HTTP Fences: Immigration Control for Web Pages

Server-Specified Resource Loading Controls for the HT'TP Protocol

Sid Stamm
Indiana University

sstamm@cs.indiana.edu

ABSTRACT

We propose an extension to the HT'TP protocol that allows
specification of domain borders in the form of fences — a ser-
vice provider is empowered with the ability to specify what
exactly they would like to accept as being within their do-
main. The extension also provides a second asset which is
a policy specification or data wisa; these visas specify what
types of data can be brought into the fence-specified domain
from the outside (such as scripts, images, HTML, etc). To-
gether, the fences and visas provide a data “immigration”
policy where the authors of a web application can easily
specify how data is allowed to enter and exit their applica-
tion through automated web-based means. These rules can
help to prevent unwanted information leak or entry (such
as the usual effects of Cross-Site Scripting attacks), as well
as similar “loose—origin” vulnerabilities that may not yet be
identified. The main benefits realized from our Immigra-
tion policy are preventive measures against cross-domain
attacks and a relief of burden on web application program-
mers. Since content restrictions are specified by the web
server and enforced by the browser regardless of the data
actually served by the website, web application developers
need to worry less that their code does the “right thing” with
user input. This is especially beneficial as web sites more fre-
quently allow visitors to contribute data in the fashion of the
Web 2.0 movement.

1. INTRODUCTION

In the shadow of all the problems stemming from informa-
tion leakage across domains, it seems attractive to tighten
control on the domains. Web “hackers” are often able to
use Cross—Site Request Forgeries [10] or Cross—Site Script-
ing 2| to move data between domains, exploiting browser or
site-specific vulnerabilities to steal or inject information.

Additionally, browser and web application providers are
having a hard time deciding what exactly should be a “do-
main” or “origin” when referring to web traffic. With the ad-
vent of DNS rebinding [5] and with the gray area regarding

ownership of sibling sub-domains (like userl.webhost.com
versus user2.webhost.com), it may be ideal to allow the
service providers who write web applications the opportu-
nity to specify, or fence-in, what they consider to be their
domains.

1.1 Information Leak Attacks

Currently, web sites are at liberty to embed content from
wherever else they wish. For example, mysite.com/index.
html| can embed images from mysite.com, or it may con-
tain references to images anywhere else on the Internet like
webcounter.com/images/count.cgi. Web browsers don’t
strongly enforce any rules on what can be embedded or ref-
erenced by a web site, opening up many vulnerabilities, es-
pecially considering the mash-up culture of Web 2.0. As a
result, web applications may be leaking information back to
one of the contributors. In the case of websites that have
been compromised by cross-site scripting or those that con-
tain cross-site-request forgeries generated by site contribu-
tors, the data leaked to a contributor could be as mild as
IP addresses of all site visitors, or as severe as passwords or
bank account numbers for all visitors. We call these types
of attack information leak attacks.

This problem is exemplified by iframe injections used for
search engine optimization [3]. In this, black-hat SEO at-
tackers circumvent some input validation to inject an iframe
onto a site’s search results page. After the injection, all
browsers that render the page inadvertently load an iframe
that points to data served by the attacker. That page then
attacks the visitor’s browser through a browser vulnerabil-
ity like codec installation, ActiveX objects or other drive-
by downloading techniques. The problem exploited by the
attackers has two parts: (1) the web application does not
properly validate input and (2) after the data is injected, a
visit to victimsite.com causes a browser to load the attack
page on evilsite.com. We argue that although the input
validation is important, it is never perfect; the victim site
should be able to specify which sites are trusted and then
rely on the visitors’ browsers to forbid loading resources from
untrusted sites like evilsite.com, reducing the abilities an
attacker gains through a successful XSS hack.

Since there are many beneficial uses for the ability to em-
bed off-site resources (web counters, traffic analyzers, adver-
tisements), it is not in the best interest of anyone to outright
reject this behavior by default. There are, however, some
cases with scripts where there is enough potential for mali-
cious code that web browsers block certain requests, such as
the iframe injection attack.

mysite.com/index.html
mysite.com/index.html
mysite.com
webcounter.com/images/count.cgi

1.2 Contribution

‘We propose a scheme in which web application developers
can serve a set of rules with their web site that will be en-
forced by the browser. When enforced, these rules will limit
what resources may be requested by scripts and HTML enti-
ties on the web page; even if the web developers lose control
over the page’s content, such as in the case of cross-site
scripting and SQL-injection attacks, the attacker will not
receive any “phone home” messages from his code. (Often
times, this phone-home technique is used to transmit stolen
cookies, private information or other information about the
victims to the attacker.) Our solution is implemented in
HTTP—outside the scope of any code running in a browser
document—so that the security controls can be erected out-
side of the sandbox where web content is rendered. We also
contribute proof-of-concept code that provides a sample im-
plementation of our scheme, showing that it is practical.
Finally, our scheme is gradually deployable — it does not
rely on complete adoption to work, and can be rolled out
gradually onto web servers and browsers.

1.2.1 Goals of our Scheme

Our proposed Immigration controls are intended to pro-
tect visitors of a web site SP such that the information they
provide the site will only be transmitted to SP or other
hosts authorized by SP. This policy will hold even if SP
is attacked by a web-based adversary who attacks the site
through a web browser using some sort of data injection
technique to perform cross-site scripting or inject additional
code onto the site. If our scheme is implemented correctly,
an adversary who is able to augment the website with ar-
bitrary JavaScript, HTML or CSS code will only be able
to transmit data to hosts authorized by SP. In almost all
cases, an adversary will not have control over a host autho-
rized by SP and thus cannot steal cookies, HTTP headers,
sessions, or collect information about SP’s visitors.

Additionally, our scheme will not introduce new ways for
an adversary to glean information from visitors browsers,
is robust (a site that mis-implements our scheme will have
no less security than one that does not use our scheme),
and cannot be used by an adversary to interrupt a site’s
operability.

1.2.2 Organization

For the remainder of this paper we will describe the need
for our data immigration control in Section [2] related work
in Section how it is implemented in Sections [4] and
then argue that our scheme provides additional security and
cannot reduce the security of a web site in Section[f] Finally,
in Section |7} we’ll discuss how our scheme is easily (and
gradually) deployed, including a summary of the proof-of-
concept prototype we developed.

