup.

Given an AWP[k]-Trie T and a label-path query Ilp, the
direct lookup of Ip, denoted T'[lp], retrieves the extent of an
index entry that can be located with key Ip, or ) otherwise.
It provides the answer to Ip(X) under path semantics.

The sub-tree lookup of Ip in T, denoted f[lp]7 computes
Ip(X) using the Theorem 2.1. The extents of the proper
index entries in the sub-tree rooted at the index node that
matches [p participate in a union on their second projec-
tions. If lp is not structurally represented in the index, then
Theorem 2.1 cannot be applied to Ip and its result is NULL.
A sub-tree lookup provides the answer to Ip(X’) under node
semantics.

Please note that only the extents of the “closest” index en-
tries on each branch in the sub-tree rooted at the index
entry associated with [p are needed in the sub-tree lookup.
Formally, we define the sub-tree lookup as follows:

~ /
Tlip) = U m(T[1p])
1p' €{plpe(BaxtX kb (F) X T ApCspa
—3p/ €(BwtX k(F)* T (1pCep” Ap” C=1p')}

erate an efficient evaluation plan.

Given an XML document X and a workload F', Table 2
presents the behavior of the probe function and the evalua-
tion plan(s) that can be generated for evaluating path query
Ip with the help of an AWPIk]-Trie index of X that is sen-
sitive to F'. Again, the cases illustrated in Figure 4 are the
only cases that may occur, but now we can take into con-
sideration the struct flags in the index nodes.

The AWPk]-Trie index can still answer frequent queries
with a direct index lookup, but can perform much better
than the WP[k]-Trie on non-frequent queries. We are able
to address limitation #1 of the WP[k]-Trie index with the
introduction of the struct flag. We are also able to address
limitation #2 with the sub-tree lookup and a more sophisti-
cated probe function. Moreover, we are indexing more label-
paths, increasing the likelihood and frequency of cases where
the length of Ips and Ip; is longer than k, further relieving
the over-decomposition problem.

In addition, by supporting the evaluation of a path query un-
der the node semantics for longer sub-queries, the AWPIk]-
Trie opens the door for more complicated query optimiza-
tion, and in most cases, more efficient query evaluation plans.
For example, for Case 3.3, when struct(lps) = FALSE, the
default evaluation plan is

Ipi(X) b2 T'ip:]

However, in case there is a significant difference between
the cardinalities of Ips(X) and Ip;(X), a much more efficient
evaluation plan is

Ipi(X) b (TlIpi] > Tips])



Case# | Case Description struct(Ips) Index Probe Query Evaluation
probeq(lp) | probes(Ip)
Case 1 lp=lps = lp; lp NULL Ip(X) = T|lp]
Case 2 lp = lps # lp; TRUE Ip; Ips Ip(X) = Ipi(X) > T[ip:)
(%) = Tlips)
FALSE | Ip: NULL Ip(X) = Ip:(X) 52 T[ipy]
Case 3.1 | lp # lps A |lps| < k [ [ [
Case 3.2 | Ip # Ips Alps = lpi N|lps| > k | TRUE 0 [ 0
FALSE | Ips NULL Ip(X) = Ips (X) < T[ips]
Case 3.3 | Ip# lps Nlps #lpi Nllps| > k | TRUE 0 0 0
FALSE | lpi Ips Ip(X) = Ipi(X) > T[lps]
Ip(X) = Ipi(X) v (T'[lpi] > Tlps))
Case 4 [lps| = |lps| =0 0 [ [

Table 2: Evaluating Label-path Queries with AWP|[k]-Trie Index

which uses the result of Ips(X) to filter Ip;(X') before it par-
ticipates in the join with the results of other sub-queries.

EXAMPLE 5.2. Let’s again consider the queries discussed
in Example 4.2. There is no change to the evaluation of Q1
and Q2, but Q3 and Qa4 will be evaluated more efficiently
with the help of the AWP[1] index shown in Figure 5.

Q3 = //A/B/C/D. Case 2, struct((A,B,C, D)) = TRUE.
Therefore, probeq(Qs) = (B,C, D) and probes(Q3) =
(A,B,C, D). So, we can evaluate query Qs under node
semantics: Q4°%(X) = T[Qs] = {ns, n1s}.

Qs = //D/A/B/C/D. Case 3.2. The structHit-suffix of
Qs in T is (A,B,C,D) and struct((A,B,C,D)) =
TRUE. Therefore, probe,(Qs) = 0, and upon re-
ceiving this information, the conclusion is immediately
made that Q4(X) = 0.