2. BACKGROUND

The sole protection currently afforded to websites with
regards to scripting is the Same Origin Policy [13] (SOP).
Although this policy is implemented in browsers, attackers
are able to subvert the policy by directly attacking the site
and injecting a reference to their script into the website. For
example, an attacker may post a message to messageboard.
com that is rendered for all future users who view the mes-
sage. In his message, he includes some HTML that loads a
script from evil.com, his website. Suddenly, all visitors to

the site messageboard.com are running arbitrary evil.com
code within the messageboard.com domain. This is an ex-
ample of a persistent, referential Cross-Site Scripting attack
(XSS-PR)— an attack where a reference to an off-site script
is stored in the web application, or more generally, an in-
formation leak attack. Current security policies of browsers
and websites are not effective against this attack, so the bur-
den is placed on web developers to eliminate the possibility
that their code will be exploited in this fashion.

2.1 The Same Origin Policy

The same origin policy is a simple rule: a script loaded
from one origin is prevented from getting or setting proper-
ties of a document from a different origin. This prevents a
document on a page evil.com from embedding an invisible
iframe and acting as a man-in-the-middle by impersonating
either the user or a hidden website. It also helps prevent
data leakage between domains.

Specifically, a script loaded by a page at www.x.com/ can
access and manipulate the DOM and data from all other
pages that start with www.x.com/ as long as it is the same
host name and same protocol (http). If the port differs (www.
x.com:22), the site is denied access (except sometimes in
MSIE). Sibling domains are also prohibited access (other.
x.com/)) as are parent domains (x.com/), since they may
represent different applications or different web hosts.

As described earlier, SOP is ineffective against a persis-
tent, referential Cross-Site Scripting attack (CSS-PR), web
bugs, injected cross-site request forgeries (XSRF-I), or other
information leak attacks that don’t always rely on scripts.
This is because the attacker, who legitimately visits the vic-
tim website, manually enters the code that causes his script
to get loaded. Later, when his data is rendered, the browsers
of any visitors to the victim site load and execute his code.
The code that causes his script to load is served by the vic-
tim domain, and thus the script itself (though served from
a different domain) is embedded into the victim’s domain,
where it executes. Usually this is considered a vulnerability
in the web application, but validating input is tough with
the various bugs in browsers. Ideally, when input is not val-
idated properly, the web application should fail safely, and
not fail “open” as it currently does; this would minimize the
effect of such frequently discovered vulnerabilities.

2.2 Defining a Better Origin with Fences

Clearly, the Same Origin Policy is not sufficient in the
case of attacks that masquerade as legitimate parts of a
web application (such as the aforementioned CSS-PR, web
bugs, or XSRF-I). In order for web application providers to
more carefully secure the origin from which their applica-
tion comes, they should first be able to specify what exactly
this “domain” or “origin” should be, and not rely on the
browser to infer the definition. In some cases, a web appli-
cation should be restricted to a domain of only one server
to prevent accidental includes, web bugs, and also prohibit
hot-linking (embedding images from another server) and ad-
syndication services like Google’s AdSense. For some web
applications, this restrictive behavior is appropriate, but not
all — especially for load-balancing or distributed serving.

We propose a browser and server solution based on browser-
enforced “what can load” rules that are specified in HTTP
headers by the originating web server. Our approach first
defines the origin by erecting what we call Fences around

messageboard.com
messageboard.com
evil.com
messageboard.com
evil.com
messageboard.com
evil.com
www.x.com/
www.x.com/
www.x.com:22
www.x.com:22
other.x.com/
other.x.com/
x.com/

the origin. This allows a web application provider to specify
the borders of the “domain” or “origin” (which we use inter-
changeably) for their custom needs instead of relying on the
browser to appropriately assume what data can and should
be used.

Fences are simply specifications of origins in the form of
IP addresses, DNS names or patterns, and protocol names or
ports. Fences are erected and then that information is used
to partition the Internet into two. Once this partitioning is
done, Visas are defined to specify what kind of data can be
accessed from outside the site’s “domain” or fence.

Example. A host a.com (at 1.2.3.4) uses a distributed
content provider (such as Akamai) with multiple IP ad-
dresses to distribute the images embedded on its page. A
service provider erects a fence around a.com, all of its sub-
domains|*.a. com, and the IP block owned by the distributed
content provider 2.2.3.0 - 2.2.10.0 using our scheme. This
tells visitors’ web browsers to put the originating host a.com
into a group with the DCP’s hosts (see Figure [I).

E =

data.a.com Www.a.com

1 |

i i i

| | 1

| | 1

| 1 |

| - - | ey e
| [

i ! ! i

| | 1 |

| | 1 |

L= =l | ' Bl B

| 2223 evil.com 12223 | evilcom

| 4 | |

| I 1 |

| 1 1 |

| 1 1 |

| | 1 |

| | 1 |

i = = I i = i =
| 1

i 2.2.5128 random.com; | 225,128 irandom.com
| 1 |
! |

Figure 1: (A) Without our scheme, all hosts are
within the fence. (B) In an example use of our
scheme, fences are erected around a.com and an
IP block assigned to 2.2.3.0 - 2.2.10.0. A web
browser will consider them in the same “domain” for
purposes of loading external resources like images,
stylesheets and scripts.

2.3 Specifying Access with Visas

Once the Fences are erected, Visas must be specified to
allow access to resources that are not inside the fence. A
very restrictive web application may not even want its con-
tent to allow embedded images from outside the fences. A
less restrictive one may allow all static content (like images
and text and frames) but not allow scripts to be loaded from
outside the fence. A yet more relaxed policy may be to allow
loading of content from both sides of the fences, but only al-
low scripts and stylesheets to dynamically load content (i.e.,
load it after the page has been initially rendered) from inside
the fence. This relaxed policy allows externally-loaded re-
sources like scripts, but does not allow them to “phone home”
once the page has been rendered; this could allow externally-
provided functionality on a site without likelihood of cross-

site request forgeries [10]. All of these policies (and more)
can be specified with our scheme.

While the fences specify borders, the visas specify what
may cross from the outside world and be treated as part of
the site’s “origin”. The types of resources that are restricted
from entering the fenced-in origin are globally static (URIs in
the DOM that cause automatic loading of data like images),
static per tag (where static behavior is specified differently
for each HTML tag), or globally dynamic (behavior not in
the DOM caused by scripts, plug-ins, or other content that
“executes”). This is detailed in section

3. RELATED WORK

James Burke proposed a policy [1] that allows a web page
to specify from where scripts are allowed to be loaded and
where they are not allowed to come from. This policy re-
fines the way that XMLHTTPRequests (AJAX) can behave
much in a similar way to how we address all resources (not
just scripts). While it is useful to control where scripts come
from since they are much more powerful than images, there
is potential that a script from a trusted origin may be cor-
rupted through a vulnerability in the web application. As a
result, it is also important to catch requests that might be
“phoning home” to an attacker — these can be generated not
only through XMLHTTPRequest objects, but also through
writing tags to the DOM.