Please note that with the AWP[1]-Trie index, all four ex-
ample queries are either determined to have empty results,
or can be evaluated by one index lookup.

5.4 awp[k)-Trie Construction and Maintenance

The difficulty in the construction of an AWP[k]-Trie in-
dex lies in determining the structural and instance level rep-
resentativeness of the label-paths, and hence the member-
ship in (Extx'k(F))XJr. However, with some careful book-
keeping, we can accomplish this in a single scan over the
XML document, at the same time that the index is pop-
ulated. The construction algorithm for the AWPIk]-Trie
index is shown in Figure 6. Given an XML document X, a
workload F' and a value k, we employ the following book-
keeping agents in the process of constructing an AWPIk]-
Trie index:

all_paths is used to keep track of the suffixes of all paths
in Ext™*(F). Tt is initialized with the label-paths in
F and their suffixes, and is later populated during the
file scan.

Ext is used to keep track of the label-paths that should
be in (Ext®*(F))**. It is initialized with the label-
paths in F' and their suffixes of length < k. During
the file scan, a label-path [p in X is added to Fat if

|lp] < k or if Ip fails the structural or instance-level
representativeness test.

tRep undecided is used to keep track of the set of label-
paths whose instance-level representativeness is yet to
be determined. It is initialized with all the label-paths
that satisfy the following criteria: (1) longer than k;
(2) is not a frequent label-path but is a proper suffix
of a frequent label-path; and (3) bears the label of
the root node as its first token. No more label-paths
will be added to iRep_undecided during the scan of
the XML document. A label-path is removed from
this set when it fails the structural or instance-level
representativeness test.

sRep_undecided is used to keep track of the set of label-
paths whose structural representativeness is yet to be
determined. It is initialized with all the label-paths
in F' and their suffixes of length > k. During the file
scan, a label-path lp in X" is added to sRep_undecided
if lp ¢ Ext and |lp| = k. A label-path is removed from
this set when it fails the structural representativeness
test.

To ensure efficient index construction, we want to perform
the representativeness tests only when it is absolutely nec-
essary. Given a label-path Ip, a structural representative-
ness test is triggered only when its struct flag is undecided
and when there is a known path in X’ that contains [p. An
instance-level representativeness test is triggered only when
a node pair that involves the root node is inserted into the
index and lp € iRep_undecided. At the end of the file scan,
any label-path that has not been assigned a FALSE struct
flag, can be assumed to be structurally represented. Any
label-path with a struct flag set to TRUE that is not in Ext
will be removed from the index.

The maintenance of the AWP[k]-Trie index triggered by
changes in data, workload, and index configuration is very
similar to that of the WP[k]-Trie index. Slight adjustments
are needed to conduct the structural and instance-level rep-
resentativeness tests on related label-paths. The scope of
the impact is limited only to the label-paths in question and
their suffixes. Due to the space limitations, details are omit-
ted.

5.5 Properties of awp[k]-Trie Index
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Figure 7: W[1]-Trie with F = {(A, A, B,C,D), (A, F,B,C,D)}.

The AWP|[k]-Trie index provides significant improvements
in query performance, especially for non-frequent queries,
over the WP[k]-Trie index. It also keeps a nice property

The structure of the AWPIk] and the W[k]-Trie index is
exactly the same for label-paths with length > k. A label-
path Ip with length < & will only be indexed in the W[k]-Trie

of the WP[k]-Trie index, in that the height of the index is
still bounded by maz(k,length(F)), limiting the maximum
search length during lookup. The number of index entries in

an AWPIk]-Trie index T is no larger than | DownPaths(X, k)|+

> (|lp| = k). Usually, |DownPaths(X, k)| > |F|, thus the

iflp € F, if its length is 1, or if Ip does not pass the instance-
level representativeness test in Eat™ (%) (F). Therefore, the
W]k]-Trie index is much more “sparse” on the top k levels
and much smaller in size when compared to its WP[k]-Trie
and AWP|[k]-Trie counterparts.

IpeEF

size of T' is close to the size of the P[k]-Trie index of X. With regards to query evaluation, the W[k]-Trie index is
also able to answer frequent path queries with a single index
lookup, and it possesses the same ability in quickly identify-
ing queries that result in () as the AWP[k]-Trie. The W[k]-
Trie index provides the same lookup and probe functions as
the AWP[k]-Trie index, which assist the query optimizer
in generating efficient evaluation plans. The only potential
flaw of the W[k]-Trie index is that when compared to the
AWP|k]-Trie, it may result in over-shredding of queries with
length less than k. However, if the k value does represent the
length of the majority of non-frequent label-paths, it may in-
deed provide better query decomposition and improve query
performance over the AWP[k]-Trie index, whose k value is
chosen because of space considerations.