Reis et al write about a fundamental need for a way to
draw boundaries around programs, unwanted code, programs
in the browser, and other pieces of web sites [12]. They ex-
plain how uniform security policies can’t be applied since
there are many different types of code that execute in a
browser. We take the problem of boundaries identified by
Reis et al [12], and define a way to specify a boundary for a
given web application, and then enforce it.

W3C is developing a mechanism that allows cross-site re-
quests to be performed using XMLHTTPRequest objects |15].
The authors realize that the “all or nothing” scheme (which
is nothing when it comes to cross-domain AJAX) is too lim-
iting for today’s Web. Their proposed scheme uses a HTTP
header to specify that the request is cross-origin; the web
server is then responsible for deciding whether or not to
serve the requested data and also specify how the data can
be used. Our proposed Immigration Control uses a simi-
lar technique with HTTP headers, but extends the policy
to that of all requests on a web page that are not already
subject to the very restrictive but currently implemented
same-origin policy [13]. Additionally, we rely on the web
browser to enforce the policies instead of the web server —
this is because our goal is to protect the visitors of a site,
and not the site itself.

3.1 A Tighter Same-Origin Policy

Jackson et al have previously presented a more restrictive
same-origin policy (SOP) [8}/7,|6] that is designed to protect
victims of attacks like invasive browser history sniffing [9].
Their idea is that each domain’s state should be completely
isolated with respect to history and cache. This creates a
sandbox for each domain, but does not address the threat of
scripts loaded unintentionally or inadvertently from another
domain. While this approach provides additional privacy in
the form of restricting a site A loaded in a visitor’s browser
from inferring information about other websites, it does not
provide the inverse: prevention of a site X leaking informa-

a.com
a.com
*.a.com
a.com

tion about itself to A, an external site not loaded by the
visitor’s browser.

In order to stop information leak attacks through a SOP,
the policy must be strict about where resources are located;
for example, a website from x.com would only be able to
load dynamic content such as scripts and plug-in data (SWF
files, Java Applets, ActiveX controls) from the domain x.
com. This is not a desirable approach (blocking all content
from outside a domain), since many sites depend on loading
resources from other domains. In fact, this external resource
loading is a pivotal feature of what people are calling Web
2.0: sharing and disseminating information freely. Instead of
a strictly DNS-based origin that is enforced by the browser,
it would be more flexible to allow the creators of the site
identify which domains or hosts can be part of its origin. In
this fashion, a web site A is not always separated from all
other hosts, but instead A should be able to identify from
which other hosts it should be isolated.

4. FENCES IN DEPTH

To specify the Fences that partition the Internet into an
in and out domains, a web server includes a new HTTP
header in its response: X-HTTP-FENCE. A formal definition
of X-HTTP-FENCE is provided in Figure 2] The host that
serves this HT'TP header is always included in the fence by
default (based on the host’s IP address). This way the most
restrictive policy still allows the browser to render the root-
level page.

4.1 Order of Inclusion

A URI is only in the defined fence if it satisfies ALL of
the conditions present. First, the protocol is checked (if
a definition is omitted from the header, the most general
rule is used: *). If the PROTO definition is present, it
may be satisfied implicitly or explicitly. Relative URIs are
assumed to use their parent resource’s protocol even though
it may not be explicitly written. Same with port numbers:
the default for HTTP is port 80, so the PROTO definition
http:80, *:80 and http are all satisfied by a URI blah. com.

If the DNS definition is present, it must be satisfied; if an
IP address is used in a URI (e.g.,|192.168.0.1/blah. cgi),
then the DNS definition must be satisfied in order to include
that URI. If the DNS definition is “*”, then it is included,
but if the DNS definition is more restrictive like “*.com”,
then the IP address-based URI is not included.

Examples. Here are a few example X-HTTP-FENCE head-
ers and what their values imply. A blank value or miss-
ing header indicates to the browser to use the default least-
restrictive behavior.

IP (107.293.0.0/16 - 107.293.10.1)
This creates a fence around all IP addresses from

107.293.0.0 - 107.293.255.255, but does not in-
clude the IP address 107.293.10.1.

DNS *.domain.com
This creates a fence around all websites that come
from a*.domain. com as well as the original server’s

DNS.

PROTO https IP (* - 172.33.22.0/24) DNS (*.com)

This creates a fence around all secure HTTPS
connections to IP addresses that have a domain

ending with . com, and are not in the range 172.33.22.0-

172.33.22.255.

(def) ::= X-HTTP-FENCE: (proto-def) (ip-def) (dns-def)
(proto-def) ::= (empty) | PROTO (proto-expr) | PROTO *

(proto-expr) := SAME | ((proto-expr) + (proto-expr))
| (alpha){port)

(port) := (empty) | :(num)
(num) ::= (digit) | {digit){num)
(alpha) = (empty) | a|b|...| z | (alpha)(alpha)

(ip-def) ::= (empty) | IP (ip-expr)

(ip-expr) == *| {ip)(vism)
| ((ip-expr) + (ip-expr))
| ((ip-expr) - (ip-expr))

(ip) ::= (octet).(octet).{octet).{octet)

(octet)y == 01]1]2]...]255

(dns-def) = (empty) | DNS (dns-expr)

(dns-ezxpr) ::= * | (domain)
| ((dns-expr) + (dns-expr))
| ((dns-expr) - {(dns-expr))

(domain) ::= (empty) | (domain).(alphanum)| *

(alphanum) ::= (empty)

| (alphanum)(letter)
| (alphanum){digit)

(letter) == a|b|...|z

(digit)y : =0]1]...]9

Figure 2: The X-HTTP-FENCE header content contains
three (possibly empty) definitions, specifying the
protocol, IP or DNS inclusion policy. The protocol
definition (if present) contains a keyword PROTO
and then some set of protocols. Examples are http
and https:433. IP addresses can be specified within
the fences too using this notation (e.g., 10.0.0.0/24).
This can be easily extended to operate with IPv6,
but for now we are only specifying the values for
IPv4. And Domain names can be included with
wildcards. Also, like IP addresses, the union of do-
main sets (defined with wildcards or without) can
be expressed (e.g., (www.*.com + SAME)).

x.com
x.com
x.com
blah.com
192.168.0.1/blah.cgi
*.domain.com

PROTO https IP 172.33.22.0/24 DNS (*.com)

Slightly different from the last example, this puts
a fence around all HT'TPS connections to servers
in the range 172.33.22.0-172.33.22.255 that
are accessed using a domain ending in *.com. In
this case, if an IP address is used directly (the
URI doesn’t contain a domain name) then it is
forbidden.

4.2 Nesting Fences

Web applications often have a tree of documents instead
of just one root-level document, as in the case with multiple
frames, so the case of nested documents needs to be consid-
ered. There are two ways to approach nested fences: only
enforce the root-level fence for all sub-elements in the tree,
or only allow restrictions on policies for sub-nodes of a tree.

Root-Level policy.

In the first case described, imagine a document A loaded
with a fence Fa. A has two children B and C with fences
Fp and F¢, respectively. When the browser loads A, it
registers the fence F4 for A and all its children, then ignores
the fences Fp and F¢ defined by sub-documents of A.

Intuitively, negation of a site’s policy can be performed
easily under this policy by embedding the victim site in a
frame, but this is a scenario easily prevented by the “victim”.
Say an attacker erects a site £ with a fence engulfing the
entire domain space. He then embeds an iframe on the
site which loads a victim site V. In this scenario, the root-
level fence policy requires Fyy = Fg, allowing the attacker to
replace the effective fence on V' (E(Fy)) with his own, huge
fence. Luckily, this embedded-frame attack can be avoided
in the same way that web sites typically pop-out of frames.
This is done for many purposes, including to avoid an overlay
attack [4].

Subdocument-Tightening policy.

In a second policy, a document’s fence is allowed to shrink
to a subset of any fences described by a document’s parent.
This has the effect of allowing an origin to shrink in sub-
documents, but not grow. In this fashion, the amount of
information deemed “trusted” can only shrink and thus not
allow any less security than the root document. More for-
mally, imagine a document A with fence Fa. A has two
children B and C' with fences Fg and Fc, respectively. The
effective fence for B (the fences that actually get enforced)
is E(FB) =FaNFp.

The attack described in the previous paragraph, where
an attacking site embeds an iframe that loads a victim site
V is ineffective when subdocument-tightening is used. This
is because the attack relied on the ability of an attacking
site to broaden the hosts that are accepted as within the
origin of V. With subdocument tightening, the only effect
an attacker can have on a site loaded in an embedded iframe
is to shrink its origin. While this origin-tightening effect
may be used as a denial of service attack, we argue that
displaying only parts of a site will not reduce its security,
only reduce its functionality, thus making the attack more
obvious to a visitor. Additionally, most visitors of a site
will enter directly through its web address and not through
another site that embeds it in a sub-frame. In the case of
sites that intend to be embedded as sub-frames, this origin-
shrinkage must be considered during creation.

S. VISAS IN DEPTH

The Fences create a group of host origins that are all
treated as the web page’s root “home” domain that is trusted.
The Visas will specify what data can come into the origin
(i.e., “immigrate”) from outside the fence. In essence, the
visas will specify what data can come into the web page
through static means (e.g., loaded as an image in the HTML)
or through dynamic means (e.g., caused to load by a Flash
application or JavaScript). Additionally, the actual tags al-
lowed to be used when loading static content can be speci-
fied.

5.1 Resource Types

There are two types of resources that can be loaded on a
web page: static resources like images that simply get loaded
and then don’t act, or dynamic resources that in themselves
can change the DOM, interact with users or access other
resources based on coding or randomness. We consider the
static resources as mostly benign since they are not exe-
cutable, and have no real “behavior” per se. The only op-
portunity for action they have is information leak through
load: any information that is provided in an HTTP request
goes to the hosting web server of the resource.

Statically-Loaded Resources. These are resources that
have no behavior—they are simply data objects loaded from
a reference in non-executing content on the web page. Ex-
amples are images, sounds, and similar data loaded through
HTML tags.

Dynamically-Loaded Resources. These are resources loaded

through executing code that can be used to change what the
user sees or perform actions that may or may not be visi-
ble. Dynamically-loaded resources include new tags to be
added to the DOM by scripts, AJAX requests, plug-in ob-
jects (Flash, Java, etc), “Dynamic” CSS (@includes, url()
references, etc). The VISA header syntax is defined in Fig-
ure

(def) := X-HTTP-VISA: (policy) (data-def)
(policy) := ALLOW | DENY

(data-def) ::= ALL
| TYPE dynamic
| TYPE static
| TAGS (tags)

(tags) ::= * | (html-tags)

a
applet
script

(html-tags) ::= (html-tags), (html-tags)
|
|
|
| iframe

|

Figure 3: Formal definition of the HTTP-X-VISA
header. The header can specify whether or not to
allow or deny resource loading, and then more gran-
ularly, whether the allowed/denied resources are a
type or are loaded from specific tags.

*.com

Examples. Here are a few example X-HTTP-VISA headers
and what their values imply. A blank value or missing
header indicates to the browser to deny all resources out-
side the fence (same as X-HTTP-VISA: DENY ALL).

X-HTTP-VISA: ALLOW TYPE static
This allows static content to be loaded by static

means from all URIs outside a fence. This is
useful for sites that wish to embed images from
other sites but not allow scripts to phone home.

X-HTTP-VISA: DENY TYPE dynamic
This denies loading of any resources through dy-

namic means from URIs outside the fence. This

is useful for controlling dynamic includes. One
effect of this visa is denying scripts on the page
from causing new resource requests after the page
has loaded. This helps prevent some types of
cross-site request forgeries such as a drive-by pharm-
ing attack |14] that may have been injected into
the website.

X-HTTP-VISA: DENY TAGS script,iframe,applet
This denies loading of any content from outside
the fence via tags script, iframe or applet.
This would be useful for a public forum where
contributors should be able to embed images, but
not embed scripts or other web pages.

X-HTTP-VISA: ALLOW TAGS script,iframe,applet
This allows loading of any resources outside the
fence through tags script, iframe or applet.
External stylesheets and images are forbidden.

5.2 Multiple Visas

To increase flexibility, multiple visas can be defined. The
ALLOW/DENY policies get a bit more complex when multi-
ple visas are involved, so we establish rules that are followed
when multiple visas are present.