While the AWP[k]-Trie index significantly improves the WP[k]-
Trie, it still does not fix limitation #3 of the WP[k]-Trie -
the over-population of the label-paths shorter than k - as
pointed out in Section 4.4. We propose a variant of the
AWP[k]-Trie to address this issue.

5.6 wik]-Trie Index

We now propose a variant of the AWP[k]-Trie index to fur-
ther improve space efficiency while introducing a minimum
impact to query performance. Careful selection of an appro-
priate k value is crucial for any workload-aware Trie index
to ensure its effectiveness. While the k value may reflect
index space considerations, it is also possible for it to rep-
resent the length of the majority of the non-frequent label-
paths, a value that can be easily obtained by the workload
analyzer. If we make such an assumption, we can define
a restricted complementary label-path set that emphasizes
the importance of non-frequent label-paths of length 1 and
k, avoiding over-population of other layers in the trie.

Due to space limitations, we omit the construction and main-
tenance details of the W[k]-Trie index, which are simple ex-
tensions of the corresponding algorithms for the AWP[k]-
Trie index.

6. EXPERIMENTAL EVALUATION
6.1 System Setup

In order to test the effectiveness and efficiency of the workload-
aware Trie indexes proposed in this paper, we compare them
against each other, and against two existing indexes: the
P[k]-Trie index [2] and APEX [5]. All indexes were imple-
mented using Timber [11], a native XML database system,
following the architecture described in Figure 2. We chose
APEX as our baseline comparison as it is a workload-aware
structural index that also claims to provide index-only query
evaluation plans for any XPath query.

Given an XML document X and a frequent label-path set F,

we define the restricted k-eztension of F, denoted Ext™ (F) (F),
as the union of F' and all downward label-paths in X that
are of length 1 and k. The W[k]-Trie index indexes all label-
paths in the self-sustaining closure of Ext™ M (F), with
annotations that indicate the structural representativeness

of the label-paths in Ezt™ ¥ (F) and their suffixes.

EXAMPLE 5.3. Figure 7 shows the W[1]-Trie index for the
document X shown in Figure 1 that is sensitive to workload
F ={(A A B,C,D),(A,F,B,C,D)}. Note that there are
no index entries associated with any label-paths of length O
(except for (A) which fails the instance-level representative-
ness test) since they are not part of Ext™ MY (F).

The experiments were conducted on the DBLP data set [17],
the NASA data set [15], and synthetic data sets we gener-
ated, on a Microsoft Windows XP computer, with an In-
tel Pentium 4 3.2GHz CPU, 2GB of available RAM, and



AWTP|[k]-Trie Index Construction
Input: XML document X', workload [, k.
{
\* Initializations s\
all_paths = FU{lp | 3lp’ € F(lp C° Ip')};
Ext=FU{lp | |lp| <kA3lp € F(lp C® Ip’)};
iRep_undecided = {Ilp | |lp| > kAlp & FA3lp' € F(lpC*® Ip')
A the first token of Ip is A(r)};
sRep_undecided = {Ip | |lp| > kA 3lp’ € F(lp C° Ip')};
\* File Scan and Index Construction s\
\* Traverse the XML document in a depth first fashion. x*\
\* At any time during the traversal, when node n is being x\
\* visited, the node label and node id of each node on thesx\
\* path LP(r,n) are maintained in a stack, with the root x\
\* node at the bottom.:x\
for (ne X ) {
for (: =0,...,stackHeight) {
\* Insert index entry, populate book-keeping agents s\
if (i > k A stack[0].label ¢ LOI) break;
node_pair = (stackli].id, stack[0].id);

Ip = (stackli].label, stack[i — 1].label, . .., stack[0].label);
if (1 > k Alp ¢ all_paths) break;
else {

insert lp into index, with extent node_pair;
if (Ip ¢ all_paths) all_paths = all_paths U {lp};
if (i =kAlp ¢ Ext)
sRep_undecided = sRep_undecided U {Ip};
if (4 < k) set struct(lp) = TRUE ;
if (i < k) Exzt = ExtU {lp};
}
\* Instance-level representativeness test s\
if (stackli].id = r.id A lp € iRep_undecided) {
iRep_undecided = i Rep_undecided — {lp};
Ext = Ext U {lp};
}
\* Structural representativeness test s\
if (i # stackHeight A lp € sRep_undecided) {
Ip' = stackli + 1].label + Ip;
if (Ip’ ¢ all_paths) {
sRep_undecided = sRep_undecided — {lp};
iRep_undecided = i Rep_undecided — {lp};
Ext = Ext U {lp}; set struct(lp) = FALSE;
}
}
}
}
\* Set struct flags and remove extra index entries x\
for (Ip € sRep_undecided — Ext) {
set struct(lp) = TRUE;
remove index entry lp from the index.
}
}

Figure 6: AWP|k]-Trie Construction

Timber’s default settings. The statistical information of the
DBLP and NASA data sets, on which results will be re-
ported, is summarized in Table 3.

Data Set | # of Nodes | Max Depth | Avg Depth
DBLP 1.3M 6 2.9
NASA 1.4M 8 5.6

Table 3: XML Data Sets

We designed and implemented a query set generator that
takes the workload F', the downward paths of an XML doc-
ument, and a few configuration parameters as input, and
generates a set of XPath queries against the given XML doc-
ument, where the label-paths in F' appear frequently (e.g.
above the given threshold) and all other label-paths appear
non-frequently.

Three different sets of frequent label-paths were used in in-

dex construction, including a deep F' with a few label-paths
whose length is > k, a wide F with a decent number of label-
paths with length > k, and a mized F' with a combination
of longer and shorter paths.

The results obtained for all combinations of data set, work-
load and query sets exhibited similar trends in both index
construction and query evaluation. Due to space consider-
ations, we present the results for the NASA file with the
mized F'.

6.2 Index Construction

The depth-first traversal algorithm was used for the con-
struction of all indexes. In particular, the P[k]-Trie and
APEX were constructed following the algorithms defined
in [2] and [5] respectively. The WPIk], AWP[k] and W[k]
Trie indexes were constructed following the corresponding
algorithms as described in Sections 4.3, 5.4, and 5.6, respec-
tively. For the P[k]-Trie and the workload-aware indexes, we
constructed each type of index with parameter k = 1,2, 3.
The time spent on index construction and the number of
index entries are shown in Figures 8 and 9.
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Figure 9: Index Size (NASA Data Set)

The results show that for the Trie index family, both con-
struction time and index size are directly correlated to the
parameter k. While the workload-aware Trie indexes are
slightly more expensive to construct compared to their P[k]-
Trie peers, they outshine or are at lease comparable to their
P[k]-Trie peers in terms of the index size requirements.

Naturally, the workload-aware Trie indexes are more expen-
sive to construct, compared to the P[k]-Trie index, due to
the additional label-paths in F' that need to be considered
and indexed while traversing the document. However, there
is no significant difference in the construction time between
the three workload-aware indexes. Even though the struc-
tural and instance-level representativeness needs to be com-
puted for every label-path in the index, resulting in addi-
tional label-paths to be indexed, the careful book-keeping in
the construction algorithms of the AWP[k] and W[k]-Trie
succeeds in keeping this overhead to the minimum.



The result in Figure 9 echoes our analysis that the size of the
WP|[k]-Trie and the AWP|[k]-Trie indexes should be compa-
rable to the P[k]-Trie index with the same k value, since the
selection strategies used in constructing the complementary
set of label-paths that are indexed ensure that we find the
minimal extensions required to reflect the workload and im-
prove index performance. Most importantly, the size of the
W|k]-Trie index is significantly smaller than other indexes
in the Trie family with the same k value. On average, the
W|k]-Trie index provides a size reduction of 40% compared
to the P[k]-Trie, and the W[1]-Trie index posts only a 15%
size increase compared to APEX.

6.3 Query Evaluation

The query set generation tool we designed can generate
simple path queries that are frequent label-paths or non-
frequent label-paths, and more complicated XPath queries
with branch predicates that consist of sub-queries that are
both frequent and non-frequent label-paths. We are inter-
ested in how different indexes answer these queries.

We will first discuss a few scenarios in which the experiments
verified the behavior of the indexes that are well understood
and expected:

(1) As expected, APEX and the workload-aware Trie indexes
perform equally well when answering a frequent label-path
query, with a single index lookup. However, when the query
is longer than k, the P[k]-Trie evaluates the query as a group
of sub-queries, each shorter or equal to k, and uses natural
joins to compute the query result from the results of the
sub-queries. The severeness of the impact depends on the k
configuration of the index and the length of the query.