1. The first VISA header must define the most general
case and must be a TYPE visa.

2. Any subsequent VISA headers are refinements, or ex-
ceptions to the first one.

Example. This set of visas allows statically loaded content
except through script tags. To allow all static content ex-
cept for scripts, the following two visa headers are used:

X-HTTP-VISA: ALLOW TYPE static
X-HTTP-VISA: DENY TAGS script

In a less straightforward example, img tags can load im-
ages from outside the fence, but only if they are not created
by dynamic content. This means that scripts loaded from
outside the fence cannot infer information about a visitor
and change the page’s behavior based on that. For exam-
ple, these external scripts cannot scan the visitor’s internal
network by creating a bunch of new script or img tags as
is done in drive-by pharming [14].

X-HTTP-VISA: DENY TYPE dynamic
X-HTTP-VISA: ALLOW TAGS img

The result is that all img tags served by the content provider
are loaded regardless of their URI. After the initial page
load, any additional img tags that are appended to the DOM
are NOT loaded if the URI is outside the fence.

6. SECURITY

Currently, there is no way to specify which URIs should be
allowed on a web page; this is assumed to be adequate since
the author of the web page has direct control over which
URIs are referenced by it. Things get a bit more complex
with Web 2.0 where web sites allow users, sometimes anony-
mous, to contribute content. Suddenly a huge burden is
placed on the author of the web application to define what is
and prohibit malicious content from being contributed. This
is a daunting task, especially with the way many browsers
have vulnerabilities that come and go, resulting in opportu-
nity to post references to external content. The effects of a
user contributing data that loads URIs not intended by the
author of the web application are twofold:

1. A malicious user could embed a URI to a script he
controls. This data may then be rendered through the
target web application on all visitors’ browsers. This is
persistent, reflected cross-site scripting. The attacker
can execute arbitrary code in the script origin of the
web application and steal or manipulate data.

2. A malicious user could embed a web bug (image that
phones home). Any visitor to the web application who
views a page where the attacker has contributed con-
tent currently loads the URI and sends a lot of infor-
mation to the hosting server (which may be controlled
by an attacker). The attacker can then learn more
about the web application than the app’s author may
like.

The use of our proposed policy provides a web program-
mer more concise control over what happens once his content
has left his server and is running in visitors’ web browsers.
Immigration Control allows a web site administrator to spec-
ify (through HTTP headers) what servers or domains can be
trusted. This is in contrast to the current practice of vali-
dating all input; the policies allow a web site administrator
to say what the browser should load on his site instead of re-
lying on his code to properly identify and remove unwanted
request-causing content from user input.

6.1 Adversaries

First, it is important to clarify to what the adversary has
access. At a high level, a web site can be described as 4
layers (see Figure [4): (1) the network layer, (2) the service
layer, (3) the application layer, and (4) the data layer.

The content sent to a site’s visitor ultimately starts at
the data layer; here information is retrieved from databases
or files and then eventually massaged into something pre-
sentable by the Application layer. When the content has
been “wrapped up” by the application layer, it is sent to
the service layer that packages it up in a protocol (HTTP,
HTTPS, etc) and transmits it (over the network) to the
client. As we will describe, not all adversaries have access
to each of these layers. In fact, due to the hardening of most
web serving software and network appliances, the most com-
mon adversaries only have the same access that an arbitrary
client does, so they will only interact directly with the ap-
plication and data layers.

Ultimately the network layer is the lowest-level layer and
is comprised of a TCP stack and the network communica-
tions daemons that relay traffic to and from the client. The
service layer is comprised of the software that handles the

NETWORK]

SERVICE
(s) (Apache)

APPLICATION

(PERL) PYTHON)
C &P N B)

DATA

Flat File Database
Storage Storage

Figure 4: A web server is comprised of many layers:
different strength adversaries have access to differ-
ent layers. A web page originates in the data layer
(where it is stored) and passes through all the other
layers before being delivered through the Internet
to the client.

requests on top of the network layer—usually the web server
(ITS or Apache). The application layer consists of any web
application software (CGI, ASP, JSP, Python, etc scripts);
these scripts are interpreted and their results are relayed
by the service layer. Finally, the highest level is the data
layer; this is composed of all the information stored by a
database, i.e., data that can be modified by users of the web
application.

An adversary can be classified based on which layers he
can manipulate. Consider a scenario where a user U is oper-
ating a computer Cy through the Internet to interact with
an application running on a service provider’s web server
SP. A malicious user F can also connect through his com-
puter C'g through the Internet to the same service provider.

Type 0: Network Adversary — this strongest adversary
has the ability to change data on the network between
any arbitrary client computer (C) and the applica-
tion’s web server (SP). As a result, he has ultimate
control over all non-encrypted traffic. Examples of this
type are man-in-the-middle attacks. Historically, this
type of adversary has attacked the Internet infrastruc-
ture.

Type 1: Protocol Adversary — this adversary has the
ability to manipulate data in the HTTP stream be-
tween any arbitrary user of the web application and the
application server. Examples are BHO/Browser Ex-
tension malware, or an adversary who has control over
a web proxy between a user’s computer (C') and the
service provider (SP). This allows the adversary the
ability to manipulate HT'TP headers through script in-
jection (this happens when an adversary enters data,
and it goes, unfiltered, directly in to data in a HT'TP
header), though not network-level data such as the raw
TCP stream. Like type 0, this adversary is essentially
attacking the Internet infrastructure by compromising
a proxy server, router, or similar.

Type 2: Application Adversary — this adversary has
the ability to augment or change the web application’s
behavior. In essence, this adversary can inject addi-
tional code that is run on the server-side causing dif-
ferent, unintended (by the application developer) func-
tionality. This results in different HTML (or resource)
content being served to the attacker himself, E, as part
of the web application’s HT'TP response, appearing to
be legitimately from the service provider SP. SQL in-
jection and PHP vulnerabilities are exploited by this
type of adversary.

Type 3: Data Adversary — this adversary has the abil-
ity to modify persistent data placed into the web appli-
cation’s data layer. If this data is included in what the
site’s visitors see, it may result in content being dis-
played on the website (and if it is HTML, it may cause
external resources to be loaded). Cross-Site Scripting
and JavaScript malware adversaries are of this type.

Type 4: External Adversary — this adversary passively
attacks the web site by embedding it in a sub-document
of his own. For example, he serves a web site at
evil.com. His code, in turn, contains an iframe or
frame that embeds the victim website. As a result, his
page is at the top-level of the document tree contain-
ing the victim site. He can serve his own Fences and
Visas (since he controls the root-level HT'TP headers).
This type of adversary may be a phisher interested in
spoofing the target website in order to skim passwords.

Types 2 and 3 are closely related since they are essentially
an attacker with access to an un-trusted browser. Once
the traffic reaches the attacker’s computer, the entirety of
the communication stream can be observed and manipulated
by the attacker. The main difference is this: type 2 can
change the behavior of the application, but only he sees the
changes. Type 1 only changes the information served by (not
the behavior of) the application. Since we cannot assume
that all clients of a given web service use a trusted web
browser, these adversaries must be addressed.

In essence, we wish to defend against an adversary who is
attacking the service provider’s server through HTTP and
via form submission and web application errors wishes to
change the data (or code) stored on the server.

evil.com

6.2 Security Claims

We claim that the use of our Immigration policy has these
important qualities. These are the security claims of our
scheme:

1. It does not reduce security of existing systems.

2. It cannot be circumvented (requires a strong adversary,
indicating more fundamental problems).

3. Tt is robust. A flawed implementation or mis-specified
policy will not reduce the security of a site to that of
a site that does not use our scheme.

4. Tt cannot be used by an attacker to selectively block
access to pieces of a website that employs Immigration
Control.

In addition to these security claims, our scheme is backward-

compatible. It can be deployed partially or wholly and still
improve the overall security of a system. Our scheme is also
tolerant of improper implementations—a browser or server
that improperly implements Immigration Control cannot re-
duce the security of a web site (or its visitor) to less than
they currently possess without Immigration Control. This
is further discussed in Sections [6.4] and

6.3 Security Argument

Immigration Control does not provide protection against
all adversaries; this is naturally due to the clear-text way
in which HTTP data is transmitted. When coupled with
transport layer security (TLS/SSL), the security of the sys-
tem increases greatly and can help prevent against attack-
ers of type 0 and 1, but this does not solve data-injection or
script-injection since an adversary will successfully negotiate
the same type of connection as expected visitors to the site.
Thus, we concentrate on malicious users of the web appli-
cation who have access only connections they establish with
the server, and not all network traffic. The attackers do not
have access to all network traffic to or from any arbitrary
users, nor do they see or control all traffic to and from the
server.

Additionally, adversaries may have different motives; some
may be interested in relaxing or eliminating the effect of
fences and visas while others may only be interested in block-
ing parts of sites from loading (in denial-of-service fashion).
First, we will explain defenses against the adversary who
wishes to relax the constraints of fences and visas. After-
wards, we will address the concern of using these policies to
diminish a victim site’s functionality.

Defense against type 2: Application Adversaries.

All Immigration Control information specified by the ser-
vice provider SP are served to all possible clients C' as well
as the adversary E. This Fence/Visa information is stored
in an immutable fashion on SP and, though not changed,
can be ignored by any client C’s computer Cc.

In this case, our adversary E only has control over the
Fence and Visa headers received by his own computer. He
cannot instruct SP to change the data it serves since this
data is stored in the Service layer, and he can only interact
with the Application layer of SP (where the code for the web
application is stored, and not the code for the web server
itself). All that can be accomplished by ignoring the Visa
and Fence headers is relaxed security constraints on his own

browser (on EC). The same immutable headers are served
to other clients C, and since E cannot change what headers
C receives, he cannot affect the operation of Fences and
Visas on C.

Furthermore, even though some web application languages
(PHP, Perl, Python, etc) can modify the HT'TP headers, the
web server itself gets the last say and can override any HTTP
headers set by the application. So even if X~-HTTP-FENCE and
X-HTTP-VISA are set by the application, the Service layer
will remove them and over-write them with the immutable
information stored in the Service layer.

Only one scenario exists where E can cause the headers
served by SP to change: if he is able to insert scripts that,
when run, edit the configuration files for the web server
(technically in the Service layer), then he can change the
Fences and Visas served. Since the configuration files are
usually stored in protected directories (C: \WINDOWS|or|/etc/
apache2/), the occurrence of this specific scenario signifies a
severe vulnerability problem with the web server itself, and
not the web application. Most modern web servers will dis-
allow these application scripts executing on behalf of the
web server to edit the configuration files, so this scenario is
not likely.

Defense against type 3: Data Adversaries.

Similar to the Application Adversaries, the data adver-
saries can only modify information in the Data layer. Even
if they have full control over the data layer, they cannot
modify information in or behavior of the service layer, and
thus cannot change the X-HTTP-FENCE or X-HTTP-VISA head-
ers specified by the web server.

Defense against type 4: External Adversaries.

The weakest adversaries are those that can only serve their
own site with a victim site embedded in a sub-frame, or child
node in the document tree. This adversary has the ability
to serve his own Fences and Visas to go with his site; A side
effect of this is that he may specify a very strict policy. This
may have three possible outcomes:

1. The policy may be general enough that it does not
affect the behavior of the victim web site embedded in
the attacker’s site.

2. The policy may be restrictive so that only a subset of
the resources on the embedded site are loaded.

3. The policy may be ultimately restrictive so that none
of the embedded site is allowed to load.

In the first case, the attacker’s site does not have any effect
on the victim site. In the third case, the victim site is not
loaded at all (completely blocked) and does not present any
security implications. Only the second case is interesting;:
in this case some data is loaded for the site.

If this adversary presents a threat to the embedded victim
site, it is in the interest of that site to pop out of any frames.
This is common practice (see http://www.puterdeco.com/
scripts/pop-out.html) and is currently used by many sites
to prevent being embedded in the first place. This pop-
out technique will ensure that the site is at the root of a
document tree, and thus its effective policy is that specified
in its own HTTP headers.

C: WINDOWS
/etc/apache2/
/etc/apache2/
http://www.puterdeco.com/scripts/pop-out.html
http://www.puterdeco.com/scripts/pop-out.html

6.3.1 Satisfying our Claims

The purpose of specifying our policy using HTTP-headers
is straightforward: it forbids the most common adversaries
access to the policy’s content. Unlike client- or server-side
content validation techniques used to make sure adversaries
don’t submit malicious content, our technique is specified in
the HTTP stream and enforced after the server has assem-
bled the response content (where an adversary could inject
data) and before the client’s browser renders the content
(where an adversary’s injected data is interpreted). In more
detail, here is why our claims are satisfied even in the pres-
ence of a Data or Application adversary:

Claim 1: Since Immigration Control simply tightens the
current resource-loading policy implemented by com-
mon browsers, it can only be used to block certain re-
quests that originate from a web site. There is no
provision in our scheme that relaxes current browser
implementations, and thus security (in the form of pri-
vacy and data leaks) cannot be reduced.