(2) When non-frequent label-path queries longer than &k do
not share a suffix with any label-path in the workload, its
evaluation on the workload-aware Trie indexes is the same as
on the P[k]-Trie index. The query performance relies purely
on the k value of the index that is available. As APEX
indexes nodes rather than node pairs, it is only capable of
evaluating sub-queries of length 0, resulting in much worse
performance in this case.

(3) For queries that yield empty results, under most cir-
cumstances, the AWPIk]-Trie and W[k]-Trie are capable of
identifying the empty queries in the probe process, while the
other indexes have to resort to query evaluation, resulting
in a significant decrease in their performance. Again APEX
is penalized the most for resorting to sub-queries of length
0 and multiple join operations.

It is clear that the workload-aware Trie indexes we proposed
work equally as well as APEX for frequent queries, is superb
in identifying queries with empty results, and is at least as
good as the P[k]-Trie index for non-frequent queries that are
not related to any frequent label-path. To better understand
the unique merits of the workload-aware Trie indexes, we are
more interested in the performance of non frequent queries
that relate to frequent label-paths to a certain degree. This
includes path queries that are not frequent themselves, but
are related to a frequent label-path, and more complicated
XPath queries that are composed of both frequent and non-
frequent label-paths. We show the query performance of

two representative queries on these indexes in Figures 10
and 11.
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with branching predicates and both frequent and non-
frequent label-paths

q1 is a label-path query that is not frequent. In addition,
the structHit-suffix of ¢1 is not a frequent label-path itself.
APEX is not able to answer the query directly, so again
it has to perform the largest number of sub-query evalua-
tions. Since the structHit-suffix of ¢1 is not frequent, both
the P[k] and WPIk]-Trie index must decompose g1 into sub-
queries of length k, resulting in similar performances. How-
ever, a suffix of ¢1 is included in the complementary set of
label-paths for the AWP[k] and W[k]-Trie, enabling a much
longer label-path to be returned in the probe, hence less frag-
mentation in query decomposition and better performance.

q2 presents an interesting case in which the query is an
XPath query with branching predicates and contains a fre-
quent and a non-frequent label-path. APEX is able to re-
produce the parent-child relationships between nodes, but
not beyond. Indeed, it is an index based on node partitions
rather than node pair partitions. Thus, even if it is able to
answer the frequent label-path sub-query in a single index
lookup, it must still perform multiple join operations to re-
locate the ancestor nodes required for joining with the result
of the other sub-query. The performance of evaluating this
query with the P[k]-Trie index depends on the k value, but
it is guaranteed to be better than that of APEX, since we
always require k > 1 for any P[k]-Trie. The WP[k]-Trie
index outperforms the P[k]-Trie by answering the frequent
branch in a single index lookup. Meanwhile, the AWPk]
and WIk]-Trie indexes are able to use sub-tree evaluation on
the non-frequent sub-query, further improving query perfor-
mance.

To better understand the space/performance trade-off we
made in the design of the W[k]-Trie index, we specifically
tested a group of queries whose length is less than & but not
equal to 1, to measure the impact of removing the top few
layers of the Trie on the evaluation of such queries. Through



the use of sub-tree lookup operations, the W[k]-Trie was
found on average to be only 15% slower than the Trie in-
dexes but was still 5% faster than APEX for theses cases, a
reasonable compromise considering that for other cases the
W|k]-Trie index performs as well as the AWP[k]-Trie, while
being the most space efficient of the Trie index family.

7. CONCLUSIONS

In this paper, we introduce a family of workload-aware Trie
indexes, their data structures, their support for query eval-
uation and optimization, as well as their construction and
maintenance algorithms. The workload-aware indexes are
capable of answering all frequent path queries with one index
lookup and capable of answering all core XPath queries with
index-only plans. The three indexes in the family differ in
their space/performance trade-offs: the WP[k]-Trie is sim-
ple and easy to construct and maintain, while the AWPIk]-
Trie is able to provide better performance, especially for
non-frequent path queries. The W[k]-Trie further optimizes
space efficiency by considering additional query statistics,
minimizing the index space requirements while retaining the
query evaluation advantages present in the AWPIk]-Trie.
The workload-aware Trie indexes open the door for more
complicated XPath query optimization strategies. Analyz-
ing query history to generate a frequent label-path set, con-
ducting cost-based optimizations, and estimating the result
size of intermediate queries through the collection of statis-
tical information are all future directions for the workload-
aware Trie indexes.
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