Claim 2: Even if a Data or Application adversary has the
power to change the raw application code on the web-
sever, he cannot modify the web server configuration
that generates the Fences and Visas HTTP headers.
As a result, these adversaries don’t have the ability
to change the headers initially sent by the server in
response to any browser’s request. Furthermore, this
adversary doesn’t have access to the data on the net-
work between the web server and the client’s browser
so he cannot modify the HT'TP headers once they have
been sent.

Claim 3: Even if this adversary could modify the HTTP
headers, he could not relax the constraints on the web
site’s origin to less secure than a site without the Fences
and Visas. This is because our scheme simply tightens
the current policy and does not allow for relazing of it.

Claim 4: We aim only to defend against adversaries that do
not pose a man-in-the-middle threat to the web server
and its clients. As a result, data cannot be changed
in-transit, it can only be injected into the web server.
The only form of foreseeable service denial is in the
form of a malicious site that embeds a victim site in
a sub-frame (described as a Type 4 adversary). Using
pop-out techniques, like many sites currently use, a
site can ensure it is at the root-level of a document
tree and thus maintains control over the Immigration
Control policies that are in use.

6.3.2 Additional Considerations

It is possible that there is a non-malicious but naive proxy
server on the path from server to client that may strip out
the X-HTTP-FENCE and X-HTTP-VISA headers from the re-
sponse stream. This would cause a client’s browser to go
into “legacy” mode, enforcing the very relaxed data-fetching
behavior of modern browsers without Immigration Control
ability. Though this relaxes the security on a web site, it
will not make it less secure than it is without Immigration
Control.

6.4 Tolerant of Improper Implementations

It’s possible that either a web browser or web server im-
properly implements the Fences and Visas Immigration Con-
trol policy. We show that, although improper implementa-
tions may not provide the additional security afforded by
proper implementations, they will not reduce it.

Improper Server-Side Implementation.

If a server provides bad HTTP headers, it is possible that
a browser may either misinterpret a policy or not be able to
parse it. In the case of misinterpretation, it should not have
any ill effects on the website other than possibly missing
embedded scripts, images or other resources. As a result,
clients will see only parts of the website. This is a partial
denial-of-service, but it is triggered by the administrator of
the web site itself, and thus it is in the administrator’s best
interest to carefully construct the headers. In the case of un-
parseable headers, a browser may simply ignore the policy
that cannot be parsed, and ideally, warn the user with a
message such as “this website contains security settings that
cannot be understood by this browser — please contact the
administrator of the site” to warn the user.

Improper Browser Implementation.

If a browser does not implement the scheme correctly it
may cause one of three situations: an unintentionally loose
policy, an unintentionally strict policy, or failure to parse
valid HTTP headers. In the case of header-parsing failure,
the browser can revert to current implementations’ behavior,
allowing the most lenient policy. In the case of unintentional
restriction, the browser will block some resources from load-
ing that perhaps should appear on the site — thus too little
information will be requested which does not put the user’s
privacy at risk. In the case of the loose policy, unwanted
requests may be performed, putting the user’s privacy at
risk. As long as most web browsers properly implement the
policies, attackers will assume it is the case for all browsers
and avoid attacks relying on the improper implementation.
(Nonetheless, the browser manufacturer should ensure that
the policies are properly enforced; this is not a difficult task
since the Fences and Visas policies are fairly simple.)

7. DEPLOYABILITY

The use of these Immigration Control policies can be im-
plemented quickly, and without requiring complete adoption
to get “boot-strapped”. Take, for instance, all pairs of clients
and servers that may or may not implement our scheme:

Server and Browser Both Implement: In this ideal case,
headers are provided by a service provider and utilized
by the browser on the client’s computer.

Only Server: In this case, the headers are ignored by the
client’s browser, and the current policy (data can be
loaded from everywhere) is executed. This does not
break any web application, but may cause more data
leaking that is ideal. This client is not protected, nor
is the service provider.

Only Browser: In this case, the absence of headers sug-
gests to the browser to apply the most relaxed policy
so that data is not accidentally blocked from loading.
User’s experience is the same as without the Immigra-
tion support in the browser.

No Implementation: This is the case as it is today. The
server does not specify which sources can be trusted,
and the browser trusts all.

7.1 Client: Firefox Extension

We implemented a browser extension for Firefox 3 that
implements our scheme with the Root-Level policy (Sec-
tion . The extension hooks a Guard event listener into
each newly created Browser object. For each of these root-
level document instances, it watches the incoming HTTP
stream for X-HTTP-FENCE and X-HTTP-VISA headers. The
headers are parsed, and a policy is attached to each Browser
before the page is rendered. When any requests originate
from that Browser or its children, it is ensured that the
Browser’s policy is satisfied and so are any ancestor (par-
ent, grandparent, etc) policies. If a policy is not satisfied,
the HTTP request is canceled before being sent.

The source of this Firefox extension will be available at
[URL anonymized for submission], and at the time that this
document was created, it is still being tested.

7.2 Server: Apache 2.2

We implemented the server-side mechanisms for Immigra-
tion Control (generating the HTTP headers) on Apache 2.2
using mod_headers. This Apache module allows a server ad-
ministrator to specify extra HT'TP headers that are served
with all content. The specification can be done per-directory
or on a global level for a site through the use of .htaccess
files or the main httpd.conf file. Since mod_headers was
enabled by default in our installation of Apache, we simply
created a .htaccess file in our testing directory and added
the directives shown in Figure[}] A very simple HT'TP tran-
script for fetching the root page on our site that served fence
and visa headers is shown in Figure [6

remove any policy set by the application

Header unset X-HTTP-FENCE

Header unset X-HTTP-VISA

apply a fence & wvisa policy: these show up in

the response in order that they are declared here
Header add X-HTTP-FENCE "DNS *.domain.com"

Header add X-HTTP-VISA "ALLOW TYPE static"

Header add X-HTTP-VISA "DENY TAGS img"

Figure 5: Declarations in an .htaccess file that
causes Apache to serve sample headers

Implementation of server-side support for our scheme took
no more than five minutes. The configuration can be up-
dated by administrators on the server without restarting
Apache, and due to unix file permissions, cannot be mod-
ified by someone without access to a web administrator’s
account. For more information about mod_headers, see [11].

8. FUTURE WORK AND EXTENSIONS

The current specification of the Fences/Visas protocol can
be extended to provide additional behavior (at the cost of
complexity for those who write the headers).

Fence Certification. To prevent HTTP-level spoofing of
these headers, they could somehow be integrated with the

10

REQUEST:
GET / HTTP/1.1
Host: sidstamm.com

RESPONSE:
HTTP/1.1 200 OK
Date: Mon, 24 Mar 2008 21:49:51 GMT
Server: Apache/2.2.8 (Ubuntu)
X-HTTP-FENCE: DNS *.domain.com
X-HTTP-VISA: ALLOW TYPE static
X-HTTP-VISA: DENY TAGS img
Content-Length: 2541

Figure 6: A transcript for request/response using
the header declarations shown in Figure

SSL certificates that are currently used by browsers. The
headers’ content could be signed with the private key of the
certificate holder, then verified on the browser.

Intra-origin control. 1t is feasible to extend the VISA header
so that it can also define what types of content can be loaded
from within the fence. This can be done in a fashion to
make an incredibly strict same-origin policy that disallows
the use of certain web features (anticipating that only at-
tackers would want to use them).

Link Control. The policy could also be extended to en-
force what types of links can be clicked (automatically or
via script) based on the URI where they end up navigat-
ing. This could be used when a web application doesn’t link
to many outside applications, blocking any visitor (with or
without malware) from navigating to a site outside the fence.
This may help for some types of script-borne malware like
form copying.

Multiple Fences. Tt is feasible to define multiple immigra-
tion behaviors based on different sets of fences. For example,
a fence could be erected around a very strict set allowing
everything, then an outer fence could be erected to allow
slightly more, etc. This can be used to specify varying levels
of “trust” for different sets of URIs.

9. CONCLUSION

We have described HTTP Immigration Control: a set of
extra HTTP headers that restrict what types of requests
a browser may make when displaying a site. Our scheme
helps prevent information transfer to hosts that a service
provider does not trust—invasions of the visitors’ privacy.
Our scheme is simple, easily implemented, and tolerant of
partial implementations where it is not universally deployed.
Immigration Control provides refinements of current browser
security in a way that cannot make a site less secure than it
was without our scheme. Finally, Immigration Control pro-
vides a general way to control data flow, which may result
in defense against yet undiscovered data-leak problems.

10.

[

REFERENCES

J. Burke. Jsonrequest, part 2 (cross domain policy for
all). Blog, March 2006. URL:
http://tagneto.blogspot.com/2006/03/
jsonrequest-part-2-cross-domain-policy.html.

S. Cook. A web developer’s guide to cross-site
scripting, January 2003.
http://www.giac.org/practical/GSEC/Steve_Cook_GSEC.
D. Danchev. Mass iframe injectable attacks, March
2008. http://ddanchev.blogspot.com/2008/03/
massive-iframe-seo-poisoning-attack.html.

J. Grossman. Phishing with superbait. BlackHat
Japan Briefings, 2005.

C. Jackson, A. Barth, A. Bortz, W. Shao, and

D. Boneh. Protecting browsers from dns rebinding
attacks. In CCS ’07: Proceedings of the 14th ACM
conference on Computer and communications security,
pages 421-431, New York, NY, USA, 2007. ACM.

C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Stanford safecache. http://www.safecache. com.

C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Stanford safehistory. http://www.safehistory.com.
C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Protecting browser state from web privacy attacks. In
WWW °06: Proceedings of the 15th international
conference on World Wide Web, pages 737744, New
York, NY, USA, 2006. ACM.

M. Jakobsson and S. Stamm. Invasive browser sniffing
and countermeasures. In WWW ’06: Proceedings of
the 15th international conference on World Wide Web,
pages 523-532, New York, NY, USA, 2006. ACM.

N. Jovanovic, E. Kirda, and C. Kruegel. Preventing
cross site request forgery attacks. In the IEEE
International Conference on Security and Privacy for
Emerging Areas in Communication Networks
(Securecomm), pages 1-10, September 2006.

A. S. Project. Apache mod_headers module. URL:
http://httpd.apache.org/docs/2.2/mod/mod_
headers.html.

C. Reis, S. D. Gribble, and H. M. Levy. Architectural
principles for safe web programs. In Sizth Workshop
on Hot Topics in Networks (HotNets) 2007, Atlanta,
Georgia, November 2007.

J. Ruderman. In Mozilla Documentation, August
2001. URL: http://www.mozilla.org/projects/
security/components/same-origin.html.

S. Stamm, Z. Ramzan, and M. Jakobsson. Drive-by
pharming. In S. Qing, H. Imai, and G. Wang, editors,
ICICS, volume 4861 of Lecture Notes in Computer
Science, pages 495-506. Springer, 2007.

W3C. Access control for cross-site requests. Technical
report, February 2008.
http://www.w3.org/TR/access-control/.

11

http://tagneto.blogspot.com/2006/03/jsonrequest-part-2-cross-domain-policy.html
http://tagneto.blogspot.com/2006/03/jsonrequest-part-2-cross-domain-policy.html
http://www.giac.org/practical/GSEC/Steve_Cook_GSEC
http://ddanchev.blogspot.com/2008/03/massive-iframe-seo-poisoning-attack.html
http://ddanchev.blogspot.com/2008/03/massive-iframe-seo-poisoning-attack.html
http://www.safecache.com
http://www.safehistory.com
http://httpd.apache.org/docs/2.2/mod/mod_headers.html
http://httpd.apache.org/docs/2.2/mod/mod_headers.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.w3.org/TR/access-control/

	Introduction
	Information Leak Attacks
	Contribution
	Goals of our Scheme
	Organization

	Background
	The Same Origin Policy
	Defining a Better Origin with Fences
	Specifying Access with Visas

	Related Work
	A Tighter Same-Origin Policy

	Fences in Depth
	Order of Inclusion
	Nesting Fences

	Visas in Depth
	Resource Types
	Multiple Visas

	Security
	Adversaries
	Security Claims
	Security Argument
	Satisfying our Claims
	Additional Considerations

	Tolerant of Improper Implementations

	Deployability
	Client: Firefox Extension
	Server: Apache 2.2

	Future work and Extensions
	Conclusion
	References

